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Abstract

We construct a representative index of largest Indian energy companies listed on the National Stock Exchange
(NIFTY 50). We test for presence of regimes, non-linearities, and jumps in the price signal. We benchmark
performance against alternative models, including single-regime models and models with no jumps. We
then benchmark the quality of regime identification against other indices examined in the literature, such
as Nikkei 225 and FTSE 100. Overall, find that our regime-switching model performs well in identifying the
regimes in this comparative setting. Based on our model selection criteria, we prefer a regime-augmented
model to a model that allows no regime identification. But overall, we prefer a model with jumps and
regimes over those that do not allow for jump-diffusion and Markov regime-switching.
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1. Introduction

We construct an index of energy stocks using daily data from NIFTY50, a benchmark Indian stock market
index that represents the largest Indian companies listed on the National Stock Exchange. Motivated by
recent expository work on Levy models (e.g. Cont / Tankov: Financial Modelling with Jump Processes, Sec-
ond Edition, 2019) we examine this newly-constructed index for regime-switching behaviour, non-linearities,
and evidence of jump-diffusion processes. The calibration of regime switching models will be done using the
EM-algorithm, which appears to be a standard approach in the applied literature.

We examine this newly-constructed index for regime-switching behaviour, non-linearities, and evidence of
jump-diffusion processes, deploying a Markov Regime-switching Lévy Model. We further use the expecta-
tion–maximization algorithm to calculate the log-likelihood values. We then introduce alternative specifi-
cation from competing models in an attempt to benchmark the performance of the regime-switching model
with jumps, versus a model without jumps, and versus a model with no regime switching.

We then use regime classification measures in order to identify our model performance, and compare results
with other indices, such as Dow Jones Industrial Average, EURO STOXX, Russell 2000, Nikkei 225, NAS-
DAQ, and FTSE 100. Overall, we can see that our framework performs well in identifying the regimes. It
is also able to identify regimes more sharply using our data than some (but not all) benchmark indices.

Based on our model selection criteria, we can say that regime-augmented models are preferred to a model
that allows no regime identification. But overall, we prefer a model with jumps and regimes over those that
do not allow for jump-diffusion and Markov regime-switching.

There is an extensive and active literature on regime switching models – both from a theoretical point of
view and from applied. The applied literature includes seminal work on analysis of energy prices [26, 35],
exchange rates [9], stock returns [23, 17], systemic risk [10], and other areas. See [3] and [24] for surveys.

Jump-diffusion models have been popularised by Merton et al around 1070s [33], and further developed by
[6]. More recently, there has been cross-polination from the applied probability literature to applied finance
where improved models (at least in the sense of continuous-time specification, finite moments of all orders,
long tailedness, and good empirical fit) have been introduced. Such models include the variance gamma
model of Madan and Seneta [32], the CGMY model (named after of Carr, Geman, Madan and Yor [12]), and
many others. The CGMY model [12], for instance, examines the Madan-Seneta variance-gamme framework
and the Normal Inverse Gaussian (NIG) as examples of Lévy processes.1

On the other hand, the literature on switching regime Lévy processes is less well-developed. Some seminal
works include Deaton [16] demonstrated that price signals in commodity markets exhibit jumps. Analogous
evidence has been examined in a range of asset classes [11], indices [27], interest rates ([7, 8, 13]. Numerous
applications have been made other areas of finance, most notably to the theory of contingent claims ([28,
29, 30, 38]. See [22] for a survey.

2. Data

The data is the price history (at day-level) of stocks in the index NIFTY 50 from India’s National Stock
Exchange. The data spans from 3rd January, 2000 to 30 September, 2020 (5153 observations) [25].

We then construct an index from the closing prices of those stocks in the sample that are listed by the
Exchange as being in the ’Energy’ industry. we focus on stocks that are listed for our entire time-period of
interest, which is last two decades.2 Table 1 lists the companies which are included in our index. We plot
the Index closing price, returns, and (realised) volatility. in Figure 1.

1The NIG (VG) are obtained by replacing Brownian motion component with the inverse Gaussian (gamma) process.
2We discard for example, Oil & Natural Gas Corporation due to not having a complete data sample.
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Figure 1: Index closing price, returns, and (realised) volatility.
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Company Name Industry Symbol ISIN Code
Bharat Petroleum Corporation Ltd. ENERGY BPCL INE029A01011
Indian Oil Corporation Ltd. ENERGY IOC INE242A01010
Oil & Natural Gas Corporation Ltd. ENERGY ONGC INE213A01029
Reliance Industries Ltd. ENERGY RELIANCE INE002A01018

Table 1: Stocks composition of our index, dates: 03/01/2000 to 30/09/2020

Some initial observations are as follows. Volatility clustering can be observed around the time of the North
Atlantic financial crisis from Q2 2007 to Q2 2009. There is a strong shock around 2011 which clearly has
a profound negative affect on the market. After some further diagnostics, we note a slow autocorrelation
function: i.e. the absolute values of the daily log returns remain positive for time lag upto 30 days. This slow
decay of autocorrelation in absolute returns indicates non linear dependence amongst the daily log return
values in the index. Data is leptokurtic: i.e. showing having greater kurtosis than the normal distribution.
We can observe extreme daily log returns (greater than 5 per cent). We also observe the presence of heavy
tails: i.e. the unconditional distribution of returns appears to display a tail resembling a power law. We
can observe a significant shift downwards in price around 2011. To explain this anomaly, we quote from a
World Bank report which examined this issue ([31]):

”At the end of 2011, the Indian power sector found itself in financial crisis—just a decade after the 2001
bailout of state electricity boards (SEBs) by the central government. Bankrupt state power distribution
utilities in several states were unable to pay their bills or repay their debts. Despite the passage of the
landmark 2003 Electricity Act and implementation of a broad set of reforms over the past decade, the sector
today is looking at another rescue from the center, four times larger than before. This financial rescue
scheme amounts to about Rs 1.9 trillion ($42 billion) and was instigated by the nonperforming assets of the
banks and other financial institutions.”

We suspect that the presence of non-linearities and jumps plays an important role in this market. Looking
at this are is of interest, both to policy makers and practitioners, for the following reasons.

First, India is an important world player in energy policy. India has rapidly growing economy with a large
population where the government (perhaps unusually for an economy of its size) set itself very aggressive
climate change and green energy targets. Notably, the country has pledged a 33-35% reduction in the
’emissions intensity’ of its economy by 2030, compared to 2005 levels – this, if achieved, would put the
country on the lowest carbon emission per-capita basis than EU, US, or China.

Second, whilst there is an abundance of studies on similar topics using developed markets indices – especially
US, European, and Australian data – there are surprisingly few studies on Indian energy data using jump-
robust models. However, there exist a number of tractable tools for modelling financial time series which
are superiour to the standard Wiener process-based models. Such tools can be used to model discontinuous
variations in the price data (eg spikes/jumps) that are empirically observable.

3. Empirical strategy

3.1. Markov-switching models

We already noted the volatility clustering, the spikes, and especially the apparent discontinuity around 2011.
Given the evident discontinuities, the assumption of stationarity may not hold for these data and classic
time series analysis techniques may be partially or completely inadequate in this regard. For example,
financial time-series can often exhibit periods of high/low volatility and also periods of fast/slow mean
growth. Standard GARCH models tend to be ill-equipped to tackle such irregularities. Now, one potential
solution may be to make use of Markov-switching models which allow an applied researcher to address the
non-stationarity of time series under some mild assumptions. This is the approach we take in this chapter.
We set up a general Markov Regime Switching (MRS) model as follows:
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St ∈ Λ

yt = f(St, θ, ψt−1)

St = g
(

S̃t−1, ψt−1

)

(1)

where St corresponds to the state of the model at time t, S̃t := {S1, ..., St} irefers to observed states up
to t, ψt := {yk : k = 1, . . . , t} refers to observations up to t, Λ = {1, ...,M} is the set of possible states,
θ corresponds to the vector of parameters in our model, and g is the so-called transition function which
controls the transitions between states. Then, function f corresponds to how our observations at each point
of time t depend on St, θ, and ψt−1. And t ∈ {0, 1, ..., T}, where T ∈ N, T < +∞, indicates terminal time.
This can be a fruitful approach since realisations of 1 enable the modeller to tackle specific problems that
may not be subject to meaningful analysis in a single regime.

3.2. Levy-process regime-switching models

We follows [14] and combine jump-diffusion Levy framework with a Markov-switching model in order to
model our index of NIFTY50-listed Indian energy equities. This combined jump-diffusion Markov-switching
model offers a way to model stochastic jumps, capture different market regimes, and potentially offer further
insight into discontinuities. and non-linearities in our data of interest. Before we set up our model let us
provide some definiions.

Definition 3.1 (Stochastic Process). A stochastic process X on a probability space (Ω,F ,P) is a collection
of r.v. s (Xt)0≤t<∞.

If Xt ∈ Ft, the process X is adapted to the filtration F , or equivalently, Ft-measurable.

Definition 3.2 (Brownian Motion). Standard Brownian motion W = (Wt)0≤t<∞ has the following three
properties:
(i) W0 = 0
(ii) W has independent increments: Wt −Ws is independent of Fs, 0 ≤ s < t <∞
(iii) Wt −Ws is a Normal r.v.: Wt −Ws ∼ N(0, t− s) ∀ 0 ≤ s < t <∞
Property (ii) implies the Markov property i.e. conditional probability distribution of future states of the
process depend only on the present state. Property (iii) indicates that knowing the distribution of Wt for
t ≤ τ provides no predictive information about the state of the process when t > τ . We can also define
Poisson Process, another stochastic process as follows.

Definition 3.3 (Poisson Process). A Poisson process N = (Nt)0≤t<∞ satisfies theseproperties:
(i) N0 = 0
(ii) N has independent increments: Nt −Ns is independent of Fs, 0 ≤ s < t <∞
(iii) N has stationary increments: P (Nt −Ns ≤ x) = P (Nt−s ≤ x), 0 ≤ s < t <∞
Now, a stochastic differential equation written as only as a standard Wiener process or Poisson process is
of limited use in applied research, especially where complex and evolving financial dynamics dictate a need
for a more general approach. We can combine their properties in a more fruitful manner as follows.

Definition 3.4 (Lévy Process). Let L be a stochastic process. Then Lt is a Lévy process if the following
conditions are satisfied:
(i) L0 = 0
(ii) Lt it is stochastically continuous (continuous in probability): limt→s Lt = Ls

(iii) L has stationary and independent increments: P(Lt − Ls ≤ x) = P(Lt−s ≤ x), 0 ≤ s < t <∞
(iv) L has independent increments: Lt − Ls is independent of Fs, 0 ≤ s < t <∞

6



Definition 3.5. A real valued r.v. Θ has an infinitely divisible distribution when for each n = 1, 2, . . ., there
exists a i.i.d. sequence of r.v. s Θ1, . . . ,Θn such that

Θ
d
=Θ1,n + . . .+Θn,n

In other words, the law µ of a real valued r.v. is infinitely divisible if for each n = 1, 2, . . . there is another
law µn of a real valued r.v. such that µ = µ∗n

n , the n-fold convolution of µn.

We characterise infinitely divisible distributions via their characteristic function3 and the Lévy-Khintchine
formula.

Theorem 3.6 (Lévy-Khintchine). Let µ ∈ R, σ ≥ 0, and Π be a measure concentrated on R/{0} such
that

∫

R
min(1, x2)Π(dx) < ∞. A probability law µ of a real-valued r.v. L has characteristic exponent

Ψ(u) := − 1
t
logE[eiuLt ] stated as follows

Φ(u; t) =

∫

R

eiuxµ(dx) = e−tΨ(u) for u ∈ R, (2)

iff there exists a triple (γ, σ,Π), where γ ∈ R, σ ≥ 0 and Π is a measure supported on R \ {0} satisfying
∫

R
(1 ∧ x2)Π(dx) <∞, such that

Ψ(λ) = iγu+
σ2u2

2
+

∫

R

(

1− e(iux) + iux1|x|<1

)

Π(dx) (3)

for all u ∈ R.

From 3.6 we are able to see that a probability space exists when L = L(1) + L(2) + L(3); L(1) is standard
one-dimensional Wiener process with drift, L(3) is a square integrable martingale4, L(2) is a (compound)
Poisson process. This is the the Lévy-Itô decomposition, which we now phrase as follows:

Lt = ηt+ σWt +

t
∫

0

∫

|x|≥1

xµL(ds, dx) +

t
∫

0

∫

|x|<1

x(ηL −ΠL)(ds, dx). (4)

Definition 3.7 (Markov-Switching). Let (Zt)t∈[0,T ] be a continuous time Markov chain on finite space
S := {1, . . . ,K}. Let FZ

t := {σ(Zs); 0 ≤ s ≤ t} be the natural filtration generated by the continuous time
Markov chain Z. The generator matrix of Z, denoted by ΠZ , is stated as follows

ΠZ
ij











≥ 0, if i 6= j

−
∑

j 6=i

ΠZ
ij , otherwise (5)

And now we define the Regime-switching Lévy model:

Definition 3.8 (Lévy Regime-switching model). For all t ∈ [0, T ], let Zt be a continuous time Markov
chain on finite space S := {1, . . . ,K} defined as per 3.7. A regime-switching model is a stochastic process
(Xt) which is solution of the following SDE

dXt = k(Zt)(θ(Zt)−Xt)dt+ σ(Zt)dYt (6)

3alternatively, via the Fourier transform of their law
4with countable number of jumps of magnitude less than 1 (almost surely)
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where k(Zt), θ(Zt), and σ(Zt) are functions of the Markov chain Z. They are scalars which take val-
ues in k(Zt), θ(Zt), and σ(Zt): k(Zt) := {k(1), . . . , k(K)} ∈ R

K∗

, θ(S) := {θ(1), . . . , θ(K)}, σ(S) :=
{σ(1), . . . , σ(K)} ∈ R

K∗

. where Y is a Wiener or a Lévy process. Here, k denotes the mean reverting rate,
θ denotes the long run mean, and σ denotes the volatility of X.

Here we get two sources of ’variation’ (stochasticity): the stochastic process Y which follows the dynamics
of X, and the Markov chain Z. What this means is that there is variation due to the Markov chain Z, FZ ,
and variation from market information which is the filtration F generated by the stochastic process Y .

3.3. Normal Inverse Gaussian (NIG)

Barndorff-Nielsen (see [4, 19, 20] and [5] for a survey) introduced the Normal Inverse Gaussian (NIG)
distribution, which ”is defined as a variance-mean mixture of a normal distribution with the inverse Gaussian
as the mixing distribution.”. It is a versatile model for heavy-tailed stochastic processes, where the it is
completely specified by four real valued parameters that have appealing interpretations in terms of the
resulting probability density function. Following [14], we let our Levy process L follows the Normal Inverse
Gaussian distribution. The density function of a NIG(α, β, δ, µ) is stated as

fNIG(x;α, β, δ, µ) =
α

π
eδ
√

α2−β2+β(x−µ)K1(αδ
√

1 + (x− µ)2/δ2)
√

1 + (x− µ)2/δ2
, (7)

where δ > 0, α ≥ 0. The parameters in the Normal Inverse Gaussian distribution can be interpreted
as follows: α is the tail heaviness of steepness, β is the skewness, δ is the scale, µ is the location. The
NIG distribution is the only member of the family of general hyperbolic distributions to be closed under
convolution. Kv is the Hankel function with index v. This can be represented by

Kv(z) =
1

2

∫ ∞

0

yv−1e

(

− 1

2
z
(

y+ 1

y

)

)

dy (8)

For any real v, the function Kv satisfies the differential equation

v2y′′ + xy′ − (x2 + v2)y = 0. (9)

The log cumulative function of a NIG variable is

φNIG(z) = µz + δ (
√

α2 − β2 −
√

α2 − (β + z)2) for all |β + z| < α.

We can state the first moments as E[X] = µ+ δβ
γ
, and V ar[X] = δα2

γ3 , where γ =
√

α2 − β2. Then, the Levy

measure of a Normal Inverse Gaussian NIG(α, β, δ, µ) law is

FNIG(dx) = eβx
δα

π|x|K1(α|x|)dx.

4. Estimation

We use the expectation–maximisation algorithm to estimate our RS Levy model, namely the SDE given in
6, by estimating the stochastic process Y which is a Levy process that follows a Normal Inverse Gaussian
distribution. After discretising the model, we estimate the following parameters in a in a two-step procedure
as per [14]:

Θ̂ := (k̂i, θ̂i, σ̂i, α̂i, β̂i, δ̂i, m̂ui, Π̂) i ∈ S.

Apart from the transition matrix of the Markov chain Z, we have we have 3 parameters of the dynamics of
X, and 4 parameters of the density of the Levy process L,

8



4.1. Discretisation the model

Consider a stochastic process Y and Wiener process W . Γ is the increasing time index:

Γ = {tj ; 0 = t0 ≤ t1 ≤ . . . tM−1 ≤ tM = T}, with ∆t = tj − tj−1 = 1.

In this specification, M + 1 denotes to the size of historical data. The discretized version of the SDE given
in 6 is

Xt+1 = k(Zt)θ(Zt) + (1− k(Zt))Xt + σ(Zt)ǫt+1. (10)

Since Y is a Wiener process, ǫt+1 ∼ N(0, 1). Let FX
tk

be the vector of historical values of the process X until
time tk ∈ Γ. Then FX

tk
is a vector of k + 1 values of the discretized model. Thus FX

tk
= (Xt0 , Xt1 , . . . , Xtk).

Next, we proceed with estimating our model in two stages.

• Stage 1: Estimation of the regime-switching model 6 in the Wiener case. To estimate the parameters
of the discretised model 10 we rely on the EM-algorithm. First, the estimate Θ̂ is divided thus
Θ̂1 := (k̂i, θ̂i, σ̂i, Π̂i) for i ∈ S.

• Stage 2: Estimation of the parameters of the Levy process fitted to each regime. Using the regime
classification from Step 1, we calculate parameters Θ̂2 := (α̂i, β̂i, δ̂i, µ̂i) for i ∈ S. This corresponds to
the NIG distribution parameters of the Levy jump-diffusions fitted for each regime.

4.2. Augmented Dickey-Fuller test

First, we conduct an Augmented Dickey-Fuller test. This tests the null hypothesis that our index log returns
follow a unit root process. We conclude that our index log returns has neither a trend nor seasonality.

Whilst the Normal Inverse Gaussian distribution, will allow us to model for skewness ad heavier tails, we
also estimate. other benchmark models used in the financial econometrics literature. We estimate models
by maximum likelihood estimates, where neccessary these estimates are determined by the EM algorithm.

4.3. Lilliefors test

We examine the data using the Lilliefors test for normality, where the null is that the data have been drawn
from a normal distribution5. Using MATLAB’s function lillietest, we observe that the test statistic k is
greater than the critical value c, so the test indicates a rejection of the null hypothesis at the default 5%
significance level.

We then use MS Regress, a MATLAB toolbox specially designed for the estimation of a general markov
regime switching model [36]. We first estimate the following for S = 1, 2:

E(∆yt|St) = µ(St)

{

µ0 + et

µ1 + et
(11)

where et ∼ N(0, σ2). Then we retrieve the residuals vector of the dependent variable êt and regress it on k
lagged variables

êt =

k
∑

i=1

βi∆o
+
t−i + νt (12)

where νt ∼ N(0, σ2). We plot the smoothed state probabilities in Figure 2.

5Lilliefors test is a version of the classic Kolmogorov-Smirnov test which has been corrected for the possible presence of
parameter uncertainty. We avoid omnibus tests a-la Jarque–Bera since they tend to be underpowered.
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Figure 2: Regime identification - smoothed state probabilities (bottom), and realised volatility (top).

4.4. Regime classification measures

We assess how well our regime fitting exercise has been conducted in two following ways. First, we use
the Regime classification measure (RCM) introduced by Ang and Bekaert (2002) [1, 2]. The RCM statistic
takes values between 0 and 100. Low values indicate sharp regime classification. High values indicate that
the regimes have not been identified well.

RCM(K) = 100×
(

1− K

K − 1

1

T

N
∑

k=1

N
∑

Ztk

(

P (Ztk = i|FX
tM

; Θ̂
(n)
1 )− 1

K

)2)

, (13)

where Θ̂
(n)
1 corresponds to the vector of estimated parameters in question, and P (Ztk = i|FX

tM
; Θ̂

(n)
1 ) corre-

sponds to the smoothed probability. The role of the constant 100 is to normalise the statistic to be between
0 and 100.

Second, we use the smoothed probability indicator [21]. A good classification is when the smoothed proba-
bility is greater than 0.9 or less than than 0.1. This then means that the data at time t ∈ [0, T ] is, with a
probability higher than 90%, in one of the regimes at the 10% error level.

5. Results

5.1. Regime classification

We start with regime classification. After estimating our model, we obtain RCM Statistic: 12.13 and
smoothed probability indicator 85.85%. This then means that the data in our sample is in one of the
regimes with a probability close to 90%.

This type of model estimation has precedent in the literature. For example, [15] estimated jumps and regime
switches in international stock markets returns for all major developed markets using data from June, 2004
to July 11, 2014. We can compare this model with their as follows:

Table 2: Regime classification measures for Regime Switching Levy Model

RCM P%
India Energy Index (NIFTY50) 12.13 85.85

Overall, we can see that our regime classification performs well. Not only do we see that our regime-switching
model performs well in identifying the regimes, it is also able to identify regimes more sharply using our
data (i.e. energy equities in India) than some (but not all) benchmark indices reported in Tables 3 and 2.
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Table 3: Regime classification measures for benchmark indices, in [15]

RCM P%
Dow Jones Industrial Average 12.51 86.88
EURO STOXX European 600 Index 13.92 85.71
Russell 2000 Index 18.33 80.43
Nikkei 225 Index 9.07 90.35
NASDAQ Composite Index 18.38 81.13
FTSE 100 Index 13.12 86.33
Dow US Global Dow Jones 19.22 78.92

Figure 4 graphically shows the presence of two identified regimes, which we can plausibly describe as ”normal
volatility” and ”high volatility”. The high volatility regimes seem to correspond to crisis periods, such as
the 2007-08 North Atlantic crisis and the 2011 Indian energy crisis.

Regime 1 Regime 2
α 0.001803 1.026199
β -0.000282 0.006025
Σ 1.362165 6.089931
Ett -6.386800 170.309453
qii 0.973255 0.902871
P (R = i) 0.784094 0.215906
θ -6.386800 170.309453
κ -0.000282 0.006025
σ 1.855494 37.087262

Table 4: Two state regime switching model with mean-reverting process

Regime 1 Regime 2
α 0.640648 0.986841
β -0.002221 -0.177631
δ 0.293492 0.643627
µ 0.001018 0.117776

Table 5: Estimating parameters of our NIG model

5.2. Comparison against other models (incl. single-regime)

We now introduce alternative specification from competing models in an attempt to benchmark the perfor-
mance of the regime-switching model with jumps, versus a model without jumps, and versus a model with
no regime switching.

1. Regime-switching Lévy model. This is our main specification as described in model 5. Here, Y = L is
a Lévy process such that L1 ∼ NIG(α, β, µ).

dXt = k(Zt)(θ(Zt)−Xt)dt+ σ(Zt)dYt (14)

2. Regime-modified Ornstein–Uhlenbeck. Here Y =W is a Brownian motion.

dXt = k(Zt)(θ(Zt)−Xt)dt+ σ(Zt)dYtdWt (15)

3. Ornstein-Uhlenbeck with constant volatility. Here the process Y = W is a Brownian motion without
regime switches. The SDE does not depend on the Markov chain Z.

dXt = k(Zt)(θ(Zt)−Xt)dt+ σdWt (16)
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Figure 3: Plotting evolution of parameters
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Figure 4: Regime identification

Total number of observations 5163
maximum 290.22
minimum 57.32
mean 144.29
variance 3221.63
standard deviation 56.75
Skewness 82250.83
Kurtosis 22848585.21

Table 6: Summary statistics
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Model BIC: AIC:
Regime-switching Lévy model 4787.50 4735.10
Regime-modified Ornstein–Uhlenbeck 20891.14 20838.75
Ornstein-Uhlenbeck with constant volatility 26287.07 26267.42

Table 7: Model comparison

5.3. Model comparison

We use the EM-algorithm to calculate the log-likelihood values. We use standard model selection criteria
for each specification (AIC and BIC). The results are presented in Table 7

Based on our model selection criteria, we can say that regime-augmented models are preffered to a model
that allows no regime identification. But overall, we prefer a model with jumps and regimes over those that
do not allow for jump-diffusion and Markov regime-switching.

6. Conclusion

In this study we constructed an index of energy stocks using daily data from NIFTY50, a benchmark Indian
stock market index that represents the largest Indian companies listed on the National Stock Exchange.
We examined this newly-constructed index for regime-switching behaviour, non-linearities, and evidence of
jump-diffusion processes, deploying a Markov Regime-switching Lévy Model.

We made use of the expectation–maximization algorithm, an iterative method to find maximum likelihood
or maximum a posteriori estimates of parameters, to calculate the log-likelihood values.

We then introduced alternative specification from competing models in an attempt to benchmark the per-
formance of the regime-switching model with jumps, versus a model without jumps, and versus a model with
no regime switching. We use Regime classification measures in order to identify our model performance, and
compare results with other indices, such as Dow Jones Industrial Average, EURO STOXX, Russell 2000,
Nikkei 225, NASDAQ, and FTSE 100.

Overall, the findings suggest that our regime classification framework performs to an adequate standard,
both in terms of theoretical expectations [33] and in terms of comparison with related literature [34].

Based on our model selection criteria, we can say that regime-augmented models are preferred to a model
that allows no regime identification. But overall, we prefer a model with jumps and regimes over those that
do not allow for jump-diffusion and Markov regime-switching. An interesting line of research is to pursue
more advanced models, such as Levy rough paths.
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[38] Rüdiger, B. and Tappe, S. (2009). Stability results for term structure models driven by Lévy processes. Working paper
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