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Contents

Section S.1 of the present Supplementary Appendix studies the properties of the
proposed GMM estimators under fixed T" asymptotics. Section S.2 analyses the effect
of transforming the model in terms of time-specific cross-sectional averages on the
proposed estimating equations. Section S.3 considers identification-robust inference,
building upon the idea of Anderson and Rubin (1949) and Stock and Wright (2000).
Finally, Section S.4 discusses local and global identification for the panel AR(1) model

and reports additional Monte Carlo results for this model.



S.1. Fixed T Limit Theory

In the fixed T literature, it is standard practice to treat {f;}._, as fixed parameters
to be estimated, see e.g. Robertson and Sarafidis (2015). However, in order to keep
simple the comparison between the fixed T" and the large T results of this paper, we
deviate from common practice and assume that the factors are random variables, as in
Andrews (2005) and Kuersteiner and Prucha (2013; 2020).

Let Z be some generic F-measurable integrable function with E[|Z|] < co. The

following assumptions are employed:

Assumption S.1.1 (Fixed T'). The DGP for all i and t satisfies the following restric-

tions for r =4 and some § > 0:

(a) (Random Sampling) ¥; = (X, Z;, €, €%, q;) are identically distributed and indepen-

r+48
<

dent across i, conditional on F.

(h) /

(b) Each time-varying element p;y in iy = (T, Zi 1, €ity Ezt, ¢it), satisfies Ex [ (R)

Pit

r+48
<

—_
—
—

[1]

(c) Fach time-invariant element o™ i v; = (A, M, q))' satisfies Ex va”

)

(d) Erleis|zis, vi] = 0 and Ex[ef |vi, q;e] = 0 for all s > t.

Subject to some additional restrictions on the summability of sequence of scalars, the
random sampling restriction can be relaxed without affecting our results. For example,
the asymptotic properties of the proposed estimator are not affected if v;, and hence
Ai, is treated as a fixed sequence of constants, see Juodis and Sarafidis (2020).

For T fixed, the estimating equations in Eq. (17) of the main paper are unbiased,
whether linear or nonlinear. Therefore, in what follows we formulate the problem
without the “delete-one” construction of ﬁ, using time-invariant weights, ¢;. In practice
it is entirely feasible to employ the delete-one construction for any arbitrary value of
T. Moreover, we shall derive the asymptotic properties of the Method of Moments
estimator based on averaged estimating equations only. This is because for fixed T', the
assumptions and proof strategy employed for stacked moment conditions are almost
identical. In what follows, in order to simplify some expressions, we shall use the
shorthand notation Ny =N —1land 77 =T — 1.

Let

m(B) =y m(8). (8.1)



with

1 N N
mgg) (5) = m Z Z |:wj(‘§f)+1zi,t (yi,t - w;,tﬁ) - w](~,£t)zz‘,t (yi,t-H - w;,t+116):| ) (8-2)

i=1 j=1

fort =1,...,Ty and £ € {L; NL}. For the linear estimator we have
wz(f;) = qid@s = qz)\glfs + qz“g;'i,s - Cifs + Niss (83)

and a similar definition applies to the nonlinear estimator mutatis mutandis. The at-

most-quadratic nature of the proposed estimating equations implies that

© 1=l
Y18 =m" (Bo) + (rT 5 0 Hrplfh - m)) (BB, (S4)
k=1

3

=() __ =(¢)
where I'j = o) (B) /86’} , while the [D x K] matrices Hy denote the cor-

B=Bo
responding matrix-valued second derivatives of o (B) with respect to 3, where [y is

the k" element of 3.

Assumption S.1.2 (Local Identification). For each { = {L; NL} the limiting Jacobian

=(&)
matrix F}f) =plimy_, I'y is F-measurable and has rank K a.s. for all T

Assumption S.1.3 (Global Identification). The parameter space @ C RE is compact
and contains By in its interior. Let mi~ " (8) = plimy . [ﬁ(NL) (,8)} for all B € O.

Bo is identified on @ such that m(TNL) (B) =0p iff B= P a.s.

For both choices of moment conditions, we define the estimator ,3(5) as the solution
of the standard GMM minimisation problem:

B€) = argmin ((ﬁ@ (ﬁ)), WN,Tﬁ@) (ﬁ)) : (S.5)

Be®

for some positive definite weighting matrix Wy r. Furthermore, Wy r Ly Wy oas
N — oo, where W is assumed to be F-measurable and positive definite a.s.

Next, in order to simplify asymptotic expressions define

! -1 /
2© = plim [((F}% WN,TFT@)) (FT@) WN,T] , (S.6)

N—oo

where again this quantity is assumed to be F—measurable. Let

aff = b5 [ru) (u9) 57)

be a [D x D] matrix that is full rank a.s. The following theorem summarises the

asymptotic properties of B(O for any fixed value of T

3



Theorem S.1. Let Assumptions S.1.1-S.1.3 be satisfied. Then, for & € {L; NL}, as
N —

N 1/2
VN (B9 = Bo) = 725 (29) "w (F — stably), (S.8)
where E(Tg), .Q%) are F—measurable. Both are independent of 1 ~ N(0p, Ip).

Proof of Theorem S.1.

As in the main text, we break down the proof of this theorem into four distinct steps:

1. Establish negligibility of the bias and own terms i = j;
2. Derive the leading term of the asymptotic expansion;
3. Show consistency of the estimator;

4. Derive asymptotic distribution of the estimator.

To avoid notational clutter, in what follows we set D = 1 but we continue using vector
notation unless specified otherwise. Moreover, we drop the superscript (£) from the
estimating equations, as these are straightforwardly applicable for both linear and non-

linear estimators.

Step 1. Using a similar decomposition as that in Lemma 1, we express

N N Ty
ﬁ(50 NQTl Z Z Z Wi t+1%it (5116 + A\ ft) WjtZit (& 41 T A ft+1))
=1 j=1 t=1
1 N T

= N2T1 ZZ; ; Wi 12t (Eig + Aift) — WigZig (€1 + Aifir1))

N N T
+N2T ZZZ (W) 120t (€ip + Nift) — WiaZig (€1 + Nifig1))
1
i=1 j#i t=1

_ M 5RO

=(1)

— —E}'[ (1)]+E]:[ ()]_'_m(?)

Dem® o). (S.9)

3

—m" —Eyfm
Thus, the bias term is negligible asymptotically as N — oco. Next we show that

VN — Exfm"]) = op(1); (S.10)
VNm) = 0p(1). (S.11)

For the first component observe that

[=VNm" —Erm")) =

Z s (S.12)

ﬂ\



Here E;[EEIT),] = 0 by construction. By Assumption S.1.1 (b)-(c) all time-varying and
time-invariant components have finite 4 + 6 moments conditionally on F, and also
unconditionally. Repeated application of the triangle inequality and the generalized

Holder’s inequality is sufficient to show that
Br [|E01] <=, (S.13)

for some § > 0. Integrability of = also implies that E [|ﬁ§}T)|1+‘S] < o0, and so using
Lemma 1 in Andrews (2005), we have N~* 32N ﬁglr} L5 0p. As a result,

VN — Exm"]) = N"Y2op(1). (S.14)

Step 2. Given that the first term is asymptotically negligible, we consider the

(2)

second term. We expand 2~ in the following manner:

8
me =y m, (S.15)
s=1
where
o | NN L 02 ;] NN o
—(2.1 —(2.2
m - N2T; Z Z Z Cjfr+1Zi4Eit m = NoT, Z Z Z ¢ i1 Ziaife;
i=1 j#i t=1 i=1 j#i t=1
o) | NoNm o T
—(2.3 —(2.4
m = N2T Zzznj,t—i-lzi,tgi,t; m = N2T. ZZ an,t—l—lzi,t)\ift;
Lhis1 i t=1 V=1 i t=1
25 | NN om 26 | NoNom
—(2.5 —(2.6
m = _NQT Z Z chftzi,téi,tﬂ; m = —NQT Z Z chftzi,t)\ift-l—l;
Vst i =1 L=t j#i t=1
o | NN m 08 | NoNn
—(2.7 —(2.8
m = _NTTl Z Z Z NjtZit€it+1; m = - NoT, Z Z Z Nj+ZitNi fre1-
i=1 j#i t=1 i=1 j#i t=1
Clearly, Y + m~® = 0. From the remaining 6 terms, we construct three terms
combined:
—(2.142.5) AL A .
m -~ T N2T Z Z chzi,t FEit1; (S.16)
Lomt i t=1
( : | NN
—(2.342.7
m -~ N2T Z Z Z Zit (Mja1Eit — Njt€it41) ; (S.17)
L=t i t=1
( : | NN | NN
—(2.442.8
m = NT'Tl Z Z Z )‘izi,tAfnj,t—i-l = NT'Tl Z Z Z )\jzj,tAfni,t+17 (818)
i=1 j#i t=1 i=1 j#i t=1



where Aynje1r = fillig+1 — fev1nig-
Next we consider all three terms sequentially. Firstly,

N N T

—(2.142.5) 1
m = 3 2 2 D G
L=t i t=1
| NN | NN
= —Far Z Z Z ZitApeipy1 + NIT Z Z Z CiZitA et
L=t i t=1 L=t j#i t=1
—(2.142.5) | =—(2.142.5)

where ¢ = N 7! Zf\il ¢;. Note that from Assumption S.1.1 each element of ¢;z; ;1 Are; 141

has a finite 4 + 0 moment and it is unconditionally mean zero such that
Er [cizitAfeir] = EF [cizis Er[Afeia|vi, zig]] = 0. (S5.20)

Thus, using similar arguments as before it is straightforward to show that N ﬁgjyﬂﬁ) P

0p from Lemma 1 in Andrews (2005). In particular,
VNG Y = N7V op(1). (S.21)

For the first component observe that

—(2.1+2.5 1
\/ngl) R Erle]——= Z Z ZitApii

N N T
— N7 LZ(Q’—EHC@']) LZL ZitDpeipin | -
VN 4 N=Th&= - ’

=1 t=1
(S.22)
Using Chebyshev’s inequality
N
N7 ——3 "(c; — Exlci]) = op(1); (S.23)
VN S
| Moo
N_1/4\/_NZ lezi’tAfEi’H_l = Op(l). <824)
i=1 t=1
Hence,
VRS — Bl LSS A borl), (525)
Tl\/N i=1 t=1



and, consequently,

N Ty

\/Nﬁ(2‘1+2.5) = — E].‘ CZ Z Z zZ; tAfZ‘:Z t+1 + OP( ) (326)
Tm/_

i=1 t=1
The remaining two terms are more involved. Let

N T
N2T1 ZZZ (Zit(Mjag1€it + Mie€ite1) — Zjt(Migs1€56 + Min€ies1))

z2t1]<z

1
-~ N2 Z qi,N
i=2
1
- Y 527

i=2 j<i

—(2.3+42.7

It has already been established that Ex[m TR At 7)}

= 0. Moreover, Ex[g; ng; n] = 0 for
all ¢ # j. Using this result we will show that

VNI Z o p(1). (8.28)

In particular, consider the variance of this term:

S.n=Er (% i ai N> = Z Erlqly] = Z (Z qm>

=2 1= 1<t
N
=23 Z 'E; @};] (S.29)

where the final equality holds by conditional independence. Next, observe that the
existence of finite 44-0 moments implies that X, y is bounded by some =. Furthermore,
given that Z is assumed to be integrable, the above result also holds unconditionally.

Direct application of Chebyshev’s inequality establishes the desired result:

\/Nﬁ(mw.?) Z Z qi; = (S.30)

z2]<z

Note that all above results extend to D > 1 directly as for any vector & element-wise

convergence in probability implies also implies convergence of the whole vector x



2.442.8
Consider now m( ) . We have

N N T
(2 4+2.8) _ N2T ZZZ)\ Z]tAfnZt-l-l
Lzt j#i t=1
N T N N Ty
N2T1 ZZEJT 23t Al A i1 + S5 N2T ZZZAQ it D i1
=1 t=1 1=1 j#i t=1

(S.31)

where
AG(z) it = zjiAj — Exlz].

Since the second component has mean-zero, using identical arguments to those employed

for ﬁﬁ';ﬁj), it follows that

N T

(9449 1
VR - oSS Erlai A +on()
T i=1 t=1

N T

1
E z2 A +op(1 S.32
Tl\/—;; F =it ] Mit+1 P() ( )

Collecting all terms:

N Ty
\/_m(ﬁ()) E]—‘ Cz Z Zz” ft+1€zt - ftgz t+1)
\/_ =1 t=1
N Ty
ZZEF zlt)‘ (fee1Mie — fiMier1)
\/_ i=1 t=1
‘I—Op(l). (8.33)

At first we establish F—stable convergence of the leading term in v/ N myr(Bo). In
particular, let

N Ty

\/Nﬁ(ﬁo) E]: CZ Zzzzt ft—l—lezt ftgz t+1)

zltl
N T

T \/_ Z ZE}' ZigNil (fes1Mie — fimligs1) +op(1)
1

=1 t=1

Zﬁf% +op(1 (8.34)

where E@% is defined implicitly. Next denote by C; = o (F V{X;}i_;) the o-field
generated by F and (17,...,7;). Then {u(g) C; : © > 1} is a Martingale Difference

8



sequence (element-wise) since by Assumption S.1.1 (a), the data are i.i.d. conditionally
on F. Also let

!/
- IZE[ (75 e 1} - IZE[ (59) If] {uf% (7)) !}‘].
(S.35)
The last equality follows by conditional i.i.d. in Assumption S.1.1 (a). Finally, using

Theorem 3.2. and Corollary 3.1 in Hall and Heyde (1980) in conjunction with the

Cramér-Wold device we obtain
_ _ 1/2
VN (Bo) = T, V/? (Q;@) ¥ (stably), (S.36)

where ¢ ~ N(0p, Ip). This result holds provided that each element ¢;, of u(f) satisfies

the conditional Lindeberg’s condition:
N
NN EF[¢ZrI(Girl> VNe)],  forall e > 0. (S.37)
i=1

Given that the conditional Lyapunov’s condition implies the conditional Lindeberg’s
condition, it is sufficient that Ex[|¢;7|*™] < oo for some § > 0 which in our case can

be verified using Holder’s inequality.

Step 3. The proof of consistency is fairly standard along the lines of Newey and Mc-
Fadden (1994). Sufficient conditions are satisfied given the existence of finite moments
due to Assumption S.1.1 and the global identification over a compact © by Assumption
3.3.

Step 4. Asymptotic distribution can be obtained by expanding the first-order

conditions around the true value (again, we omit the ¢ index):

K
N — fd 1 et A ~
Wyrm(B) = Wir [’m(ﬁo) + (FT +3 > Hrw(Br - 50,10) (8- ﬁo)] - (5.38)
k=1
Our assumptions ensure that the following limits
plim I'r(Bo);  plim Hr(By)
N—o0 N—00
are finite and F measurable. Given that convergence in probability implies convergence
in distribution, the remainder of the proof follows directly from Proposition A.2 in

Kuersteiner and Prucha (2013) and an application of the continuous mapping theorem.
m



Finally, notice that since matrices Z'%c) and .Q;E) are random (but independent of
1)), the unconditional limiting distribution of the proposed estimator is mixed-normal
rather than normal. While this is an important distinction when discussing the prop-
erties of the estimator itself compared to existing literature (e.g. Ahn et al. 2013 and
Robertson and Sarafidis 2015), it plays no role for inference procedures that make
use of standardized (pivotal) statistics. This is so long as both .Q;g) and Z'F}E) can be

consistently estimated from their sample analogues.

S.2. Elimination of Common Time Effects

Consider the following [D; x 1] vector of estimating equations available at time

period ¢, expressed in terms of deviations from time-specific cross-sectional averages:

N N

—(¢)(TE 1
mgg)( )</30) = NN, Z Z |:w](',§t),t+léi,t (éi,t + Aift) - wj(’,gt),téi,t (éi,t+1 + Aift+1)i| .
i=1 j#i
(S.39)
fort =1,...,T—1, where z;, = z;; —2; with Z; = Nt Zfil z;+, and similarly for the

remaining variables. The following lemma shows that the averaged estimating equa-
tions, transformed in terms of deviations from time-specific cross-sectional averages,

can be biased for T large.

Lemma S.1. Suppose that Assumption 3.1 is satisfied. Then for allt =1,...,T — 1,

Ep [ (8y)] = 0p(N2); (3.40)
B 7 (o) = 0. (S41)
Proof. See below. O

As a result of the lemma above, we have

\/ﬁ% ;ED {m,ﬁ”(m (50)] —Op ( %) = op(1). (S.42)

Thus, provided that T/N3 — 0, which is likely to be satisfied in most relevant applica-

tions, this bias term for the transformed linear estimating equations is negligible.

10



Proof of Lemma S.1.
Let Az;; = z;; — Ex[z;+] and similarly for the remaining variables. Noting that Ae;; =

ei+ because Ex [g;;] = 0, we have

N N
— 1
ROTE) gy NV S [wft{tHAzi,t (ip + ANfs) — W) Aziy (6501 + AN fm)}
i=1 ji
1 NN
NN, Z Z _wj(‘i),tJrlAzt (€ + AN fr) — w](',st),tAzt (€ipa1 + A)‘ift+1)i|
i=1 ji
1 NN
~ W 22 Wi Azig (B+ BN — 0l Az (5 + DA ) |
i=1 ji
1 NN
+ NN, Z Z wj('i{tHAzt (Et + A)‘ft) - w]('i),tAzt (Et + A)\ft—&-l)}
i=1 j#i
_ miﬁ)(TE)(l) _ mﬁ&)(TE)@) _ miﬁ)(TE)@) 4 mgﬁ)(TE)M)' (S.43)

As in Lemma 1 it is easy to show that Ep [mif)(TE)(”] = Op,. Consider all remaining

components individually:

N N
—~(&)(TE 1
mgf)( )(2) — NQ—]VI Z Z |:w](‘§t),t+1Azivt (81'7t + A)\zft) - w](‘i),tAz@t (5i,t+1 + A)\iftJrl)]

i=1 ji

N N

1

+ NZN, Z Z |:wj(‘i),t+1Azj,t (e + AN fr) — wj('i),tAZj,t (€ip41 + A)\iftJrl)]
=1 j#i

N N N
1
+ N2N, Z Z Z [wj(-i{tHAzk,t (gip + AN ;) — U)J('i),tAZk,t (i1 + A)\ift—l—l)} .
Vst ki i gk
(S.44)
Using Lemma 1 it is easy to show that only the second component has non-zero condi-

tional expectations, in particular

N N
—(&)(TE)(2 1
Ep [mgg)( a )} = NN, ; ; [ED[Qj,tgft)JrlAzj,t] (AN fi) — ED[Qj,tSft)AZj,t] (AN fir1)] -

(S.45)

11



However, for £ = NL the above conditional expectations are zero. Next,

TE
gé)( )3) _ N2N1 Z Z [ JttHAzzt (cit + AN ft) — J('i)ntAZi,t (i1 + A)\ift-i-l)]
i=1 ];ﬁz

N2N1 Z Z [ gtt+1Azlt Ejp + AN fi) — ](',gt),tAzi,t (&1 + A)‘jfﬂrl)}
i=1 ]751

NZN ZZ Z [ ]tt+1Azlt<5kt+A)\kft) wj('i),tAzi,t (k41 +A/\kft+1)] :
1 =1 k#i j#i,j#k

(S.46)
Here
‘ N N
Ep [ ") - NQNl S [Enlajeeazidl — Enlajeeeio] (AN furr) | Bp[Azi.
=1 j#i
(S.47)
For the final component note that
T
’mvgf)(TE)(ZL) — NQ—M Z [ 'Ei)t-‘rlAzz t (6’515 -+ A)\ ft) w; p tAz’Lt (SZ t+1 —+ AA ft+1)]
i=1

N N
1
+ N3 Z Z [ W,y t+1Azz t (€50 + AN fi) — j('i),tAZi,t (€ja41 + A)\jft+1)]

i=1 j#i

Ny _
+ Wlmgs)(TE)@)' (S.48)

Based on the above decomposition it is not difficult to show that

ED [ﬁgg)(TE)( ] = N2 N ZED [ ”t+1Azzt (5215 + AN; ft) zttAzzt (51 t+1 + A)\ ft-i-l)]

]\172 NN ;; [ED qj, t€j t+1Azj ) (AN fi) — Ep[q]tathzJ i (AN le)}
11 L&
N2 NN, ; ; [ED 45, tgg t)+1€J i) — Enlg;, tfg t)EJ t+1]] Ep[Az;y).
(S.49)
Using steps similar to those in Lemma 1, it is straightforward to show that
Ep [ﬁﬁ’f)(m(ﬁo)} — Op(N72). (S.50)
O

12



Notice that for £ = N L the expression above is exactly zero:

N N

_ 1 1

Ep [mﬁNL)(TE) (50)] ~ TNZNN, >0 [Eolajscieiicid — Eolajaciicenll En[Aziy] = 0p,.
i=1 ji

S.3. Identification-Robust Inference

In Section 5.2 of the main text we discussed potential failures of local and global
identification for the methods proposed in this paper. If identification fails, then none
of the standard testing procedures can be used. Instead, one needs to use a more robust
approach to inference.

An intermediate approach is to use two-step identification robust confidence sets
proposed by Andrews (2018). Depending on the identification strength, this approach
constructs confidence intervals that closely resemble those based on non-robust or robust
tests. Alternatively, one can employ (full) identification robust inference procedures,
thus avoiding an assumption in regards to potential identification strength. In what
follows we will briefly discuss readily available procedures and their pitfalls in our
setup. Building upon the idea of Anderson and Rubin (1949), Stock and Wright (2000)
introduced the nonlinear Anderson-Rubin (AR) test, commonly known as the “S” test.
By construction, this test is robust to identification failure and weak identification. The

S statistic in our setup is given by:
ARy (8) = N(T) () (8)) [29(8)] = (8). (5.51)

where £2(6) (B) is defined in Section 5.1 of the main text. Irrespective of identification

strength and potential failure of global identification, under Hy : 3 = By we have
ARN1(Bo) 5 ¥ (5.52)

Thus, confidence intervals can be constructed by inverting the S statistic. The perfor-

mance of this method in finite samples is illustrated in Section S.4.2.

Remark 1. The S test may have deficient power in overidentified settings where D >>
K, in which case one can consider the so-called K test of Kleibergen (2005). However in
the non-linear case, due to the multi-modal nature of the objective function, the K test
statistic may also have low power over a sizeable part of the parameter space, as all LM
statistics generally lack power around local minima and turning points. Alternatively,
since neither S or K statistics are efficient, one could consider the GMM extensions of
the Moreira (2003) CLR statistic, as put forward by Andrews and Mikusheva (2016)
and Andrews (2016).

13



To this date we are not aware of any theoretical or simulation evidence on the use of
identification-robust testing procedures for GMM methods employed in fixed T factor-
augmented panels.! This may be partially due to the longstanding complication of
identification-robust GMM inference when it comes to subset inference. This problem
will be especially pronounced for all fixed 7" GMM procedures currently available, as
one needs to estimate a large set of nuisance parameters, that is, either F' in the case of
Ahn et al. (2013) and/or G for Robertson and Sarafidis (2015), while at the same time
use many instruments. As a result, confidence intervals constructed using (say) the
projection method of Dufour and Taamouti (2005) and Chaudhuri and Zivot (2011)
are not only difficult to obtain, but they may suffer from low power. The fact that
our procedure does not require estimation of any nuisance parameters, substantially

simplifies identification-robust inference.

S.4. Identification in the Panel AR(1) Model using Averaged Moment Con-

ditions

S.4.1. Theoretical analysis

We consider a reduced form of the panel AR(1) model with a single factor:
Yig = NiGe T Uig;  Uip = QUip1 + iy G =g+ fi; t=1,...,T, (S.53)

where |a|< 1. Without loss of generality, we focus on the nonlinear estimator. Setting
Zit = Yir—1 and gi+ = ¥i1—2, the expected Jacobian matrix at time ¢ takes the following

form:

E(NL) = E]—'P‘?] (Gt—2ft Er(tis—1uig] + ge—1 frrr Ex{uis—1t—2])
—Ez[\/] (gt—2ft+1 Ex [U?,t—J + g1 [t E]—'[ui,tui,t—Q]) . (S.54)

Thus, for T fixed, local identification is guaranteed so long as the factors are stochastic
with a continuous distribution (or non-zero constants). For 7' large, under suitable
stationarity conditions the Jacobian matrix corresponding to the averaged estimating
equations, converges in probability to

2

1 iEOéQ (Elgi-afi] = Elgiafir1] — @ Elgi 1 fi]) - (S.55)

P8 = [\

IProperties of identification robust procedures are only discussed in the context of the simple panel
AR(1) model with fixed effects; see Bun and Kleibergen (2016) and Dovonon et al. (2020).
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Thus in this case, assuming E[f;] = 0, local identification requires that the factor
is serially correlated. On the other hand, for the stacked estimating equations it is
straightforward to see that identification relies purely on fourth-order cross-moments of
unobserved common factors and serial correlation is not required. Similar results apply
to the linear approach and therefore we refrain from providing any details.

In summary, for the estimator that makes use of averaged estimating equations,
provided certain “fixed T” identification restrictions are satisfied, both linear and non-
linear GMM estimators have desirable asymptotic properties as N — oo, even in cases
where the expected Jacobian matrix of the moment conditions becomes singular as
T — oo. As a byproduct, we note that a simple comparison between Eq. (S.54)
and (S.55) reveals that within the proposed framework, identification of autoregressive
models with a unit root is feasible under “fixed T” asymptotics even if it fails when
T — oo. This principle also underlies the approach put forward by Robertson et al.
(2018). Essentially, drawing a parallel with existing results on fixed effects models,
when T is fixed the presence of unobserved factors renders the process of ¥, ; non mean-
stationary by construction, which may help to increase the signal of the model.?

We conclude this section by studying global identification for the AR model us-
ing averaged estimating equations. It is demonstrated that the use of time-invariant

weights alone can be problematic, even if multiple weights are employed.

Proposition S.1. Consider the panel AR(1) model in Eq. (S.53) and let z;; =
(Yit—1,Yir—2)'. Suppose that Ex[qg;\;] # 0. Then

(a) Given q; = (qfl), ql@))’ (multiple time-invariant weights), Assumption 3.3 is satisfied

for T fized, so long as f; has a continuous distribution.

(b) AsT — oo, global identification fails for the same setup as in (a). The pseudo true
value is given by o, = 1.

(c) Given q;y = (qgl),yin_Q)/, Assumption 3.3 is satisfied for both T fixed and T —
o0 cases, so long as fi has a continuous distribution (for T' fized), or is serially

correlated (for T large).

Proof of Proposition S.1.
At first we consider the case where only a time-invariant weight is used. Furthermore,

for simplicity we assume that the process u;, is covariance-stationary and independent

2See e.g. Hayakawa (2009) and Bun and Sarafidis (2015).

15



of factors, such that?
v(s) = Blug i) = o2al' (1 — a2) " (S.56)

In this case, the expected Jacobian matrix reduces to

T 2
v g, iy (fe Bluig—auig] — fro Elug, 1)) )
g T f[q ] ( ZiZ (ft E[ui,t—Zui,t] - ft+1 E[ui,t—lui,t—Q])]
Efu; ] Z?; (fico — fis1) >
= — Exgi\;
T f[q ] ( Q ZtT;Q (ftOlo - ft+1) .

On the other hand, the matrix of expected second derivatives is given by

2 N (g B2, ] — g1 Elug
H;NL) - = E]:[qZ)\z] . t=1 (gt [uz,tfl] gi—1 ['LL )t lut])
Ty 1;2 (gt E[ui,t—lui,t—Q] — gt—1 E[Ui,t—ZUt])
o 2 E[u?t] B0\ thi1 (9t — 91-1%0)
-7 Flaii] T1
1 Qo thz (gt - 9t—1a0)

2E[uf)] iy
— T ,t E]—'[q1/\z] tf;l t '
1 ao thz Ji

Note that because of different summation (i.e. 3.2, vs S°/1), the pseudo true-values

for each instrument are different. In particular, for z;; = y;;—1 the pseudo true value

is:
T1 o Tl
= ag — thl(a(;f 1= fen) _ Zti e gy o112, (S.57)
t=1 ft t=1 ft
while for z;; = v;,—2 the corresponding pseudo-true value is
T _ T
Al = ap — Zt=2(0“;{t Jer) _ =2 funa # o (S.58)
thz ft t=2 ft

However, since the difference between o and a4 is of order Op(T™') for T large

the model is not globally identified, with the pseudo-true value of plim,_, o} =

: *k
plim,_, o7 = 1.

Finally, we consider the setup with one additional time-varying weight, ¢;; = v;;—2.

In this setup, we only use z;; = y;;—1 as an instrument. For the combination with

3All results will stay the same if we assume a finite past initialization. Actually, in that case, the

global identification condition is more likely to be satisfied for T fixed.
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time-invariant weight we showed previously that the pseudo-true value satisfies

N B ZtTil(Oéoft — fi1) Zt 1ft+1 =14 0p(T 1/2)' (S.59)

;1 ft ft

The Jacobian matrix for the time-varying weight is given by
™ = th 2 (fe(v(1) + Bx[A]gi19t) — fre1(7(0) + Ex[A7]g7 1))

+Ex[\]+ th 1 (firr (VD) + Ex[Algi-190-2) — fi(7(2) + Ex[N]gi—29:))

1 &

== Ef[/\?h(o)ﬁ Z(ft+1 — aofi)(gi—2 — 2 gi-1)- (S.60)

After similar derivations one can show that the expected second derivative is of the

form
H{"Y = 2Bx(\]y Z fi(gi—2 — aogi—1)- (S.61)

Thus the pseudo-true value for this setup is given by:

T 7 ~ ~
of = Sty frea (G2 — c0gi-1) _ 13+ >0t frra (G2 — aoGio1)
Zthil fe(g1—2 — 20gi—1) 15 + S fi@ees — a0gin)

: (S.62)

where ﬁ and g; denote the demeaned version of f; and g, respectively, and py = E[f].
From the above expression we can see that af clearly differs from a*, both for T fixed
and T' — oc.

For example, if f; is an MA(1) with parameter 6 and increments v, then

2
. H
plimal = - ! o

(S.63)

which equals 1 only if either § = 0 (no autocorrelation in f;) or ap = 0. On the other

hand, if f; is an AR(1) with parameter oy:

pi+af(l— aoozfl(af - 1)

plimal = , S.64
P = 2 oy (1~ avay) a1 (564
which, again, equals 1 only if oy =0 or py =0 and ay = 1. O]

The above proposition shows that in the panel AR(1) model, global identification

cannot be guaranteed by using multiple time-invariant weights alone. That is, the use
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of at least one time-varying weight is necessary for large T identification. Overall, the
previous discussion indicates that the panel AR (1) model proxies the worst case scenario
in terms of local and global identification. In any case, we do advise to use time-varying

weights for more general models, especially with predetermined regressors.

S.4.2. Simulations

In order to illustrate how theoretical results on identification of the panel AR model

are relevant in finite samples, we consider the following DGP:

Yit = QY1+ Aife + Eits di,t = )\?ft + 5?,5 (S'65)
fe=pp+ I e =apfin+ \/1_04?%7 (5.66)
for t = —4,...T. This is a simplified version of the model considered in Juodis and

Sarafidis (2018), as well as that used in the main text. All time-varying error terms are
mutually independent N (0, 1). All dynamic processes are initialized in the recent past
such that

Yis = Nifos + sy dis = X5+ 55,(1_)55 f-5 = tu_s. (S.67)

We specify E[\] = E[M] = 1, af = 0.5, a = {0.4;0.8}, whereas p; = {0;2}. As
discussed previously, us plays a crucial role when it comes to local and global identifi-
cation. Finally, we consider N = {50;200;500} and 7" = {5;10;20;50}. The number of
replications equals 4,000 for each design and the factors are drawn in each replication.
Comments

Since we are interested in emphasizing different theoretical properties of the pro-
posed linear and non-linear methods, we present results for different quantities. In
particular, for the linear approach we consider the estimator itself, and results are re-
ported in terms of mean bias, RMSE, rejection frequencies of the t-test statistic and
the overidentifying restrictions (J-)test statistic (nominal size is 5% in both cases).
This estimator is implemented using a single weight ¢; = 1 with three instruments
Zit = (Yit—1,Yit—2,Yit—3)". Thus, the degree of overidentification is 2.

For the non-linear approach we focus on robust inference, and study the properties
of the Anderson-Rubin test statistic. In this regard, this study is the first one of its kind
in the panel data literature. In order to implement the procedure the set of instruments
is limited to z;; = (Y ¢—1,¥i+—2)". However, in order to achieve global identification we

consider three sets of weights g;+ = (1,¥i+—2,¥i+—3)". The time-invariant weight is used
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for both sets of instruments, while the time-varying weights are used in pairs with
the corresponding lagged values, i.e. for z;; = y;1—1 we set ¢;; = y;t—2, Whereas for
Zit = Yir—2 We set ¢;; = y;—3. This specific choice corresponds to the use of two lagged
values of differenced instruments in the setup of Anderson and Hsiao (1982). Thus the
total number of moment conditions is 4.

The parameter iy plays a non-trivial role for local and global identification. In
particular, for py # 0 the linear estimator is v/ NT—consistent and asymptotically
mixed normal. Also the non-linear approach with both time-invariant and time-varying
weights is globally and locally identified as long as py # 0. Thus the AR statistic will
have non-trivial power towards a s = ag + (NT)~Y/2A alternatives.

On the other hand, for ;i = 0 local and global identification might fail when the
third moment of f; is zero, as it is the case in the current setup. In particular, the
linear estimator is only /N —consistent but remains asymptotically mixed normal.
Results

At first we summarize the results presented in Table S.1 for the linear estimator.

e (Estimation) The bias of the linear estimator developed in this paper is negligible
for all combinations of N and T we consider. This is in line with our theo-
retical results. Furthermore, the RMSE decreases in N confirming the minimal
V/N —consistency of the estimator. On the other hand, the RMSE decreases in T
only when py # 0, as for uy = 0 the expected Jacobian matrix is asymptotically
singular for T — oo. Both bias and RMSE are somewhat larger for a = 0.4, than
for « = 0.8

e (Inference) For smaller values of T" and N the t-statistic appears to be size-
distorted. However, once T" and (especially) N increase the rejection frequencies
approach the nominal 5% level. The rejection frequencies for the J—statistic are

close to the nominal size for almost all setups.

Given that for the non-linear approach we solely focus on inference, the corre-
sponding rejection frequencies are summarized by means of Figures S.1-S.3. Below we

summarize main patterns observed in these figures.

e (Size) The rejection frequencies under the null hypothesis are close to the nominal
size of 5% in almost all cases. Only when N = 50,7 = 5, o = 0.4 the test statistic

is somewhat undersized (as in the case of the linear estimator).
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e (The role of ug) As with the linear estimator, results differ substantially, depend-
ing on the value of py. In particular, while the Jacobian is non-singular for all 7',
including 7" — oo, its value is small in absolute terms when py = 0, thus leading
to a “semi-weak instruments” problem. As a result, power is mainly with respect

to N — oo, i.e. towards ay = o + N~V2A alternatives.

e (The role of T') For p1; = 2, the test statistic has non-trivial power over distant
alternatives. In particular, for any fixed value of @ and N, power is uniformly

increasing in 7" over alternatives. This is not the case for uy = 0.

o (Multimodality) For s = 0 we can see that in most cases the power curves have
a single minimum at the true value o = . On the other hand, for p1; = 2 the
global identification problems become more pronounced, and the power curves
appear to have a second minimum at o = 1. This is especially pronounced for
ap = 0.4, and for larger values of T. However, for relatively large values of IV,

power at a = 1 remains above the nominal size of the test.
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Figure S.1: Anderson-Rubin statistic rejection frequencies for N = 50.
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Figure S.2: Anderson-Rubin statistic rejection frequencies for N = 200.
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Figure S.3: Anderson-Rubin statistic rejection frequencies for N = 500.
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Table S.1: Linear GMM estimator with ¢; = 1

N =50 N =200 N =500

Designs One Step GMM Two Step GMM One Step GMM Two Step GMM  One Step GMM  Two Step GMM

T o pg|Bias RMSE ¢ |Bias RMSE ¢ J |Bias RMSE ¢t |Bias RMSE ¢ J |Bias RMSE ¢ |Bias RMSE ¢t J
5 .4 01].002 .300 .075(-.002 .252 .116 .028}-.002 .140 .071}-.001 .115 .081 .035/.000 .100 .082|.000 .079 .089 .045
5 .4 2].011 .158 .097(.014 .137 .126 .051|.002 .073 .080(.002 .060 .086 .049/.001 .050 .078|.001 .039 .085 .052
5 .8 01.001 .148 .084}-.001 .126 .118 .026/-.002 .073 .078(-.002 .055 .089 .044|.000 .055 .072}-.001 .038 .084 .039
5 .8 21.004 .065 .116(.007 .054 .142 .051].002 .033 .082(.002 .026 .096 .048/.000 .020 .077|.001 .015 .083 .046
10 .4 0].000 .183 .051}-.002 .167 .074 .036/.000 .093 .058].000 .079 .060 .043|.001 .056 .056|.000 .050 .056 .051
10 .4 2].004 .146 .065|.011 .119 .083 .041|.002 .075 .060|.003 .063 .064 .044|.001 .042 .065/.001 .035 .063 .050
10 .8 0]-.003 .145 .057]-.002 .136 .078 .034|.000 .068 .063|.000 .050 .068 .047|.000 .046 .061|.000 .032 .071 .048
10 .8 2].003 .074 .066|.005 .051 .092 .038|.001 .039 .068|.002 .023 .071.049|.001 .027 .062|.001 .017 .064 .049
20 .4 0(-.001 .156 .051|-.002 .141 .069 .040(-.001 .092 .057|-.001 .069 .058 .047(.001 .051 .057].001 .045 .061 .048
20 .4 21.000 .098 .059|.003 .085 .073.040({.000 .050 .056|.001 .043 .055.048(.000 .031 .060].001 .024 .064 .046
20.8 0.001 .120 .044].000 .096 .063 .033|.001 .058 .051|.000 .046 .055 .046(.000 .037 .052|.000 .027 .048 .050
20 .8 21.002 .069 .053|.002 .042 .079 .042|.000 .053 .057|.001 .023 .066 .044|.000 .024 .054|.000 .013 .056 .048
50 .4 0(.000 .142 .042|.002 .124 .057 .043|-.001 .078 .050].000 .067 .054 .045/.000 .047 .049].001 .040 .053 .049
50 .4 21.001 .048 .053|.002 .046 .070.045/.000 .023 .052|.001 .022 .053 .046(.000 .015 .046|.000 .014 .047 .050
50 .8 0/.000 .114 .045].001 .090 .061 .037|-.001 .058 .047|.000 .039 .051 .043(.000 .039 .048|.000 .024 .047 .048
50 .8 21.001 .037 .059|.001 .026 .073 .042|.000 .019 .055|.000 .012 .058 .051(.000 .011 .056|.000 .008 .058 .049
Notes. Results based on N = 4,000 Monte Carlo draws. “Bias” corresponds to the mean bias; “RMSE” the Root Mean Squared Error; “t” correspond

to the empirical rejection frequencies of the Wald test statistic with a 5% nominal level; “J” correspond to the empirical rejection frequencies of

overidentifying J test statistic with a 5% nominal level.
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