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Contents

Section S.1 of the present Supplementary Appendix studies the properties of the

proposed GMM estimators under fixed T asymptotics. Section S.2 analyses the effect

of transforming the model in terms of time-specific cross-sectional averages on the

proposed estimating equations. Section S.3 considers identification-robust inference,

building upon the idea of Anderson and Rubin (1949) and Stock and Wright (2000).

Finally, Section S.4 discusses local and global identification for the panel AR(1) model

and reports additional Monte Carlo results for this model.
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S.1. Fixed T Limit Theory

In the fixed T literature, it is standard practice to treat {ft}Tt=1 as fixed parameters

to be estimated, see e.g. Robertson and Sarafidis (2015). However, in order to keep

simple the comparison between the fixed T and the large T results of this paper, we

deviate from common practice and assume that the factors are random variables, as in

Andrews (2005) and Kuersteiner and Prucha (2013; 2020).

Let Ξ be some generic F -measurable integrable function with E[|Ξ|] < ∞. The

following assumptions are employed:

Assumption S.1.1 (Fixed T ). The DGP for all i and t satisfies the following restric-

tions for r = 4 and some δ > 0:

(a) (Random Sampling) Υi = (Xi,Zi, εi, ε
d
i , qi) are identically distributed and indepen-

dent across i, conditional on F .

(b) Each time-varying element p
(h)
i,t in pi,t = (x′

i,t, z
′
i,t, εi,t, ε

d
i,t, qi,t)

′, satisfies EF

[∣∣∣p(h)i,t

∣∣∣
r+δ
]
≤

Ξ.

(c) Each time-invariant element v
(h)
i in vi = (λi, λ

d
i , qi)

′ satisfies EF

[∣∣∣v(h)i

∣∣∣
r+δ
]
≤ Ξ.

(d) EF [εi,s|zi,t,vi] = 0 and EF [ε
d
i,s|vi, qi,t] = 0 for all s ≥ t.

Subject to some additional restrictions on the summability of sequence of scalars, the

random sampling restriction can be relaxed without affecting our results. For example,

the asymptotic properties of the proposed estimator are not affected if vi, and hence

λi, is treated as a fixed sequence of constants, see Juodis and Sarafidis (2020).

For T fixed, the estimating equations in Eq. (17) of the main paper are unbiased,

whether linear or nonlinear. Therefore, in what follows we formulate the problem

without the “delete-one” construction of f̂t, using time-invariant weights, qi. In practice

it is entirely feasible to employ the delete-one construction for any arbitrary value of

T . Moreover, we shall derive the asymptotic properties of the Method of Moments

estimator based on averaged estimating equations only. This is because for fixed T , the

assumptions and proof strategy employed for stacked moment conditions are almost

identical. In what follows, in order to simplify some expressions, we shall use the

shorthand notation N1 = N − 1 and T1 = T − 1.

Let

m
(ξ)
(β) =

1

T1

T1∑

t=1

m
(ξ)
t (β), (S.1)
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with

m
(ξ)
t (β) =

1

N2

N∑

i=1

N∑

j=1

[
w

(ξ)
j,t+1zi,t

(
yi,t − x′

i,tβ
)
− w

(ξ)
j,t zi,t

(
yi,t+1 − x′

i,t+1β
)]

, (S.2)

for t = 1, . . . , T1 and ξ ∈ {L;NL}. For the linear estimator we have

w
(L)
i,s = qidi,s = qiλ

d
i fs + qiε

d
i,s = cifs + ηi,s, (S.3)

and a similar definition applies to the nonlinear estimator mutatis mutandis. The at-

most-quadratic nature of the proposed estimating equations implies that

m
(ξ)
(β) =m

(ξ)
(β0) +

(
Γ

(ξ)

T +
1

2

K∑

k=1

H
(ξ)

T,k(βk − β0,k)

)
(β − β0), (S.4)

where Γ
(ξ)

T =
[
∂m

(ξ)
(β)/∂β′

]
β=β0

, while the [D × K] matrices H
(ξ)

T,k denote the cor-

responding matrix-valued second derivatives of m
(ξ)
(β) with respect to β, where βk is

the kth element of β.

Assumption S.1.2 (Local Identification). For each ξ = {L;NL} the limiting Jacobian

matrix Γ
(ξ)
T = plimN→∞ Γ

(ξ)

T is F-measurable and has rank K a.s. for all T .

Assumption S.1.3 (Global Identification). The parameter space Θ ⊂ R
K is compact

and contains β0 in its interior. Let m
(NL)
T (β) = plimN→∞

[
m

(NL)
(β)
]
for all β ∈ Θ.

β0 is identified on Θ such that m
(NL)
T (β) = 0D iff β = β0 a.s.

For both choices of moment conditions, we define the estimator β̂(ξ) as the solution

of the standard GMM minimisation problem:

β̂(ξ) = argmin
β∈Θ

((
m

(ξ)
(β)
)′
WN,Tm

(ξ)
(β)

)
, (S.5)

for some positive definite weighting matrix WN,T . Furthermore, WN,T
p−→ WT as

N → ∞, where WT is assumed to be F -measurable and positive definite a.s.

Next, in order to simplify asymptotic expressions define

Σ
(ξ)
T ≡ plim

N→∞

[((
Γ

(ξ)
T

)′
WN,TΓ

(ξ)
T

)−1 (
Γ

(ξ)
T

)′
WN,T

]
, (S.6)

where again this quantity is assumed to be F−measurable. Let

Ω
(ξ)
T = EF

[
(T1)µ

(ξ)
i,T

(
µ

(ξ)
i,T

)′]
(S.7)

be a [D ×D] matrix that is full rank a.s. The following theorem summarises the

asymptotic properties of β̂(ξ) for any fixed value of T :
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Theorem S.1. Let Assumptions S.1.1-S.1.3 be satisfied. Then, for ξ ∈ {L;NL}, as
N → ∞ √

N
(
β̂(ξ) − β0

)
⇒ T−1/2Σ

(ξ)
T

(
Ω

(ξ)
T

)1/2
ψ (F − stably), (S.8)

where Σ
(ξ)
T , Ω

(ξ)
T are F−measurable. Both are independent of ψ ∼ N(0D, ID).

Proof of Theorem S.1.

As in the main text, we break down the proof of this theorem into four distinct steps:

1. Establish negligibility of the bias and own terms i = j;

2. Derive the leading term of the asymptotic expansion;

3. Show consistency of the estimator;

4. Derive asymptotic distribution of the estimator.

To avoid notational clutter, in what follows we set D = 1 but we continue using vector

notation unless specified otherwise. Moreover, we drop the superscript (ξ) from the

estimating equations, as these are straightforwardly applicable for both linear and non-

linear estimators.

Step 1. Using a similar decomposition as that in Lemma 1, we express

m(β0) =
1

N2T1

N∑

i=1

N∑

j=1

T1∑

t=1

(wj,t+1zi,t (εi,t + λift)− wj,tzi,t (εi,t+1 + λift+1))

=
1

N2T1

N∑

i=1

T1∑

t=1

(wi,t+1zi,t (εi,t + λift)− wi,tzi,t (εi,t+1 + λift+1))

+
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

(wj,t+1zi,t (εi,t + λift)− wj,tzi,t (εi,t+1 + λift+1))

=m
(1)

+m
(2)

=m
(1) − EF [m

(1)
] + EF [m

(1)
] +m

(2)

=m
(1) − EF [m

(1)
] +m

(2)
+O(N−1). (S.9)

Thus, the bias term is negligible asymptotically as N → ∞. Next we show that

√
N(m

(1) − EF [m
(1)
]) = oP (1); (S.10)

√
N(m

(2)
) = OP (1). (S.11)

For the first component observe that

I =
√
N(m

(1) − EF [m
(1)
]) =

1√
N

1

N

N∑

i=1

µ
(1)
i,T . (S.12)
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Here EF [µ
(1)
i,T ] = 0 by construction. By Assumption S.1.1 (b)-(c) all time-varying and

time-invariant components have finite 4 + δ moments conditionally on F , and also

unconditionally. Repeated application of the triangle inequality and the generalized

Hölder’s inequality is sufficient to show that

EF

[
|µ(1)

i,T |1+δ
]
< Ξ, (S.13)

for some δ > 0. Integrability of Ξ also implies that E
[
|µ(1)

i,T |1+δ
]
< ∞, and so using

Lemma 1 in Andrews (2005), we have N−1
∑N

i=1µ
(1)
i,T

p−→ 0D. As a result,

√
N(m

(1) − EF [m
(1)
]) = N−1/2 oP (1). (S.14)

Step 2. Given that the first term is asymptotically negligible, we consider the

second term. We expand m
(2)

in the following manner:

m
(2)

=
8∑

s=1

m
(2.s)

, (S.15)

where

m
(2.1)

=
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

cjft+1zi,tεi,t; m
(2.2)

=
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

cjft+1zi,tλift;

m
(2.3)

=
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

ηj,t+1zi,tεi,t; m
(2.4)

=
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

ηj,t+1zi,tλift;

m
(2.5)

= − 1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

cjftzi,tεi,t+1; m
(2.6)

= − 1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

cjftzi,tλift+1;

m
(2.7)

= − 1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

ηj,tzi,tεi,t+1; m
(2.8)

= − 1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

ηj,tzi,tλift+1.

Clearly, m
(2.2)

+m
(2.6)

= 0. From the remaining 6 terms, we construct three terms

combined:

m
(2.1+2.5)

= − 1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

cjzi,t∆fεi,t+1; (S.16)

m
(2.3+2.7)

=
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

zi,t (ηj,t+1εi,t − ηj,tεi,t+1) ; (S.17)

m
(2.4+2.8)

=
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

λizi,t∆fηj,t+1 =
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

λjzj,t∆fηi,t+1, (S.18)

5



where ∆fηj,t+1 = ftηi,t+1 − ft+1ηi,t.

Next we consider all three terms sequentially. Firstly,

m
(2.1+2.5)

= − 1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

cjzi,t∆fεi,t+1

= −c
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

zi,t∆fεi,t+1 +
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

cizi,t∆fεi,t+1

=m
(2.1+2.5)
(1) +m

(2.1+2.5)
(2) , (S.19)

where c = N−1
∑N

i=1 ci. Note that from Assumption S.1.1 each element of cizi,t∆fεi,t+1

has a finite 4 + δ moment and it is unconditionally mean zero such that

EF [cizi,t∆fεi,t+1] = EF [cizi,t EF [∆fεi,t+1|vi, zi,t]] = 0. (S.20)

Thus, using similar arguments as before it is straightforward to show thatNm
(2.1+2.5)
(2)

p−→
0D from Lemma 1 in Andrews (2005). In particular,

√
Nm

(2.1+2.5)
(2) = N−1/2 oP (1). (S.21)

For the first component observe that

√
Nm

(2.1+2.5)
(1) = −EF [ci]

1

T1

√
N

N∑

i=1

T1∑

t=1

zi,t∆fεi,t+1

−N−1/2

(
1√
N

N∑

i=1

(ci − EF [ci])

)(
1√
N

N∑

i=1

1

T1

T1∑

t=1

zi,t∆fεi,t+1

)
.

(S.22)

Using Chebyshev’s inequality

N−1/4 1√
N

N∑

i=1

(ci − EF [ci]) = oP (1); (S.23)

N−1/4 1√
N

N∑

i=1

1

T1

T1∑

t=1

zi,t∆fεi,t+1 = oP (1). (S.24)

Hence,

√
Nm

(2.1+2.5)
(1) = −EF [ci]

1

T1

√
N

N∑

i=1

T1∑

t=1

zi,t∆fεi,t+1 + oP (1), (S.25)
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and, consequently,

√
Nm

(2.1+2.5)
= −EF [ci]

1

T1

√
N

N∑

i=1

T1∑

t=1

zi,t∆fεi,t+1 + oP (1). (S.26)

The remaining two terms are more involved. Let

m
(2.3+2.7)

=
1

N2T1

N∑

i=2

T1∑

t=1

∑

j<i

(zi,t(ηj,t+1εi,t + ηj,tεi,t+1)− zj,t(ηi,t+1εj,t + ηi,tεj,t+1))

=
1

N2

N∑

i=2

qi,N

=
1

N2

N∑

i=2

∑

j<i

qi,j. (S.27)

It has already been established that EF [m
(2.3+2.7)

] = 0. Moreover, EF [qi,Nqj,N ] = 0 for

all i 6= j. Using this result we will show that

√
Nm

(2.3+2.7)
= oP (1). (S.28)

In particular, consider the variance of this term:

Σq,N = EF



(

1

N

N∑

i=2

qi,N

)2

 =

1

N2

N∑

i=2

EF [q
2
i,N ] =

1

N2

N∑

i=2

EF



(
∑

j<i

qi,j

)2



=
1

N2

N∑

i=2

∑

j<i

EF

[
q2i,j
]
, (S.29)

where the final equality holds by conditional independence. Next, observe that the

existence of finite 4+δ moments implies thatΣq,N is bounded by some Ξ. Furthermore,

given that Ξ is assumed to be integrable, the above result also holds unconditionally.

Direct application of Chebyshev’s inequality establishes the desired result:

√
Nm

(2.3+2.7)
=

1√
NN

N∑

i=2

∑

j<i

qi,j = oP (1). (S.30)

Note that all above results extend to D > 1 directly as for any vector x element-wise

convergence in probability implies also implies convergence of the whole vector x.
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Consider now m
(2.4+2.8)

. We have

m(2.4+2.8) =
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

λjzj,t∆fηi,t+1

=
N1

N2T1

N∑

i=1

T1∑

t=1

EF [zi,tλj]∆fηi,t+1 +
1

N2T1

N∑

i=1

N∑

j 6=i

T1∑

t=1

∆g(z),j,t∆fηi,t+1,

(S.31)

where

∆g(z),j,t = zj,tλj − EF [zj,tλj].

Since the second component has mean-zero, using identical arguments to those employed

for m
(2.3+2.7)
N,T , it follows that

√
Nm

(2.4+2.8)
=

N1

N

1

T1

√
N

N∑

i=1

T1∑

t=1

EF [zi,tλj]∆fηi,t+1 + oP (1)

=
1

T1

√
N

N∑

i=1

T1∑

t=1

EF [zi,tλj]∆fηi,t+1 + oP (1). (S.32)

Collecting all terms:

√
Nm(β0) =EF [ci]

1

T1

√
N

N∑

i=1

T1∑

t=1

zi,t (ft+1εi,t − ftεi,t+1)

− 1

T1

√
N

N∑

i=1

T1∑

t=1

EF [zi,tλi] (ft+1ηi,t − ftηi,t+1)

+ oP (1). (S.33)

At first we establish F−stable convergence of the leading term in
√
NmN,T (β0). In

particular, let

√
Nm(β0) =EF [ci]

1

T1

√
N

N∑

i=1

T1∑

t=1

zi,t (ft+1εi,t − ftεi,t+1)

− 1

T1

√
N

N∑

i=1

T1∑

t=1

EF [zi,tλi] (ft+1ηi,t − ftηi,t+1) + oP (1)

=
1√
N

N∑

i=1

µ
(ξ)
i,T + oP (1), (S.34)

where µ
(ξ)
i,T is defined implicitly. Next denote by Ci = σ

(
F ∨ {Υj}ij=1

)
the σ-field

generated by F and (Υ1, . . . ,Υi). Then {µ(ξ)
i,T , Ci : i ≥ 1} is a Martingale Difference
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sequence (element-wise) since by Assumption S.1.1 (a), the data are i.i.d. conditionally

on F . Also let

Ω
(ξ)
T = T1N

−1
N∑

i=1

E

[
µ
(ξ)
i,T

(
µ
(ξ)
i,T

)′
|Ci−1

]
= T1N

−1
N∑

i=1

E

[
µ
(ξ)
i,T

(
µ
(ξ)
i,T

)′
|F
]
= T1 E

[
µ
(ξ)
i,T

(
µ
(ξ)
i,T

)′
|F
]
.

(S.35)

The last equality follows by conditional i.i.d. in Assumption S.1.1 (a). Finally, using

Theorem 3.2. and Corollary 3.1 in Hall and Heyde (1980) in conjunction with the

Cramér-Wold device we obtain

√
Nm(β0) ⇒ T

−1/2
1

(
Ω

(ξ)
T

)1/2
ψ (stably), (S.36)

where ψ ∼ N(0D, ID). This result holds provided that each element ζi,t of µ
(ξ)
i,T satisfies

the conditional Lindeberg’s condition:

N−1

N∑

i=1

EF [ζ
2
i,T I(|ζi,T |>

√
Nε)], for all ε > 0. (S.37)

Given that the conditional Lyapunov’s condition implies the conditional Lindeberg’s

condition, it is sufficient that EF [|ζi,T |2+δ] < ∞ for some δ > 0 which in our case can

be verified using Hölder’s inequality.

Step 3. The proof of consistency is fairly standard along the lines of Newey and Mc-

Fadden (1994). Sufficient conditions are satisfied given the existence of finite moments

due to Assumption S.1.1 and the global identification over a compact Θ by Assumption

3.3.

Step 4. Asymptotic distribution can be obtained by expanding the first-order

conditions around the true value (again, we omit the ξ index):

WN,Tm(β̂) =WN,T

[
m(β0) +

(
Γ T +

1

2

K∑

k=1

HT,k(β̂k − β0,k)

)
(β̂ − β0)

]
. (S.38)

Our assumptions ensure that the following limits

plim
N→∞

Γ T (β0); plim
N→∞

HT,k(β0)

are finite and F measurable. Given that convergence in probability implies convergence

in distribution, the remainder of the proof follows directly from Proposition A.2 in

Kuersteiner and Prucha (2013) and an application of the continuous mapping theorem.
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Finally, notice that since matrices Σ
(ξ)
T and Ω

(ξ)
T are random (but independent of

ψ), the unconditional limiting distribution of the proposed estimator is mixed-normal

rather than normal. While this is an important distinction when discussing the prop-

erties of the estimator itself compared to existing literature (e.g. Ahn et al. 2013 and

Robertson and Sarafidis 2015), it plays no role for inference procedures that make

use of standardized (pivotal) statistics. This is so long as both Ω
(ξ)
T and Σ

(ξ)
T can be

consistently estimated from their sample analogues.

S.2. Elimination of Common Time Effects

Consider the following [Dt × 1] vector of estimating equations available at time

period t, expressed in terms of deviations from time-specific cross-sectional averages:

m̃
(ξ)(TE)
t (β0) =

1

NN1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1zi,t

(
εi,t + λift

)
− w

(ξ)
j,t,tzi,t

(
εi,t+1 + λift+1

)]
.

(S.39)

for t = 1, . . . , T − 1, where zi,t = zi,t−zt with zt = N−1
∑N

i=1 zi,t, and similarly for the

remaining variables. The following lemma shows that the averaged estimating equa-

tions, transformed in terms of deviations from time-specific cross-sectional averages,

can be biased for T large.

Lemma S.1. Suppose that Assumption 3.1 is satisfied. Then for all t = 1, . . . , T − 1,

ED

[
m̃

(L)(TE)
t (β0)

]
= OP (N

−2); (S.40)

ED

[
m̃

(NL)(TE)
t (β0)

]
= 0Dt

. (S.41)

Proof. See below.

As a result of the lemma above, we have

√
NT

1

T

T∑

t=1

ED

[
m̃

(L)(TE)
t (β0)

]
= OP

(√
T

N3

)
= oP (1). (S.42)

Thus, provided that T/N3 → 0, which is likely to be satisfied in most relevant applica-

tions, this bias term for the transformed linear estimating equations is negligible.

10



Proof of Lemma S.1.

Let ∆zi,t = zi,t−EF [zi,t] and similarly for the remaining variables. Noting that ∆εi,t =

εi,t because EF [εi,t] = 0, we have

m̃
(ξ)(TE)
t (β0) =

1

NN1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zi,t (εi,t +∆λift)− w

(ξ)
j,t,t∆zi,t (εi,t+1 +∆λift+1)

]

− 1

NN1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zt (εi,t +∆λift)− w

(ξ)
j,t,t∆zt (εi,t+1 +∆λift+1)

]

− 1

NN1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zi,t

(
εt +∆λft

)
− w

(ξ)
j,t,t∆zi,t

(
εt +∆λft+1

)]

+
1

NN1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zt

(
εt +∆λft

)
− w

(ξ)
j,t,t∆zt

(
εt +∆λft+1

)]

= m̃
(ξ)(TE)(1)
t − m̃(ξ)(TE)(2)

t − m̃(ξ)(TE)(3)
t + m̃

(ξ)(TE)(4)
t . (S.43)

As in Lemma 1 it is easy to show that ED[m̃
(ξ)(TE)(1)
t ] = 0Dt

. Consider all remaining

components individually:

m̃
(ξ)(TE)(2)
t =

1

N2N1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zi,t (εi,t +∆λift)− w

(ξ)
j,t,t∆zi,t (εi,t+1 +∆λift+1)

]

+
1

N2N1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zj,t (εi,t +∆λift)− w

(ξ)
j,t,t∆zj,t (εi,t+1 +∆λift+1)

]

+
1

N2N1

N∑

i=1

N∑

k 6=i

N∑

j 6=i,j 6=k

[
w

(ξ)
j,t,t+1∆zk,t (εi,t +∆λift)− w

(ξ)
j,t,t∆zk,t (εi,t+1 +∆λift+1)

]
.

(S.44)

Using Lemma 1 it is easy to show that only the second component has non-zero condi-

tional expectations, in particular

ED

[
m̃

(ξ)(TE)(2)
t

]
=

1

N2N1

N∑

i=1

N∑

j 6=i

[
ED[qj,tε

(ξ)
j,t+1∆zj,t] (∆λift)− ED[qj,tε

(ξ)
j,t∆zj,t] (∆λift+1)

]
.

(S.45)
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However, for ξ = NL the above conditional expectations are zero. Next,

m̃
(ξ)(TE)(3)
t =

1

N2N1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zi,t (εi,t +∆λift)− w

(ξ)
j,t,t∆zi,t (εi,t+1 +∆λift+1)

]

+
1

N2N1

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zi,t (εj,t +∆λjft)− w

(ξ)
j,t,t∆zi,t (εj,t+1 +∆λjft+1)

]

+
1

N2N1

N∑

i=1

N∑

k 6=i

N∑

j 6=i,j 6=k

[
w

(ξ)
j,t,t+1∆zi,t (εk,t +∆λkft)− w

(ξ)
j,t,t∆zi,t (εk,t+1 +∆λkft+1)

]
.

(S.46)

Here

ED

[
m̃

(ξ)(TE)(3)
t

]
=

1

N2N1

N∑

i=1

N∑

j 6=i

[
ED[qj,tε

(ξ)
j,t+1εj,t]− ED[qj,tε

(ξ)
j,t εj,t+1] (∆λjft+1)

]
ED[∆zi,t].

(S.47)

For the final component note that

m̃
(ξ)(TE)(4)
t =

1

N2N1

N∑

i=1

[
w

(ξ)
i,t,t+1∆zi,t (εi,t +∆λift)− w

(ξ)
i,t,t∆zi,t (εi,t+1 +∆λift+1)

]

+
1

N3

N∑

i=1

N∑

j 6=i

[
w

(ξ)
j,t,t+1∆zi,t (εj,t +∆λjft)− w

(ξ)
j,t,t∆zi,t (εj,t+1 +∆λjft+1)

]

+
N1

N
m̃

(ξ)(TE)(2)
t . (S.48)

Based on the above decomposition it is not difficult to show that

ED

[
m̃

(ξ)(TE)
t (β0)

]
=

1

N2

1

N

N∑

i=1

ED

[
w

(ξ)
i,t,t+1∆zi,t (εi,t +∆λift)− w

(ξ)
i,t,t∆zi,t (εi,t+1 +∆λift+1)

]

− 1

N2

1

NN1

N∑

i=1

N∑

j 6=i

[
ED[qj,tε

(ξ)
j,t+1∆zj,t] (∆λift)− ED[qj,tε

(ξ)
j,t∆zj,t] (∆λift+1)

]

− 1

N2

1

NN1

N∑

i=1

N∑

j 6=i

[
ED[qj,tε

(ξ)
j,t+1εj,t]− ED[qj,tε

(ξ)
j,t εj,t+1]

]
ED[∆zi,t].

(S.49)

Using steps similar to those in Lemma 1, it is straightforward to show that

ED

[
m̃

(ξ)(TE)
t (β0)

]
= OP (N

−2). (S.50)
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Notice that for ξ = NL the expression above is exactly zero:

ED

[
m̃

(NL)(TE)
t (β0)

]
= − 1

N2

1

NN1

N∑

i=1

N∑

j 6=i

[ED[qj,tεj,t+1εj,t]− ED[qj,tεj,tεj,t+1]] ED[∆zi,t] = 0Dt
.

S.3. Identification-Robust Inference

In Section 5.2 of the main text we discussed potential failures of local and global

identification for the methods proposed in this paper. If identification fails, then none

of the standard testing procedures can be used. Instead, one needs to use a more robust

approach to inference.

An intermediate approach is to use two-step identification robust confidence sets

proposed by Andrews (2018). Depending on the identification strength, this approach

constructs confidence intervals that closely resemble those based on non-robust or robust

tests. Alternatively, one can employ (full) identification robust inference procedures,

thus avoiding an assumption in regards to potential identification strength. In what

follows we will briefly discuss readily available procedures and their pitfalls in our

setup. Building upon the idea of Anderson and Rubin (1949), Stock and Wright (2000)

introduced the nonlinear Anderson-Rubin (AR) test, commonly known as the “S” test.

By construction, this test is robust to identification failure and weak identification. The

S statistic in our setup is given by:

ARN,T (β) = N(T1)
(
m̃

(ξ)
(β)
)′ [
Ω̂(ξ)(β)

]−1

m̃
(ξ)

(β) , (S.51)

where Ω̂(ξ)(β) is defined in Section 5.1 of the main text. Irrespective of identification

strength and potential failure of global identification, under H0 : β = β0 we have

ARN,T (β0)
d−→ χ2

D. (S.52)

Thus, confidence intervals can be constructed by inverting the S statistic. The perfor-

mance of this method in finite samples is illustrated in Section S.4.2.

Remark 1. The S test may have deficient power in overidentified settings where D >>

K, in which case one can consider the so-called K test of Kleibergen (2005). However in

the non-linear case, due to the multi-modal nature of the objective function, the K test

statistic may also have low power over a sizeable part of the parameter space, as all LM

statistics generally lack power around local minima and turning points. Alternatively,

since neither S or K statistics are efficient, one could consider the GMM extensions of

the Moreira (2003) CLR statistic, as put forward by Andrews and Mikusheva (2016)

and Andrews (2016).
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To this date we are not aware of any theoretical or simulation evidence on the use of

identification-robust testing procedures for GMM methods employed in fixed T factor-

augmented panels.1 This may be partially due to the longstanding complication of

identification-robust GMM inference when it comes to subset inference. This problem

will be especially pronounced for all fixed T GMM procedures currently available, as

one needs to estimate a large set of nuisance parameters, that is, either F in the case of

Ahn et al. (2013) and/or G for Robertson and Sarafidis (2015), while at the same time

use many instruments. As a result, confidence intervals constructed using (say) the

projection method of Dufour and Taamouti (2005) and Chaudhuri and Zivot (2011)

are not only difficult to obtain, but they may suffer from low power. The fact that

our procedure does not require estimation of any nuisance parameters, substantially

simplifies identification-robust inference.

S.4. Identification in the Panel AR(1) Model using Averaged Moment Con-

ditions

S.4.1. Theoretical analysis

We consider a reduced form of the panel AR(1) model with a single factor:

yi,t = λigt + ui,t; ui,t = αui,t−1 + εi,t; gt = αgt−1 + ft; t = 1, . . . , T, (S.53)

where |α|< 1. Without loss of generality, we focus on the nonlinear estimator. Setting

zi,t = yi,t−1 and qi,t = yi,t−2, the expected Jacobian matrix at time t takes the following

form:

Γ
(NL)
t = EF [λ

2
i ] (gt−2ft EF [ui,t−1ui,t] + gt−1ft+1 EF [ui,t−1ui,t−2])

−EF [λ
2
i ]
(
gt−2ft+1 EF

[
u2
i,t−1

]
+ gt−1ft EF [ui,tui,t−2]

)
. (S.54)

Thus, for T fixed, local identification is guaranteed so long as the factors are stochastic

with a continuous distribution (or non-zero constants). For T large, under suitable

stationarity conditions the Jacobian matrix corresponding to the averaged estimating

equations, converges in probability to

Γ (NL) = EF [λ
2
i ]

σ2
ε

1− α2

(
αE[gt−2ft]− E[gt−2ft+1]− α2 E[gt−1ft]

)
. (S.55)

1Properties of identification robust procedures are only discussed in the context of the simple panel

AR(1) model with fixed effects; see Bun and Kleibergen (2016) and Dovonon et al. (2020).
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Thus in this case, assuming E[ft] = 0, local identification requires that the factor

is serially correlated. On the other hand, for the stacked estimating equations it is

straightforward to see that identification relies purely on fourth-order cross-moments of

unobserved common factors and serial correlation is not required. Similar results apply

to the linear approach and therefore we refrain from providing any details.

In summary, for the estimator that makes use of averaged estimating equations,

provided certain “fixed T” identification restrictions are satisfied, both linear and non-

linear GMM estimators have desirable asymptotic properties as N → ∞, even in cases

where the expected Jacobian matrix of the moment conditions becomes singular as

T → ∞. As a byproduct, we note that a simple comparison between Eq. (S.54)

and (S.55) reveals that within the proposed framework, identification of autoregressive

models with a unit root is feasible under “fixed T” asymptotics even if it fails when

T → ∞. This principle also underlies the approach put forward by Robertson et al.

(2018). Essentially, drawing a parallel with existing results on fixed effects models,

when T is fixed the presence of unobserved factors renders the process of yi,t non mean-

stationary by construction, which may help to increase the signal of the model.2

We conclude this section by studying global identification for the AR model us-

ing averaged estimating equations. It is demonstrated that the use of time-invariant

weights alone can be problematic, even if multiple weights are employed.

Proposition S.1. Consider the panel AR(1) model in Eq. (S.53) and let zi,t =

(yi,t−1, yi,t−2)
′. Suppose that EF [qiλi] 6= 0. Then

(a) Given qi = (q
(1)
i , q

(2)
i )′ (multiple time-invariant weights), Assumption 3.3 is satisfied

for T fixed, so long as ft has a continuous distribution.

(b) As T → ∞, global identification fails for the same setup as in (a). The pseudo true

value is given by α∗ = 1.

(c) Given qi,t = (q
(1)
i , yi,t−2)

′, Assumption 3.3 is satisfied for both T fixed and T →
∞ cases, so long as ft has a continuous distribution (for T fixed), or is serially

correlated (for T large).

Proof of Proposition S.1.

At first we consider the case where only a time-invariant weight is used. Furthermore,

for simplicity we assume that the process ui,t is covariance-stationary and independent

2See e.g. Hayakawa (2009) and Bun and Sarafidis (2015).
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of factors, such that3

γ(s) = E[ui,tui,t−s] = σ2
εα

|s|
0 (1− α2

0)
−1. (S.56)

In this case, the expected Jacobian matrix reduces to

Γ
(NL)
T =

1

T1

EF [qiλi]

( ∑T1

t=1

(
ft E[ui,t−1ui,t]− ft+1 E[u

2
i,t−1]

)
∑T1

t=2 (ft E[ui,t−2ui,t]− ft+1 E[ui,t−1ui,t−2])]

)

=
E[u2

i,t]

T1

EF [qiλi]

( ∑T1

t=1 (ftα0 − ft+1)

α0

∑T1

t=2 (ftα0 − ft+1) .

)

On the other hand, the matrix of expected second derivatives is given by

H
(NL)
T =

2

T1

EF [qiλi]

( ∑T1

t=1

(
gt E[u

2
i,t−1]− gt−1 E[ui,t−1ut]

)
∑T1

t=2 (gt E[ui,t−1ui,t−2]− gt−1 E[ui,t−2ut])

)

=
2E[u2

i,t]

T1

EF [qiλi]

( ∑T1

t=1 (gt − gt−1α0)

α0

∑T1

t=2 (gt − gt−1α0)

)

=
2E[u2

i,t]

T1

EF [qiλi]

( ∑T1

t=1 ft

α0

∑T1

t=2 ft

)
.

Note that because of different summation (i.e.
∑T1

t=1 vs
∑T1

t=2), the pseudo true-values

for each instrument are different. In particular, for zi,t = yi,t−1 the pseudo true value

is:

α∗
T = α0 −

∑T1

t=1(α0ft − ft+1)∑T1

t=1 ft
=

∑T1

t=1 ft+1∑T1

t=1 ft
= 1 +OP (T

−1/2). (S.57)

while for zi,t = yi,t−2 the corresponding pseudo-true value is

α∗∗
T = α0 −

∑T1

t=2(α0ft − ft+1)∑T1

t=2 ft
=

∑T1

t=2 ft+1∑T1

t=2 ft
6= α∗

T . (S.58)

However, since the difference between α∗
T and α∗∗

T is of order OP (T
−1) for T large

the model is not globally identified, with the pseudo-true value of plimT→∞ α∗
T =

plimT→∞ α∗∗
T = 1.

Finally, we consider the setup with one additional time-varying weight, qi,t = yi,t−2.

In this setup, we only use zi,t = yi,t−1 as an instrument. For the combination with

3All results will stay the same if we assume a finite past initialization. Actually, in that case, the

global identification condition is more likely to be satisfied for T fixed.
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time-invariant weight we showed previously that the pseudo-true value satisfies

α∗
T = α0 −

∑T1

t=1(α0ft − ft+1)∑T1

t=1 ft
=

∑T1

t=1 ft+1∑T1

t=1 ft
= 1 +OP (T

−1/2). (S.59)

The Jacobian matrix for the time-varying weight is given by

Γ
(NL)
T = EF [λ

2
i ]

1

T1

T1∑

t=1

gt−2

(
ft(γ(1) + EF [λ

2
i ]gt−1gt)− ft+1(γ(0) + EF [λ

2
i ]g

2
t−1)

)

+ EF [λ
2
i ]

1

T1

T1∑

t=1

gt−1

(
ft+1(γ(1) + EF [λ

2
i ]gt−1gt−2)− ft(γ(2) + EF [λ

2
i ]gt−2gt)

)

= −EF [λ
2
i ]γ(0)

1

T1

T1∑

t=1

(ft+1 − α0ft)(gt−2 − α0gt−1). (S.60)

After similar derivations one can show that the expected second derivative is of the

form

H
(NL)
T = 2EF [λ

2
i ]γ(0)

1

T1

T1∑

t=1

ft(gt−2 − α0gt−1). (S.61)

Thus the pseudo-true value for this setup is given by:

α† =

∑T1

t=1 ft+1(gt−2 − α0gt−1)∑T1

t=1 ft(gt−2 − α0gt−1)
=

µ2
f +

∑T1

t=1 f̃t+1(g̃t−2 − α0g̃t−1)

µ2
f +

∑T1

t=1 f̃t(g̃t−2 − α0g̃t−1)
, (S.62)

where f̃t and g̃t denote the demeaned version of ft and gt, respectively, and µf = E[ft].

From the above expression we can see that α† clearly differs from α∗, both for T fixed

and T → ∞.

For example, if ft is an MA(1) with parameter θ and increments νt, then

plim
T→∞

α† =
µ2
f

µ2
f − α0θσ2

ν

, (S.63)

which equals 1 only if either θ = 0 (no autocorrelation in ft) or α0 = 0. On the other

hand, if ft is an AR(1) with parameter αf :

plim
T→∞

α† =
µ2
f + α2

f (1− α0α
−1
f (αf − 1)

µ2
f + αf (1− α0αf )−1(αf − 1)

, (S.64)

which, again, equals 1 only if αf = 0 or µf = 0 and αf = 1.

The above proposition shows that in the panel AR(1) model, global identification

cannot be guaranteed by using multiple time-invariant weights alone. That is, the use
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of at least one time-varying weight is necessary for large T identification. Overall, the

previous discussion indicates that the panel AR(1) model proxies the worst case scenario

in terms of local and global identification. In any case, we do advise to use time-varying

weights for more general models, especially with predetermined regressors.

S.4.2. Simulations

In order to illustrate how theoretical results on identification of the panel AR model

are relevant in finite samples, we consider the following DGP:

yi,t = αyi,t−1 + λift + εi,t; di,t = λd
i ft + εdi,t; (S.65)

ft = µf + f ∗
t ; f ∗

t = αff
∗
t−1 +

√
1− α2

fut, (S.66)

for t = −4, . . . T . This is a simplified version of the model considered in Juodis and

Sarafidis (2018), as well as that used in the main text. All time-varying error terms are

mutually independent N(0, 1). All dynamic processes are initialized in the recent past

such that

yi,−5 = λif−5 + εi,−5; di,−5 = λd
i f−5 + ε

(d)
i,−5; f−5 = µf + u−5. (S.67)

We specify E[λi] = E[λd
i ] = 1, αf = 0.5, α = {0.4; 0.8}, whereas µf = {0; 2}. As

discussed previously, µf plays a crucial role when it comes to local and global identifi-

cation. Finally, we consider N = {50; 200; 500} and T = {5; 10; 20; 50}. The number of

replications equals 4, 000 for each design and the factors are drawn in each replication.

Comments

Since we are interested in emphasizing different theoretical properties of the pro-

posed linear and non-linear methods, we present results for different quantities. In

particular, for the linear approach we consider the estimator itself, and results are re-

ported in terms of mean bias, RMSE, rejection frequencies of the t-test statistic and

the overidentifying restrictions (J-)test statistic (nominal size is 5% in both cases).

This estimator is implemented using a single weight qi = 1 with three instruments

zi,t = (yi,t−1, yi,t−2, yi,t−3)
′. Thus, the degree of overidentification is 2.

For the non-linear approach we focus on robust inference, and study the properties

of the Anderson-Rubin test statistic. In this regard, this study is the first one of its kind

in the panel data literature. In order to implement the procedure the set of instruments

is limited to zi,t = (yi,t−1, yi,t−2)
′. However, in order to achieve global identification we

consider three sets of weights qi,t = (1, yi,t−2, yi,t−3)
′. The time-invariant weight is used
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for both sets of instruments, while the time-varying weights are used in pairs with

the corresponding lagged values, i.e. for zi,t = yi,t−1 we set qi,t = yi,t−2, whereas for

zi,t = yi,t−2 we set qi,t = yi,t−3. This specific choice corresponds to the use of two lagged

values of differenced instruments in the setup of Anderson and Hsiao (1982). Thus the

total number of moment conditions is 4.

The parameter µf plays a non-trivial role for local and global identification. In

particular, for µf 6= 0 the linear estimator is
√
NT−consistent and asymptotically

mixed normal. Also the non-linear approach with both time-invariant and time-varying

weights is globally and locally identified as long as µf 6= 0. Thus the AR statistic will

have non-trivial power towards αA = α0 + (NT )−1/2∆ alternatives.

On the other hand, for µf = 0 local and global identification might fail when the

third moment of ft is zero, as it is the case in the current setup. In particular, the

linear estimator is only
√
N−consistent but remains asymptotically mixed normal.

Results

At first we summarize the results presented in Table S.1 for the linear estimator.

❼ (Estimation) The bias of the linear estimator developed in this paper is negligible

for all combinations of N and T we consider. This is in line with our theo-

retical results. Furthermore, the RMSE decreases in N confirming the minimal√
N−consistency of the estimator. On the other hand, the RMSE decreases in T

only when µf 6= 0, as for µf = 0 the expected Jacobian matrix is asymptotically

singular for T → ∞. Both bias and RMSE are somewhat larger for α = 0.4, than

for α = 0.8

❼ (Inference) For smaller values of T and N the t-statistic appears to be size-

distorted. However, once T and (especially) N increase the rejection frequencies

approach the nominal 5% level. The rejection frequencies for the J−statistic are

close to the nominal size for almost all setups.

Given that for the non-linear approach we solely focus on inference, the corre-

sponding rejection frequencies are summarized by means of Figures S.1-S.3. Below we

summarize main patterns observed in these figures.

❼ (Size) The rejection frequencies under the null hypothesis are close to the nominal

size of 5% in almost all cases. Only when N = 50, T = 5, α = 0.4 the test statistic

is somewhat undersized (as in the case of the linear estimator).
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❼ (The role of µf) As with the linear estimator, results differ substantially, depend-

ing on the value of µf . In particular, while the Jacobian is non-singular for all T ,

including T → ∞, its value is small in absolute terms when µf = 0, thus leading

to a “semi-weak instruments” problem. As a result, power is mainly with respect

to N → ∞, i.e. towards αA = α0 +N−1/2∆ alternatives.

❼ (The role of T ) For µf = 2, the test statistic has non-trivial power over distant

alternatives. In particular, for any fixed value of α and N , power is uniformly

increasing in T over alternatives. This is not the case for µf = 0.

❼ (Multimodality) For µf = 0 we can see that in most cases the power curves have

a single minimum at the true value α = α0. On the other hand, for µf = 2 the

global identification problems become more pronounced, and the power curves

appear to have a second minimum at α = 1. This is especially pronounced for

α0 = 0.4, and for larger values of T . However, for relatively large values of N ,

power at α = 1 remains above the nominal size of the test.
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(d) α = 0.8 and µf = 2

Figure S.1: Anderson-Rubin statistic rejection frequencies for N = 50.
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(d) α = 0.8 and µf = 2

Figure S.2: Anderson-Rubin statistic rejection frequencies for N = 200.
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(d) α = 0.8 and µf = 2

Figure S.3: Anderson-Rubin statistic rejection frequencies for N = 500.
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Table S.1: Linear GMM estimator with qi = 1

N = 50 N = 200 N = 500

Designs One Step GMM Two Step GMM One Step GMM Two Step GMM One Step GMM Two Step GMM

T α µf Bias RMSE t Bias RMSE t J Bias RMSE t Bias RMSE t J Bias RMSE t Bias RMSE t J

5 .4 0 .002 .300 .075 -.002 .252 .116 .028 -.002 .140 .071 -.001 .115 .081 .035 .000 .100 .082 .000 .079 .089 .045

5 .4 2 .011 .158 .097 .014 .137 .126 .051 .002 .073 .080 .002 .060 .086 .049 .001 .050 .078 .001 .039 .085 .052

5 .8 0 .001 .148 .084 -.001 .126 .118 .026 -.002 .073 .078 -.002 .055 .089 .044 .000 .055 .072 -.001 .038 .084 .039

5 .8 2 .004 .065 .116 .007 .054 .142 .051 .002 .033 .082 .002 .026 .096 .048 .000 .020 .077 .001 .015 .083 .046

10 .4 0 .000 .183 .051 -.002 .167 .074 .036 .000 .093 .058 .000 .079 .060 .043 .001 .056 .056 .000 .050 .056 .051

10 .4 2 .004 .146 .065 .011 .119 .083 .041 .002 .075 .060 .003 .063 .064 .044 .001 .042 .065 .001 .035 .063 .050

10 .8 0 -.003 .145 .057 -.002 .136 .078 .034 .000 .068 .063 .000 .050 .068 .047 .000 .046 .061 .000 .032 .071 .048

10 .8 2 .003 .074 .066 .005 .051 .092 .038 .001 .039 .068 .002 .023 .071 .049 .001 .027 .062 .001 .017 .064 .049

20 .4 0 -.001 .156 .051 -.002 .141 .069 .040 -.001 .092 .057 -.001 .069 .058 .047 .001 .051 .057 .001 .045 .061 .048

20 .4 2 .000 .098 .059 .003 .085 .073 .040 .000 .050 .056 .001 .043 .055 .048 .000 .031 .060 .001 .024 .064 .046

20 .8 0 .001 .120 .044 .000 .096 .063 .033 .001 .058 .051 .000 .046 .055 .046 .000 .037 .052 .000 .027 .048 .050

20 .8 2 .002 .069 .053 .002 .042 .079 .042 .000 .053 .057 .001 .023 .066 .044 .000 .024 .054 .000 .013 .056 .048

50 .4 0 .000 .142 .042 .002 .124 .057 .043 -.001 .078 .050 .000 .067 .054 .045 .000 .047 .049 .001 .040 .053 .049

50 .4 2 .001 .048 .053 .002 .046 .070 .045 .000 .023 .052 .001 .022 .053 .046 .000 .015 .046 .000 .014 .047 .050

50 .8 0 .000 .114 .045 .001 .090 .061 .037 -.001 .058 .047 .000 .039 .051 .043 .000 .039 .048 .000 .024 .047 .048

50 .8 2 .001 .037 .059 .001 .026 .073 .042 .000 .019 .055 .000 .012 .058 .051 .000 .011 .056 .000 .008 .058 .049

Notes. Results based on N = 4, 000 Monte Carlo draws. “Bias” corresponds to the mean bias; “RMSE” the Root Mean Squared Error; “t” correspond

to the empirical rejection frequencies of the Wald test statistic with a 5% nominal level; “J” correspond to the empirical rejection frequencies of

overidentifying J test statistic with a 5% nominal level.
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