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Abstract

This note studies the asymptotic validity of bootstrapping the test of over-identifying restric-
tions under many/many weak instruments and heteroskedasticity. We show that the wild bootstrap
consistently estimates the null limiting distributions of a jackknife overidentification statistic under
this asymptotic framework. In particular, such bootstrap validity holds even when the bootstrap
procedure fails to mimic well the distribution of the jackknife instrumental variable estimator, an
important component of the statistic of interest. Monte Carlo simulations show that the wild boot-
strap provides a more reliable method than that based on asymptotic critical values to approximate
the null distributions of interests under many/many weak instruments and heteroskedasticity.
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1 Introduction

Empirical applications of instrumental variables (IV) estimation often produce imprecise results. It is

now well understood that standard first-order asymptotic theory breaks down when the instruments

are weakly correlated with the endogenous regressors, and commonly used IV estimators can lose

consistency; cf., Dufour (1997) and Staiger and Stock (1997) among others. However, as has been

demonstrated by Chao and Swanson (2005), having many instruments in such a weakly identified

situation can help to improve estimation accuracy. Indeed, using a large number of instruments can

enhance the growth of the so-called concentration parameter even if each individual instrument is

only weakly correlated with the endogenous explanatory variables. For empirical example, Hansen,

Hausman, and Newey (2008) reveal in an application from Angrist and Krueger (1991) that using 180

instruments, rather than 3, substantially improves estimator accuracy.

For implementing inferences in the context of many/many weak instruments, Hansen et al. (2008)

provide Corrected Standard Errors (CSE) under conditional homoskedasticity, and Chao, Swanson,

Hausman, Newey, and Woutersen (2012) and Hausman, Newey, Woutersen, Chao, and Swanson (2012)

further extend the CSE to the general heteroskedastic case. For specification tests, Anatolyev and

Gospodinov (2011) propose modifications of the J test of overidentifying restrictions so that the test

can be robust to many instruments under conditional homoskedasticity. Moreover, Chao, Hausman,

Newey, Swanson, and Woutersen (2014) give a jackknife version of the overidentification test, which

is asymptotically valid even under heteroskedasticity. For a comprehensive review of the related

literature, see Anatolyev (2019) and the references therein. In addition, the literature on bootstrap

for the IV model includes Davidson and MacKinnon (2008, 2010, 2014), Moreira, Porter, and Suarez

(2009), Wang and Kaffo (2016), Kaffo and Wang (2017), Wang and Tchatoka (2018), Finlay and

Magnusson (2019), among others.

In this note, we study the wild bootstrap as an alternative inference method for the overidentifica-

tion test and show its asymptotic validity under many/many weak instruments and heteroskedasticity.

In particular, we show that the validity of the wild bootstrap procedure holds even in the case when

the bootstrap fails to mimic well the distribution of the heteroskedastic-robust version of the Fuller

(1977) estimator proposed by Hausman et al. (2012), an important component of the jackknife test

statistic. Simulations show that the bootstrap test has finite-sample size properties superior to the test

based on asymptotic critical values provided in Chao et al. (2014), which can be rather conservative

in many settings.
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2 Model, assumptions and test statistics

Following Chao et al. (2012), Hausman et al. (2012) and Chao et al. (2014), we consider a standard

linear IV regression model given by

y = Xδ + ǫ, (1)

X = Γ + U, (2)

where y and X are, respectively, an n×1 vector and an n×G matrix of observations on the endogenous

variables, Γ is the n×G reduced form matrix, and ǫ and V are, respectively, an n× 1 vector and an

n × G matrix of random disturbances. The estimation of δ will be based on an n ×K matrix, Z, of

instrumental variable observations with rank(Z) = K, and we treat Z as deterministic. Also denote

P = Z(Z ′Z)−1Z ′ and M = In−P , where In is an identity matrix with dimension n. Throughout this

paper, we consider the case where G, the dimension of δ, is small relative to n, but we let K → ∞ as

n → ∞ to model the effect of having many/many weak instruments.

For the IV estimator of δ, we consider the heteroskedasticity-robust version of the Fuller (1977) esti-

mator proposed by Hausman et al. (2012), referred to as HFUL. To define HFUL, let Pij denote the ij-

th element of P , and X̄ = [y,X]. Let α̃ be the smallest eigenvalue of
(

X̄ ′X̄
)−1 (

X̄ ′PX̄ −∑n
i=1

PiiX̄iX̄
′
i

)

.

Let α̂ = [α̃− (1− α̃)/T ]/[1− (1− α̃)/T ]. HFUL is given by

δ̂ =

(

X ′PX −
n
∑

i=1

PiiXiX
′
i − α̂X ′X

)−1(

X ′Py −
n
∑

i=1

PiiXiyi − α̂X ′y

)

. (3)

To define the jackknife overidentification statistic of Chao et al. (2014), let ǫ̂i = yi − X ′
i δ̂, ǫ̂ =

(ǫ̂1, ..., ǫ̂n)
′, ǫ̂(2) = (ǫ̂2

1
, ..., ǫ̂2n)

′, and P (2) be the n-dimensional square matrix with ij-th component

equal to P 2

ij . The jackknife test statistic is

T̂ =
ǫ̂′P ǫ̂−

∑n
i=1

Piiǫ̂
2

i
√

V̂
+K =

∑

i 6=j ǫ̂iPij ǫ̂j
√

V̂
+K,

V̂ =
ǫ̂(2)′P (2)ǫ̂(2)−

∑n
i=1

P 2

iiǫ̂
4

i

K
=

∑

i 6=j ǫ̂
2

iP
2

ij ǫ̂
2

j

K
, (4)

where
∑

i 6=j denotes the double sum over all i not equal to j. Chao et al. (2014) show that the

jackknife overidentification test with critical region

T̂ ≥ qK−G(1− α), (5)

where qr(τ) denotes the τ -th quantile of the chi-squared distribution with r degrees of freedom, has

asymptotic rejection probability equal to α under many/many weak instruments and heteroskedastic-

ity. For the bootstrap test, we also consider an unstudentized version of the test statistic, which can
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be defined as

T̂u =
∑

i 6=j

ǫ̂iPij ǫ̂j . (6)

The model and data are assumed to satisfy the following regularity conditions. Let Z ′
i, ǫi, U

′
i and

Γ′
i denote the i-th row of Z, ǫ, U , and Γ, respectively.

Assumption 1

(i) Z includes among its columns a vector of ones, rank(Z) = K, and there is a constant C such that

Pii ≤ C < 1 (i=1, ..., n), K → ∞.

(ii) Γi = Sizi/
√
n where Sn = S̃diag(µ1n, ..., µGn) and S̃ is nonsingular. Also, for each j either

µjn =
√
n or µjn/

√
n → 0, µn = min1≤j≤G µjn → ∞, and

√
K/µ2

n → 0. Also, there is C > 0

such that
∥

∥

∥

∑n
i=1

ziz
′
i/n
∥

∥

∥
≤ C and λmin (

∑n
i=1

ziz
′
i/n) ≥ 1/C, for n sufficiently large.

(iii) There is a constant C such that (ǫ1, U1), ..., (ǫn, Un) are independent, with E[ǫi] = 0, E[Ui] = 0,

E[ǫ2i ] < C, E[||Ui||2] ≤ C, V ar((ǫi, U
′
i)

′) = diag(Ω̃i, 0), and λmin

(

∑n
i=1

Ω̃i/n
)

≥ 1/C.

(iv) There is πKn
such that

∑n
i=1

∥

∥

∥zi − πKn
Zi

∥

∥

∥

2

/n → 0.

(v) There is a constant, C > 0, such that with probability one,
∑n

i=1
||zi||4/n2 → 0, E[ǫ4i ] ≤ C and

E[||Ui||4] ≤ C.

(vi) µnS
−1
n → S0 and either (I) K/µ2

n → α for finite α or (II) K/µ2
n → ∞. Also, each of the following

exists:

HP = lim
n→∞

n
∑

i=1

(1− Pii)ziz
′
i/n,

ΣP = lim
n→∞

n
∑

i=1

(1− Pii)
2ziz

′
iσ

2

i /n,

Ψ = lim
n→∞

∑

i 6=j

P 2

ij

(

σ2

iE[ŨjŨ
′
j ] + E[Ũiǫi]E[ǫjŨ

′
j ]
)

/K,

where σ2

i = E[ǫ2i ], γn =
∑n

i=1
E[Uiǫi]/

∑n
i=1

σ2

i , and Ũ = U − ǫγ′n having i-th row Ũ ′
i .

Chao et al. (2014) show that the chi-square approximation in (5) is asymptotically correct under

Assumption 1 as T̂ ≥ qK−G(1− α) if and only if
∑

i 6=j ǫ̂iPij ǫ̂j
√

2KV̂n

≥ qK−G(1− α)−K√
2K

=

√

K −G

K

(

qK−G(1− α)− (K −G)
√

2(K −G)

)

− G√
2K

→ qK−G(1− α). (7)
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3 Wild bootstrap for jackknife overidentificaiton test

In this section, we study the wild bootstrap as an alternative to the asymptotic critical values for

the jackknife overidentification test, and we show the validity of the bootstrap test under many/many

weak instruments and heteroskedasticity. Specifically, the bootstrap procedure is as follows:

Step 1: The bootstrap error term ǫ∗i is obtained by

ǫ∗i = ǫ̂iw
∗
i , i = 1, ..., n, (8)

where w∗
i is a Rademacher random variable with P (w∗

i = 1) = P (w∗
i = −1) = 1/2.

Step 2: The bootstrap analogue of yi is obtained by

y∗i = X ′
i δ̂ + ǫ∗i , i = 1, ..., n. (9)

Step 3: Obtain ǫ̂∗ = y∗ − Xδ̂∗, where δ̂∗, the bootstrap analogue of HFUL, is computed using

(y∗, X, Z). Then, we construct the bootstrap analogue of the jackknife overidentification test statistic

T̂ ∗ =

∑

i 6=j ǫ̂
∗
iPij ǫ̂

∗
j

√

V̂ ∗
+K,

V̂ ∗ =

∑

i 6=j ǫ̂
∗2
i P 2

ij ǫ̂
∗2
j

K
, (10)

and its unstudentized version

T̂ ∗
u =

∑

i 6=j

ǫ̂∗iPij ǫ̂
∗
j . (11)

Step 4: Repeat Steps 1-4 B times, and compute the bootstrap P values p̂∗T = B−1
∑B

b=1
I{T̂ ∗

b ≥ T̂}
and p̂∗Tu = B−1

∑B
b=1

I{T̂ ∗
u,b ≥ T̂u}. We reject the null hypothesis of no misspecification if the bootstrap

P value is smaller than α.

The following result states the asymptotic validity for these bootstrap tests.

Theorem 3.1 Suppose that Assumption 1 holds. Then,

sup
x∈R

∣

∣

∣
P ∗
(

T̂ ∗ ≤ x
)

− P
(

T̂ ≤ x
) ∣

∣

∣
→p 0,

and

sup
x∈R

∣

∣

∣P ∗
(

T̂ ∗
u ≤ x

)

− P
(

T̂u ≤ x
) ∣

∣

∣→p 0,

where P ∗ denotes the probability measure induced by the wild bootstrap procedure in (8)-(11).

We note that terms involving δ̂∗ appear in the formula of T̂ ∗ and T̂ ∗
u . Recently, Wang and Kaffo

(2016) show that under many/many weak instruments and conditional homoskedasticity, a double-

equation residual-based bootstrap procedure that re-samples both structural form equation (1) and

first-stage equation (2) fails to consistently estimate the limiting distribution of the limited information
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maximum likelihood estimator (LIML) and Fuller (1977) estimator. Similarly, the single-equation wild

bootstrap procedure in (8)-(11) cannot consistently estimate the limiting distribution of HFUL under

the current many/many weak instrument sequence and heteroskedasticity. However, such bootstrap

inconsistency related to δ̂∗ does not affect the validity of bootstrapping the jackknife overidentification

tests. The reason is that under the current asymptotic framework, the terms involving δ̂∗ are all of

relatively small order in the bootstrap world, and do not affect the first-order (conditional) limiting

distributions of the test statistics.

We also emphasize that the many/many weak instrument asymptotics considered here, in which

K and the overall instrument strength (e.g., measured by the concentration parameter) is required

to tend to infinity, is very different from the weak instrument asymptotics, in which K is assumed

to be fixed and the instruments are weak in the sense of Staiger and Stock (1997). It is well known

that under this weak instrument asymptotics, the IV estimators, including HFUL, are inconsistent

and have highly nonstandard limiting distributions. The overidentification tests considered here, no

matter based on asymptotic or bootstrap critical values, will also be invalid under this framework.

Indeed, Wang and Tchatoka (2018) and Wang (2020) show the inconsistency of residual-based and

nonparametric bootstrap procedures for a subvector version of the Anderson-Rubin test, which has a

formula closely related to the overidentification test, under the weak instrument asymptotics.

4 Monte Carlo simulations

We conduct some simulations using the model in (1)-(2). Following Davidson and MacKinnon (2010,

2014), we use the following data generating process:

yi = βXi + n1/2|wi|εi,

Xi = awi + Ui, Ui = ρn1/2|wi|ǫi + rVi,

where r = (1−ρ2)1/2, and ǫi and Vi are random variables with mean 0 and variance 1. The endogeneity

parameter is set at ρ ∈ {0.1, 0.5, 0.9}. The instrument matrix Z is distributed N(0, IK), and w is an

n-vector with ‖w‖2 = 1 and w ∈ S(Z), the subspace spanned by the columns of the instruments Z. As

pointed out in their papers,the only property of Z that matters here is the subspace spanned by the

columns of Z and in their setting, all the explanatory power comes from the vector w and the other

columns of Z are simply noise. We consider n = 100 or 500, K ∈ {5, 15, 25, 35, 45}, and the overall

instrument strength is captured by the parameter a, which is set at a ∈ {8, 12, 16}. In addition, δ = 1,

B = 199, α = 5%, and the number of Monte Carlo replications equals 5000.

The results for n = 100 and n = 500 are shown in Figures 1 and 2, respectively. Note that the

overidentification tests based on the asymptotic critical values tend to under-reject, especially when

the number of K is small (e.g., when K = 5). The unstudentized bootstrap tests improve upon the

asymptotic tests with regard to conservativeness but can over-reject when n = 100 and the degree
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of endogeneity is small (e.g., when ρ = 0.1). The studentized bootstrap tests have the best overall

performance with null rejection frequencies very close to the nominal level.

Figure 1: Null empirical rejection frequencies, n = 100
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Figure 2: Null empirical rejection frequencies, n = 500
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A Mathematical Proofs

The following notations are used for the bootstrap asymptotics (see Chang and Park (2003) for sim-

ilar notation and for several useful bootstrap asymptotic properties): for any bootstrap statistic T ∗

we write T ∗ →P ∗

0 in probability if for any δ > 0, ǫ > 0, limn→∞P [P ∗ (|T ∗| > δ) > ǫ] = 0, i.e.,

P ∗ (|T ∗| > δ) = oP (1). Also, we write T ∗ = OP ∗ (nϕ) in probability if and only if for any δ > 0

there exists a Mδ < ∞ such that limn→∞P [P ∗ (|n−ϕT ∗| > Mδ) > δ] = 0, i.e., for any δ > 0 there

exists a Mδ < ∞ such that P ∗ (|n−ϕT ∗| > Mδ) = oP (1). Finally, we write T ∗ →d∗ T in probability

if, conditional on the sample, T ∗ weakly converges to T under P ∗, for all samples contained in a

set with probability converging to one. Specifically, we write T ∗ →d∗ T in probability if and only if

E∗ (f(T ∗)) → E (f(T )) in probability for any bounded and uniformly continuous function f . To be

concise, we sometimes use the short version T ∗ →P ∗

0 to say that T ∗ →P ∗

0 in probability, and use

T ∗ = OP ∗ (nϕ) for T ∗ = OP ∗ (nϕ) in probability.

Proof of Theorem 3.1. We focus on the proof for the studentized version of the bootstrap test.

The proof of the unstudentized version is very similar, thus omitted. First, note that
∑

i 6=j ǫ̂
∗
iPij ǫ̂

∗
j√

K

=
∑

i 6=j

(

ǫ∗i −X ′
i(δ̂

∗ − δ̂)
)′

Pij

(

ǫ∗i −X ′
i(δ̂

∗ − δ̂)
)

/
√
K

=

∑

i 6=j ǫ
∗
iPijǫ

∗
j√

K
+



S−1

n

∑

i 6=j

XiPijX
′
jS

−1
′

n



S′
n(δ̂

∗ − δ̂)/
√
K + 2(δ̂∗ − δ̂)′Sn



S−1

n

∑

i 6=j

XiPijǫ
∗
j



 /
√
K.

(A.12)

Second, by using similar arguments as those in Wang and Kaffo (2016), we can show that for both

Case (I) (K/µ2
n → α < ∞) and Case (II) (K/µ2

n → ∞), we have S′
n(δ̂

∗ − δ̂) = OP ∗(1). In particular,

let α̃∗(δ) =
∑

i 6=j ǫ
∗
i (δ)Pijǫ

∗
j (δ)/ǫ

∗(δ)′ǫ∗(δ), where ǫ∗i (δ) = y∗i −X ′
iδ, and

D̂∗(δ) = −
[

ǫ∗(δ)′ǫ∗(δ)

2

]

∂

∂δ

[

∑

i 6=j ǫ
∗
i (δ)Pijǫ

∗
j (δ)

ǫ∗(δ)′ǫ∗(δ)

]

=
∑

i 6=j

XiPijǫ
∗
j (δ)− ǫ∗(δ)′ǫ∗(δ)α̃∗(δ)γ̃∗(δ), (A.13)

where γ̃∗(δ) = X ′ǫ∗(δ)/ǫ∗(δ)′ǫ∗(δ). Note that S′
n(δ̂

∗ − δ̂) =
(

S−1
n (∂D̂∗(δ̄∗)/∂δ)S−1

′

n

)−1

S−1
n D̂∗(δ̂),

where δ̄∗ lies on the line joining δ̂∗ and δ̂. Also note that by Markov inequality and the current wild

bootstrap procedure,

ǫ∗
′

ǫ∗/n =
n
∑

i=1

E∗[ǫ∗2i ]/n+OP ∗

(

1/
√
n
)

=

n
∑

i=1

ǫ̂2i /n+OP ∗

(

1/
√
n
)

=

n
∑

i=1

σ2

i /n+OP ∗

(

1/
√
n
)

,

X ′ǫ∗/n =

n
∑

i=1

E∗[Xiǫ
∗
i ]/n+OP ∗(1/

√
n) = OP ∗

(

1/
√
n
)

, (A.14)
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as E∗[ǫ∗2i ] = ǫ̂2i and E∗[Xiǫ
∗
i ] = XiE

∗[ǫ∗i ] = 0. Also, let α̃∗ and γ̃∗ denote α̃∗(δ̂) and γ̃∗(δ̂), respectively.

Then, we obtain that α̃∗ = oP ∗(µ2
n/n) under the same arguments as in the proof for Lemma A5 of

Hausman et al. (2012), and we have

S−1

n D̂∗(δ̂) = S−1

n

(

X ′Pǫ∗ −
n
∑

i=1

PiiXiǫ
∗
i + ǫ∗

′

ǫ∗α̃∗γ̃∗

)

= S−1

n

(

X ′Pǫ∗ −
n
∑

i=1

PiiXiǫ
∗
i

)

+ oP ∗(1)

= S−1

n

n
∑

i=1

(

X̂i − PiiXi

)

ǫ∗i + oP ∗(1) →d∗ N (0, HP ) , (A.15)

by S−1
n

(

∑n
i=1

(X̂i − PiiXi)(X̂i − PiiXi)
′ǫ̂2i

)

S−1
′

n →P HP , where X̂i =
∑n

j=1
PijXj , and by following

the arguments in the proof of Lemma A8, Theorem 2 and Theorem 3 of Hausman et al. (2012). Notice

that the asymptotic variance-covariance matrix of δ̂∗ is different from that of δ̂, which has an extra

term Ψ. There is no bootstrap analogue for Ψ because under the current wild bootstrap procedure,

ǫ∗i is independent from the first-stage equation in the bootstrap world. Similarly, by following the

arguments in the proof of Lemma A7 of Hausman et al. (2012), we obtain

−S−1

n (∂D̂∗(δ̄∗)/∂δ)S−1
′

n = Hn + oP ∗(1). (A.16)

Then, we have for both Case (I) and Case (II),
∑

i 6=j ǫ̂
∗
iPij ǫ̂

∗
j√

K
=

∑

i 6=j ǫ
∗
iPijǫ

∗
j√

K
+ oP ∗(1), (A.17)

by using S′
n(δ̂

∗ − δ̂) = OP ∗(1), S−1
n

∑

i 6=j XiPijX
′
jS

−1
′

n = OP (1) = OP ∗(1), and S−1
n

∑

i 6=j XiPijǫ
∗
j =

OP ∗(1).

Next, note that σ∗2
i ≡ E∗[ǫ∗2i ] = ǫ̂2i ≥ C with probability approaching one (w.p.a.1) by Assumption

1(iii), and Pii ≤ C < 1 by Assumption 1(i) so that

V ∗
n =

∑

i 6=j σ
∗2
i Pijσ

∗2
j

K
> C

(

∑n
i=1

∑n
j=1

P 2

ij

K
−
∑n

i=1
P 2

ii

K

)

= C

∑n
i=1

Pii(1− Pii)

K
> C(1− C) > 0.

(A.18)

In addition, we note that E∗[ǫ∗4i ] = ǫ̂4i is bounded in probability by Assumption 1(v), and E∗
[

∑

i 6=j(ǫ
∗
iPijǫ

∗
j )

2

]

=

KV ∗
n . It follows by Lemma A2 of Chao et al. (2012) that

∑

i 6=j ǫ
∗
iPijǫ

∗
j

√

KV ∗
n

→d∗ N(0, 1) in probability. (A.19)

Furthermore, by δ̂∗ →P ∗

δ̂, we obtain that w.p.a.1,
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥

2

≤
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥ and

|ǫ̂∗2i − ǫ∗2i | ≤ 2||Xi||
∥

∥

∥
δ̂∗ − δ̂

∥

∥

∥
+ ||Xi||2

∥

∥

∥
δ̂∗ − δ̂

∥

∥

∥

2

≤ di

∥

∥

∥
δ̂∗ − δ̂

∥

∥

∥
, (A.20)
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for di = 3(1 + ||Xi||2). Also by
∑n

i=1

∑n
j=1

P 2

ij =
∑n

i=1
Pii = K, we have E

[

∑

i 6=j P
2

ijdidj

]

/K ≤
C
∑

i 6=j P
2

ij/K ≤ C, so that by Markov inequality
∑

i 6=j P
2

ijdidj/K = OP (1), which implies that
∑

i 6=j P
2

ijdidj/K = OP ∗(1). Similarly, since ǫ̂2i is bounded in probability, we have w.p.a.1,

E∗





∑

i 6=j

P 2

ijǫ
∗2
i dj



 /K ≤ C
∑

i 6=j

P 2

ij/K ≤ C. (A.21)

Therefore, for V̂ ∗
n =

∑

i 6=j P
2

ij ǫ̂
∗2
i ǫ̂∗2j /K and Ṽ ∗

n =
∑

i 6=j P
2

ijǫ
∗2
i ǫ∗2j /K we have

∣

∣

∣V̂ ∗
n − Ṽ ∗

n

∣

∣

∣ ≤
∑

i 6=j

P 2

ij

∣

∣

∣ǫ̂∗2i ǫ̂∗2j − ǫ∗2i ǫ∗2j

∣

∣

∣
/K

≤
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥

2∑

i 6=j

P 2

ijdidj/K + 2
∥

∥

∥δ̂∗ − δ̂
∥

∥

∥

∑

i 6=j

P 2

ijǫ
∗2
i dj/K →P ∗

0. (A.22)

In addition, note that by the choice of w∗
i for the wild bootstrap procedure, V ∗

n =
∑

i 6=j P
2

ij ǫ̂
2

i ǫ̂
2

j/K =
∑

i 6=j P
2

ijǫ
∗2
i ǫ∗2j /K = Ṽ ∗

n . Then by the triangular inequality we have V̂ ∗
n − V ∗

n →P ∗

0.

Therefore by the Slutzky Theorem and (A.19),

∑

i 6=j ǫ̂
∗
iPij ǫ̂

∗
j

√

KV̂ ∗
n

=

∑

i 6=j ǫ
∗
iPijǫ

∗
j

√

KV̂ ∗
n

+
oP ∗(1)
√

V̂ ∗
n

=

√

V ∗
n

V̂ ∗
n

∑

i 6=j ǫ
∗
iPijǫ

∗
j

√

KV ∗
n

+ oP ∗(1) →d∗ N(0, 1), (A.23)

in probability. The result of bootstrap validity follows by Polya’s Theorem. �
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