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Abstract

We consider a modification of ordinal status games of Haagsma and von Mouche (2010). A
number of agents make scalar choices, e.g., their levels of conspicuous consumption. The wellbeing
of each agent is affected by her choice in three ways: internal satisfaction, expenses, and social status
determined by comparisons with the choices of others. In contrast to the original model, as well
as its modifications considered so far, we allow for some players not caring about comparisons with
some others. Assuming that the status of each player may only be “high” or “low,” the existence
of a strong Nash equilibrium is shown; for a particular subclass of such games, the convergence of
Cournot tatonnement is established. If an intermediate status is possible, then even Nash equilibrium
may fail to exist in very simple examples.
JEL Classification Number: C 72; MSC2010 Classification Number: 91A10.
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1 Introduction

The objective of this paper is quite narrow. We study what happens if the assumption that “everybody
watches everybody” implicit in the status game of Haagsma and von Mouche (2010), as well as its
modifications in Kukushkin and von Mouche (2018) and Kukushkin (2019), is abandoned so that some
players may be indifferent to the very existence of some others.

The place of all those models in the literature (Frank, 1985; Akerlof, 1997; Clark and Oswald, 1998;
Becker et al., 2005; Bilancini and Boncinelli 2008; Arrow and Dasgupta, 2009) can be delineated by these
characteristics: the number of players is finite and the notion of status is ordinal. Roughly speaking,
the status of a player is determined by comparisons (rather than differences) between her choice and
the choices of others.

Those features generate unpleasant discontinuities in the utility functions, which make inapplica-
ble even recently obtained general theorems (Reny 1999, 2016; McLennan et al., 2011; Prokopovych,
2013; Prokopovych and Yannelis, 2017; Kukushkin, 2018). Unsurprisingly, Haagsma and von Mouche
(2010) were only able to show the existence of a Nash equilibrium in the two-person case. Kukushkin
and von Mouche (2018) showed the existence of Nash equilibrium and convergence of (consecutive)
Cournot tâtonnement in somewhat modified models, with only two possible status levels and the top
tier consisting of the players whose choice was maximal of all.

Kukushkin (2019) established the existence of a strong Nash equilibrium, which weakly Pareto
dominates all other Nash equilibria, in a wider class of similar games where the line between the “top”
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and the “bottom” may be drawn anywhere (e.g., at the median choice). Besides, Cournot tâtonnement
in such games always finds a Nash equilibrium in a finite number of steps. If there are three possible
status levels, the existence of a Nash equilibrium is ensured under an additional assumption; with a
greater number of possible status levels, there seems to be no reasonably general sufficient condition for
Nash equilibrium existence.

In this paper, we consider two ways to define a network structure on the set of players. In a “simple”
model, there is an undirected graph with players as vertices and edges between “neighbors”; each player
only observes the choices of neighbors and her status is determined by the order rank of her choice among
theirs. Thus, the status of a player may not be visible to anybody else, which is hardly consistent with
the usual connotations of “social status.”

This inconsistency is (largely) avoided in a more general model: Instead of drawing edges between
players, a set of communities is added such that each player, typically, belongs to several communities,
her status in each community is determined separately and is visible to all members of the community.
The “final,” global status of each player is an aggregate of her statuses in all the communities she
belongs to; inevitable subjectivity of that aggregation diminishes the relevance of the question of whether
anybody else observes all those local statuses.

Not surprisingly, extending the class of models under consideration, we lose some “positive” results.
First of all, even in a simple model with a linear graph and quite nice utility functions, there may be
no Nash equilibrium if more than two status levels are allowed. Consequently, we restrict attention in
this paper to “dichotomic ” games: a player’s status may be either “top” or “bottom” throughout.

The main findings are as follows. Exactly as when “everybody is everybody’s neighbor,” there exists
a strong Nash equilibrium; however, the set of equilibrium utility profiles, even in a simple model, may
have a non-trivial Pareto border. Cournot tâtonnement always finds a Nash equilibrium after a finite
number of steps in every simple model. Whether that claim holds in the general case remains an open
question.

In Section 2, some standard definitions are recalled; Section 3 provides the formal descriptions of
our class of games. Our main results are in Section 4: Theorem 4.4 asserts the existence of a strong
equilibrium; Theorem 4.5, the convergence of Cournot tâtonnement. The proofs of those theorems are
deferred to Sections 6 and 7, respectively. “Counterexemples” in Section 5 show the impossibility of
easy generalizations.

2 Basic notions

As usual, a strategic game is defined by a finite set N of players, and, for each i ∈ N , a set Xi of
strategies and a real-valued utility function ui on the set XN :=

∏

i∈N Xi of strategy profiles. We denote
N := 2N \{∅} and XI :=

∏

i∈I Xi for each I ∈ N . Given i ∈ N , we use notation X−i instead of XN\{i};
given I ∈ N , X−I instead of XN\I .

The best response correspondences Ri : X−i → 2Xi (i ∈ N) are defined in the usual way:

Ri(x−i) := Argmax
xi∈Xi

ui(xi, x−i).

A strategy profile x0N ∈ XN is a (pure strategy) Nash equilibrium if x0i ∈ Ri(x
0
−i) for all i ∈ N .

A (consecutive) Cournot path in a strategic game is a finite or infinite sequence of strategy profiles
⟨xkN ⟩k=0,1,... such that, whenever xk+1

N is defined, there is an i ∈ N for which xk−i = xk+1
−i and xki /∈
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Ri(x
k
−i) ∋ x

k+1
i . Following Milchtaich (1996), we say that a strategic game has the finite best response

improvement property (FBRP) if it admits no infinite Cournot path. If, additionally, Ri(x−i) ̸= ∅ for
every x−i ∈ X−i, then every Cournot path, if extended whenever possible, ends at a Nash equilibrium.

A Cournot cycle is a Cournot path ⟨xkN ⟩k=0,1,...,K such that K > 0 and xKN = x0N . In a finite

game, the FBRP is equivalent to the absence of Cournot cycles; generally, there holds only a one-way
implication.

Given xN ∈ XN and I ∈ N , yI ∈ XI is called a weak coalitional improvement at xN if ui(yI , x−I) ≥
ui(xN ) for all i ∈ I while ui(yI , x−I) > ui(xN ) for at least one i ∈ I. A strategy profile x0N ∈ XN is a
very strong equilibrium if there is no weak coalitional improvement at x0N .

3 Network status games

A network status game is a strategic game with a finite set of players N (we assume n := #N ≥ 2),
where strategy sets Xi and utility functions ui satisfy a number of specific requirements, which need
auxiliary definitions and notations. There is a closed subset X ⊆ R (“conceivable strategies”) and there
are ai ≤ bi in R for each i ∈ N such that Xi = [ai, bi] ∩ X; hence each Xi is compact. Concerning
the utility functions ui, there are a finite chain S (of potential “status levels”), a “status mapping”
σi : XN → S and a function Ui : Xi × S → R for each i ∈ N , such that ui(xN ) = Ui(xi, σi(xN )) for
all i ∈ N and xN ∈ XN . Each function Ui(xi, s) is assumed to be strictly increasing in s, and upper
semicontinuous in xi; moreover, it is single-peaked in xi, i.e., there are x̂si ∈ Xi for all i ∈ N and s ∈ S
such that Ui(xi, s) strictly increases in xi when xi ≤ x̂

s
i and strictly decreases when xi ≥ x̂

s
i .

For Haagsma and von Mouche (2010), the status σi(xN ) of each player i ∈ N was, roughly speaking,
her order rank ρi(xN ) := #{j ∈ N | xi ≥ xj}. Kukushkin and von Mouche (2018) and Kukushkin
(2019) had σi(xN ) := q ◦ ρi(xN ), where q : {1, . . . , n} → S was increasing, but not necessarily strictly

increasing.

We consider two approaches to the definition of the status mapping for a network of players: a
“simple” and a “sophisticated” ones. In the “simple” version, for each i ∈ N , there is a subset G(i) ⊆ N
such that i ∈ G(i), and i ∈ G(j) whenever j ∈ G(i). Given xN ∈ XN , we define the order rank of each
player i ∈ N by

ρi(xN ) := #{j ∈ G(i) | xi ≥ xj}, (1)

and her status by
σi(xN ) := qi ◦ ρi(xN ), (2)

with qi : {1, . . . ,#G(i)} → S increasing, but not necessarily strictly.

In the “sophisticated” version, there is a finite set C of “communities” (or reference groups); there
are correspondences Φ: N → C and Ψ: C → N such that c ∈ Φ(i) ⇐⇒ i ∈ Ψ(c). Given xN ∈ XN ,
each player i ∈ N gets a separate order rank in each community from Φ(i),

ρci (xN ) := #{j ∈ Ψ(c) | xi ≥ xj} (i ∈ Ψ(c)), (3)

which determines her “local status” σci (xN ) := qc ◦ ρi(xN ), with increasing qc : {1, . . . ,#Ψ(c)} → Sc.
Those local statuses are then converted into a “global” status σi(xN ) := qi(⟨σ

c
i (xN )⟩c∈Φ(i)), with in-

creasing qi : S
Φ(i) → S.

A model where each player’s status is defined in the “simple” way is called a simple network status

game. A model where each player’s status is defined in the “sophisticated” way is called a general
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network status game, or just a network status game. The consistency of this terminology is shown by
the following statement.

Proposition 3.1. For every simple network status game, there is a general network status game with

the same set of players N , the same sets of strategies Xi, and the same utility functions ui.

Proof. Retaining the same sets N and Xi (i ∈ N), we set C := {{i, j} ⊆ 2N | j ∈ G(i) \ {i}} and, for
each i ∈ N , Φ(i) := {{i, j}}j∈G(i)\{i}. For each {i, j} ∈ C, we set S

{i,j} := {0, 1} and Ψ({i, j}) := {i, j}.
Whenever i ∈ N and c ∈ Φ(i), we set σci (xN ) := ρci (xN )− 1. Obviously, we now have

ρi(xN ) = 1 +
∑

c∈Φ(i)

σci (xN ),

with ρi defined by (1), for all i ∈ N and xN ∈ XN . Applying the same mappings qi, we obtain the same
utility functions ui.

Since the inequalities in (1) and (3) are non-strict, both ρi and ρci , and hence σi too, are upper
semicontinuous in xi; the upper semicontinuity of ui in xi easily follows. Therefore, Ri(x−i) ̸= ∅ for
every x−i ∈ X−i.

The interpretation of the whole construction is quite similar to that in Haagsma and von Mouche
(2010). Several agents choose their levels of consumption of a certain good. Exactly as in Kukushkin
(2019), an arbitrary closed set X ⊆ R is introduced to stress that our results are equally valid for
discrete models, e.g., where X is the set of integers, and continuous models, e.g., where X = R and
each Xi is just a closed interval. The wellbeing of an agent is affected by her choice in three ways.
First, there is “internal satisfaction,” the more, the better. Second, there are expenses, the more, the
heavier. Assuming decreasing marginal satisfaction and increasing marginal expenses, we obtain the
strict quasiconcavity of the utility function in own choice.

Thirdly, there are considerations of status: an agent may feel humiliated when noticing a greater
choice made by somebody else. In contrast to Haagsma and von Mouche (2010), as well as Kukushkin
(2019), we do not assume that “everybody watches everybody” here. In a “simple” model, subsets G(i)
define “who is whose neighbor”; we could talk of an undirected graph instead. The rank function (1)
defines the position of player i among her neighbors; qi in (2) may be injective, and hence superfluous,
or it may assign the same status for some contingent ranks (“consolidated status” of Kukushkin, 2019).
In a “general” model, each player is a member of one or more of “reference groups”; within a group c,
“everybody is everybody’s neighbor” and each player’s local status σci (xN ) is determined in the same
way as in Kukushkin (2019). Then each player aggregates her status levels in relevant groups, obtaining
her global status σi(xN ).

Lemma 3.2. Let x0N ∈ XN and Y∗(x
0
N ) := {x̂si}i∈N, s∈S ∪ {x

0
i }i∈N ⊆ X. Let ⟨xkN ⟩k=0,1,...,K be a finite

Cournot path starting at x0N . Then xKN ∈ (Y∗(x
0
N ))N .

Proof. We start with an auxiliary statement: If xN ∈ (Y∗(x
0
N ))N , i ∈ N , and yi ∈ Ri(x−i), then

yi ∈ Y∗(x
0
N ). Supposing the contrary and denoting s := σi(yi, x−i), we have either yi < x̂si , or yi > x̂si .

In the first case, we have σci (x̂
s
i , x−i) ≥ σci (yi, x−i) for all c ∈ Φ(i); hence σi(x̂

s
i , x−i) ≥ s, and hence

ui(x̂
s
i , x−i) ≥ Ui(x̂

s
i , s) > Ui(yi, s) = ui(yi, x−i). In the second case, since yi ̸= xj for all j ̸= i,

there is y′i ∈ Xi such that y′i < yi, y
′
i ≥ x̂si , and σci (y

′
i, x−i) = σci (yi, x−i) for all c ∈ Φ(i); therefore,

ui(y
′
i, x−i) > ui(yi, x−i). In either case, we have a contradiction with yi ∈ Ri(x−i).
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Now the statement of the lemma is proven with a straightforward recursion, exactly as in Lemma
3.1 of Kukushkin (2019).

Lemma 3.3. A network status game has the FBRP if and only if it admits no Cournot cycle.

Exactly as in Lemma 3.2 of Kukushkin (2019), immediately follows from Lemma 3.2 and the fact
that Y∗(xN ) is finite for every xN ∈ XN .

Lemma 3.4. Let xN , yN ∈ XN and i ∈ N in a network status game be such that xi = yi, while yj ̸= xj
for any j ̸= i only if xj ≤ xi ≥ yj. Then σi(yN ) = σi(xN ) and ui(yN ) = ui(xN ).

Proof. Whenever c ∈ Φ(i), we have ρci (yN ) = ρci (xN ); hence σci (yN ) = σci (xN ). Therefore, σi(yN ) =
σi(xN ) and hence ui(yN ) = ui(xN ) as well.

4 Dichotomic games

Henceforth, we assume that S = {⊥,⊤} = Sc for all c ∈ C, i.e., there are only two status levels (bottom
and top, ⊥ < ⊤). We call such games dichotomic network status games. For xN ∈ XN and i ∈ N , we
define

ξi(xN ) := min{yi ∈ Xi | σi(yi, x−i) = ⊤}, (4)

the minimal strategy choice that would ensure for player i (under strategy profile xN , or rather x−i)
the top status; we assume min ∅ := +∞ in (4).

Lemma 4.1. Let xN ∈ XN , i ∈ N , and ξi(xN ) < +∞ in a dichotomic network status game. Then

either ξi(xN ) = minXi or ξi(xN ) = xj for some j ̸= i.

Proof. We denote J := {j ∈ N \ {i} | xj ≤ ξi(xN )}. If J = ∅, then ξi(xN ) = minXi; otherwise, we
denote yi := maxj∈J xj [≤ ξi(xN )]. If yi = ξi(xN ), then we are home. Supposing the contrary, we would
have {j ∈ N | xj ≤ ξi(xN )} = {j ∈ N | xj ≤ yi}; hence ρ

c
i (yi, x−i) = ρci (ξi(xN ), x−i) for all c ∈ Φ(i) and

hence σi(yi, x−i) = σi(ξi(xN ), x−i) = ⊤: a contradiction.

Lemma 4.2. Let xN ∈ XN and i ∈ N in a dichotomic network status game. Then xi ∈ Ri(x−i) if and
only if one of the following conditions holds:

xi = x̂⊤i ≥ ξi(xN ); (5a)

xi = ξi(xN ) > x̂⊤i & Ui(x̂
⊥
i ,⊥) ≤ Ui(ξi(xN ),⊤); (5b)

xi = x̂⊥i < ξi(xN ) & Ui(x̂
⊥
i ,⊥) ≥ Ui(ξi(xN ),⊤). (5c)

Proof. The sufficiency is straightforward. To prove the necessity, a few alternatives have to be consid-
ered. Let σi(xN ) = ⊥, i.e., xi < ξi(xN ); if xi ̸= x̂⊥i , then ui(xN ) < Ui(x̂

⊥
i ,⊥) ≤ ui(x̂

⊥
i , x−i); if xi = x̂⊥i

and the second inequality in (5c) does not hold, then ui(xN ) < Ui(ξi(xN ),⊤) = ui(ξi(xN ), x−i). Let
σi(xN ) = ⊤, i.e., xi ≥ ξi(xN ); if xi > ξi(xN ), then (5a) must hold since σi(yi, x−i) = ⊤ for all yi ∈ Xi

close enough to xi; if xi = ξi(xN ), then (5b) must hold.

Remark. By Lemma 4.2, #Ri(x−i) ≤ 2 for every i ∈ N and x−i ∈ X−i; #Ri(x−i) = 2 is only possible
when the non-strict inequalities in (5b) and (5c) are equalities.
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Lemma 4.3. Let x′N , y
′
N ∈ XN and i ∈ N in a dichotomic network status game be such that ξi(x

′
N ) <

+∞ and, whenever j ̸= i and y′j ̸= x′j, there holds x′j < ξi(x
′
N ) ≥ y′j. Then ξi(y

′
N ) = ξi(x

′
N ).

Proof. Since {j ∈ N \ {i} | x′j ≤ ξi(x
′
N )} = {j ∈ N \ {i} | y′j ≤ ξi(x

′
N )}, we have ρci (ξi(x

′
N ), y′−i) =

ρci (ξi(x
′
N ), x′−i) for all c ∈ Φ(i); hence σi(ξi(x

′
N ), y′−i) = ⊤ and hence ξi(y

′
N ) ≤ ξi(x

′
N ).

If ξi(x
′
N ) = minXi, then we are home; otherwise, we denote J := {j ∈ N \ {i} | x′j ̸= y′j}. If J = ∅,

then x′−i = y′−i and we are home again; otherwise, we denote w := maxj∈J x
′
j [< ξi(x

′
N )]. For every

zi ∈ Xi such that w ≤ zi < x′i, we have {j ∈ N \ {i} | y′j ≤ zi} ⊆ {j ∈ N \ {i} | x′j ≤ zi}; hence
σi(zi, y

′
−i) ≤ σi(zi, x

′
−i) = ⊥. Since zi was arbitrary, ξi(y

′
N ) ≥ ξi(x

′
N ).

Theorem 4.4. Every dichotomic network status game possesses a very strong equilibrium.

Theorem 4.5. Every simple dichotomic network status game has the FBRP.

Both proofs are deferred to Sections 6 and 7, respectively.

Remark. Kukushkin (2019) contained a wrong claim about simultaneous Cournot tâtonnement, see
Kukushkin (2020).

Open Problem 4.6. What additional assumptions are needed for the FBRP in the general case?

Remark. A plausible conjecture is that the symmetry of each mapping qi : S
Φ(i) → S in its arguments

(local statuses of player i) would be sufficient.

5 “Counterexemples”

The introduction of a network into an ordinal status game inflicts two losses in comparison with Ku-
kushkin (2019): In the case of two status levels, a strong equilibrium existing by Theorem 4.4 need not
Pareto dominate all other Nash equilibria. In the case of three status levels, Nash equilibria may fail to
exist at all.

Example 5.1. Let N = {1, 2, 3, 4}; G(1) = G(2) = {1, 2, 3}, G(3) = N , G(4) = {3, 4}; S = {⊥,⊤}; for
each i ∈ N , Xi = [0, 4]; q1(3) = q2(3) = q3(4) = q4(2) = ⊤, while qi(r) = ⊥ everywhere else (i.e., only the
maximal choice confers the top status); Ui(x, s) = ϕi(x) +ψi(s), where ϕ1(x) = ϕ2(x) = min{x, 6− x},
ϕ3(x) = ϕ4(x) = min{x, 4 − x}, ψi(⊥) = 0 for all i ∈ N , ψ1(⊤) = ψ2(⊤) = 2, ψ3(⊤) = 1.5, and
ψ4(⊤) = 0.5. The set of Nash equilibria consists of two components: {(3+ ε, 3+ ε, 3+ ε, 2)}ε∈[0,1/2] and
{(3 + ε, 3 + ε, 2, 2)}ε∈[1/2,1]

A unique very strong equilibrium is (3, 3, 3, 2), which gives the players this utilities vector: ⟨5, 5, 2.5, 2⟩;
however, every Nash equilibrium in the second component gives player 4 the utility level 2.5.

Example 5.2. Let N = {1, 2, 3, 4}; Xi = [0, 2] for each i ∈ N ; G(1) = {1, 2}, G(2) = {1, 2, 3},
G(3) = {2, 3, 4}, G(4) = {3, 4}; S = {1, 2, 3} (with the natural order); each qi be an identity mapping,
i.e., σi(xN ) = ρi(xN ) for each i ∈ N and all xN ∈ XN ; U1(x, s) = x + s, U2(x, s) = −2x + 3s,
U3(x, s) = −2x

2 + (s− 1)2, and U4(x, s) = min{x, 2− x}+ s.

Assuming x0N to be a Nash equilibrium, we must have x01 = 2 and x04 ≥ 1. Further, u2(x
0
N ) ≥

U2(2, 3) = 5 > U2(x2, 2) whenever x2 > 1/2. Therefore, either x02 = 2, or 1/2 ≥ x02 ≥ x03. We consider
both alternatives.
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Let x02 = 2. Then U3(2, 3) = −4 < 0 = U3(0, 1) > −1 ≥ U3(x
0
4, 2). Therefore, x03 = 0; but then

u2(x
0
N ) = U2(2, 3) = 5 < 6 = U2(0, 2) = u2(x2 = 0, x0−2): a contradiction.

Now let 1/2 ≥ x02 ≥ x03. We have x04 = 1; hence σ3(x
0
N ) ≤ 2, and hence u3(x

0
N ) ≤ 1. On the other

hand, u3(x3 = 1, x0−3) = U3(1, 3) = 2 > u3(x
0
N ): a contradiction again.

Thus, there is no Nash equilibrium in the game.

Without the symmetry assumption, the extension of Theorem 4.5 to the general case is just wrong.

Example 5.3. Let N = {1, 2, 3}; C = {α, β, γ}; Φ(1) = {α, β}, Φ(2) = {α, γ}, Φ(3) = {β, γ};

S = {1, 2}; Xi = [0, 1] for each i ∈ N ; σ1(xN ) = ρα1 (xN ), σ2(xN ) = ργ2(xN ), σ3(xN ) = ρβ3 (xN );
Ui(x, s) = −x+ 2s.

The set of Nash equilibria is {(x, x, x)}x∈[0,1]; only (0, 0, 0) is a very strong equilibrium. Meanwhile,
there are Cournot cycles, e.g., this:

(0, 1, 0) → (1, 1, 0) → (1, 0, 0)
↑ ↓

(0, 1, 1) ← (0, 0, 1) ← (1, 0, 1)

6 Proof of Theorem 4.4

First of all, we define an auxiliary mapping ri : XN → Xi by ri(xN ) := minRi(x−i). In light of
Lemma 4.2, ri(xN ) only depends on ξi(xN ).

Claim 6.1. Let xN , yN ∈ XN and i ∈ N be such that xi = ri(xN ), yi = xi, and yj ̸= xj for any j ̸= i
only if xj < xi ≥ yj. Then xi = ri(yN ).

Proof. By Lemma 3.4, we have σi(yN ) = σi(xN ). By Lemma 4.2, one of conditions (5) holds for i
at xN . If it is (5a), then it will hold at yN as well. If (5b) holds for i at xN , i.e., σi(xN ) = ⊤ and
xi = ξi(xN ) > x̂⊤i , then Lemma 4.3 applies with x′N = xN and y′N = yN , implying ξi(yN ) = ξi(xN )
and hence (5b) holds for i at yN as well. Finally, if (5c) holds for i at xN , then xi = x̂⊥i < ξi(xN )
and Lemma 4.3 applies with x′N = (ξi(xN ), x−i) and y

′
N = (ξi(xN ), y−i), implying ξi(yN ) = ξi(xN ) and

hence (5b) holds for i at yN as well.

Now we recursively construct a sequence of strategy profiles ⟨xkN ⟩k=0,1,..., which are to reach an
equilibrium after a finite number of steps. The construction of the sequence does not presume it to be
a Cournot path (a player might replace one best response with another); however, eventually it turns
out to be so.

We start with setting x0i := x̂⊤i for each i ∈ N . Having xkN ∈ XN already defined, we define a number
of auxiliary subsets: I↑

k := {i ∈ N | ri(x
k
N ) > xki }; I

=

k := {i ∈ N | ri(x
k
N ) = xki }; I

↓

k := {i ∈ N | ri(x
k
N ) <

xki }; I
̸=

k := I↑

k∪I
↓

k. If N = I=

k , then the process must stop (and xkN is a Nash equilibrium). Otherwise, we
define tki := max{xki , ri(x

k
N )} for each i ∈ N , Hk := max

i∈I ̸=
k

tki , and J
k := Argmax

i∈I ̸=
k

tki . If J
k∩I↓

k ̸= ∅,

then we pick i(k) ∈ Jk ∩ I↓

k; otherwise, we pick i(k) ∈ Jk ⊆ I↑

k. Finally, we set xk+1
i(k) := ri(k)(x

k
N ) and

xk+1
i := xki for i ̸= i(k).

Claim 6.2. Whenever xkN and xk+1
N are defined, there hold:

Hk+1 ≤ Hk; (6a)

if Jk ⊆ I↑

k and Hk+1 = Hk, then Jk+1 ⊆ I↑

k+1 too. (6b)
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Proof. We argue by induction. To be more precise, assuming that statements (6a) and (6b) hold for all
h < k, we prove them for k. When k = 0, this assumption holds vacuously.

To prove (6a), we show that the inequality tk+1
i > Hk = tk

i(k) is only possible when i ∈ I=

k+1. Thus, let

either xk+1
i = xki > tk

i(k), or ri(x
k+1
N ) > tk

i(k). In the first case, we have tki > Hk and hence xki = ri(x
k
N );

therefore, Claim 6.1 applies with xN = xkN and yN = xk+1
N , implying xk+1

i = xki = ri(x
k+1
N ) and hence

i ∈ I=

k+1. In the second case, Claim 6.1 applies with xN = (ri(x
k+1
N ), xk+1

−i ) and yN = (ri(x
k+1
N ), xk−i),

implying ri(x
k
N ) = ri(x

k+1
N ) > tk

i(k); therefore, x
k+1
i = xki = ri(x

k
N ) = ri(x

k+1
N ) and hence i ∈ I=

k+1 again.

To prove (6b), we assume that Jk∩I↓

k = ∅ (hence Hk = tk
i(k) = xk+1

i(k) > xk
i(k)) and consider i ∈ N such

that xki = xk+1
i = xk+1

i(k) . Since J
k ∩ I↓

k = ∅, we have xki ≤ ri(x
k
N ); on the other hand, ri(x

k
N ) ≤ Hk = xki .

Therefore, xk+1
i = xki = ri(x

k
N ). Now Claim 6.1 applies with xN = xkN and yN = xk+1

N , implying

xk+1
i = xki = ri(x

k+1
N ) as well. Thus, if Jk ∩ I↓

k = ∅, then either Hk+1 < Hk or Jk+1 ∩ I↓

k+1 = ∅.

Claim 6.3. Let i ∈ N and i = i(m) for some m. Then xm+1
i = ri(x

k
N ) = xki and ui(x

m+1
N ) = ui(x

k
N )

for all k > m.

Proof. Let i = i(m) for the first time; then xmi = x̂⊤i . If xm+1
i = ri(x

m
N ) > xmi , then Hm = xm+1

i ,
so Claim 6.2 ensures that Lemma 4.3 and Claim 6.1 apply with xN = xm+1

N and yN = xkN , implying
xki = ri(x

k
N ) and ui(x

k
N ) = ui(x

m+1
N ). If xm+1

i = ri(x
m
N ) < xmi = x̂⊤i , then (5c) holds for i at xm+1

N and
hence ξi(x

m+1
N ) = ξi(x

m
N ) > xmi = Hm. Now Lemma 4.3 applies with x′N = xm+1

N and y′N = xkN , implying
ξi(x

k
N ) = ξi(x

m
N ); therefore, xki = xm+1

i = ri(x
k
N ) by (5c) and ui(x

k
N ) = ui(x

m+1
N ) by Lemma 3.4.

Remark. It easily follows from Claim 6.3 that ⟨xkN ⟩k is a Cournot path after all.

Claim 6.3 implies that the process stops at some stage K ≤ n, i.e., I=

K = N ; we denote K :=
{0, 1, . . . ,K − 1}. Claim 6.3 also allows us to define a converse mapping κ : i(K) → K such that
κ(i(k)) = k for all k ∈ K. The way our construction is organized ensures that xKN is a Nash equilibrium.
To complete the proof of the theorem, let us show that xKN is a very strong equilibrium as well.

Let ∅ ̸= I ⊆ N and yI ∈ XI be a weak coalitional improvement at xKN . First of all, we may, without
restricting generality, assume that yi ̸= xKi for each i ∈ I. We denote yN := (yI , x

K
−I).

Claim 6.4. For each i ∈ I, there is j ∈ I such that j ̸= i and xKj ≥ ξi(x
K
N ) > ξi(yN ).

Proof. Since xKi = ri(x
K
N ), one of conditions (5) must hold for i at xKN . It cannot be (5a) since no

improvement would be possible; therefore, it must be either (5b) or (5c). In either case, for yI to be an
improvement, we must have σi(yN ) = ⊤ and hence ξi(x

K
N ) > ξi(yN ). An assumption that xKj < ξi(x

K
N )

for all j ∈ I would, by Lemma 4.3, imply ξi(yN ) = ξi(x
K
N ).

We denote I∗ := Argmaxi∈I x
K
i .

Claim 6.5. For each i ∈ I∗, there hold: (a) i ∈ i(K); (b) yi < xKi ; (c) x
κ(i)
i < x

κ(i)+1
i = ξi(x

κ(i)
N ) = xKi .

Proof. An assumption that (5c) holds for i at xKN would lead to xKj > xKi for j ∈ I from Claim 6.4,

which is impossible. Therefore, (5b) holds for i at xKN ; both (a) and (b) immediately follow. Now (c)

follows from the fact that x
κ(i)
i = x̂⊤i , while x

K
i = x

κ(i)+1
i = ξi(x

κ(i)
N ) > x̂⊤i by (5b).
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We pick player i ∈ I∗ whose strategy is determined first, i.e., {i} = Argminj∈I∗ κ(j), and denote

k := κ(i). Thus, xKi = xk+1
i = ξi(x

k
N ) > xki = x̂⊤i . By the choice of i, we have xkj = xk+1

j < xk+1
i =

ξi(x
k+1
N ) for each i ∈ I \ {i}. Now, Claim 6.1 implies that xk+1

i = ri(yN ), while Lemma 3.4 implies that

ui(x
k+1
i , y−i) = ui(x

k+1
N ) = ui(x

K
N ). Therefore, the inequality ui(yN ) > ui(x

K
N ) cannot hold.

Remark. In the case of a complete network, i.e., a simple model with G(i) = N for each i ∈ N , the
proof of Theorem 4.4 reduces to that of Theorem 1 from Kukushkin (2019).

7 Proof of Theorem 4.5

In light of Lemma 3.3, it is enough to show the impossibility of Cournot cycles. Supposing, to the
contrary, ⟨xkN ⟩k=0,1,...,K to be a Cournot cycle, we denote K := {0, 1, . . . ,K} and K(i) := {k ∈ K | xk−i =

xk+1
−i } for i ∈ N . Then, we partition N into those players participating in the cycle, N∗ := {i ∈ N |

K(i) ̸= ∅}, and everybody else, N0 := N \N∗ = {i ∈ N | ∀k, h ∈ K [xki = xhi ]}. Whenever i ∈ N∗, we
have #K(i) ≥ 2 and G∗(i) := G(i) ∩N∗ \ {i} ̸= ∅ (otherwise, there could be no reason for player i to
change her strategy back and forth).

We denote mk := maxi∈N∗ ξi(x
k
N ) for each k ∈ K, M+ := maxk∈Kmk, and I

+ := {i ∈ N∗ | ∃k ∈
K [xki =M+]}.

Claim 7.1. mk =M+ for all k ∈ K.

Proof. Supposing the contrary, we may, without restricting generality, assume that ξi(x
0
N ) ≤ m0 <

m1 = M+ = ξi(x
1
N ) for an i ∈ N∗. Then there must be j ∈ G∗(i) such that 0 ∈ K(j), i.e., x1−j = x0−j ,

and x0j ≤ m0 < m1 ≤ x1j . Since ξj(x
1
N ) = ξj(x

0
N ) ≤ m0 < m1, we must have σj(x

1
N ) = ⊤ and x1j = x̂⊤i .

Thus, the utility of player j attains its global maximum at x1N . Moreover, x1j ≥ M+ ≥ ξj(x
k
N ) for all

k; hence the choice of x1j ensures the maximal utility of player j forever. Therefore, x1j could not be

replaced with xKj = x0j at any stage: a contradiction.

Claim 7.2. If xki > M+ for some i ∈ N and k ∈ K, then i ∈ N0.

Proof. If i ∈ N∗, h ∈ K(i), and xh+1
i = xki > M+, then ui(x

h+1
N ) = maxxN∈XN

ui(xN ) and hence no
change of strategy xi could happen later, exactly as in the proof of Claim 7.1.

For each i ∈ I, we denote gi := #G(i) [≤ n] and βi := min q−1
i (⊤) (the minimal order rank that

ensures the top status for player i). Note that ξi(xN ) is uniquely defined by these two inequalities:

#{j ∈ G∗(i) | xj ≥ ξi(xN )} > gi − βi; (7a)

#{j ∈ G∗(i) | xj > ξi(xN )} ≤ gi − βi. (7b)

Claim 7.3. I+ ̸= ∅.

Proof. Let ξi(x
k
N ) = M+ for some i ∈ N∗ and k ∈ K (by Claim 7.1, such an i exists for each k). We

denote J := {j ∈ G(i) | xkj ≥M
+}. If J ⊆ N0, then ξi(x

h
N ) ≥M+ for each h ∈ K; hence ξi(x

h
N ) =M+

for all h by Claim 7.1; hence xhi cannot change all along by Lemma 4.2: a contradiction. Otherwise,
∅ ̸= N∗ ∩ J ⊆ I+ by Claim 7.2.
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For each i ∈ I+, we denote νi := #{j ∈ G(i) ∩N0 | ∀k ∈ K [xkj ≥ M+]} (the number of neighbors

of i whose choice is always M+ or greater). For each i ∈ I+ and k ∈ K, we set χk
i := 0 if xki < M+,

χk
i := 1 if xki =M+, and ski :=

∑

j∈G∗(i)∩I+ χk
j .

Claim 7.4. Let i ∈ I+ and k ∈ K(i). If xk+1
i = M+, then νi + ski + βi > gi. If xki = M+, then

νi + ski + βi ≤ gi.

Proof. Since i ∈ I+, there must be h ∈ K(i) such that xh+1
i = M+. By the definition of M+, we

have σi(x
h+1
N ) = ⊤. If x̂⊤i > M+, then xh+1

i = M+ could not be optimal; if x̂⊤i = M+, then player i

would obtain at xh+1
N her maximal utility, which would imply the same contradiction as in the proof of

Claim 7.1. Thus, x̂⊤i < M+ and ui(M
+,⊤) ≥ ui(x̂

⊥
i ,⊥).

Now, if xk+1
i =M+, then xki < M+ = ξi(x

k
N ); hence gi−βi < #{j ∈ G(i) | [xkj ≥M

+]} = νi+s
k
i by

(7a). If xki =M+, then xk+1
i = ξi(x

k
N ) < M+; hence gi − βi ≥ #{j ∈ G(i) \ {i} | [xkj ≥M

+]} = νi + ski
by (7b).

Finally, we define a function H : K → R by

H(k) :=
1

2

∑

i∈I+

∑

j∈G∗(i)∩I+

χk
i · χ

k
j +

∑

i∈I+

χk
i · (νi + βi − gi − 1/2). (8)

Claim 7.5. For each k ∈ K, there holds H(k + 1) ≥ H(k). If k ∈ K(i) with i ∈ I+, and xki = M+ or

xk+1
i =M+, then H(k + 1) > H(k).

Proof. If k ∈ K(i) with i /∈ I+, then nothing changes in either sum in the right-hand side of (8). Let
k ∈ K(i) with i ∈ I+. Then H(k) can be re-written as

H(k) = χk
i ·

(

ski + (νi + βi − gi − 1/2)
)

+ Hi(x
k
−i), (9)

where Hi(x
k
−i) is the sum of all terms in the right-hand side of (8) that do not contain χk

i . Quite
similarly,

H(k + 1) = χk+1
i ·

[

sk+1
i + (νi + βi − gi − 1/2)

]

+ Hi(x
k+1
−i ). (10)

Note that ski = sk+1
i and Hi(x

k
−i) = Hi(x

k+1
−i ) since xk−i = xk+1

−i .

We consider three alternatives. If xki < M+ > xk+1
i , then χk

i = χk+1
i = 0; hence H(k) = Hi(x

k
−i) =

Hi(x
k+1
−i ) = H(k + 1) and we are home. If xki < M+ = xk+1

i , then H(k) = Hi(x
k
−i), while

H(k + 1) = sk+1
i + (νi + βi − gi − 1/2) + Hi(x

k+1
−i ). (11)

By Claim 7.4, we have H(k+1) > Hi(x
k+1
−i ) = Hi(x

k
−i) = H(k) (note that νi + βi − gi is an integer). If

xki < M+ = xk+1
i , then

H(k) = ski + (νi + βi − gi − 1/2) + Hi(x
k
−i). (12)

By Claim 7.4, we have H(k) < Hi(x
k
−i) = Hi(x

k+1
−i ) = H(k + 1).

Remark. An attentive reader will undoubtedly recognize the trick working in the proof of Claim 7.5
(Huang, 2002; Dubey, Haimanko, and Zapechelnyuk, 2006; Kukushkin, 2005; Jensen, 2010).

The obvious contradiction between Claim 7.3 and Claim 7.5 proves Theorem 4.5.
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