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Abstract

This paper presents a model for the endogenous determination of the number of queues

in an G/M/s system. Customers arriving at a system where s customers are being served

play a game, choosing between s parallel queues or one single queue. Equilibria are obtained

for risk-neutral and risk-averse customers. With risk-neutral customers, both a single queue

and multiple queues are equilibrium states, and there is scope for mixed strategies. When

risk-averse customers are considered, there is a unique single queue equilibrium. These

results are discussed and suggestions for further research put forth.

JEL: C73 C72

Keywords: Queues - Applications: strategic interactions. Queues - Multichannel: deter-
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1 Introduction

Queues form naturally whenever there is some delay in service time necessary for the provision

of a good, and the number of providers is smaller than the current number of customers. Queues

force customers to suffer the cost of time spent in the queue, as well as the monetary cost of the

good. Customers will want to minimize this cost, and increasing queueing efficiency can yield

significant social benefits: witness the rise of self-service check out points at supermarkets.

The present paper takes place in the context of s parallel G/M/1 systems, and pooled

G/M/s systems, where S is any finite number of servers, under a First Come First Served

(FCFS) discipline where reneging is not allowed. It sits within the strategic queueing literature,

where strategic interactions between customers in queues are modelled through game theory.

The seminal Naor (1969) considered the setting of an FCFS M/M/1 queue. In this model,

risk-neutral, utility maximizing customers, with a linear utility function, choose a joining thresh-

old, the largest queue length for which the expected cost of waiting is weakly smaller than the

service’s net value. Once this happens, customers will balk without the need for an exogenous

capacity limit. Naor showed that in such a queue, average queue length grows beyond the

social welfare maximizing level, and that a social planner can improve social welfare, attaining
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a first-best optimum where aggregate waiting time is minimized. This is achieved by shifting

the cost structure faced by arriving customers, through levying a toll on customers who join

the queue, thereby adding its cost to the cost of waiting and reducing the threshold at which

customers join the queue.

Naor’s result was extended in Knudsen (1972) to a general cost function, and a system with

a single queue served by any finite number of servers. Knudsen found Naor’s result on tolling

held even under these relaxed conditions, and crucially for the present purposes, extended his

framework for individual optimization to the more general case.

Naor’s paper was followed by a variety of further articles examining customers’ strategic

queueing behaviour, especially in M/M/1 FCFS queues. For a good overview of the literature

up to publication, see the review monographs Hassin and Haviv (2003) and Hassin (2016).

Since then, many more papers than can be individually mentioned have been published on this

subject.

The second strain of literature relevant for the present paper centres on queues being con-

sidered among what is described in Parsons (1955) as social systems, in that they involve

interactions between individuals according to some set of socially agreed upon norms. These

sorts of interactions can be modelled as a game, which can then be investigated with standard

game theoretic tools, such as the theory of repeated games, as described in Okuno-Fujiwara

and Postlewaite (1995) (and see Mailath and Samuelson (2006), inter alia, for a thorough re-

view of the repeated games literature). Kandori (1992) showed the applicability of this type of

analysis to situations where game ‘partners’ change by describing a process where ‘punishment’

for deviating from social norms is meted out by the community rather than by the aggrieved

individuals only. The extent to which queueing is governed by these social norms has been the

object of research in the Psychology and Sociology literatures, following on Schwartz (1975),

which laid out a sociological analysis of waiting for service and customers’ perceptions of the

fairness of queueing disciplines. Allon and Hanany (2012) studies a setting where, in the con-

text of repeated interactions and changing priorities, customers allow queue cutting when their

priority is low, with the expectation of being allowed to cut ahead in future rounds of the game,

when their priority is high. Erlichman and Hassin (2015) looks at a similar problem, but with

priorities being sold by the server. The slightly different case of an unobservable M/G/1 queue

is analysed in Haviv and Ravner (2016), where an efficiency enhancement pricing mechanism is

also presented.

Returning to the issue of the number of queues for multiple service points, while it seems

intuitively appealing that a single queue for two servers is more socially efficient than one queue

for each, this was only formally demonstrated in Smith and Whitt (1981) (but see Rothkopf and

Rech (1987) for some situations, not relevant to the current paper, where this may not hold1).

The source of this inefficiency is that if customers cannot switch queues, then one of the servers

may be idle while there are customers waiting to be served in other queues. The recent work in

Sunar et al. (2017), however, has shown that when customers are risk-neutral, delay sensitive,

and may balk, dedicated queues may be preferable to combining them.

1For instance, management may want to use separate queues as a discrimination mechanism: supermarkets

often have queues for customers with less items. This, however, requires customer heterogeneity, which is not a

feature of the model outlined here.
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Where multiple queues are present despite their inefficiency, it has been shown that in

M/M/s systems (where s is any finite number of servers) where all servers have the same

service time distribution, customers should join the shortest queue, and break ties arbitrarily

(Winston (1977)). Where expected waiting times vary with servers, there have been attempts

to determine if customers might be better off waiting to gain information about these, such as

that in Hlynka et al. (1994).

Nevertheless, in the light of its inefficiency, the persistence of multiple parallel queues

presents something of a conundrum. While combining queues seems to be optimal, it often

does not match the observed behaviour of customers in day to day transactions. This may be

due to managers enforcing a multiple queue discipline, but in many cases managers don’t seek

to direct customers one way or the other. Why is it, then, that customers sometimes form mul-

tiple queues for multiple service points, and other times only one? The motivation behind the

present paper is to discover whether and in what circumstances this socially optimal outcome

is sustainable without management intervention—is it individually optimal? Is the incidence

of this behaviour related to customers’ risk aversion? Armony and Plambeck (2005) studies

a related problem on unobservable queues, where customers can place duplicate orders in the

presence of two service points, to protect themselves against supply shocks. Dehghanian et al.

(2016) considers jockeying by strategic, risk-neutral customers, between two parallel queues

(assumed as the given system structure), finding it may not be optimal to initially join the

shortest queue. Likewise Ganesh et al. (2012) studies jockeying between parallel queues, show-

ing that ‘smart’ jockeying does not significantly affect system-wide sojourn times compared to

a ‘random’ strategy. Ata and Olsen (2009) studies the case of a monopolistic server faced with,

inter alia, risk-averse customers, and prescribes asymptotically optimal pricing policies.

The literature has usually assumed that the number of queues which will form in the presence

of multiple servers is the choice of the service station manager. As such, they would be the

ones to blame for the formation of multiple queues. Rothkopf and Rech (1987) presents some

suggestions as to why this might be the case, but even if these arguments are valid, they do not

explain the emergence of multiple queues where there is no managerial intervention, such as at

self-service points. Zhang et al. (2008) considers the concept of a ‘blind’ scheduler who makes

scheduling decisions without knowledge of the system state, another setting where management

intervention is limited.

The present paper attempts to answer this question by setting forth a model where strategic

interactions between customers determine the number of queues in a system. Anecdotally, when

they are not prompted to form a given number of queues, customers faced with busy service

points but no queue most often attempt to form a single queue for all of them, and move to the

first service point to become free. The problem with this strategy is that this position straddling

multiple service points can be interpreted by new arrivals as permission to queue for only one

of the servers, and the first customer cannot stop this as any attempt to move to block the new

arrival forces the incumbent to move away from the other service points and commit to that

one anyway; most readers can probably relate to this experience.

The model setting is a system with multiple servers under a no-jockeying condition, covering

in turn risk-neutral and risk-averse customers. The game starts when a customer arriving at

the system encounters all servers as busy, but no queue (if at least one server is idle, customers’
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decision is trivial). It will be outlined how the number of queues is determined through this

multi-stage game, whereby later arrivals can disrupt a single queue, and so their potential future

decisions must be accounted for by earlier customers. The first arrival will be demonstrated to

strictly prefer a single queue.

The intuition behind this preference for the single queue is that this customer can be served

as soon as the first service occurs, rather than having to guess at which server will finish the

current task first. On the other hand, the sth customer (where s is the number of servers)

does not always have the same benefits from that single queue: if customers are risk-neutral,

customer s is indifferent to the number of queues. In the case of risk-neutral customers, it will

be shown how customers alternate between strictly preferring one queue and being indifferent

to the number of queues, in blocks of s customers. This will lead to a proof that having a single

queue is an equilibrium outcome for this game. This equilibrium is not unique, however, with

s queues also being an equilibrium state.

In order to address the presence of multiple equilibria, section 3 focuses on risk-averse

customers, arguably a more true-to-life setting. It is found that risk aversion quashes the

multiple queue equilibrium, leaving the single queue state as the unique equilibrium.

Steady-state properties will not be considered, as the situation being modelled takes place

when the queue is starting to form, before a steady-state has emerged. Therefore joining

customers will not face the steady-state expected waiting time, but an individual expected

waiting time which varies with the system state at their arrival. The strategic interactions

modelled in the game relate to how incumbent customers deal with arrivals to the system, who

might disrupt the present order by trying to change the number of queues.2

The model presented here is especially relevant for situations where there is no channel

for managers to interact with customers to establish the number of queues, such as at any

self-service point, or where for some reason engagement with the public is discouraged—such

as when selling tickets behind bullet-proof glass windows on dangerous parts of a transport

network. Further, the model advances the analysis of strategic interactions between customers.

2 Queue Number Determination with risk-neutral Customers

Consider a stream of customers seeking a service the provision of which requires a queue; their

arrivals at the service station may follow any general distribution for inter-arrival time. This

service is provided by s identical servers. Obtaining the good from these servers takes time,

distributed according to an exponential distribution with rate µ. While the arrival process is

not relevant for the game’s equilibrium outcome, the results rely on the exponential distribution

of service times, in particular the exponential distribution’s memoryless property. Generalizing

beyond this distribution is left for further research.

As there are s servers, only s customers can be served simultaneously. Others will wait until

2While addressing a different problem, that of whether customers let others cut ahead on the queue in an

M/M/1 system, Allon and Hanany (2012) also addresses how customers deal with violations of social norms,

and reaches a conclusion with a similar tenor: undirected customers can, at least in some circumstances, reach

socially efficient outcomes through strategic interaction, although it’s important to note that unlike the present

model, Allon and Hanany (2012) is set in the context of repeated games.
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a server becomes available, and are served in order according to the First Come, First Served

(FCFS) discipline. It is possible for the system to be organized as s parallel G/M/1 queues,

where each server services a separate FCFS queue, and customers must choose one queue to

join, or as one single G/M/s queue serviced by all s servers, where the customer at the head of

the queue is served by the first server to become free. The number of queues is endogenously

determined through customer choices, being the game’s equilibrium outcome.

While it is possible to imagine sub-groups of queues, e.g., one for servers 1-s/2, and another

for servers s/2 + 1-s, or other, possibly assymetric combinations. However, only total pooling

or separation are considered in this setting. This is for two reasons. First, for any reasonably

small number of queues, this kind of ‘partial pooling’ is not consistent with observed patterns of

endogenous customer behaviour. As such, any results would have limited application. Second,

as in principle ‘partial pooling’ can be asymmetric (indeed must be so if the number of servers

is odd), and the number of possible combinations increases with the number of servers, the

mathematical complexity of the problem is greatly increased for limited benefit. Research along

these lines is left for future work.

Only situations where all servers are active will be considered here, so this can be assumed

and need not be explicitly stated in characterizing the system state, and the queue lengths do

not include them (i.e., they number only the customers waiting). This state can be described

by a matrix ΘQ composed of Q ∈ {1, . . . , n} column vectors θq, each with I ∈ {1, 2, ...,∞}

elements, where Q is the number of queues in the system, q the (arbitrary) index of each queue,

and I the maximum length of each queue, where each element θi,j is 0 or 1 depending on

whether a customer is queueing in the place in the queue corresponding to that element. If a

given element θi,q = 1, it must be the case that θi,q = 1∀ i < i, i.e., the queue cannot have gaps

in it. Further, if queue length is i, then θi,q = 0 ∀ i > i. Queue length Lq =
∑I

i=1
θi,q for a

given q, and total number of customers waiting in the system L =
∑

q Lq. Finally, assume by

convention that when a system has no waiting customers, Q = 1.

Waiting imposes a cost on customers. Balking will not be considered, so the efficiency issues

raised in Sunar et al. (2017) are not relevant. Therefore, only the cost function is required to

analyse customer behaviour. Since they will initially be taken as risk-neutral, the cost function

Ci,q of customer i, q will be linear with unit cost of time c:

Ci,q(ti,q(ΘQ)) = c ti,q(ΘQ), (1)

where ti,q(ΘQ) is expected waiting time for customer i, q, a function of system state. From the

linear form of the cost function, it is clear that the risk-neutral customers’ objective in the game

is to minimize expected waiting time t.

The game starts when all servers are working, but no customers are waiting to be served.

Each arrival at the system observes the system state, described by matrix ΘQ.

There are two possible actions available to customers, comprising the action set A =

{S,M}:3

1. Action S: queue for both servers and form a Single queue;

3As previously mentioned, the possibility of balking (i.e., leaving without joining the queue) will not be

considered. It is not the focus of the paper, and is not relevant to the determination of the number of queues. It

is safe to assume that the reward is large relative to waiting time, taking the possibility out of consideration.
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2. Action M : queue for whichever server has the shortest queue, or randomize with equal

probability if at least two queues are of identical size and form Multiple queues (cf.

Winston (1977); if this is done when the customer faces a single queue, it will force the

creation of multiple queues, as explained in more detail below. In this case, the customer

again joins the end of the shortest resulting queue).

However, action S is not available when Q > 1, i.e. when the system is in a multiple queue state.

This reflects the asymmetry between the two states, as it is much more difficult to persuade

customers in two separate queues to combine than to split one single queue into two. So for

S to be available to an arriving customer, all incumbents must have previously chosen S—i.e.,

the system must be in a single queue state, Q = 1. Obviously, a customer arriving at a system

with no waiting customers may take either action as well, which is why it’s defined that Q = 1

in that case.

Each new customer arrival triggers a new round of the game, which is played sequentially.

Formally, the game stages, which are common knowledge, are:

1. A customer i arrives at the system, observes its state, and chooses from action set A. This

choice can be discerned by any incumbent customers with perfect accuracy. The chosen

action is not performed until stage 3, however. If there is at least one customer waiting,

and that customer has taken action M so that the system is in a multiple state, customers

must choose M and the round terminates.

2. This stage only occurs if an arriving customer encounters a system Θ1 where L ≥ 1, i.e.,

a single queue with at least one customer, and chooses action M in stage 2. In that case,

incumbent customers split the single queue into separate queues, changing the system

state. They will choose which server to queue for, in turns, with incumbents placed closer

to the server in the single queue moving first: choosing the server with the shortest queue

or randomizing between queues of equal length. They do this before customer i can act

on the choice made at step 2.4

3. Customer i acts upon his choice in stage 1.

4. The customer remains in the queue until service completion, acting as an incumbent

vis-à-vis future arrivals.

Customers’ strategy space is then composed of a choice from set A for each possible system

state Θ, so that Σ, a vector whose elements are either of the possible actions in A for each

possible state Θ, denotes the strategy for any customer. Customers’ waiting time is uncertain,

as the queues are stochastic processes and strategic interactions with newly arrived customers

may alter the system state. Let then ti,q(α,ΘQ) be the ex-post waiting time for customer i, q,

as a function of α, the action prescribed by strategy Σ for state ΘQ.

2.1 Waiting Times

Given a strategy Σ, customers’ expected waiting times are a function of system state, and

the customer’s position in the queue. Upon arrival to the system, a customer observes system

4This response could be endogenized, but to avoid triviality it was embedded into the game.
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state ΘQ. From this, the customer learns their place i, q for each of their possible actions.

Expected sojourn time is the sum of the exponentially distributed service time (with rate µ),

and waiting time which follows a Gamma (Erlang) distribution for a given Q. Therefore when

Q = s expected sojourn time is given by:5

E[ti,q(Θs)] =
1

µ
+

i

µ
, (2)

whereas for a system where one queue feeds s servers it is:6

E[ti,q(Θ1)] =
1

µ
+

i

sµ
, (3)

where the intuition behind eqs. (2)-(3) is that having one queue feed s servers multiplies the

processing rate by s (as long as the customer is in the queue, not during service).

In determining customers’ preferred decisions, it will be helpful to be able to compare

expected waiting times directly across the possible system states, for the same number of cus-

tomers in the system. This can be done by considering how customers in a single queue would

be redistributed to s queues if the system state changed in the way prescribed in stage 2 of the

game.

Let then i1 be the customer’s position on the queue when Q = 1, and is their position on

the shorter s queue(s) if the system state changes to Θs.
7 Then:

is =

⌈

i1
s

⌉

, (4)

so that, e.g., for s = 2, the first and second customers in the single queue take the first places

in the two queues, and so on. Then a customer arriving at a system Θ1 will have the following

waiting times depending on system state (which they might influence through their action

choice), and without taking future arrivals’ actions into account:

E[ti1,q(S,Θ1)] =
1

µ
+

i1
sµ

, (5)

E[tis,q(M,Θs)] =
1

µ
+

1

µ

⌈

i1
j

⌉

, (6)

where of course the system state changes to Θs if action M is chosen.

Note again that while customers arriving at a system in a single queue state can change

it to multiple queues by choosing action M and triggering stage 3 of the game, the reverse is

not possible: there is no mechanism for changing the system state from multiple queues to one,

other than the queue clearing. This implies that regardless of whether Q = 1 or Q = s, arrivals

will always get the same expected waiting time from choosing M , as if they do so on a system in

a single queue state, the system will change to a multiple queue state before they can overtake

the incumbents.

5See Knudsen (1972) and Naor (1969) for derivation of these results, although their intuition is simple:

customers must wait i service completions to begin service.
6At this juncture, strategic interactions are not being considered, and the number of queues is taken as given,

so t is presented as independent of customer choices.
7When there are multiple queues, the i refers to the queue chosen by the customer, with the q term kept

implicit to simplify the notation.
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2.2 Customers’ Actions and Equilibria

Customers’ preferred strategy will be comprised of the actions yielding the shorter expected

waiting time for any given system state. As the decision of a customer faced with multiple

queues is trivial under pure strategies, analysis will focus on customers arriving at a single

queue. For these purposes, it will be convenient to divide customers into two sets:

❼ Set O = {i | i 6= ns, n ∈ Z
+}

❼ Set E = {i | i = ns, n ∈ Z
+}.

Set O comprises those customers whose arriving place in the queue is not a multiple of the

number of servers, while E comprises those for whom it is.

Proposition 1. If a customer is in set O, it is a dominant strategy to choose action S.

Proof. For any place in a single queue system which is not a multiple of s, expected waiting

time is strictly smaller than for the corresponding place in a multiple queue system were the

system to change state:

E[tis,q(M,Θs)] > E[ti1,1(S,Θ1)] ∀ i1 ∈ O& q ∈ {1, . . . , s− 1} ⇒

E[tis,q(M,Θs)] =
1

µ
+

1

µ

⌈

i1
s

⌉

> E[ti1,1(S,Θ1)] =
1

µ
+

i1
sµ

.
(7)

as the change of state takes place according to (4).

Therefore, these customers strictly prefer action S when arriving at a single queue system

where their place would be i ∈ O, as they prefer that place to the corresponding place in a

multiple queue system. Given these customers have no incentive to deviate from the strategy of

always choosing S when arriving at a system in a single queue state, it is a dominant strategy

to do so.

The foregoing times are conditioned on all future arrivals choosing to preserve the single

queue state. However, since customers can always queue ahead of new arrivals who choose to

split the queue, and obtain expected waiting time E[tis,q(M,Θs)] anyway, this does not provide

them with a reason to deviate from the foregoing strategy, regardless of future arrivals’ choices.

Proposition 2. If a customer is in set E, they are indifferent in choosing between actions S

and M . Therefore, any choice defines an equilibrium.

Proof. For any place in a single queue system which is a multiple of s, the expected waiting time

is identical with that of the corresponding place in a multiple queue system were the system to

change state:

E[tis,s(M,Θs)] = E[tis,1(S,Θ1)] ∀ i1 ∈ E ⇒

E[ts,s(M,Θs)] =
1

µ
+

1

µ

⌈

i1
s

⌉

= E[ti1,1(S,Θ1)] =
1

µ
+

i1
sµ

.
(8)

Since these customers are indifferent between the two possible states, they are indifferent

between the two possible actions S and M .
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It is therefore the case that if customers in set E choose action S, the single queue state will

emerge, whereas if they break ties the other way and choose action M , the multiple queue state

will emerge. The corollary follows:

Corollary 1. Both the single queue state and the multiple queue state are equilibria in pure

strategies of this game.

It is worth noting, however, that the first customer to arrive strictly prefers a single queue,

and gets to implement it before any of the indifferent customers choose their action. Once this

single queue state exists, there is no incentive for any arrivals to deviate from it. This might

lead one to expect single queue states would be more prevalent. However, only one arrival needs

to deviate from S to M to establish the other equilibrium. This fragility of the single queue

equilibrium may be a reason for the emergence of multiple queues in real world scenarios.

3 Queue Number Determination with risk-averse Customers

The results in the previous section relied on risk-neutrality: customers only took expected

waiting time into account. In this section, it will be shown that if customers are risk-averse, the

single queue state will be strictly preferred by all customers, and thus be the unique equilibrium

of the game. The intuition behind this result is that the risk associated with the multiple queue

state is higher, as in the single queue state active servers can keep the queue moving even

while some are faced with a low-probability high service time; in the multiple queue state, this

safety valve is not present for any individual queue, so risk-averse customers naturally prefer

the former.

The analysis will mirror that presented in Section 2, with an identical game being played.

Let the customer cost function Ci,q(ti,q(ΘQ)) be strictly convex in time, instead of the linear

utility given at (1), such that it reflects risk aversion:

C ′

i,q(ti,q(ΘQ)) > 0, (9)

C ′′

i,q(ti,q(ΘQ)) > 0,

where as before, ti,q(ΘQ) is the customer’s waiting time conditioned on system state ΘQ.

3.1 Expected Cost

When customers are risk-averse, comparing expected waiting times is not enough to determine

their preferred action, as an action might yield a lower expected waiting time, and still be passed

over because the customer considers it too risky. Expected costs must be compared instead.

Since expected service time is separable from expected waiting time, and the former is equal

regardless of the number of queues, only the latter is going to be considered in the following

discussion, as this simplifies the distribution functions without any loss of generality. Expected

cost is given by:

E[Ci,q(ti,q(ΘQ))] =

∫

∞

0

c(t) z(t(ΘQ))) dt, (10)
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where z(t(ΘQ))) is the probability distribution function of waiting time, i.e.:

z(t(Θs)) =
µi

(i− 1)!
exp(−µt) ti−1, ∀ q ∈ {1, . . . , j} i ∈ {1, ...,∞} when Q = s (11)

for a system in a multiple queue state, and:

z(t(Θ1))) =
(sµ)i

(i− 1)!
exp(−sµt) ti−1, ∀ i ∈ {1, ...,∞}, when Q = 1 (12)

for a system in a single queue state. To these correspond the cumulative probability functions

Z(t(Θs)) and Z(t(Θ1)), respectively.

3.2 Customers’ Actions and Equilibria

When customers are risk-averse, all customers will strictly prefer a place in a single queue to

the corresponding place in a multiple queue state.

Proposition 3. It is a dominant strategy for customers to choose action S, regardless of their

position in the queue.

Proof. In order for a customer to prefer the single queue state to the multiple queue state, it

must be the case that the expected cost of the former is smaller than that of the latter, for

corresponding places in the queue:
∫

∞

0

c(t)z(t(Θs)) dt >

∫

∞

0

c(t)z(t(Θ1)) dt. (13)

Define S(t) =
∫ t

0
F (t) dt. After some manipulation, and integration by parts, (13) becomes:

c′(∞)(E[t(Θs)]− E[t(Θ1)]) +

∫

∞

0

c′′(t)[S(t(Θs))− S(t(Θ1))] dt > 0. (14)

As c′(t) > 0 and c′′(t) > 0, in order for (14) to hold it is sufficient that:

E[t(Θs)] ≥ E[t(Θ1)], and (15)

S(t(Θs)) ≥ S(t(Θ1)), (16)

with at least one of the inequalities being strict.

The condition at (15) is equivalent to

E[ti2,q(M,Θs)] ≥ E[ti1,1(S,Θ1)]) ∀ i1, is ∈ {1, ...,∞}, (17)

which was shown in Propositions 1 and 2.

On the other hand, (16) corresponds to:
∫ t

0

[Z(tis,q(M,Θs))] dt >

∫ t

0

[Z(ti1,1(S,Θ1)))] dt ∀ i1, is ∈ {1, ...,∞}, (18)

which can be shown from the results in section 4.2 of Seth and Yalonetzky (2014) for stochastic

ordering of Gamma distributions, mutatis mutandis for the present case dealing with cost rather

than utility functions.

As the customer is both cost minimizing and risk-averse (c′′(t) > 0), and the single queue

state always offers lower risk and a weakly lower expected waiting time, it is always strictly

preferred to the multiple queue state, for the corresponding queue states. Therefore, customers

choose action S when arriving at a single queue system.
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It can also be added that since S is always a dominant strategy, there is no scope for the

use of mixed strategies when customers are risk-averse.

The corollary follows:

Corollary 2. The single queue state is the equilibrium of the game.

4 Discussion and Conclusion

This paper has shown that risk-neutral customers derive a small benefit from combining queues

whereas the remainder is indifferent between the two situations. This implies that both the

single and multiple queue states are equilibria in pure strategies.

On the other hand, when customers are risk-averse, risk becomes another source of disutility,

as the multiple queue state shows greater dispersion in waiting times, as it requires customers to

bet on which queue is going to move faster. It’s then quite intuitively appealing, and rigorously

confirmed above, that risk-averse customers would prefer single queues more strongly than risk-

neutral ones, as having a single queue for all servers eliminates the risk inherent in having to

choose a queue. This is why only the single queue is an equilibrium for risk-averse customers.

It has been shown that risk-averse customers have the most to lose from a multiplicity of

queues, and will, in equilibrium, form a single queue when presented with multiple servers. It

seems a reasonable assumption that customers are at least somewhat risk-averse, yet combining

queues is often frowned upon by managers. This paper provides a counterpoint to the views

expressed in Rothkopf and Rech (1987). These results have implications for service station

management, as there is great scope for improving social welfare by reducing the cost of multiple

queues, which can be done in a Pareto improving manner (assuming the conditions in Sunar

et al. (2017) do not hold).

While the results hold for any queue length, it is acknowledged that they are more relevant

to short queues, especially when there is only one customer waiting. This is because the more

customers there are present in a single queue, the greater the social pressure to conform to it.

So while the proofs were kept as general as possible, it is worth keeping in mind that the model

was intended to address the context of few customers waiting.

This does leave open the question of why it is often observed that customers form multiple

queues even where there is no pressure from management to do so. As pure strategies are

dominant and independent of future arrivals’ strategies, there is no motivation to consider

mixed strategies. However, it is a plausible conjecture that jockeying plays a role here. Indeed,

for the case of risk-neutral customers, it was seen that both a multiple queue state and a single

queue state were equilibria in pure strategies. While this is left for future research, under

different equilibrium concepts, such as a trembling-hand equilibrium, the irreversibility of the

multiple queue state might explain its emergence in real world applications, even though this

would be against the wishes of other customers. It is harder to see why this equilibrium would

occur when customers are risk-averse, and further research along these lines is required.

On a similar vein, in contexts where balking is permitted, the results in Sunar et al. (2017)

indicate that under some conditions, social welfare is improved by having separate queues.

Extending the present model to allow for balking would be a fruitful avenue for further research,
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as it’s not clear whether the results described in the foregoing would hold. It is worth noting,

however, that the results of that paper only considered risk-neutral customers, and it is not

clear whether they themselves would hold if customers are risk-averse.

The possibility of jockeying is just the sort of small disturbance which might favour the

multiple queue equilibrium: if jockeying were to be permitted, then in the low probability event

of a server clearing a queue, or at least reducing its length significantly compared to the other,

customers could switch queues and reduce their expected waiting time. And even if this is a low

probability event, it’s enough to reduce ex-ante expected waiting time and make the previously

indifferent customers prefer the multiple queue equilibrium instead.

With risk-averse customers, what would happen were jockeying to be allowed is not so clear:

even though the expected value of waiting time in a multiple queue state might fall below that

of a single queue state for some customers, the single queue state would still be less risky.

One may conjecture that the degree of risk aversion possessed by customers would affect the

resultant equilibrium, with more risk-averse customers preferring the single queue equilibrium

more strongly.

Examining in more detail the circumstances in which the single queue equilibrium breaks

down when jockeying is possible is an inviting topic for further research, although there are

significant tractability problems to consider. Further research should then investigate customers’

judgement of the probability of jockeying being possible, their degree of risk aversion in this

specific context, and on a slightly behavioural tack, whether they judge their fellow customers

to be rational when it comes to actions which might disturb the single queue equilibrium state.

While it might be quite complex mathematically, it would be interesting to explore the impact

of either server or customer heterogeneity in expected service time. It might also be interesting

to investigate the impact on equilibrium robustness of repeated interactions as in Allon and

Hanany (2012).

Other avenues for further research include the steady-state properties of a system with risk-

averse customers, and providing a full formal treatment of social welfare issues with risk-averse

customers, which still seems to be absent from the literature, as is research into management

incentives when dealing with these customers.
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