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Abstract

In the discrete-time new-Keynesian model with public debt, Ramsey optimal
policy eliminates the indeterminacy of simple-rules multiple equilibria between the
fiscal theory of the price level versus new-Keynesian versus an unpleasant equi-
librium. If public debt volatility is taken into account into the loss function, the
interest rate responds to public debt besides inflation and output gap. Else, the
Taylor rule is identical to Ramsey optimal policy when there is zero public debt.
The optimal fiscal-rule parameter implies the local stability of public-debt dynamics
("passive" fiscal policy).
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1 INTRODUCTION

In a continuous-time New-Keynesian model with public debt, Barnett et al. (2020, p.3)
found that:

"an active monetary policy, when combined with a Ricardian passive fis-
cal policy, a la Leeper- Woodford, may induce the onset of a Shilnikov chaotic
attractor in the region of the parameter space where uniqueness of the equilib-
rium prevails... Paradoxically, an active interest rate feedback policy can cause
nominal interest rates, inflation rates, and real interest rates unintentionally
to drift downward within a Shilnikov attractor set."

The combination of active monetary policy and passive fiscal policy may lead to long-
term global indeterminacy and unpredictability according to the definition of Shilnikov
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chaos (1965). In another example, Shilnikov chaotic dynamics and global indetermi-
nacy are also characteristics of the Lucas (1988) endogenous growth model in its local
determinacy region of the parameter space (Bella, Mattana and Venturi (2017)).

Barnett et al. (2020, proposition 3) develop policy options to control the chaotic
dynamics in the sense of Ott, Grebogi and Yorke (1990) so that "the economy supersedes
wrreqular and cyclical behavior and approaches the intended steady state". They interpret
the interest rate response to inflation as a bifurcation parameter. For a sufficiently large
response of interest to inflation in the policy rule, the controllable dynamic system shifts
from the regime where "one eigenvalue is negative and two eigenvalues have positive real
parts" to "the desired form [which] implies three eigenvalues with negative real parts".

This paper shows that extending Barnett’s et al. (2020) policy recommendation valid
for continuous time model to discrete time model, with the number (three) of eigenvalues
of the discrete dynamic system inside the unit circle equal to the order of the dynamics
of policy maker’s state variables, is compatible with discrete time Blanchard and Kahn’s
determinacy condition when using Ramsey optimal policy instead of simple rules. Ramsey
optimal policy determines optimal initial conditions for non-predetermined inflation and
output gap, as soon as the policy maker has a non-zero probability of not reneging his
policy commitment.

We compute Ramsey optimal policy in a discrete time new-Keynesian model with
public debt. We compare it with Woodford’s (1996) and Cochrane’s (2019) approaches
with simple rules and with Chatelain and Ralf’s (2020) Ramsey optimal policy without
debt. We get the following policy implications:

(1) For simple interest-rate and fiscal rules with zero public debt, there is a unique
new-Keynesian equilibrium. But with non-zero public debt, there is indeterminacy be-
tween three equilibria: the new-Keynesian one, the fiscal-theory-of-the-price-level one and
an unpleasant one. These three equilibria have a number of eigenvalues inside the unit
circle which is strictly lower than the order of the dynamics of the policy maker’s tar-
get variables. They are not robust to misspecification due to policy maker’s imperfect
knowledge of structural parameters and initial values of inflation, output gap, and public
debt.

(2) With non-zero public debt, Ramsey optimal policy has the great virtue to elim-
inate the three simple-rules equilibria and the indeterminacy across them. After the
policy advice of Barnett et al. (2020) leaning against chaotic dynamics, this is a second
argument for negative feedback policies leading to a number of eigenvalues inside the unit
circle equal to the order of the dynamics of the policy maker’s target variables. A third
argument is that these negative feedback policies are also robust to misspecification due
to policy maker’s imperfect knowledge.

(3) In the new-Keynesian model, inflation and output-gap dynamics do not depend
on public-debt dynamics. For this reason, if the volatility of public debt has a zero weight
in the welfare and policy maker’s loss function, the policy implications of Ramsey opti-
mal policy for the Taylor rule are exactly the same as in a model without public debt
(Chatelain and Ralf (2020)). In addition, a surplus rule stabilizes public-debt dynamics.

(4) By contrast, if the volatility of public debt has a non-zero weight in the welfare
and policy maker’s loss function, the policy implication of Ramsey optimal policy is that
the interest rate should optimally respond to deviation of public debt from its long-run
equilibrium value, and not only to inflation and the output gap. In the new-Keynesian
model, the theoretical sensitivity of public debt to the interest rate is much larger than
to surplus or deficits. This is the origin of the welfare gain of the interest rate rule



responding to public debt.

These discrete-time results differ in several respects to the continuous-time results of
Barnett et al. (2020). Firstly, the proposed methodology in Barnett et al. (2020) to
control chaos, involves announcing a higher steady-state nominal interest rate and not
just the nominal interest rate.

Secondly, Barnett et al. (2020) also recommended another alternative to avoid chaos,
that is, to abandon the Taylor rule altogether and use an alternative monetary policy
rule like targeting of Divisia monetary aggregates. The possibility of implementation of
this second alternative weakens the case for Ramsey optimal policy. An extension may
consider Divisia monetary aggregates as a policy instrument of Ramsey optimal policy
instead of the funds rate.

Thirdly, the dynamics of a continuous-time version may not match the ones of a
discrete-time version. For example, Barnett and Duzhak’s (2008) Hopf bifurcation may
arise in continuous time and in discrete time dynamical systems. By contrast, Barnett
and Duzhak’s (2010) flip bifurcation may arise only in the discrete time versions of the
new-Keynesian model (see also Barnett and Chen (2015)).

Section two describes the policy transmission mechanism. Section three solves the
Ramsey optimal policy model. Section four compares the equilibrium of our model with
simple-rule multiple equilibria. Section five concludes.

2 NEW-KEYNESIAN MODEL WITH PUBLIC DEBT

The fiscal theory of the price level applied on the new-Keynesian model with public debt
can be found in Woodford (1996, 1998), Cochrane (2019)). All variables are defined as
log-deviations of their equilibrium value. In the representative household’s intertemporal
substitution consumption Euler equation, the expected future output gap Fyx,.1 is posi-
tively correlated with the real rate of interest, equal to the nominal rate ¢; minus expected
inflation Fym;.1, where Fj; is the expectation operator. The intertemporal elasticity of
substitution (IES) v = 1/0 is a measure of the responsiveness of the growth rate of con-
sumption to the interest rate, usually considered to be smaller than one. It is the inverse
of o, the relative fluctuation aversion or the relative degree of resistance to intertemporal
substitution of consumption, which measures the strength of the preference for smoothing
consumption over time. An independently and identically distributed additive shock ¢,
is taken into account:

vy = By — v (i — Eymr) + €50 with v > 0. (1)

In the new-Keynesian Phillips curve, expected inflation FE;m;y; is negatively corre-
lated with the current output gap z; with a sensitivity —x < 0. An independently and
identically distributed additive cost-push shock ¢ ; is taken into account:

T = BEm + kv + e with 0 < 8 < 1 and & > 0.

The intertemporal budget constraint of the state for public debt B, is:
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The primary surplus is lump-sum tax income minus non-interest expenditures: s; =




7; — g. Define a steady state with inflation equal to zero 7* = 0, with the real rate of
interest equal to the discount rate so that i* — 7* = i* = 37! — 1, with steady state real
public debt %* > 0. In that steady state, the surplus pays the real interest cost of the
debt: s* =7 —g=(8"1-1) B?* > 0. Hence, steady state surplus is a small proportion
of the stock of public debt, of an order of magnitude of 1% per quarter. Woodford (1996,
equation 2.9) log-linearizes the real public debt b; equation in deviation from its steady
state:

b1 =B (b — ™) + 1y — (5_1 - 1) St.

The marginal effect of the funds rate on future public debt (equal to one) is around
100 times larger than the marginal effect of the surplus (equal to the opposite of the
discount rate) for quarterly periods. The dynamic system includes three policy targets
(output gap, inflation, public debt) and two policy instrument (funds rate and primary
surplus):

BTy 1+ —1% 0 xy v o0 Eat
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(2)
Shocks €+, €x+ are assumed to be independently and identically distributed with
mean zero and a non-zero variance-covariance matrix. The variance covariance matrix of
disturbances does not matter for seeking the optimal solution (Simon’s (1956) certainty-
equivalence result for the linear quadratic regulator).
The three policy targets, output gap x;, inflation 7; and real public debt b;, are two-
time-step Kalman (1960) controllable by the two policy instruments (the interest rate
i; and surplus s;) or only by the policy rate (using the first column B; of matrix B) if

v # 0, k #0.

rank (B, AB, A2B) = rank (Bi‘7 AB,;, A2B,-.) =3if y# 0 and k # 0.

The surplus instrument alone is only able to control public debt if 5 # 1, using the
second column B ; of matrix B)

rank (B,S,AB,S,A2B,S) =1if g # 1.

Controllability is also checked by Barnett et al. (2020) for the continuous-time version
of the new-Keynesian model with public debt. We use g = 0.99 for quarterly periods and
k= 0.1, v = 0.5 numerical values instead of Woodford (1996) numerical values = 0.95
for yearly periods and x = 0.3, v = 1 which are oversized with respect to posterior
estimations U.S.A. since the 1960s (Havranek (2015), Mavroeidis et alii (2014)).

The transmission parameter of funds rate on future debt is equal to 1 which is nearly
100 times larger in absolute value than the transmission parameter of the surplus (0.01).
This implies that parameters of the surplus rule would have to be 100 times larger than
the parameters of the Taylor rule to have the same size in the parameters of the closed
loop system.



3 RAMSEY OPTIMAL POLICY

3.1 Optimal Program

In a monetary policy regime indexed by j, a policy maker may re-optimize on each future
period with exogenous probability 1 — ¢ strictly below one under "quasi commitment"
(Schaumburg and Tambalotti, 2007)). Following Schaumburg and Tambalotti (2007), we
assume that the mandate to minimize the loss function is delegated to a sequence of policy
makers with a commitment of random duration. The degree of credibility is modelled as
if it is a change of policy-maker with a given probability of reneging commitment and re-
optimizing optimal plans. The length of their tenure or "regime" depends on a sequence
of exogenous ii.d. Bernoulli signals {7;},., with E; [, = 1 — ¢, with 0 < ¢ < 1.
If 5, = 1, a new policy maker takes office at the beginning of time ¢. Otherwise, the
incumbent stays on. A higher probability ¢ can be interpreted as a higher credibility. A
policy maker with little credibility does not give a large weight on future welfare losses.
The policy maker j solves the following problem for regime j, omitting subscript j, before
policy maker k starts:

t=+o00

) 1 .
Vi=-Ey > (Bg) {5 (Qum} + Q] + Qub} + it} + post) + B (1 —q) V¥

t=0

Preferences of the policy maker are given by positive weights for the three policy tar-
gets Q. >0, Qr >0, Qy, >0 (Q = diag(Qy, Qr, Q) in the SCILAB algorithm). In order
to insure the concavity of the LQR program, there are at least non-zero policy maker’s
preferences for interest rate smoothing and primary surplus smoothing, with strictly pos-
itive weights for these two policy instruments in the loss function: p; > 0, ps > 0. In the
simulation grid on preferences of this paper, these strictly positive weights are also set
down to 1077 with respect to at least one other weight for policy targets set to 1. They
are stacked in matrix R = diag(u;, pis) in the SCILAB algorithm.

Inflation, output gap and public debt next period are an average between two terms.
The first term, with weight ¢ is the inflation, output gap and public debt that would
prevail under the current regime upon which there is commitment. The second term
with weight 1 — ¢ is the inflation and public debt that would be implemented under the
alternative regime by policy maker k:

Etl't+1 Et'rllfg-i-l 1 + % _1% 0 Tt Y 0

q Etﬂ-t—l-l +(1 — q) Etﬂf+1 = _% E 0 T -+ O O
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The optimal program for policy maker j is a discounted linear quadratic regulator
(LQR) with a "credibility adjusted" discount factor 3q. We apply Chatelain and Ralf
(2019) algorithm using v/3qA /q and /3qB/q (SCILAB code in the appendix). We seek
stabilizing solutions that satisfy:

t=-4o00
> (Ba)' (w7} + a7 + b + 7 + 57) < o0
t=0



The policy maker seeks optimal linear feedback rules parameters stacked in matrix F'

iWw\ (F. F. F ot
ss ]\ G, Gr G, Zt
t

-~

=F

Replacing feedback rules in the transmission mechanism leads to a closed loop system
with transition matrix @ (A + BF) for the algorithm:

14 & +F -2+ F vFy
E 3 @ ] i
By | = VO -5 5 0
q 1 1 1 1 1
by B (3-1)G —3+F-(3-1)G +R/-(3-1)G

When the Taylor rule does not include a reaction of funds rate to public debt (F}, = 0),
the closed-loop matrix remains block triangular. In this case, we use these notations for
the private sector closed-loop dynamics:

q B B q 0

It is the transition matrix of the closed loop new-Keynesian model excluding public
debt when shocks are not auto-regressive.

The case of the peg of policy instruments at their long-run value F = 0 corresponds
to an open loop system with transition matrix A.

We vary the policy maker’s preferences in all their range of possible values
using a simulation grid. Specific values of preferences for households welfare would
be somewhere in this locus for policy rule. Tables 1 to 4 present solutions of the four
polar cases of the policy maker’s preferences. For comparisons with Chatelain and Ralf
(2020a), we use the numerical value ¢ = 1. Results for any other value 0 < ¢ < 1 are
available from the authors upon request or can be found copying SCILAB code in the
appendix after downloading this open source software substitute to MATLAB. They do
not qualitatively differ from the case ¢ = 1.

3.2 Solution for Welfare Preferences

Gali (2015) uses the approximation of households welfare for an efficient steady state
with this relative weight for the output gap @, = £ after normalizing @) = 1, with no
cost on the volatility of wealth: (), = 0. This is the result of lengthy local second order
Taylor development conditional to the specific new-Keynesian model of the transmis-
sion mechanism. The welfare preferences for the smoothing policy instruments have the
same theoretical status as the assumption of quadratic adjustment costs for smoothing
investment or consumption smoothing assumption. Here, we set p; =1 >0, us =1 > 0.

We set 5 =0.99, k = 0.1, v = 0.5. Gali (2015) found £ = 0.1275. We use a slightly
larger elasticity of substitution e = 8.2 than £ = 8.2 chosen by Gali (2015) to get a round
figure for k = 0.1, other parameters being unchanged:

Tt
Tt
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Gali’s (2015, chapter 3) calibration of other structural parameters is as follows. The
representative household discount factor 5 = 0.99 for a logarithmic utility of consumption
o = 1 and a unitary Frisch elasticity of labor supply ¢ = 1. The production function is
Y = A, L't where Y is output, L is labor, A, represents the level of technology. The
measure of decreasing returns to scale of labor is 0 < o, = 1/3 < 1. The proportion of
firms who do not reset their price each period 0 < # = 2/3 < 1 which corresponds to an
average price duration of three quarters.

Our weight is Q, = r/e = 0.1/8.2 = 1.2195% is lower than Gali (2015): £ = 2.125%.
The welfare results are presented in Table 3, in the group of results where the policy
makers only targets inflation volatility in his loss function, so that he sets a zero weight
on output gap and on public debt volatility. There are negligible changes of the optimal
policy rule parameters, of the eigenvalues and of the initial anchors of inflation and output
gap between the welfare case (), = & = 1/82 (Table 2, row 1) and the case (), = 0 (Table
2, row 2) for Q, =1, Q, = 0, p; = 1, s = 1 unchanged. Hence, their impulse response
functions are approximately identical.

A near-zero relative weight (), = k/¢ on output gap fluctuations with respect to
inflation fluctuations is inconsistent with the Fed’s dual mandate. This is the reason
why we do a simulation grid on the policy maker’s preferences in the loss function in the
following sections, in order to check the sensitivity of optimal policy rule parameters to
changes of policy maker’s preferences.

3.3 Policy Maker’s Maximal Inertia

Maximal inertia is such that the weight on the volatility of the policy targets is zero
and the weight of each of the two policy instrument is any non-zero value, for example:
diag(Q,R) = (0,0,0,1,1). Changing the relative weight between the two instrument
(107 to 10~7) does not change the results.

The Hamiltonian system of the LQR with 3 state variables for the policy maker and
3 co-state variables has a transition matrix Hg of dimension six which is symplectic: its
transpose is similar to its inverse. This implies that the list of eigenvalues of Hg (its
spectrum Ag) is such that all inverse of each eigenvalues belong the spectrum. Hence,
if there is no eigenvalues exactly on the unit circle, there is an equal number (three) of
eigenvalues inside the unit circle and outside the unit circle. Because of the requirement of
local stability of the optimal solution, the optimal solution selects three stable eigenvalues
available in the spectrum Ay. This method has been extended to the solution of rational
expectations models not necessarily derived from optimal behavior by Blanchard and
Kahn (1980).

With maximal inertia, the spectrum includes the three eigenvalues of the open-loop
transition matrix Ay, where F = 0 and their three inverse of these eigenvalues for for



diag(Q,R) = (0,0,0,1,1).

Aa = ( Apr = 0.7995 Ay =1.251 A, =1.005 ),
Ag = (07995 1.251 1.005 1/0.7995 1/1.251 1/1.005 )
AasBr = ( Aor =0.7995 App = 0.7995 X, = 0.995 ).

The open loop transition matrix A includes two unstable eigenvalues. In particu-
lar, debt dynamics is exploding without negative-feedback. Then, the maximal inertia
eigenvalues Aa . pr includes the two inverse of these eigenvalues and keeps the eigen-
value inside the unit circle. For this reason, maximal inertia implies nonetheless non-zero
optimal policy rule parameters. These policy parameters insures the local stability in
dimension three of the closed-loop system.

i\ [ —0.907 1.855 0 )T
s ) Ty g 1) (@ omob)

It is optimal for the Taylor rule not to respond to public debt: there is no need to set
the restriction F, = 0. The optimal surplus rule parameter G, = 1 is such that the public
debt eigenvalue shifts from its diverging open loop value number 1/+/f to its inverse /f3.
These eigenvalues include the factor v/ because the loss function is discounted.

\/B%Jr\/B(Fb_(%—1)Gb>:\/5:@=o.995<1

This optimal surplus rule and the resulting public debt eigenvalue with least effort
stabilization of public debt remains unchanged when the policy maker does not care about
the volatility of public debt (1, = 0) and for any non zero weights on inflation and output
gap.

The Taylor rule parameter on inflation satisfies the Taylor principle (1.855 > 1). The
output gap parameter is negative for Ramsey optimal policy with the new-Keynesian
model (Chatelain and Ralf (2020)). This is because a rise of funds rate increase future
consumption and future consumption growth because of the intertemporal substitution
effect for consumers. There is no income effect of funds rate nor cost of capital effect
decreasing investment demand as in the investment saving equation of the IS-LM model.
Hence, negative feedback aiming at decreasing future output gap implies a negative re-
sponse of funds rate when current output gap is positive. Then, the intertemporal sub-
stitution mechanism implies a relative decrease of the growth rate of future consumption.

If one reverts the signs to Keynesian mechanism: x accelerationist Phillips curve and
v (delayed cost of capital effect or cost of working capital), then the sign of the response
of funds rate to output gap turns to be positive, with exactly the same numerical values
(4+0.907), as it was in the time of Keynesian economics.

The optimal surplus rule also responds to inflation and output gap. Because the
marginal parameter in B of the surplus is nearly one hundred times smaller than the one
of the funds, this leads to marginal changes of parameters relating future public debt
with current inflation and current output gap than in the case of only an effect due to
the Taylor rule.

The initial optimal jumps of the inflation and output gap on public debt are obtained
from optimal marginal conditions. The optimal value of the loss function is:



L*:(:cg 0 bo)Pg(ﬂﬂo o bU)T

Pm7r Pamr,b )

with P3 = ( vamr Pb

Where Pj3 is a square matrix of dimension three which is the solution of a discrete
algebraic Riccati equation (DARE) given by the 1qr instruction in SCILAB. The marginal
values of the loss function with respect to each state variables are equal to the co-state
variable or Lagrange multiplier of each state variable. If state variables for the policy
maker are jump variables of the private sector (here, inflation and output gap), there
initial values is found optimizing the loss function at the initial date for each of these
variables. These marginal conditions are:
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An increase of initial public debt implies a proportional increase of initial output gap
and inflation, as in Woodford (1996) model, a result which is obtained for F; < 1. But,
for the following periods, future values output gap and inflation do not depend on current
values of public debt b; for ¢ > 0 because the parameters of marginal effects equal to zero
in the closed loop matrix A + BF. In particular, because the funds rate do not react to
public debt in the Taylor rule (£}, = 0). As seen below, this result changes when the cost
of the volatility of public debt is taken into account by the policy maker (p;, > 0).

For Ramsey optimal policy with maximal inertia, the optimal initial jumps of forward-
looking policy targets are chosen in order to minimize the volatility of policy instrument.
They imply that the initial jumps of the policy instruments are equal to zero:

( io/bo ) - ( 0.907 1.855 0 ) oo ( 0 )
So/bg - -2 -0.8 1 . 1 - 0

Even though the policy instrument are equal to zero, the dynamic system is no longer
the open loop system with matrix A because this matrix includes eigenvalues outside
the unit circle. It is the closed loop system A + BF with F # 0 so that there is local
stability of the dynamic system in dimension three. The dimension three corresponds to
the number of policy targets for the policy maker.

With Ramsey optimal policy, there is no indeterminacy with three eigenvalues inside
the unit circle despite two forward-looking policy targets and one predetermined policy
target. Optimal initial conditions implies that the co-states of the forward-looking policy
targets are predetermined at zero: v,, = 7r, = 0. Because these co-state variables have
a linear relation with the funds rate and its lag, these conditions can also be interpreted
as if the funds rate and its lag are predetermined variables.



3.4 General Results

In all the cases where the volatility of the public debt does has zero weight in the loss
function (@, = 0), the surplus rule parameters do not change. The surplus rule achieves
the maximal inertia (minimal effort) for stabilizing public debt eigenvalue. The percent-
age deviation of surplus is equal to the percentage deviation of public debt (G, = 1). It
is optimal that the funds rate do not respond to public debt in the Taylor rule (F, = 0):
this is not a constraint that we impose. The Taylor rule only controls the eigenvalues of
output gap and inflation. The Taylor rule parameters (F,F) are identical to those found
when assuming public debt is equal to zero at all periods (b, = 0). However, an increase
of the weight of the surplus ps; > 0 increases the parameter P, ; for the optimal loss
function. Hence, it increases the absolute value of the optimal initial anchor of inflation
and output gap, even though the Taylor rule parameters are unchanged when varying
the surplus weight i, > 0. For a negligible weight of the surplus j, = 1077, inflation and
output gap anchors are instantaneously set to zero.

3.5 Minimizing Output Gap Volatility

Output gap can be stabilized in the first period following a change of interest rate using
the Euler consumption equation. The stabilization of inflation occurs in period two. The
correlation of the policy instrument with output gap of period one is then transmitted to
period two by the change of output gap correlated with expected inflation of period two.
Hence, a policy maker is only concerned with a single eigenvalue related to the output
gap. He may leave the second eigenvalue mostly related to inflation close to one, because
the cost of inflation volatility is zero in this polar case.

When the cost of changing funds rate decreases from 1 to near-zero 10~7, the output
gap parameter in the Taylor rule increases in absolute value from —1.15 to —2.12 (whereas
the inflation rule parameter decreases from 1.79 to 1.22). The output gap eigenvalue shifts
from 0.56 to 0 (which means back to equilibrium in one period).

Table 1: Minimize output gap volatility.

i QSE Qw Qb Fz Fﬂ' Fb :g_g ll)_g

s |/\x7r| |/\7T£B| |/\b| Gx GW Gb Z_(()) Z_g

1 1 0 0 —1.148 1.786 O 0.430 —0.191

1 0.562 0.918 0.995 —2 —-0.8 1 0.170 0.004
1 1 0 0 —1.148 1.786 0 0 0

1077 0.562 0.918 0.995 —2 —-0.8 1 0 1

10~7 1 0 0 —2.121 1.121 0 0.419 —0.644
1 0 0.995 0.995 —2 —-0.8 1 0.201 0.002

10~7 1 0 0 —2.121 1.121 0 0 0

1077 0 0.995 0.995 —2 —-0.8 1 0 1

3.6 Minimizing Inflation Volatility

In the new-Keynesian model, a change of the interest rate at period zero is correlated
with period one output gap, which is correlated with period two inflation. Decreasing
the persistence of inflation implies to decrease the persistence of output gap which is an
intermediate variable in the transmission mechanism of the changes of the interest rate
to inflation. Hence, both eigenvalues of the block matrix of output gap and inflation are
to be modified by the interest rate rule.

10



When the cost of changing funds rate decreases from 1 to near-zero 10~7, the output
gap parameter in the Taylor rule increases in absolute value from —0.993 to —4.12. The
inflation rule parameter begins from 2.16 corresponding to the modulus measuring output
gap and inflation persistence |A;z| = |Arz| = 0.77. Such a low persistence, sufficiently far
for the unit root, can be already considered as a highly successful stabilization policy by
practitioners of monetary policy in the real world. The gap of the policy targets from
their equilibrium value goes down to 0.77¢ = 0.21% after six quarters.

Only for information, in the extreme case where the cost of changing the interest rate
is nearly zero (y; = 1077), the inflation rule parameter reaches its maximal and unrealistic
value of F, = 21 which implies the zero lower bound of the persistence of inflation and
output (JAzz| = |[Arz] = 0.006): Inflation and output are back to equilibrium next quarter
whatever the magnitude of the shock of the current period.

Table 2: Minimize inflation volatility (2nd row: Welfare Case).

Hi Qe Qn @ F, F. F 35—3 Z_z

s | Aer ’ | Arz ’ | )‘bl Ge Gr G Z_g Z_?J

1 0 1 0 —0.993 2.164 O 0.434 —0.075

1 0.782 0.782 0.995 —2 —08 1 0.165 0.0008

1 0.1/8.2 1 0 —0.997 2.163 O 0.434 —0.078

1 0.781 0.781 0.995 —2 —08 1 0.165 0.0008
1 0 1 0 —0.993 2.164 O 0 0

1077 0.782 0.782 0.995 —2 —-08 1 0 1

1077 0 1 0 —4.121 21.209 0 0.490 —1.486
1 0.006 0.006 0.975 —2 —-08 1 0.025 0.00001

10~7 0 1 0 —4.121 21.209 O 0.004 —0.012

1077 0.006 0.006 0.975 —2 —-08 1 0.0002 0.992

Locus of Taylor rule parameters when @), = 0:

When @, = 0 and pus > 0 and our given numerical parameters of the transmission
mechanism, we draw the locus of the reduced form values of Taylor rule parameters of
Ramsey optimal policy. Table 3 and figure 3 provide the boundaries of the triangle of
the linear quadratic regulator (LQR) reduced form Taylor rule parameters, obtained by
a simulation grid, varying the weights in the loss function in three dimensions i, > 0,
e > 0, p; > 0. The sides of the LQR triangle correspond to the cases where the
central bank minimizes only the variance of inflation (inflation nutter) without taking
into account the zero lower bound constraint on the policy interest rate (pu; = 1077 > 0),
or minimizes only the variance of output gap without taking into account the zero lower
bound (p; = 1077 > 0), or seeks only maximal inertia of the policy rate (u; — +00).
This is taken from Chatelain and Ralf (2020a).

Table 3: Taylor rule parameters for Q, =0, us > 0, Kk = 0.1, v = 0.5, 5 = 0.99.
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Minimize only: Q. | Qx| i Aerl | [Arz| | F F,
Inflation 0 1 10~7 0.006 | 0.006 | —4.12 | 21.21
Inflation output gap | 1 4 10~7 0 0.82 | —2.47 | 4.75
Inflation output gap | 1 1 10-7 0 0.90 | —2.30 | 3.03
Inflation output gap | 1 1/4 11077 0 0.95 | —2.21 | 2.09
Output gap 1 0 1077 0 0.995 | —2.12 | 1.21
Output gap interest | 4 0 1 0.36 | 095 | —1.46 | 1.67
Output gap interest | 1 0 1 0.56 | 091 | —1.14 | 1.78
Output gap interest | 1/4 | 0 1 0.68 | 087 | —0.98 | 1.83
Interest rate 0 0 1(4+00) | 0.80 |[0.80 | —0.90 | 1.85
Inflation interest 0 /411 0.79 |0.79 | =093 | 1.94
Inflation interest 0 1 1 0.78 |0.78 | —0.99 | 2.16
Inflation interest 0 4 1 0.75 | 0.75 | —1.14 | 2.75

The three points for Taylor rule in bold in Table 3 corresponds to the three apexes of
the Ramsey LQR triangle in Figure 3.

A similar analysis can be made for the alternative monetary policy transmission mech-
anism with v < 0 and x < 0, see figure 4. The numerical values of the Taylor rule
parameters are the same in absolute value. But this time, the output gap rule parameter
is positive. The new locus is symmetric with respect to the horizontal axis of the locus
with opposite signs of the transmission mechanism.

3.7 Minimizing Public Debt Volatility

If 45, > 0 and p, sufficiently large with respect to u;, the policy maker’s cares about public
debt volatility and it is relatively costly for him to use the surplus instrument with respect
to the funds rate instrument. In order to reduce a lot the persistence (auto-correlation
and eigenvalue) of public debt, the Taylor rule is then called into action in addition to
the surplus rule.

In this polar case, as there is no cost of inflation and output gap, the two first eigen-
values related to these variables remain relatively large.

When the cost of changing funds rate, surplus and public debt are all equal to 1, the
funds rate increases by 0.25 in proportion to public debt over its long run target and the
surplus increases by 1.52. Public debt persistence falls from minimal effort 0.995 (F, = 0,
Gb = 1) to 0.361 (Fb = 025, Gb = 13)

We provide only for information the results of unrealistic extreme preferences leading
to unrealistic policy rule parameters forcing zero persistence of public debt dynamics
(|As| = 0). In this case, whatever the magnitude of shocks, public debt reaches its equi-
librium next quarter without transitory dynamics.

In the extreme case where the cost of changing surplus rate is nearly zero (u, = 1077)
with respect to one for the cost of changing funds rate. Because of its relative costs, the
interest rate does not respond to public debt: F, = 0. With near-zero cost, the surplus
parameter reaches its maximal and completely unrealistic value G, = 99.8, nearly 100
times the deviation of debt from its long run value.

When the cost of changing surplus is one with respect to near zero for the cost of
changing funds rate (Table 4, third row), public debt persistence is zero for F, = 0.7 and
Gy, = 1.34.
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When the cost of changing surplus and changing funds rate are both near zero, public
debt persistence |\,| is zero for F, = —0.9 and G, = 9.9.
Table 4: Minimizing public debt volatility.

i Qx Qw Qb Fx F7r Fb g{f_g Z_g
Hs |/\$7r| |/\7r;r| |/\b| G, G Gy Z—g Z—g
1 0 0 1 —2.022 1.639 0.258 0.465 —0.530
1 0.991 0.939 0.361 —3.072 —0.911 1.518 0.093 0.005
1 0 0 1 —0.906 1.854 0 0.737 —0.0006
1077 0.799 0.799 0.0009 —89.74 83.56 99.838 0.360 63.78
107 0 0 1 —3.575 1.357 0.692 0.481 —0.961
1 0.957 0995 0 —2.730 —0.727 1.347 0.048 0
10-7 0 0 1 —0.210 1.026 —0.909 0.481 —0.955
1077 0.958 0.987 0 —20.85 1.639 9.954 0.053 0.009

4 CONTROL OF THE INDETERMINACY OF SIM-
PLE RULE MULTIPLE EQUILIBRIA

4.1 Multiple Equilibria with Simple Rules

This section compares the simple rule policy maker’s multiple equilibria for the same new-
Keynesian transmission mechanism. In Ramsey optimal policy, optimal initial transver-
sality conditions provide optimal initial values of policy instruments (interest rate and
taxes) that anchors the initial value of forward-looking policy targets (inflation and out-
put gap).

Non-predetermined variables depend explicitly on their expected future values in Blan-
chard and Kahn (1980). By contrast, in the simple rule equilibria, the policy instruments
(interest rate and taxes) do not depend explicitly on their expected future value in the
simple rules. Nonetheless, the policy instruments (interest rate and taxes) are assumed
to be non-predetermined variables without initial condition. With simple rule equilibria,
not only inflation and output gap have no given initial conditions, but also interest rate
and taxes have no given initial conditions.

Definition 1 Type I determinacy o la Blanchard and Kahn (1980), for n > 1 predeter-
mined controllable policy targets, for m > 1 non-predetermined controllable policy targets,
for 1 < k < n+ m non-predetermined policy instruments and for fixed values of policy
rule parameters F € R¥ x R™™_ One applies Blanchard and Kahn (1980) determinacy
condition on the closed loop matrix A + BF of the dynamical system of the economy in-
cluding policy maker’s simple rules. The number of eigenvalues of A + BF strictly inside
the unit circle should be equal to the number n of predetermined policy targets. Con-
versely, the number of eigenvalues of A + BF outside the unit circle should be equal to
the number m of non-predetermined policy targets.

Blanchard and Kahn (1980) solution amounts to solve an algebraic Riccati equation in
order to restrict the dynamics of the system to a stable subspace of dimension n instead
of evolving in a stable space of dimension n + m for the policy targets.

In the case of the new-Keynesian model with public debt, inflation and output gap
are non-predetermined variables, public debt is the only predetermined variable, if one
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assumes interest rate and taxes are non-predetermined variables. Blanchard and Kahn
(1980) determinacy condition implies that one and only one of the three eigenvalues of
the matrix A + BF of the dynamic system is inside the unit circle, for a fixed set of
policy-maker’s rule parameters F.

Definition 2 Type I multiple equilibria indeterminacy a la Blanchard and Kahn (1980)
arises for n > 1 predetermined controllable policy targets, for m > 1 non-predetermined
controllable policy targets, for 1 < k < n 4+ m non-predetermined policy instruments
and for fixed values of policy rule parameters F € R"™™ x R"™. Type I indeterminacy
corresponds to the case where the number of eigenvalues of A + BF inside the unit circle
18 strictly larger than the number n of predetermined policy targets.

The following definition of type II indeterminacy generalizes Leeper’s (1991) multiple
equilibria indeterminacy obtained for n = 1 predetermined controllable policy target
(public debt) and for m = 1 non-predetermined controllable policy target (inflation),
for 1 <k =2 < n+m = 2 non-predetermined policy instruments (interest rate and
taxes) and for policy makers varying the values of policy rule parameters in matrix F in
R? x R2. Blanchard and Kahn type I determinacy leads to type II indeterminacy for the
policy maker when he varies F in R? x R?2. The first equilibrium has inflation eigenvalue
inside the unit circle ("passive" monetary policy) and the public debt eigenvalue outside
the unit circle ("active" fiscal policy). The second equilibrium has inflation eigenvalue
outside the unit circle ("active" monetary policy) and the public debt eigenvalue inside
the unit circle ("passive" fiscal policy).

Proposition 3 Policy maker’s type II multiple equilibria indeterminacy a la Leeper (1991)
arises forn > 1 predetermined controllable policy targets and for m > 1 non-predetermined
controllable policy targets, for 1 < k < n 4+ m non-predetermined policy instruments and
for policy makers varying the values of policy rule parameters F in RF x R"*™ . Blan-
chard and Kahn’s (1980) type I determinacy for the matriz A + BF implies that there
are up to Naipr < ("J;m) equilibria solutions of algebraic Riccati equations selecting a
stable subspace of dimension n in a space of dimension n + m when the policy maker
varies the policy rule parameters F in R x R*T™,

Proof. Blanchard and Kahn (1980) type I determinacy condition implies that the num-
ber of eigenvalues of A + BF strictly inside the unit circle should be equal to the number
n of predetermined and controllable policy targets. Blanchard and Kahn (1980) solution
amounts to solve an algebraic Riccati equation in order to restrict the dynamics of the sys-
tem to a stable subspace of dimension n instead of evolving in a stable space of dimension
n—+m for the policy targets. Because (A, B) is a controllable pair including real numbers
as elements, any real or complex conjugate values for each eigenvalues of A + BF can be
reached when varying the values of policy rule parameters F in R* x R"*™ (Wonham
(1967) theorem). Therefore, the policy maker has the choice to select and set n eigenval-
ues inside the unit circle among n+m eigenvalues. In this case, Freiling ((2002), Theorem
3.3, Remark (b)) finds Ny solutions for Riccati equations. The correspondence of Freil-
ing’s (2002) notations with our case is as follows: M = A + BF, n = 1 is the dimension
of M-invariant subspaces sought for Blanchard and Kahn (1980) stable dynamics and
m = 2 is the dimension of their M-invariant complementary subspaces.

"If M is semi-simple, i.e., if the geometric multiplicity of each eigenvalue of M is
one, then the number Ny of all n-dimensional M-invariant subspaces, which is an upper
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bound for the number of all solutions of (ARE) [algebraic Riccati equation] is ("*™).

Moreover Ny = (") if and only if all eigenvalues of M are simple" [distinct]. (Freiling
(2002), Theorem 3.3, Remark (b), p. 253). =

For the new-Keynesian model with public debt, because (A,B) is a controllable
pair, the policy maker can control the three eigenvalues of the economic system A, (F),
Aar (F), Ay (F) varying the rule parameters F € R?**®, In particular, the policy maker can
avoid the highly specific cases where all eigenvalues of A + BF are not simple (distinct).
The policy maker has the choice between Np.pr = (:1)’) = 3 equilibria, where A, (F)
or \yr (F) or A\, (F) is the only eigenvalue inside the unit circle, with the two others
outside the unit circle. Each of these equilibria corresponds to a distinct 1-dimensional
(A + BF)-invariant subspace, that is, to distinct eigenvectors related to each eigenvalue.

Proposition 4 Policy maker’s type II unique equilibrium determinacy "a la Leeper (1991)"
arises in two cases such that ("Zm) = 1, which is obtained either for n = 0 and m > 0
or for the case where n >0 and m = 0.

Proof. In the case n = 0 and m > 0, the controllable predetermined variables are
replaced by non-controllable autoregressive forcing variables. For example, Gali (2015)
assumes zero net supply of public debt and includes a cost-push auto-regressive shock.
In the case n > 0 and m = 0, this corresponds to old-Keynesian models without non-
predetermined variables. m

4.2 Mapping Multiple Equilibria in the Taylor Rule Parameters
Plane

4.2.1 Mapping Eigenvalues in the Plane of Taylor Rule Parameters

To simplify the comparisons, we maintain the usual assumption in the literature of fiscal
and monetary interactions (F, = 0), so that A + BF is block triangular. This comparison
refers to the Figues in the plane of Taylor rule parameters (Fy, F),) mapping eigenvalues
(Arz, Azr) inside or outside the unit circle for given parameters of the monetary policy
transmission mechanism, computed in Chatelain and Ralf (2020) (see Appendix B).
These eigenvalues (Aqz, Azr) are the roots of the characteristic polynomial p () of the
closed loop matrix A, + B, F., of new-Keynesian model with output gap and inflation:

1 Ik 0 o
Axﬂ' + B:mrwa - +Hﬁ 1ﬁ + 7 ( Fx FTI' )
5 B 0
p(A) = det(Apr + BoxFar — ML) = A2 = TA+ D = (A — Ara) (A — Aun) = 0
1

p<1> =-T+D= (1_)‘7”0) (1_)‘5671')7p(_1) =T+D= (_ _)‘mc) (_1_)\:mr>

The Taylor rule parameters (F, F;) are affine functions of the trace T" and determinant
D of the closed loop matrix A, + B, F... There exists a stability triangle where both
eigenvalues of of A, + B, F,, are inside the unit circle. This stability triangle (ABC
in Figure 1) include real eigenvalues such that —1 < A\, < A\, < 1 (region 4.1 in Figure
1) and complex conjugate eigenvalues such that [A..| = [A\sr| < 1 (region 4.2 in Figure

1). Its center Q2 corresponds to the fully stabilized dynamic system with zero eigenvalues
)\ﬂx = )\xrr = 0.
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This stability triangle implies that the Taylor rule parameter of inflation satisfies the
Taylor principle. But it also implies that the Taylor rule parameter of output gap is
strictly negative, because of the intertemporal substitution effect of the Euler equation.
A rise of interest rate is positively correlated with future consumption and output gap.
Hence, if output gap is currently positive, it is necessary to decrease interest rate so that
future consumption will decrease.

As a thought experiment, if the sign of the transmission parameters are reversed
(k < 0,y < 0), then the stability triangle is in the quadrant such that F, > 0 and F; > 0
(Figure 4).

4.2.2 First Equilibrium: Fiscal Theory of the Price Level

In this equilibrium, fiscal policy is "active" |\, (F')| > 1. Monetary policy is "passive" in
the sense that the inflation Taylor rule parameter does not satisfy the Taylor principle
(Fr < 1) see Woodford (1996).

The parameter F) can also be negative without finite bound. Output gap Taylor rule
parameter is positive without finite upper bound or negative with a finite lower bound.

This corresponds to region 1 of the top-left of Figure 1 which corresponds to these
conditions on eigenvalues —1 < A, (F) < 1 < A\, (F). The Taylor rule parameters are
such that {F / |\ (F)| <1 <min(|A, (F)|, |Aer (F)])}-

Region 1 is limited by two lines. The first line includes the segment AC. It defines the
new-Keynesian border of the Taylor principle, including the point: (F, =1, F, = 0). It
is a nearly vertical line such that at least one of the two roots is equal 1: p(1) = 0. The
second line includes the segment BC. It is a negative slope line where at least one of the
two roots is equal to —1: p(—1) = 0.

Region 1 includes the origin in the plane (Fy,F,). This point corresponds to the
laissez-faire open-loop equilibrium (F = 0) where the policy instruments are pegged to
their long run values. For our benchmark calibration = 0.99, k = 0.1, v = 0.5, the
values of the eigenvalues of matrix A (not multiplied by /) are:

Aa = ( Aar =0.803 Ay =1.257 X, =1.01) (4)

The projection of inflation and output gap on the stable eigenvectors implies the
following dynamics in a stable subspace of dimension 1, with the following eigenvector
times its eigenvalue power ¢ times the initial condition for predetermined public debt by:

xt 0.418
m | = 0.204 | -0.803"- b,
by 1

4.2.3 Unpleasant Second Equilibrium

In this equilibrium, fiscal policy is "active" |\, (F)| > 1. Monetary policy is "active" in
the sense that the inflation Taylor rule parameter satisfies the Taylor principle (F, > 1)
without a finite upper bound. However, the output gap rule parameter is always strictly
negative without a finite lower bound, which is the implausible or unpleasant property
of this equilibrium.

This equilibrium corresponds to region 3 on the bottom-right of figure 1 such that:
Az (F) < =1 < A\yr (F) < 1. Region 3 is limited by two lines. The first line defines the
new-Keynesian border of the Taylor principle. It is a nearly vertical line such that at
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least one of the two roots is equal 1: p(1) = 0. The second line includes the segment BC.
It is a negative slope line where at least one of the two roots is equal to —1: p(—1) = 0.
The segment BC is Barnett and Duzhak’s (2010) border of the flip bifurcation of the
discrete time new-Keynesian model.

For our benchmark calibration g = 0.99, k = 0.1, v = 0.5, the policy rule parameters
(F, = —4.5, Fy = 2, G = 0) corresponds to a point located in region 3, with the following
eigenvalues:

Aasr = (Ao Aor X ) =( —1.17 098 1.01) (5)

The projection of inflation and output gap on the stable eigenvectors implies the
following dynamics in a stable subspace of dimension 1 given by the following eigenvector
of the eigenvalue A, :

Ty 0.18068
m | = 0.79828 | -0.987" - by
by 1

This regime is not mentioned by Woodford (1996). It is an even more unpleasant
equilibrium than Ramsey optimal policy, because the response of interest to the output
gap or to inflation (F) is not only strictly negative, it is also always strictly large in
absolute value ("more negative") than the Ramsey optimal interest rule parameter of the
output gap.

4.2.4 New-Keynesian Third Equilibrium

In this equilibrium, fiscal policy is passive |\, (F)| < 1. Monetary policy is "active" in
the sense that both the eigenvalues of inflation and output gap are larger than one. This
equilibrium corresponds to this set of policy rule parameters:

{F / [A (F)] <1 <min([Are (F)[, [Aar (F)]) -

Assuming F, = 0, the condition |[A., (F)| > 1, |Asr (F)| > 1 corresponds to the
regions 4.3, 4.4, 4.5 on the top right of Figure 1 and region 2 on the bottom left of Figure
1. Region 4.3 is for complex conjugate eigenvalues such that |\, (F)| = |Aer (F)] > 1.
Regions 4.4 and 4.5 are for real eigenvalues: 1 < A\r, (F) < Ayr (F).

For the regions 4.3, 4.4, 4.5 on the top right of Figure 1, the inflation Taylor rule
parameter satisfies the Taylor principle (F, > 1) without a finite upper bound. However,
the output gap rule parameter can be positive or implausibly negative without a finite
upper bound.

Region 2 is for real eigenvalues such that:: A, (F) < Ayr (F) < —1 on the left of the
Taylor principle line (p(1) = 0) and below the line (p(—1) = 0) including the segment
CB. The inflation Taylor rule parameter does not satisfy the Taylor principle including
negative value without bound. The output gap rule parameter is often negative, or the
inflation Taylor rule parameter is negative when the output gap rule parameter is positive:
region 2 is an unpleasant new-Keynesian equilibrium.

For our benchmark calibration, we select an example with two policy rule parameters
in region 4.4 (F, = 1, F, = 1) along with (F, = 0, G, = 1.5), with the following
eigenvalues:
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AaiBr = (Are dor X ) = (1.009 1.551 0.995 ) (6)

The projection of inflation and output gap on the stable eigenvectors implies the
following dynamics in a stable subspace of dimension 1 given by the following eigenvector
of the eigenvalue \,:

Tt 0
m | =1 0 |-0.995 b
b, 1

Because there is no effect of public debt on future output gap (no wealth effect:
Az = 0) nor on future inflation (A, = 0) in the transmission mechanism, if the interest
rate rule does not respond to public debt (F, = 0), the dynamical system A + BF is
block triangular, with an upper block for inflation and output gap. The eigenvectors of
the eigenvalue of public debt are proportional to (0,0, 1)T. They are orthogonal to the
space of inflation and output gap. This implies that the initial jump of inflation and
output gap is always back to its long run equilibrium: 7y = 0.6y and g = 0.by. This
outcome is the same as the one of degenerate rational expectations equilibrium where
there is no predetermined variable.

Therefore, it is necessary to add the unpleasant and arbitrary assumptions of exoge-
nous auto-regressive forcing variables for inflation and/or for the output gap so that both
variables have transitory dynamics proportional to these forcing variables.

4.3 Controlling Type II Multiple Equilibria Indeterminacy by
Ramsey Optimal Policy

We define type III determinacy in the Ramsey optimal policy case:

Definition 5 Ramsey optimal policy type III determinacy arises forn > 1 predetermined
controllable policy targets and for m > 1 non-predetermined controllable policy targets,
for1 < k < n+m optimally predetermined policy instruments, for m initial transversality
conditions on Lagrange multipliers anchoring the m initial values of non-predetermined
policy targets and for policy makers deciding the optimal values of policy rule parameters
F in RF x R"™™ using a quadratic loss function with non-zero costs of changing the
policy instruments. The number of eigenvalues of A + BF strictly inside the unit circle
s equal to the mumber n + m which is the sum of n predetermined and controllable
policy targets and of m predetermined Lagrange multipliers (set to zero) of each non-
predetermined policy target (Hansen and Sargent (2008)). There is a unique equilibrium
because (Ziz) = 1: there 1s only one way to select n + m eigenvalues to be controlled to
be into the unit disk in the set of n + m eigenvalues.

With Ramsey optimal policy, optimal initial conditions are derived for inflation and
output gap with co-state variables of inflation and output gap optimally predetermined
at zero (transversality conditions). The negative-feedback values of the policy rules para-
meters implies that the number of stable eigenvalues inside the unit circle (three in this
model) is equal to the number of forward-looking variables (output gap and inflation)
and predetermined variable (public debt).

Chatelain and Ralf (2020) using Table 2 simulation grid show that the locus of Ram-
sey optimal policy rule parameter is a smaller triangle included into the larger stability
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triangle where both eigenvalues are inside the unit circle. In particular, negative eigen-
values —1 < A\, < Azr < 0 cannot be eigenvalues of optimal policy (figure 3 and a zoom
in figure 2). Because Ramsey optimal policy parameter are located within the stability
triangle, this implies that its Taylor rule parameter of inflation satisfies the Taylor prin-
ciple. But it also implies that its Taylor rule parameter of output gap is strictly negative,
because of the intertemporal substitution effect of the Euler equation.
Crossing the border AB corresponds to a shift from Ramsey optimal policy to new-
Keynesian equilibrium corresponds to a Barnett and Duzhak (2008) Hopf bifurcation.
Crossing the border BC corresponds to a shift from Ramsey optimal policy to the very
unpleasant equilibrium corresponds to a Barnett and Duzhak (2010) flip bifurcation.
Crossing the border AC corresponds to a shift from Ramsey optimal policy to FTPL
equilibrium corresponds to a saddle-node bifurcation, reneging the Taylor principle.
Finally, as a thought experiment, if the sign of the transmission parameters are re-
versed, in particular if the intertemporal elasticity of substitution turns to be negative
(k < 0, 7 < 0), then the Ramsey triangle is within the stability triangle which is this
time in the quadrant with plausible positive rule parameters: F, > 0 and F, > 0 (Figure
4).

4.4 The Case for Controlling Type II Multiple Equilibria Inde-
terminacy

As seen in the previous section, it is feasible to control type II multiple equilibria deter-
minacy using Ramsey optimal policy. This section emphasizes why it is worth it. Type
II multiple equilibria have implausible and unpleasant properties:

(1) Because the policy maker only considers simple rules, he has no loss function to
decide among these equilibria. Conversely, those multiple equilibria only exists because
there is no loss function leading to the unique Ramsey equilibrium.

(2) There is a curse of dimensionality: the number of equilibria increases faster than
the number of variables n+m. Increasing the number £ of optimizing private agents leads
to at least k predetermined state variables and k non-predetermined co-state variables.
For a dynamic stochastic general equilibrium model investigating macro-prudential policy,
it usually includes at least two private sector agents, such as a non-financially constrained
household and a bank (or a financially constrained household) deciding their own optimal
non-predetermined saving in order to optimize their own predetermined wealth dynamics.
In this case, the number of equilibria is ("J;Lm) = (2;2) =6>4=n+m.

(3) Building epicycles on epicycles, getting rid of type II multiple equilibria in setting,
ex post, after the computation of households optimal behavior, that households’ state
variables are forced to be equal to zero at all periods (zero net supply of public debt in
Gali (2015), footnote 3, b.y1 = by = 0) and replace it by non-controllable autoregressive
shocks is implausible and logically inconsistent. The households does not observe during
an infinite horizon that his state variable is exogenously set to zero (or its equilibrium
set point) at all dates. In this case, the dynamic equation of the state variable vanishes
because b, 1 = b, = 0. In this case, the household does not need to do intertemporal
optimization of his wealth dynamics and the Euler equation is an irrelevant equation.

(4) Building epicycles on epicycles, these simple rule multiple equilibria require the
implausible extreme assumption of the knowledge by the policy maker with an infinite
precision of the values of the slope of the new-Keynesian Phillips curve x and of the
intertemporal elasticity of substitution v, as well are zero measurement errors for initial
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inflation 7y, output gap zy and public debt by. Else, because of the local instability of
these simple rule equilibria in the three dimensions space of inflation, output gap and
public debt, the probability to follow an unstable off-equilibrium path is equal to one.

For example, Cochrane (2019, p.345) has a concern related to the local instability of
inflation for this monetary and fiscal regime:

"To produce those equilibria, the central bank commits that if inflation gets
going, the bank will increase interest rates, and by doing so it will increase
subsequent inflation, without bound. Likewise, should inflation be less than
the central bank wishes, it will drive the economy down to the liquidity trap...
No central bank on this planet describes its inflation-control efforts this way.
They uniformly explain the opposite. Should inflation get going, the bank will
increase interest rates in order to reduce subsequent inflation. It will induce
stability into an unstable economy, not the other way around. I have not seen
selecting among multiple equilibria on any central bank’s descriptions of what
it does... That the central bank will react to inflation by pushing the economy
to hyperinflation seems an even more tenuous statement about people’s beliefs,
today and in any sample period we might study, than it is about actual central
bank behavior."

This concern allows Cochrane (2019) to promote the following fiscal theory of the
price level equilibrium. However, Benassy (2009) has a symmetric concern about the
local instability of off-equilibrium paths of public debt dynamics (|A, (F)| > 1) in the
FTPL equilibrium:

"The basic idea behind the FTPL is that the government pursues fiscal
policies such that, in off-equilibrium paths, it will not satisfy its intertempo-
ral budget constraint, and run an explosive debt policy. This leaves only one
feasible equilibrium path. Now although such off-equilibrium paths are not ob-
served in the model’s equilibrium, it would be extremely optimistic to assume
that in real life situations the economy would follow at every instant the equi-
librium path while the government pursues such policies. As a result many
people would be reluctant to advise such policies to a real life government."

(5) The local instability in the space of policy targets may give rise to indeterminacy
related to Shilnikov bifurcation in Barnett et al. (2020) in continuous time, and, in
discrete time, to Hopf bifurcation (Barnett and Duzhak (2008)) and to Flip bifurcation in
Barnett and Duzhak (2010)). Point A where A\, (F) = A\ (F) =1 and |\, (F)| < 1 may
be analogous to a Bodganov Takens bifurcation in continuous time with two eigenvalues
set to zero.

The hypothesis of the perfect knowledge with infinite precision of parameters is re-
quired in order that Barnett and Duzhak (2008, 2010) bifurcations shifting from stable
to unstable off-equilibrium paths do not arise.

One way to reconcile Benassy (2009) and Cochrane (2019) is to use Ramsey optimal
policy equilibrium with the local stability of off-equilibrium paths. After all, not only
Svensson (2003) but also Cochrane (2011) himself describe Ramsey optimal policy as a
relevant benchmark for stabilization policy instead of "simple rule":

"In most (Ramsey) analysis of policy choices,..., we think of governments
choosing policy configurations while taking first order conditions as constraints;
we think of governments acting in markets."
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5 CONCLUSION

This paper highlighted the properties of Ramsey optimal stabilizing policy for the new-
Keynesian model with public debt where the intertemporal substitution effect of the
interest rate on consumption is a key driver of the policy transmission mechanism. Ram-
sey optimal policy favors negative feedback of monetary policy. If public debt is included
in the welfare and policy maker’s loss function, the interest rate should optimally respond
to the deviation of public debt from its long-run equilibrium value, as well as to inflation
and output gap.

A key property of Ramsey optimal policy in the new-Keynesian model with public
debt is that it eliminates three equilibria obtained with simple rules. Using Leeper (1991)
terminology where passive policy corresponds to the range of values of rule parameters
allowing negative feedback mechanism, Ramsey optimal policy is a passive monetary
policy and passive fiscal policy. It eliminates the active monetary policy and passive
fiscal policy equilibrium (new-Keynesian model) versus the passive monetary policy and
active fiscal policy (the fiscal theory of the price level).

Ramsey optimal monetary policy in the new-Keynesian model with or without public
debt suggest that the interest rate should decrease for a positive output gap, because the
policy transmission mechanism is such that an increase of the interest rate is correlated
with a fall of future output gap due to the intertemporal substitution effect of the interest
rate on consumption. This transmission channel has the opposite sign of the correlation
between output and interest rate with respect to the investment saving (IS) curve effect
of Keynesian macroeconomics where investment decreases because of the cost of capital.
Because the production function does not depend on the stock of capital and because
investment and saving are equal to zero in the reference new-Keynesian model, the cost
of capital effect of the interest rate on investment is excluded by assumption.

Further research will consider alternative policy transmission mechanisms (Cardani et
al. (2018), Gomis-Porqueras and Zhang (2019), Jia (2020), Drygalla et al. (2020)). For
example, alternative micro-foundations can restore the income effect of interest rate so
that it offsets the intertemporal substitution effect. If one assumes that there is capital
in the production function, then, there can be a cost of capital effect decreasing future
output. An effect of the cost of working capital on future inflation can also be introduced
in the new-Keynesian Phillips curve. Credit constrained households, limited asset market
participation also increase the magnitude of the income effect.

Reversing the sign of the transmission mechanism of interest rate, so that the income
effect dominates the substitution effect, reverts the sign of the response of interest rate
to a positive output gap. In this case, the interest rate increases in proportion to a
positive output gap in Ramsey optimal policy. This corresponds to the negative feedback
mechanism of stabilization policy for a Keynesian transmission mechanism.
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6 Appendix A: SCILAB code

Remark: SCILAB code computes this transformation of the preferences of the policy
maker, to be called in the LQR instruction. In our case, S = 0 and Q and R are
diagonal, so that C and D elements includes square roots of these diagonal elements of

Q and R.
()t m-(8 )

Qx=0;

Qpi=0;

Qb=0 ;

Ri=1;

Rt=1;

betal=0.99; gammal=0.5; kappa=0.1;

Al=[1+(kappa*gammal /betal) -gammal/betal 0 ; -kappa/betal 1/betal 0 ; O -
1/betal 1/betal]

spec(Al)

A=sqrt(betal)*Al

Bl=[gammal 0 ;00 ; 1 1-(1/betal) ]

B=sqrt(betal)*B1

Q=[Qx00;0Qpi0;00Qb]

R=[Ri0; 0 Rt |

Big=sysdiag(Q,R)

[w,wp|=fullrf(Big)

Cl=wp(:,1:3)

D12=wp(:,4:$)

M=syslin(’d’,A,B,C1,D12)

[Fy,Py]=lar(M)

spec(A)

spec(A+B*Fy)

Px=Py(1:2,1:2)

Pd=Py(1:2,3)

T0=-inv(Px)*Pd

TO(3,1)=1

T0(1:2,1)

InsO=Fy*T0

B(:,1)*Fy(1,:)

B(:,2)*Fy(2,:)
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Appendix B

Figure 1: Three simple rules equilibria outside the stability triangle in
the plane of Taylor rule parameters, y=0.5, x=0.1, =0.99
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Figure 2: Fiscal Theory of the Price Level vs New-
Keynesian vs Ramsey optimal policy, y=0.5, k=0.1, f=0.99.
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Figure 3: Ramsey LQR triangle in the stability triangle in the
1)4161(1)’16 of Taylor rule parameters, y=0.5, k=0.1, f=0.99
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Figure 4: Ramsey LQR triangle in the stability triangle in the
plane of Taylor rule parameters, y=-0.5, k=-0.1, f=0.99
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