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Abstract

This paper proposes a new parsimonious multivariate GARCH-jump (MGARCH-jump)

mixture model with multivariate jumps that allows both jump sizes and jump arrivals to be

correlated among assets. Dependent jumps impact the conditional moments of returns as well

as beta dynamics of a stock. Applied to daily stock returns, the model identifies co-jumps

well and shows that both jump arrivals and jump sizes are highly correlated. The jump model

has better predictions compared to a benchmark multivariate GARCH model.
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1 Introduction

There is a large literature that has focused on the estimation and importance of jumps in asset

returns. Most of this work has focused on jumps in individual assets. How jump arrivals and jump

sizes affect each other among several assets remains unclear. This paper proposes a new model for

jumps in multiple assets. It allows both jump arrival and jump sizes to be contemporaneously cor-

related. We find that although jumps arrive infrequently in daily data, assets display dependence

in jump arrival. When assets jump together, their jump size is strongly positively correlated. Thus

co-jumps among assets can change the benefits of diversification and present an additional source

of systematic risk.

This paper builds on the literature that models jumps in discrete time and combines them

with stochastic volatility or GARCH volatility dynamics. The latter specifications capture the

smooth predictable component of volatility while jumps capture abnormal moves in stock prices.

This literature began with the compounded Poisson model introduced by Press (1967). Numerous

extensions include ARCH (Jorion, 1988) and GARCH (Vlaar and Palm, 1993; Nieuwland et al.,

1994) and stochastic volatility (Bates, 1996, 2000; Pan, 2002). Time-varying jump intensities has

been consider by Chan and Maheu (2002); Maheu and McCurdy (2004), and the implications of

jumps for asset pricing by Duan et al. (2006); Maheu et al. (2013); Christoffersen et al. (2012);

Bates (2000); Pan (2002) among others.

Introducing jumps will affect the conditional mean, conditional variance as well as higher-order

conditional moments such as skewness and kurtosis (Das and Sundaram, 1997). This captures

the empirical fact that the unconditional distribution of stock returns is skewed and leptokurtic

relative to a normal distribution. Jumps are especially helpful in explaining large extreme return

changes like market crushes.

Although this literature has focused on univariate jumps, there is empirical evidence of co-

jumps among several assets. Bollerslev et al. (2008) identify the existence of co-jumps and provide

a test for co-jumps in multiple assets. Gilder et al. (2014) confirm co-jumps and provide another

test. Additional papers exploit high frequency data to perform jump tests.1

Papers modelling multivariate jumps are sparse. Laurini and Mauad (2015) propose a bivariate

SV model with built-in co-jumps, but idiosyncratic jumps are not allowed in the model while Chua

and Tsiaplias (2019) introduce another model with correlated jump sizes but independent jump

arrivals and autocorrelated jump intensities. Aı̈t-Sahalia et al. (2015) use a mutually exciting jump

processes to model contagion among assets but have independent jump sizes and homoskedastic

diffusive components.

1Mancini and Gobbi (2012) suggest a nonparametic estimator based on realized covariation. Similarly, Aı̈t-
Sahalia and Xiu (2016) decompose quadratic variation into continuous and discontinuous component to estimate
co-jumps. Bibinger and Winkelmann (2015); Winkelmann et al. (2016) also concentrate on extracting co-jump from
quadratic covariation and introduce a truncated estimator. Caporin et al. (2017) further apply this estimator in
a higher dimensional experiment. Other attempts are Gobbi and Mancini (2007) to derive a bivariate parametric
co-jump estimator, and Novotnỳ and Urga (2017) to introduce a new approach to test the existence of co-jumps.
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This paper proposes a new model (MGARCH-jump) in which one stochastic component of

returns follows a multivariate GARCH (MGARCH) specification while the second is a jump inno-

vation component. The jump component allows for all possible combinations of jumps to occur

from a single individual jump to co-jumps among several or all assets. Each of the probabilities

of these jump events are allowed to differ and admits deviations from purely independent jumps

among all assets. The jump size is multivariate normal and potentially correlated. The conditional

moments of returns are derived and show how multivariate jumps impact returns. We design a

Markov chain Monte Carlo sampler to simulate from the posterior density of the model. The

estimation approach allows for inference on both jump arrival and jump size.

Several applications of the model to daily return data are reported. There is strong evidence of

co-jumps among assets and the jump size distribution displays strong positive correlation among

assets. In applications of a stock with its industry portfolio and the market, co-jumps are the most

likely jump event. Co-jumps are the result of dependence in jump arrival between assets and are

not independent.

In applications with the market portfolio, including multivariate jumps changes beta dynamics.

Dependent jumps generally lowers beta compared to that from an MGARCH model. Log-Bayes

factors favour the new model compared to an MGARCH model without jumps.

Applied to five large firms from very different industries, jump arrivals are mostly individual firm

events unless it is a market-wide event in which a five assets jump together. Even in this setting of

diverse firms we find strong evidence of jump dependence in both arrival and through a correlated

jump size distribution. These jump dependencies result in different conditional correlations and

risk measures compared to an MGARCH model with no jumps.

This paper is organized as follows. Section 2 describes the MGARCH-jump model and how de-

pendent jumps affect the conditional moments of returns. Section 3 outlines a posterior simulation

method to estimate the model parameters and jumps sizes and jump arrivals. Computation of the

predictive density and predictive likelihood are reviewed. Section 4 presents the data. Section 5

presents a series of trivariate applications of a firm, its corresponding industry portfolio and the

market portfolio. Beta dynamics for the model is discussed and illustrated in Section 6. Section 7

shows that the model can be used in higher dimensions in this case five assets. Section 8 concludes.

An Appendix collects additional derivations.

2 Model

In this section, we present the discrete time MGARCH-jump model for financial returns. The

model has a multinomial jump arrival and a multivariate normal jump size component. Let

rt = (rt,1, rt,2, · · · , rt,N)
′ be a N × 1 vector of returns at time t. rt is specified as

rt = µ+ ǫt, (1)
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ǫt = ǫ1,t + ǫ2,t, (2)

where µ = (µ1, µ2, . . . , µN)
′ is a N × 1 vector of constant drift terms, ǫ1,t is a N × 1 return

innovation with E (ǫ1,t|r1:t−1) = 0, where r1:t−1 = {r1, r2, . . . , rt−1}. In particular,

ǫ1,t = H
1/2
t zt, zt ∼ NID (0, I) , (3)

where H
1/2
t is the Cholesky decomposition of a N × N conditional covariance matrix following

a multivariate GARCH structure. Define Jt = (Jt,1, Jt,2, . . . , Jt,N)
′ as a N × 1 vector of jumps,

with Jt,i being the jump for asset i, which further is a product of a jump arrival indicator and a

jump size variable. The second stochastic component of returns is ǫ2,t, a N × 1 vector of jump

innovations,

ǫ2,t = Jt − E (Jt|Θ, r1:t−1) , (4)

where Θ is the union set of all parameters and E (ǫ2,t|r1:t−1) = 0. Note that the conditional

expectation of jumps is removed from the model so E (rt|r1:t−1) = µ for all t. This feature

provides a constant drift without jump effecting the conditional (Merton, 1976). ǫ1,t and ǫ2,t are

contemporaneously independent from each other.

2.1 Vector-Diagonal GARCH (VD-GARCH)

We use a slightly modified version of the vector diagonal GARCH (VD-GARCH) model introduced

by Ding and Engle (2001):

Ht = CC ′ +αα′ ⊙ ǫt−1ǫ
′

t−1 + ββ′ ⊙Ht−1, (5)

where ⊙ is the Hadamard product operator that performs element-by-element multiplication, C

is an N × N lower triangular matrix and both α and β are N × 1 vectors of parameters. ǫt−1

includes both MGARCH component shocks ǫ1,t−1 and jump shocks ǫ2,t−1. This means that both

shocks will propagate into the MGARCH structure and impact future covariances. Although it

is natural to consider only ǫ1,t−1 entering the MGARCH recursion, this requires the separation of

the two shocks making inference much more difficult.

The VD-GARCH specification is a simplified version of the BEKK model (Engle and Kroner,

1995) and inherits the property that guarantees Ht to be positive definite if the startup value H0

is positive definite. Each element ht,ij in matrix Ht follows,

ht,ij = ωij + αiαjǫt−1,iǫt−1,j + βiβjht−1,ij, (6)

where ωij = (CC ′)ij. Given positive definite coefficient matrices, covariance stationarity holds if
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of α2
i + β2

i < 1 ∀i (Ledoit et al., 2003) in a standard no-jump VD-GARCH model.

2.2 A Multinomial Jump Structure

Most of the past univariate jump models parameterize jumps as a compound Poisson process follow

Press (1967). Although a Poisson process fits well in univariate continuous-time models, it is not

easily extended to higher dimension with sufficient flexibility and dependence. While empirically

observed data is discrete in time, a Bernoulli jump is a good discrete approximation of a Poisson

process over a small time interval (Ball and Torous, 1983). One convenient feature of a Bernoulli

jump is that it’s much easier to generalize into the multivariate setting. We use a multinomial

distribution jump indicator with one trial to index all possible jump/co-jump combination patterns

among stocks. Therefore, define

Jt = Yt ⊙Bt, (7)

Yt ∼ N (µJ ,ΣJ) , (8)

where Yt is a N×1 vector of jump sizes that are multivariate normally distributed with mean vector

µJ and covariance matrix ΣJ . Bt = (Bt,1, Bt,2, . . . , Bt,N)
′ is a N×1 vector of jump indicators with

each element Bt,i ∈ {0, 1} and 1 being a jump and otherwise being no jump for all i = 1, . . . , N .

Let L = 2N denotes the number of all possible jump events among the N assets then,

Bt ∼ multinomial (1, p1, . . . , pL) , (9)

where
∑L

j=1 pj = 1. multinomial (n, q1, . . . , ql) denotes a multinomial distribution with n trials

and event probabilities q1, . . . , qL. The parameter pj is the jump/co-jump probability. Unlike

univariate models where the jump intensity parameter represents the probability of jump arrivals,

in this specification, the jump/co-jump probability pj is a separate probability assigned to each

possible jump/co-jump Bt outcome. To be more specific, define a 2N ×N matrix ΩB that contains

all possible outcomes of Bt, with each row being one exclusive possible value of B′

t, and p =

(p1, p2, . . . , pL)
′ is a vector of corresponding jump probabilities. For example, in a trivariate case,

there are 23 = 8 possible outcomes of Bt: one trivariate co-jump (1, 1, 1)′; three bivariate co-jumps

(1, 1, 0)′, (1, 0, 1)′, and (0, 1, 1)′; three idiosyncratic jumps (1, 0, 0)′, (0, 1, 0)′, and (0, 0, 1)′; and one

no jump outcome (0, 0, 0)′. This covers all possible jump patterns including all-asset co-jumps and

subset co-jumps. Each outcome is associated with one probability element in p.

One merit of this specification is that one can easily verify whether the jumps are cross-

sectionally independent through these probabilities. Our empirical results show that the jump

arrivals are clearly correlated cross-sectionally.

Besides jump arrivals, the multivariate normal structure naturally connects jump sizes among

assets through µJ and ΣJ . As a result, in this model, one can easily extract the correlation of
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jump arrivals and that of jump sizes separately, so question like “whether and when do they jump

together” and “how do they jump together” can be answered explicitly.

2.3 Conditional Moments

The first two conditional moments of jump Jt are
2

E (Jt|Θ, r1:t−1) = µJ ⊙ΩB
′p = µJ ⊙





2N
∑

j=1

Ωjpj



 , (10)

and

Cov (Jt|Θ, r1:t−1) = (ΣJ + µJµJ
′)⊙





2N
∑

j=1

pjΩjΩj
′



− µJµJ
′ ⊙ΩB

′pp′ΩB, (11)

where Θ = {µ,θH ,p,µJ ,ΣJ}, and Ωj is the jth row of ΩB. Similarly, the first two conditional

moments of return are

E (rt|Θ, r1:t−1) = µ, (12)

Cov (rt|Θ, r1:t−1) = Ht + Cov (Jt|Θ, r1:t−1) . (13)

Now jumps impact not only the conditional variance of returns but also the conditional covariance

and correlations through jumps arrival dependence and jump size dependence – something missing

in univariate jump applications.

How jumps impact moments ex-post can be seen from the following conditional moments given

the jump event Bt. Note that conditional on Bt, returns follow a multivariate normal distribution.

The first two conditional moments are:

E (rt|Bt,Θ, r1:t−1) = µ+ µJ ⊙ (Bt −ΩB
′p) (14)

Cov (rt|Bt,Θ, r1:t−1) = Ht +BtBt
′ ⊙ΣJ (15)

Because BtBt
′ is positive semi-definite, and both Ht and ΣJ are positive definite, the conditional

covariance of rt is also positive definite. To be more specific,

E (rt|Bt,Θ, r1:t−1) = µ+













Bt,1µJ,1

Bt,2µJ,2

...

Bt,NµJ,N













− µJ ⊙ΩB
′p (16)

2Derivations can be found in Appendix A.
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Cov (rt|Bt,Θ, r1:t−1) = Ht +













B2
t,1σ

2
J,1 Bt,1Bt,2σJ,12 · · · Bt,1Bt,NσJ,1N

Bt,2Bt,1σJ,21 B2
t,2σ

2
J,2 · · · Bt,2Bt,NσJ,2N

...
...

. . .
...

Bt,NBt,1σJ,N1 Bt,NBt,2σJ,N2 · · · B2
t,Nσ

2
J,N













. (17)

Clearly,

Bt,iBt,j =







1 if Bt,i = Bt,j = 1

0 otherwise.
(18)

This determines which element(s) in µJ and ΣJ are turned on from a co-jump. The corresponding

element µJ,i and σ2
J,i will be turned on if and only if asset i jumps, and σJ,ij, where i 6= j, will be

turned on if and only if asset i and asset j both jump at the same time. This property helps to

capture the co-jump behaviour among assets and reflect it directly to return covariances. If there’s

no jump for all N assets, then Bt = (0, 0, . . . , 0)′, so E (rt|Bt,Θ, r1:t−1) = µ − µJ ⊙ ΩB
′p and

Cov (rt|Bt,Θ, r1:t−1) = Ht. If all N assets jump, then Bt = (1, 1, . . . , 1)′, so E (rt|Bt,Θ, r1:t−1) =

µ+µJ−µJ⊙ΩB
′p and Cov (rt|Bt,Θ, r1:t−1) = Ht+ΣJ . In other cases, only a sub-block of ΣJ is

turned on. For instance, in a trivariate case with a bivariate co-jump occurring, say Bt = (1, 1, 0)′,

two elements in µJ and four elements in ΣJ are turned on:

E (rt|Bt,Θ, r1:t−1) = µ+







µJ,1

µJ,2

0






− µJ ⊙ΩB

′p

Cov (rt|Bt,Θ, r1:t−1) = Ht +







σ2
J,1 σJ,12 0

σJ,21 σ2
J,2 0

0 0 0






.

This is consistent with the intuition that conditional mean and variance can only be affected when

the corresponding asset jumps, and conditional covariance can only be affected when the two corre-

sponding assets jump together. Obviously, this model supports all jump/co-jump possibilities and

channels the jump/co-jump effects into conditional moments. As for conditional correlations, they

are
ht,ij+Bt,iBt,jσJ,ij

√

(ht,ii+B2

t,iσ
2

J,i)(ht,jj+B2

t,jσ
2

J,j)
. For a co-jump between asset i and j this is

ht,ij+σJ,ij
√

(ht,ii+σ2

J,i)(ht,jj+σ2

J,j)
and the impact on the correlation depends on the size of the MGARCH components ht,ii, ht,jj,

and ht,ij. Clearly, the co-jumps can but do not necessarily increases conditional correlations. Thus

jumps can have important effects on the diversification benefits in a portfolio.

3 Estimation

This model consists of two latent variables, Yt and Bt. We estimate the model from a Bayesian

perspective using Markov chain Monte Carlo (MCMC) methods to sample the parameters and
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latent variables. We select proper uninformative priors for all parameters. This facilitates Gibbs

sampling steps for some parameters. The prior choices are:

µ ∼ N (0, 100I)

θH ∼ N (0, 100I)

p ∼ Dir (1, . . . , 1)

µJ ∼ N (0, 100I)

ΣJ ∼ IW (N + 2, I) .

A full MCMC run contains M0+M iterations, where the first M0 = 10000 are burn-in samples,

and the rest M = 10000 are posterior draws. Each MCMC iteration samples from the following

conditional distributions:

1. µ|r1:t,µJ ,ΣJ ,B1:t,p.

2. θH |r1:t,µ,µJ ,ΣJ ,B1:t,p, where θH = (C,α,β)′.

3. B1:t|r1:t,µ,µJ ,ΣJ ,p,

4. p|r1:t,µ,µJ ,ΣJ ,B1:t.

5. Y1:t|r1:t,µ,µJ ,ΣJ ,B1:t,p.

6. µJ |r1:t,µ,ΣJ ,Y1:t,B1:t,p.

7. ΣJ |µJ ,Y1:t.

Steps 3, 5, 7 are simply Gibbs samplers, and steps 1, 2, 4, 6 are Metropolis-Hastings (MH) due

to unknown type of posterior distributions. Although sampling p and µJ are often a Gibbs step

in a univariate jump model here they require an MH step from the condition E(ǫ2,t|r1:t−1) = 0.

Similarly, µ enters both the conditional mean and the MGARCH recursion necessitating a MH

step. Details of each sampling step can be found in Appendix B.

From the posterior draws {µ(i),θ(i),B
(i)
1:t,p

(i),Y
(i)
1:t ,µ

(i)
J ,Σ(i)}Mi=1, posterior quantities of interest

can be estimated. For instance, simulation consistent estimates of jump arrivals (Bt) and jump

sizes (Yt) can be estimated as:

E (Bt|r1:t) ≈
1

M

M
∑

i=1

B
(i)
t

and

E (Yt|r1:t) ≈
1

M

M
∑

i=1

Y
(i)
t .
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3.1 Predictive Likelihood

From the posterior simulation, it is straightforward to compute the predictive density of returns

and the predictive likelihood which evaluates the predictive density at the realized data. Recall that

Θ = {µ,θH ,p,µJ ,ΣJ} and the predictive likelihood is computed by integrating out all parameters

Θ and unobserved variables. From equation (14) and (15), the conditional distribution of returns

conditional on jump arrivals is simply a multivariate normal distribution.

The predictive likelihood for rt+1 integrates out all future jump possibilities and parameter

uncertainty as

p (rt+1|r1:t) =

∫ ∫

p (rt+1|r1:t,Θ,Bt+1) p (Bt+1|r1:t,Θ) p (Θ|r1:t) dΘdBt+1

≈
1

M

M
∑

i=1

L
∑

j=1

N
(

rt+1|µ
(i) + µ

(i)
J ⊙

(

Ωj −ΩB
′p(i)

)

,H
(i)
t+1 +ΩjΩj

′ ⊙Σ
(i)
J

)

p
(i)
j , (19)

where N(r1+1|a,A) denotes the multivariate normal density with mean a, covariance A and

evaluated at rt+1. From each of the posterior draws {Θ(i)}Mi=1, we integrate out all possible jump

events Ωj, j = 1, . . . , L, with Ωj a row in ΩB and associated jump probability pj.

The log-predictive likelihood for rs:t, s < t is

log p (rs:t|r1:t−1) =
t
∑

l=s

log p (rl|r1:l−1) . (20)

From this we can formally compare models based on log-predictive Bayes factors, which is the

difference of log-predictive likelihoods for two models.

It is straightforward to simulate draws {r
(i)
t+1}

M
i=1 from the predictive density p (rt+1|r1:t). For

every MCMC parameter draw Θ(i), we simulate a jump event followed by the return as,

B
(i)
t+1|r1:t,Θ

(i) ∼ Multinomial
(

1, p
(i)
1 , . . . , p

(i)
L

)

(21)

r
(i)
t+1|r1:t,Θ

(i),B
(i)
t+1 ∼ N

(

µ(i) + µ
(i)
J ⊙

(

B
(i)
t+1 −ΩB

′p(i)
)

,H
(i)
t+1 +B

(i)
t+1B

(i)
t+1

′

⊙Σ
(i)
J

)

. (22)

Repeating this yields a set of samples {r
(i)
t+1}

M
i=1 from the predictive density of returns.

4 Data

We consider two main sets of applications. The first is to several trivariate systems for an individual

stock and its corresponding industry and market portfolio. This allows us to consider the impact of

jumps on the industry and the market. Daily returns from General Electric (GE), Exxon (XOM),

Wal-Mart (WMT), Microsoft (MSFT) and American Express (AXP) are selected from the Center

for Research in Security Prices (CRSP) database. The value-weighted market portfolio (MKT)
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is used as the market portfolio while industry portfolios are from the Fama-French 49 industry

portfolios and the risk-free rate from Kenneth French’s website. In order to match each stock with

its corresponding industry portfolio, SIC codes of the above stocks are also acquired from CRSP.

Data ranges from January 1, 1990 to December 31, 2016, with 6805 observations in total. Earning

announcement dates are gathered from I/B/E/S database. The second application is to the five

individual stocks GE, XOM, WMT, MSFT and AXP.

Table 1 illustrates descriptive statistics of daily continuously compounded returns in percent

for the selected stocks as well as the value-weighted market portfolio.

5 Individual Stocks, Industry and the Market Co-Jumps

5.1 Estimation

The first example is to estimate the trivariate model each for GE, XOM, WMT, MSFT and AXP

stock coupled with their corresponding industry and the market respectively. Table 2 reports

the results for these trivariate estimates. All the posteriors are in reasonable regions with small

intercepts µi (0.02 – 0.05), low MGARCH αi parameters (0.15 – 0.20), and high βi parameters

(0.97 – 0.98). This results in a volatility persistence measure of α2
i + β2 of about 0.98 for each

group of stocks.

All trivariate models indicates that “no jump” is the most likely outcome. No-jump probabilities

(pSTK,IND,MKT ) ranges from 0.82 to 0.88. The jump size variances are large, often in excess of the

sample variances of individual stocks in Table 1. The other jump size variances are substantial as

well with industries (σ2
J,IND) ranging from 1.61 to 3.66 and the market (σ2

J,MKT ) ranging from 1.00

to 1.52. Jump size covariances are all positive and also relatively large, with covariance for stocks

and corresponding industry (σJ,STK,IND) ranging from 1.83 to 4.25, for stocks and the market

(σJ,STK,MKT ) ranging from 1.03 to 3.08, for industries and the market (σJ,IND,MKT ) ranging from

1.09 to 2.43. This confirms the fact that jumps are rare but extreme movements in stock returns.

To investigate jump dependence among assets, we report the co-jump joint probability which

allows for dependence along with the co-jump probability derived from the marginal jump prob-

abilities. This latter quantity is derived from summing over all jump events in which the stock

jumps. From the basic probability rules, if jumps are cross-sectionally independent, a co-jump joint

probability should be equal to the product of marginal jump probabilities for the corresponding

assets.

Panel A of Table 3 compares the co-jump joint probabilities with the product of its marginal

probabilities. The co-jump probabilities range from 0.0595 to 0.0984, while the product of marginal

probabilities ranges from 0.0007 to 0.0250. Clearly, jump arrivals are strongly correlated as the

joint probabilities and product of marginal probabilities are very different from each other. The

differences are even greater when the number of assets in a co-jump is greater. For example, the
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bivariate co-jump probabilities of GE and its industry, GE and the market, GE’s industry and the

market are 0.0984, 0.0980, 0.0986 respectively, while the products of marginal jump probabilities

are 0.0181, 0.0159, 0.0121, respectively. They are very different but still the same magnitude. In

contrast, the joint probability of a trivariate co-jump with GE, its industry and the market jump

all together is 0.0954, while the product of marginal jump probabilities is 0.0019, 50 times less

than the corresponding co-jump probability.

Panel B further computes the co-jump probabilities conditional on different univariate jumps.

This indicates the proportion of co-jumps an asset has given that the asset jumps. The results show

that if the market jumps, each selected stock and its industry will most likely jump as well. GE,

WMT, and AXP are more likely to jump along with the market when unusual conditions occur,

more than half of jumps in XOM and MSFT coincide with market jumps. For XOM, WMT, and

MSFT, their industries are most likely to jump together with them, with probabilities of co-jump

with their industries conditional on stock jumps being 0.9496, 0.9517 and 0.9783 respectively (see

Stk,Mkt column of table). When WMT jumps, the whole market is very likely to follow, with a

probability of co-jump with the market conditional on stock jumps being 0.8102. GE and AXP

also have strong influence on their industry when they jump, with co-jump probability conditional

on stock jumps of 0.6392 and 0.5457 respectively.

Figure 1 plots the posterior probability of jumps for each of the five stocks with their corre-

sponding industry and the market. Most of the jump arrivals are aligned together, which confirms

the results in panel B of Table 3.

Figure 2 plots jump size realizations over time. The figure shows jump size realizations are

relatively large (up to 10% and −10%) and infrequent. The results are more clear if we focus on

a small time span. Take AXP from January 1, 2007 to December 31, 2009 as an example shown

in Figure 3. The jump probability is usually high around quarterly earnings announcement dates

(vertical lines). Beyond that, progression of sub-prime mortgage crisis plays an important role

on jump dynamics. For instance: on March 13, 2007, reacting to the potential risk of sub-prime

mortgages, causes a −2.93% jump in AXP, a −2.73% jump in the banking industry and a −1.86%

jump in the market. On November 1, 2007, after a previous interest rate cut, the Federal Reserve

injected 41 billion dollars into the money supply with a response of −3.14% AXP jump, −3.49%

industry jump and −2.12% market jump. On September 29, 2008, the House of Representatives

rejected the bailout plan, accompanying with a −5.24% jump in AXP, a −3.85% jumps of the

industry and a −3.18% market jump. All the above jumps have posterior jump probabilities

greater than 0.9.

The top panel of Figure 4 plots pairwise posterior jump probabilities of two assets from the

AXP trivariate model. The second panel displays a scatter plot of posterior jump sizes for two

assets also from the AXP model. The top three plots of the jump probabilities include a 45-degree

line. Independent jump arrivals would display a random pattern along vertical and horizontal

lines. Instead we see clear dependence of jump arrival in all three plots. Between AXP and the
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industry, there are many cases in which they jump together but also many jumps in AXP with

no jump in the industry portfolio. As for AXP and the market, if the market jumps, AXP jumps

almost all the time as well. The strongest dependence is found in the industry and the market. The

bottom three plots display jump sizes among assets with the linear regression line of the vertical

axis variable against the horizontal axis variable. In all three cases, the points cluster quite close

along the regression line, indicating the jump sizes are highly correlated.

Table 4 reports the jump size correlations for the five selected stocks with their industry and

the market. The first observation is that for each trivariate system all jump sizes are positively

correlated. All the five stocks are highly correlated with their corresponding industry, and each of

the five industries is also highly correlated with the market when co-jump arrives. GE, XOM, and

AXP strongly follows the market in jump sizes, while WMT and MSFT are just moderately cor-

related with the market. The relatively low jump size correlation between WMT and the market

is probably because of the defensive nature of WMT in business cycle, while that between MSFT

and the market is more likely due to the comparably lower stock market co-jump probability. The

high jump size correlations imply that when extreme events, for example crisis, occur, diversifi-

cation benefits may be greatly affected as the overall correlation among asset returns could be

significantly altered by jumps. Details are further discussed in Section 7.

5.2 Prediction

This subsection compares the forecasts between the MGARCH-jump model and a benchmark

MGARCH model with no jumps by computing their predictive likelihood respectively. These

predictive likelihoods are computed for the five trivariate systems. The last 100 observations (Aug

10, 2016 – Dec 30, 2016) are used for out-of-sample density forecast evaluation and prediction is

implemented by one period ahead recursive forecasting, following equation (19) to (20).

Log-Bayes factor is computed by subtracting the log-predictive likelihoods of the benchmark

MGARCH model from that of the MGARCH-jump model. A rule of thumb of this measure is

that if log-Bayes factor is greater than 5, then the evidence for the MGARCH-jump is considered

as very strong. Table 5 lists the log-predictive likelihoods and log-Bayes factors from different

cases. The MGARCH-jump model dominates the benchmark MGARCH model in all five cases,

with log-Bayes factors from around 12.70 to 61.81,

Figure 5 plots the log-predictive likelihood contribution log p (rt|r1:t−1) at each t in the out-

of-sample period. During normal days, both model performs very similarly due to the same

VD-GARCH component; while in days with large returns, the predictive likelihood is significantly

greater for the MGARCH-jump model.
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6 Beta Dynamics

Consider a bivariate volatility model for excess returns of an individual stock and the market. We

derive the dynamic beta from the associated conditional covariance matrix of returns. Compared

to the dynamic beta from an MGARCH model (Engle, 2016), in the presence of jumps, we can

compute an ex-ante and ex-post beta.

Based on results from Section 2.3, let r̃t = (r̃t,i, r̃t,m)
′, where r̃t,i is the excess return of an

arbitrary asset i and r̃t,m is the excess return of the market. The ex-ante beta can be derived

directly from the appropriate conditional covariance and conditional variance in (13). An ex-post

version uses

Cov (r̃t|Bt,Θ, r1:t−1) =

(

ht,ii +B2
t,iσ

2
J,i ht,im +Bt,iBt,mσJ,im

ht,im +Bt,iBt,mσJ,im ht,mm +B2
t,mσ

2
J,m

)

. (23)

So an ex-post beta is

βt,i =



















ht,im+σJ,im

ht,mm+σ2

J,m
both jump

ht,im

ht,mm+σ2

J,m
only market jumps

ht,im

ht,mm
otherwise

(24)

This definition agrees with how beta relates to systematic risk. When the market does not jump,

there’s no change in systematic risk, so beta, which measures the exposure to systematic risk, is

not affected. If only the market jumps, then the stock’s relative exposure to the market decreases

and so does beta. If there is a co-jump, both market risk and stock risk increase, and the effect on

beta depends on values in the jump size covariance matrix. Now systematic risk transfers through

him and σJ,im when co-jumps occur. Since a single stock is usually riskier than the market, ex-post

beta is more likely to increase when co-jump occurs.

As seen in the last Section, co-jumps are the dominate jump event and therefore the ex-post

beta should be mostly greater than ex-ante beta when jumps arrive. Figure 6 plots beta dynamics

computed from bivariate models with excess returns of AXP and the market. The MGARCH-jump

model separates the variance into the two components and results in a generally smaller ex-ante

beta compared to the benchmark MGARCH model as seen in the figure.

7 Co-jumps among Individual Stocks

The next application is to estimate a 5-dimensional model with GE, XOM, WMT, MSFT, and

AXP all together. Table 6 lists posterior results for the MGARCH-jump model. Again, the

posterior estimates are in reasonable regions with low intercept (µ of 0.03–0.06), low α parameter

(0.11–0.15) and high β parameter (0.98). As shown in Panel B of Table 6, the jump probabilities
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strongly favour “no jump” (pGE,XOM,WMT,MSFT,AXP = 0.7102) while in Panel C, and jump size

variances are large (all greater than 4.6). Furthermore, the probability of only one stock jumping

while others do not is higher than that of any co-jumps, as the former are all above 0.024 and the

latter are generally below 0.01 with the only exception of a 5-asset mutual jump probability of

0.017. This suggests that systematic co-jumps and individual idiosyncratic jumps are important

to these stocks.

Panel A of Table 7 compares the joint co-jump probability and the product of corresponding

marginal univariate jump probabilities. Even for this diverse set of stocks there is clear evidence of

jump dependence. In many cases, the joint probability differs from the jump probability from the

marginals by at least an order of magnitude. For instance for GE, XOM, WMT, and MSFT, the

joint and marginal probability of jumps is 0.0022 vs 0.0001, respectively. The most likely co-jump

event is when all stocks jump together. Following this bivariate jumps are most likely from XOM,

WMT; and GE, MSFT.

Table 8 lists jump size correlations among the five stocks. The jump size correlations are high

with XOM having smaller correlations. As mentioned before, these jump size correlations could

significantly change the overall return correlations.

To see how jumps can impact correlations, Figure 7 plots the differences in correlations between

the full jump model and the MGARCH component from the jump model. This difference is

computed based on covariances of ex-ante and ex-post jumps. These differences are usually around

zero (no jump or very low probability of jump), but they can also go up to 0.4 and down to −0.4

as a result of jumps. As seen in the figure, jumps mostly reduce ex-ante correlations among assets

compared to the MGARCH component (Ht) of the model. This is generally consistent with the

ex-ante beta from the jump model being lower than the beta from a MGARCH model with no

jumps as seen in Figure 6. However, there are a substantial number of days in which jumps do

increase ex-ante correlations. This appears to occur when correlation levels are low.

The last row of Table 5 reports the log-Bayes factor for the MGARCH-jump model relative

to the MGARCH model is 67.43. This is strong evidence for the presence of jumps. The bottom

right plot in Figure 5 shows several influential observations for the jump model.

7.1 Impact on Value-at-Risk

The value-at-risk (VaRα) at level α, or the α quantile of a portfolio can be easily computed from

the multivariate predictive density of returns as follows. Simulate a set of draws {r
(i)
t+1}

M
i=1 from the

predictive density following Section 3.1 and for each draw form r
(i)
p,t+1 = w′r

(i)
t+1. In our example we

consider an equally-weighted portfolio with w = (1/N, . . . , 1/N)′, N = 5 . The ⌊Mα⌋-th smallest

value of {r
(i)
p,t+1}

M
i=1 is an estimate of the VaR with significance level α.

Figure 8 plots the VAR for α = 0.10, 0.05, and 0.01 for an equally-weighted portfolio from the

predictive density one day ahead for both the MGARCH-jump model and the MGARCH model.
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In these 100 out-of-sample days, the main difference in the models is seen with α = 0.01 where

the MGARCH-jump model VaR is always lower than the MGARCH model. This is a result of the

fatter tails the jump model generates.

8 Conclusion

This paper proposes a new multivariate GARCH-jump mixture model that allows for dependent

jumps among the set of assets. The model allows for all possible jump combinations and explicitly

allows for different jump probabilities for each jump event. Jump sizes are allowed to be correlated

as well.

We show how dependent jumps impact the conditional moments of returns. A posterior sim-

ulation method is presented that allows for estimation of parameters and jump events and jump

sizes. In several applications, we show that jumps are generally infrequent but strongly dependent

when they occur. For instance, all stocks jumping is one of the more common jump events as are

bivariate jumps. This model provides superior density forecasts and we discuss how a stock’s beta

and value-at-risk is affected from multivariate jumps.
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Table 1: Descriptive Statistics for Daily Returns

GE XOM WMT MSFT AXP MKT

Means 0.0372 0.0409 0.0421 0.0737 0.0379 0.0353
Std. Dev. 1.7608 1.4729 1.6679 2.0451 2.2313 1.1099
Skewness 0.0338 0.0657 0.1050 0.0217 0.0039 -0.3445
Ex. Kurtosis 8.4730 8.7859 3.9253 5.7624 7.8700 8.6008
Min -13.6841 -15.0271 -10.5811 -16.9577 -19.3523 -9.4059
Max 17.9844 15.8631 10.5018 17.8692 18.7711 10.8753

Data is from January 1, 1990 to December 31, 2016, 6805 observations.
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Table 2: Posterior Estimates of Stock, Corresponding Industry and the Market

rt = µ+ ǫ1,t + ǫ2,t, ǫ1,t = H
1/2
t zt, zt ∼ NID (0, I) , ǫ2,t = Jt − µJ ⊙ΩB

′p

Ht = CC′ +αα′
⊙ ǫt−1ǫt−1

′ + ββ′
⊙Ht−1, ǫt−1 = rt−1 − µ

Jt = Yt ⊙Bt, Yt ∼ N (µJ ,ΣJ ) , Bt ∼ multinomial (1,p)

Parameter
GE XOM WMT MSFT AXP

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

C11 0.0604 ( 0.0307, 0.0873) 0.0432 ( 0.0120, 0.0683) 0.0261 ( 0.0068, 0.0440) 0.0844 ( 0.0567, 0.1098) 0.0654 ( 0.0446, 0.0877)
C21 0.0312 ( 0.0008, 0.0547) 0.0180 (-0.0074, 0.0392) 0.0434 ( 0.0186, 0.0608) 0.0582 ( 0.0422, 0.0729) 0.0671 ( 0.0504, 0.0823)
C22 0.0551 ( 0.0334, 0.0718) 0.0158 ( 0.0015, 0.0302) 0.0210 ( 0.0011, 0.0395) 0.0388 ( 0.0234, 0.0506) 0.0216 ( 0.0014, 0.0449)
C31 0.0413 ( 0.0245, 0.0568) 0.0205 (-0.0023, 0.0402) 0.0295 ( 0.0061, 0.0461) 0.0426 ( 0.0304, 0.0550) 0.0537 ( 0.0386, 0.0669)
C32 0.0203 ( 0.0028, 0.0330) 0.0217 (-0.0153, 0.0410) 0.0040 (-0.0194, 0.0256) 0.0234 ( 0.0036, 0.0365) -0.0022 (-0.0290, 0.0262)
C33 0.0230 ( 0.0032, 0.0335) 0.0194 ( 0.0012, 0.0362) 0.0159 ( 0.0010, 0.0285) 0.0245 ( 0.0109, 0.0330) 0.0235 ( 0.0021, 0.0368)

αSTK 0.2032 ( 0.1900, 0.2165) 0.1934 ( 0.1808, 0.2069) 0.1543 ( 0.1425, 0.1664) 0.1809 ( 0.1670, 0.1956) 0.1909 ( 0.1754, 0.2069)
αIND 0.2022 ( 0.1894, 0.2152) 0.1901 ( 0.1802, 0.2010) 0.1773 ( 0.1676, 0.1872) 0.1853 ( 0.1738, 0.1970) 0.1951 ( 0.1836, 0.2070)
αMKT 0.2002 ( 0.1877, 0.2130) 0.1984 ( 0.1856, 0.2122) 0.1898 ( 0.1772, 0.2035) 0.1933 ( 0.1799, 0.2067) 0.1915 ( 0.1777, 0.2057)

βSTK 0.9716 ( 0.9678, 0.9750) 0.9760 ( 0.9726, 0.9790) 0.9839 ( 0.9816, 0.9860) 0.9762 ( 0.9722, 0.9799) 0.9746 ( 0.9704, 0.9783)
βIND 0.9732 ( 0.9697, 0.9764) 0.9775 ( 0.9749, 0.9797) 0.9791 ( 0.9769, 0.9813) 0.9770 ( 0.9740, 0.9797) 0.9739 ( 0.9707, 0.9769)
βMKT 0.9727 ( 0.9691, 0.9759) 0.9752 ( 0.9717, 0.9783) 0.9772 ( 0.9738, 0.9801) 0.9754 ( 0.9719, 0.9787) 0.9742 ( 0.9705, 0.9778)

µSTK 0.0298 ( 0.0008, 0.0587) 0.0239 (-0.0011, 0.0496) 0.0243 (-0.0047, 0.0533) 0.0520 ( 0.0176, 0.0858) 0.0311 (-0.0043, 0.0656)
µIND 0.0314 ( 0.0067, 0.0560) 0.0205 (-0.0033, 0.0444) 0.0320 ( 0.0101, 0.0540) 0.0393 ( 0.0131, 0.0652) 0.0376 ( 0.0134, 0.0618)
µMKT 0.0307 ( 0.0127, 0.0490) 0.0321 ( 0.0140, 0.0502) 0.0336 ( 0.0156, 0.0513) 0.0364 ( 0.0186, 0.0543) 0.0376 ( 0.0192, 0.0561)

pSTK,IND,MKT 0.0954 ( 0.0716, 0.1234) 0.0943 ( 0.0695, 0.1217) 0.0958 ( 0.0735, 0.1213) 0.0595 ( 0.0419, 0.0781) 0.0787 ( 0.0602, 0.0997)
pSTK,IND,MKT 0.0030 ( 0.0003, 0.0075) 0.0570 ( 0.0360, 0.0815) 0.0180 ( 0.0067, 0.0309) 0.0313 ( 0.0189, 0.0450) 0.0064 ( 0.0009, 0.0138)
pSTK,IND,MKT 0.0026 ( 0.0002, 0.0069) 0.0009 ( 0.0000, 0.0033) 0.0011 ( 0.0000, 0.0034) 0.0006 ( 0.0000, 0.0022) 0.0012 ( 0.0000, 0.0040)
pSTK,IND,MKT 0.0032 ( 0.0001, 0.0097) 0.0026 ( 0.0001, 0.0079) 0.0056 ( 0.0003, 0.0153) 0.0054 ( 0.0003, 0.0146) 0.0023 ( 0.0001, 0.0074)
pSTK,IND,MKT 0.0529 ( 0.0370, 0.0715) 0.0071 ( 0.0016, 0.0151) 0.0047 ( 0.0003, 0.0120) 0.0014 ( 0.0000, 0.0049) 0.0696 ( 0.0521, 0.0887)
pSTK,IND,MKT 0.0161 ( 0.0082, 0.0252) 0.0029 ( 0.0004, 0.0075) 0.0030 ( 0.0001, 0.0085) 0.0140 ( 0.0069, 0.0224) 0.0110 ( 0.0038, 0.0198)
pSTK,IND,MKT 0.0018 ( 0.0001, 0.0051) 0.0031 ( 0.0001, 0.0095) 0.0013 ( 0.0000, 0.0047) 0.0016 ( 0.0001, 0.0053) 0.0011 ( 0.0000, 0.0037)
pSTK,IND,MKT 0.8250 ( 0.7843, 0.8605) 0.8320 ( 0.7936, 0.8678) 0.8705 ( 0.8423, 0.8962) 0.8862 ( 0.8648, 0.9057) 0.8297 ( 0.7974, 0.8575)

µJ,STK 0.0597 (-0.0843, 0.1985) -0.1648 (-0.2880,-0.0476) -0.2137 (-0.3785,-0.0529) -0.0007 (-0.2192, 0.2242) -0.0939 (-0.2521, 0.0635)
µJ,IND -0.3825 (-0.5380,-0.2395) -0.2500 (-0.3698,-0.1406) -0.4222 (-0.5419,-0.3072) -0.3899 (-0.5268,-0.2587) -0.2864 (-0.4345,-0.1428)
µJ,MKT -0.4654 (-0.5853,-0.3536) -0.5963 (-0.7381,-0.4580) -0.4652 (-0.5739,-0.3599) -0.4947 (-0.6175,-0.3782) -0.4888 (-0.6176,-0.3642)

σ2
J,STK 3.7909 ( 3.0470, 4.6388) 2.1384 ( 1.7064, 2.6669) 4.3986 ( 3.5767, 5.3886) 9.4538 ( 7.7795,11.4719) 5.9235 ( 4.9261, 7.0697)

σJ,STK,IND 2.8112 ( 2.2472, 3.4705) 1.8279 ( 1.4466, 2.2952) 2.1381 ( 1.6897, 2.6688) 4.0416 ( 3.2766, 4.9676) 4.2522 ( 3.4928, 5.1996)
σ2
J,IND 2.5340 ( 2.0338, 3.1581) 1.8704 ( 1.4839, 2.3497) 1.6121 ( 1.2676, 2.0193) 2.5496 ( 2.0470, 3.1482) 3.6641 ( 2.8846, 4.6942)

σJ,STK,MKT 2.2686 ( 1.8405, 2.7742) 1.2118 ( 0.9410, 1.5322) 1.0306 ( 0.7271, 1.3770) 1.7621 ( 1.2730, 2.3417) 3.0789 ( 2.5331, 3.7240)
σJ,IND,MKT 1.8730 ( 1.5009, 2.3271) 1.2394 ( 0.9736, 1.5563) 1.0919 ( 0.8466, 1.3901) 1.5444 ( 1.2142, 1.9376) 2.4323 ( 1.9411, 3.0436)
σ2
J,MKT 1.5230 ( 1.2214, 1.8870) 1.0451 ( 0.8021, 1.3480) 1.0099 ( 0.7873, 1.2793) 1.2506 ( 0.9653, 1.5910) 1.9048 ( 1.5145, 2.3804)

This table reports the posterior mean and 0.95 density intervals in parentheses for the joint MGARCH-jump model
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Table 3: Jump Probabilities for Stocks with Corresponding Industry and Market

Panel A: marginal and joint probabilities

Probabilities GE XOM WMT MSFT AXP

Marginal
Stock 0.1539 0.1593 0.1196 0.0928 0.1560

Industry 0.1176 0.1569 0.1224 0.1102 0.0984
Market 0.1030 0.1010 0.1038 0.0672 0.0833

Joint

Stock and Industry
0.0984 0.1513 0.1139 0.0908 0.0851
(0.0181) (0.0250) (0.0146) (0.0102) (0.0153)

Stock and Market
0.0980 0.0953 0.0969 0.0602 0.0800
(0.0159) (0.0161) (0.0124) (0.0062) (0.0130)

Industry and Market
0.0986 0.0969 0.1014 0.0650 0.0810
(0.0121) (0.0158) (0.0127) (0.0074) (0.0082)

Stock, Industry and Market
0.0954 0.0943 0.0958 0.0595 0.0787
(0.0019) (0.0025) (0.0015) (0.0007) (0.0013)

Numbers in parentheses below the joint probabilities are the product of corresponding marginal probabil-
ities.

Panel B: conditional probabilities

Stock Probabilities Stk,Ind,Mkt Stk,Ind Stk,Mkt Ind,Mkt

GE
p (co-jump|mkt-jump) 0.9261 — 0.9516 0.9568
p (co-jump|ind-jump) 0.8110 0.8363 — 0.8378
p (co-jump|stk-jump) 0.6198 0.6392 0.6369 —

XOM
p (co-jump|mkt-jump) 0.9338 — 0.9432 0.9598
p (co-jump|ind-jump) 0.6012 0.9647 — 0.6179
p (co-jump|stk-jump) 0.5918 0.9496 0.5977 —

WMT
p (co-jump|mkt-jump) 0.9233 — 0.9337 0.9770
p (co-jump|ind-jump) 0.7829 0.9300 — 0.8284
p (co-jump|stk-jump) 0.8011 0.9517 0.8102 —

MSFT
p (co-jump|mkt-jump) 0.8855 — 0.8950 0.9664
p (co-jump|ind-jump) 0.5402 0.8240 — 0.5896
p (co-jump|stk-jump) 0.6414 0.9783 0.6483 —

AXP
p (co-jump|mkt-jump) 0.9452 — 0.9602 0.9723
p (co-jump|ind-jump) 0.8004 0.8657 — 0.8233
p (co-jump|stk-jump) 0.5046 0.5457 0.5126 —

Each column indicates a particular type of co-jumps. For example, column 3 shows conditional probabilities
of stock-industry-market co-jumps for each stock.
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Table 4: Jump Size Correlations for Stocks with Corresponding Industry and Market

GE IND MKT XOM IND MKT

GE 1.0000 — — XOM 1.0000 — —
IND 0.9070 1.0000 — IND 0.9140 1.0000 —
MKT 0.9441 0.9534 1.0000 MKT 0.8106 0.8865 1.0000

WMT IND MKT MSFT IND MKT

WMT 1.0000 — — MSFT 1.0000 — —
IND 0.8029 1.0000 — IND 0.8232 1.0000 —
MKT 0.4890 0.8557 1.0000 MKT 0.5125 0.8649 1.0000

AXP IND MKT

AXP 1.0000 — —
IND 0.9127 1.0000 —
MKT 0.9166 0.9207 1.0000

This table reports correlations from the posterior mean of ΣJ .

Table 5: Log-predictive Likelihoods Comparison

MGARCH-jump MGARCH Log-Bayes factor

GE,IND,MKT -1190.2726 -1211.7256 21.4529
XOM,IND,MKT -1234.9129 -1264.9846 30.0717
WMT,IND,MKT -1193.7295 -1206.4306 12.7011
MSFT,IND,MKT -1148.3214 -1181.2845 32.9631
AXP,IND,MKT -1234.9474 -1296.7611 61.8137

GE,XOM,WMT,MSFT,AXP -1586.1071 -1653.5347 67.4276
This table reports log-predictive likelihood values for the last 100 observations (Aug 10, 2016 – Dec 30,
2016) in the sample for the MGARCH-jump model and a MGARCH model without jumps. A positive
log-Bayes factor favours the MGARCH-jump model.
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Table 6: Posterior Estimates for GE, XOM, WMT, MSFT and AXP

Panel A: drift and GARCH parameters

Parameter GE XOM WMT MSFT AXP

µ
0.0313 0.0328 0.0364 0.0672 0.0372

( 0.0015, 0.0613) ( 0.0043, 0.0605) ( 0.0064, 0.0666) ( 0.0284, 0.1049) (-0.0010, 0.0756)

α
0.1507 0.1516 0.1166 0.1363 0.1503

( 0.1381, 0.1644) ( 0.1389, 0.1654) ( 0.1054, 0.1502) ( 0.1244, 0.1493) ( 0.1391, 0.1627)

β
0.9832 0.9825 0.9898 0.9855 0.9839

( 0.9797, 0.9860) ( 0.9791, 0.9853) ( 0.9829, 0.9916) ( 0.9827, 0.9879) ( 0.9812, 0.9862)

1 2 3 4 5

C

1
0.0868

( 0.0668, 0.1049)

2
0.0532 0.0717

( 0.0371, 0.0737) ( 0.0515, 0.0898)

3
0.0317 0.0113 0.0196

( 0.0207, 0.0573) (-0.0223, 0.0225) ( 0.0029, 0.0347)

4
0.0521 0.0123 0.0334 0.0206

( 0.0366, 0.0713) (-0.0057, 0.0275) ( 0.0019, 0.0593) ( 0.0010, 0.0481)

5
0.0600 0.0120 0.0333 0.0079 0.0249

( 0.0446, 0.0768) (-0.0067, 0.0274) (-0.0049, 0.0597) (-0.0403, 0.0507) ( 0.0014, 0.0535)

This table reports the posterior mean and 0.95 density intervals in parentheses for the joint MGARCH-jump model
of five stocks.
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Table 6: Posterior Estimates for GE, XOM, WMT, MSFT and AXP (Continued)

Panel B: jump/co-jump probabilities

Parameter Mean 0.95 DI Parameter Mean 0.95 DI

pGE,XOM,WMT,MSFT,AXP 0.0170 (0.0076,0.0266) pGE,XOM,WMT,MSFT,AXP 0.0018 (0.0001,0.0059)
pGE,XOM,WMT,MSFT,AXP 0.0018 (0.0001,0.0051) pGE,XOM,WMT,MSFT,AXP 0.0041 (0.0001,0.0143)
pGE,XOM,WMT,MSFT,AXP 0.0020 (0.0001,0.0070) pGE,XOM,WMT,MSFT,AXP 0.0023 (0.0001,0.0076)
pGE,XOM,WMT,MSFT,AXP 0.0024 (0.0001,0.0074) pGE,XOM,WMT,MSFT,AXP 0.0040 (0.0003,0.0105)
pGE,XOM,WMT,MSFT,AXP 0.0034 (0.0002,0.0093) pGE,XOM,WMT,MSFT,AXP 0.0038 (0.0001,0.0126)
pGE,XOM,WMT,MSFT,AXP 0.0022 (0.0001,0.0071) pGE,XOM,WMT,MSFT,AXP 0.0087 (0.0008,0.0231)
pGE,XOM,WMT,MSFT,AXP 0.0017 (0.0000,0.0056) pGE,XOM,WMT,MSFT,AXP 0.0037 (0.0001,0.0129)
pGE,XOM,WMT,MSFT,AXP 0.0010 (0.0000,0.0036) pGE,XOM,WMT,MSFT,AXP 0.0067 (0.0006,0.0208)
pGE,XOM,WMT,MSFT,AXP 0.0022 (0.0001,0.0074) pGE,XOM,WMT,MSFT,AXP 0.0020 (0.0001,0.0065)
pGE,XOM,WMT,MSFT,AXP 0.0018 (0.0001,0.0058) pGE,XOM,WMT,MSFT,AXP 0.0031 (0.0001,0.0106)
pGE,XOM,WMT,MSFT,AXP 0.0030 (0.0001,0.0108) pGE,XOM,WMT,MSFT,AXP 0.0342 (0.0185,0.0496)
pGE,XOM,WMT,MSFT,AXP 0.0020 (0.0001,0.0064) pGE,XOM,WMT,MSFT,AXP 0.0621 (0.0385,0.0849)
pGE,XOM,WMT,MSFT,AXP 0.0021 (0.0001,0.0068) pGE,XOM,WMT,MSFT,AXP 0.0471 (0.0300,0.0660)
pGE,XOM,WMT,MSFT,AXP 0.0030 (0.0001,0.0084) pGE,XOM,WMT,MSFT,AXP 0.0298 (0.0122,0.0521)
pGE,XOM,WMT,MSFT,AXP 0.0021 (0.0001,0.0064) pGE,XOM,WMT,MSFT,AXP 0.0241 (0.0115,0.0357)
pGE,XOM,WMT,MSFT,AXP 0.0042 (0.0003,0.0108) pGE,XOM,WMT,MSFT,AXP 0.7102 (0.6728,0.7454)

Panel C: jump size parameters

Parameter GE XOM WMT MSFT AXP

µJ
0.0409 -0.2288 0.0713 0.4148 0.0279

(-0.1949,0.2692) (-0.4219,-0.0489) (-0.1186,0.2588) (0.1857, 0.6384) (-0.2911,0.3439)

ΣJ

GE
6.7958

(4.6207, 8.8016)

XOM
3.0414 4.6635

(0.1584, 5.4529) (3.1805, 6.5901)

WMT
5.9970 2.1946 6.8466

(4.2706, 7.4735) (0.4840, 4.0247) (5.4093, 8.4263)

MSFT
6.6374 4.5465 6.3338 10.1653

(1.7305, 9.3556) (1.7684, 7.0416) (3.1860, 8.4018) (8.3923,12.2379)

AXP
7.1474 4.1921 6.3004 8.9655 10.9217

(2.6935,10.0838) (1.1525, 6.6495) (2.1256, 9.2238) (2.5645,11.3860) (7.8769,14.2148)

This table reports the posterior mean and 0.95 density intervals in parentheses for the joint MGARCH-jump model
of five stocks.
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Table 7: Jump Probabilities among GE, XOM, WMT, MSFT and AXP

marginal and joint probabilities

Stock GE XOM WMT MSFT AXP

Marginal probs 0.0832 0.0907 0.1047 0.1140 0.0875

Co-jump Joint Pr Product Co-jump Joint Pr Product

All jump 0.0170 0.0000 XOM,WMT,AXP 0.0022 0.0008
GE,XOM,WMT,MSFT 0.0022 0.0001 XOM,MSFT,AXP 0.0010 0.0009
GE,XOM,WMT,AXP 0.0034 0.0001 WMT,MSFT,AXP 0.0017 0.0010
GE,XOM,MSFT,AXP 0.0024 0.0001 GE,XOM 0.0031 0.0075
GE,WMT,MSFT,AXP 0.0020 0.0001 GE,WMT 0.0020 0.0087
XOM,WMT,MSFT,AXP 0.0018 0.0001 GE,MSFT 0.0067 0.0095
GE,XOM,WMT 0.0042 0.0008 GE,AXP 0.0037 0.0073
GE,XOM,MSFT 0.0021 0.0009 XOM,WMT 0.0087 0.0095
GE,XOM,AXP 0.0030 0.0007 XOM,MSFT 0.0038 0.0103
GE,WMT,MSFT 0.0021 0.0010 XOM,AXP 0.0040 0.0079
GE,WMT,AXP 0.0020 0.0008 WMT,MSFT 0.0023 0.0119
GE,MSFT,AXP 0.0030 0.0008 WMT,AXP 0.0041 0.0092
XOM,WMT,MSFT 0.0018 0.0011 MSFT,AXP 0.0018 0.0100

The column “Product” is product of corresponding marginal probabilities.

Table 8: Jump Size Correlations among GE, XOM, WMT, MSFT and AXP

Stock GE XOM WMT MSFT AXP

GE 1.0000 — — — —
XOM 0.5403 1.0000 — — —
WMT 0.8792 0.3884 1.0000 — —
MSFT 0.7986 0.6603 0.7592 1.0000 —
AXP 0.8296 0.5874 0.7286 0.8509 1.0000

This table reports correlations from the posterior mean of ΣJ .
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Figure 1: Posterior Jump Probability for Stock, Industry and Market
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Figure 2: Posterior Jump Sizes for Stock, Industry and Market

27



0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Probability of Jumps for AXP, Industry and the Market

Months

P
ro

b
a

b
ili

ty

Jan2007 Apr2007 Jul2007 Oct2007 Jan2008 Apr2008 Jul2008 Oct2008 Jan2009 Apr2009 Jul2009 Oct2009

AXP

ind

mkt

EPS ann dates

−
5

0
5

Jump Size for AXP, Industry and the Market

Months

J
u

m
p

 S
iz

e

Jan2007 Apr2007 Jul2007 Oct2007 Jan2008 Apr2008 Jul2008 Oct2008 Jan2009 Apr2009 Jul2009 Oct2009 AXP

ind

mkt

Figure 3: Posterior Jump Probability and Jump Size for AXP, Jan 1, 2007 to Dec 31, 2009
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Figure 5: Log-predictive Likelihoods for the Out-of-Sample Period
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Figure 7: Correlation from Jump Components vs MGARCH Component.

32



−
2
.2

−
2
.0

−
1
.8

−
1
.6

−
1
.4

−
1
.2

−
1
.0

Predictive Value at Risk over Time

date

V
a
lu

e
 a

t 
R

is
k

20160810 20160824 20160907 20160921 20161005 20161019 20161102 20161116 20161130 20161214 20161228

MGARCH−jump
MGARCH

1%
1%

5%
5%

10%
10%

Figure 8: Predictive Value-at-risk for a Five-Asset Equally-Weighted portfolio

33



A Proof of Conditional Moments of Jt

Proof. First, prove E (Jt|Θ, r1:t−1):

E (Jt|Θ, r1:t−1) = µJ ⊙ E (Bt|Θ, r1:t−1)

E (Bt|Θ, r1:t−1) = ΩB
′p =

2N
∑

j=1

B
(j)
t pj

Then, prove Cov (Jt|Θ, r1:t−1):

Cov (Jt|Θ, r1:t−1) = E
[

(Yt ⊙Bt) (Yt ⊙Bt)
′ |Θ, r1:t−1

]

− E (Yt ⊙Bt|Θ, r1:t−1) E (Yt ⊙Bt|Θ, r1:t−1)
′

= E (YtYt
′ ⊙BtBt

′|Θ, r1:t−1)− (µJ ⊙ΩB
′p) (µJ ⊙ΩB

′p)
′

= E (YtYt
′ ⊙BtBt

′|Θ, r1:t−1)− µJµJ
′ ⊙ΩB

′pp′ΩB

E (YtYt
′ ⊙BtBt

′|Θ, r1:t−1) = E [E (YtYt
′ ⊙BtBt

′|Bt,Θ) |r1:t−1]

= E
[

Cov (Yt ⊙Bt|Bt,Θ) + E (Yt ⊙Bt|Bt,Θ) E (Yt ⊙Bt|Bt,Θ)′ |r1:t−1

]

= E [ΣJ ⊙BtBt
′ + µJµJ

′ ⊙BtBt
′|Θ, r1:t−1]

= (ΣJ + µJµJ
′)⊙ E (BtBt

′|Θ, r1:t−1)

= (ΣJ + µJµJ
′)⊙





2N
∑

j=1

pjΩjΩj
′





B Sampling Details

In each MCMC iteration,

1. µ|r1:T ,H1:T ,µJ ,ΣJ ,B1:T ,p. Assuming µ has a normal prior N (bµ,Bµ), let Tµ = B−1
µ , then

the posterior is

p (µ|r1:T ,H1:T ,µJ ,ΣJ ,B1:T ,p) ∝
T
∏

t=1

p (rt|µ,Ht,µJ ,ΣJ ,B1:T ,p) p (µ)

The model is not linear given the MGARCH component but a standard conjugate Gibbs

result can be used as the asymmetric proposal for the MH step: µ′ ∼ N (Mµ,Vµ)

Mµ = Vµ

[

T
∑

t=1

(Ht +BtBt
′ ⊙ΣJ)

−1
r∗

t + Tµbµ

]

Vµ =

[

T
∑

t=1

(Ht +BtBt
′ ⊙ΣJ)

−1
+ Tµ

]−1

34



where r∗

t = rt − µJ ⊙ (Bt −ΩB
′p). Then accept µ′ with probability

α
(

µ(i),µ′
)

= min

{

1,
p (µ′|r1:T ,H1:T ,µJ ,ΣJ ,B1:T ,p) p

(

µ(i)
)

p (µ(i)|r1:T ,H1:T ,µJ ,ΣJ ,B1:T ,p) p (µ′)

}

2. θH |r1:T ,µ,µJ ,ΣJ ,B1:T ,p, where θH = (C,α,β)′. The posterior is

p (θH |r1:T ,µ,µJ ,ΣJ ,B1:T ,p) ∝
T
∏

t=1

p (rt|µ,Ht,µJ ,ΣJ ,Bt,p) p (θH)

rt|µ,Ht,µJ ,ΣJ ,Bt,p ∼ N (µ+ µJ ⊙ (Bt −ΩB
′p) ,Ht +BtBt

′ ⊙ΣJ)

where Ht follows equation (5). Apply a standard random-walk Metropolis-Hastings (MH)

algorithm.

3. Bt|rt,µ,Ht,µJ ,ΣJ ,p. There are 2N different possible realizations of Bt, and the posterior

is

p (Bt|rt,µ,Ht,µJ ,ΣJ ,p) =
p (rt|µ,Ht,µJ ,ΣJ ,Bt,p) p (Bt|p)

∫

p (rt|µ,Ht,µJ ,ΣJ ,Bt,p) p (Bt|p) dBt

p (Bt|p) =
2N
∏

i=1

pxi
t,i

where xi = δ (Bt,Ωi). Here, xi indicates whether the ith row of ΩB, Ωi, is realized.

4. p|r1:T ,µ,H1:T ,µJ ,ΣJ ,B1:T . Assuming p has a Dirichlet prior Dir(a1, . . . , a2N ), the poste-

rior is

p (p|r1:T ,µ,H1:T ,µJ ,ΣJ ,B1:T ) ∝
T
∏

t=1

p (rt|µ,Ht,µJ ,ΣJ ,Bt,p) p (B1:T |p) p (p)

An asymmetric MH sampler instead of Gibbs need be applied. Since Bt,i’s are iid conditional

on pi, one asymmetric proposal density is the conjugate posterior of multinomial distribution:

p′ ∼ Dir

(

ai +
T
∑

t=1

xt,i

)

, i ∈
{

1, . . . , 2N
}

and accept p′ with probability

α
(

p(i),p′
)

= min

{

1,

∏T
t=1 p (rt|µ,Ht,µJ ,ΣJ ,Bt,p

′)
∏T

t=1 p (rt|µ,Ht,µJ ,ΣJ ,Bt,p(i))

}

5. Yt|rt,µ,Ht,µJ ,ΣJ ,Bt,p. After simple transformation, conjugate Gibbs result can be ap-
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plied:

Yt|rt,µ,Ht,µJ ,ΣJ ,Bt,p ∼ N (MY,t,VY,t)

where

MY,t = VY,t

[

Bt ⊙H−1
t (rt − µ+ µJ ⊙ΩB

′p) +Σ−1
J µJ

]

VY,t =
(

BtBt
′ ⊙H−1

t +Σ−1
J

)−1

6. µJ |r1:T ,µ,H1:T ,ΣJ ,Y1:T ,B1:T ,p. Assume a prior of µJ ∼ N(bµJ
,BµJ

), then the posterior

is

p (µJ |r1:T ,µ,H1:T ,ΣJ ,Y1:T ,B1:T ,p)

∝

T
∏

t=1

p (rt|µ,Ht,µJ ,ΣJ ,Bt,p) p (Y1:T |µJ ,ΣJ) p (µJ)

Similarly, a conjugate proposal density can be applied:

µJ
′ ∼ N (MµJ

,VµJ
)

MµJ
= VµJ

(

Σ−1
J

T
∑

t=1

Yt +B−1
µJ
bµJ

)

VµJ
=
(

TΣ−1
J +B−1

µJ

)−1

accept µJ
′ with probability

α
(

µJ
(i),µJ

′
)

= min

{

1,

∏T
t=1 p (rt|µ,Ht,µJ

′,ΣJ ,Bt,p)
∏T

t=1 p (rt|µ,Ht,µJ
(i),ΣJ ,Bt,p)

}

7. ΣJ |µJ ,Y1:T . Assume a prior of ΣJ ∼ IW (νp,Vp), then apply the standard conjugate Gibbs

result

ΣJ |µJ ,Y1:T ∼ IW (νJ ,VJ)

νJ = T + νp

VJ =
T
∑

t=1

(Yt − µJ) (Yt − µJ)
′ + Vp
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