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Abstract

Minimum cost spanning tree problems are well known problems in the Oper-

ations Research literature. Some agents, located at different geographical places,

want a service provided by a common supplier. Agents will be served through costly

connections. Some part of the literature has focused, mainly, in studying how to

allocate the connection cost among the agents. We review the papers that have

addressed the allocation problem using cooperative game theory.

Keywords: minimum cost spanning tree problems, cooperative games, core,

Shapley value.

1 Introduction

Several problems involving network formation have been studied in operations research

and economics. The operations research literature is more focused in efficient algorithm

designs and computational complexity. The economic literature focuses on aspects such

as cost sharing within networks. In this paper we focus on the cost sharing aspect. Hence,

this review belongs to the well-known literature of cost allocation.

In this paper, we consider minimum cost spanning tree problems, briefly mcstp. A

group of agents, which are located at different geographical places, want a particular

service which can only be provided by a common supplier, called the source. Agents will

∗We gratefully acknowledge the comments made by Y. Chun and C. Trudeau. Our work is partially

supported by research grant ECO2017-82241-R from Ministerio de Economı́a y Competitividad, and

ED431B 2019/34 from Xunta de Galicia.
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be served through costly connections. Agents are indifferent between being connected

directly or indirectly to the source. There are many situations that can be modeled in

this way. For instance, several towns may draw power from a common power plant,

and hence have to share the cost of the distribution network (Dutta and Kar, 2004).

Bergantiños and Lorenzo (2004, 2005, 2008) study a real situation where villagers had

to pay the cost of constructing pipes from their respective houses to a water supplier.

Other examples include communication networks, such as telephone, Internet, or cable

television.

The literature on mcstp starts by defining algorithms for constructing minimal (cost

spanning) trees (mt for short). We can mention, for instance, the papers of Bor̊uvka

(1926); Kruskal (1956); Prim (1957). However, constructing an mt is only part of the

problem. Another important issue is how to allocate the cost associated with mt among

agents. Claus and Kleitman (1973) were the first to address the cost sharing aspect, and

Bird (1976) proposed a rule, now known as the Bird’s rule, through Prim’s algorithm.

Bird (1976) also associated a cooperative game with any mcstp. He proved that this rule

belongs to the core of the cooperative game. Many papers have followed addressing the

cost allocation problem arising from mcstp. Early works and reviews are due to Aarts

(1994); Feltkamp (1995); Curiel (1997); Borm et al. (2001). Trudeau (2013) reviews

some cost sharing rules focusing on two rules (to be addressed below): the folk rule and

the Kar’s rule, comparing several axiomatic characterizations. Trudeau and Vidal-Puga

(2019) review the main axiomatic characterizations of the rules based on the Shapley

value in mcstp.

There are two possible ways for defining rules in mcstp. The first way is the direct

approach, which defines rules directly from the structure of the problem. In this review,

we revise rules that are defined through the algorihms for computing the mt defined

above (namely, Boruvka, Prim, and Kruskal). The idea of such rules is as follows: the

algorithm selects the arc, and the rule decides how to divide its cost between the agents.

Each agent pays the sum of the assigned costs over all selected arcs by the algorithm.

We also review the rules that are defined through a cone-wise decomposition. Each

mcstp can be decomposed as a linear combination of the so called elementary problems,

where each cost is either 0 or 1. The rule states how to divide the cost of each elementary

problem between the agents. Each agent pays the sum of the assigned costs over all

elementary problems.

The second way is an indirect approach through cooperative games. First, we associate

with each problem a cooperative game. Second, we compute a solution for cooperative
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games (Shapley value, core, ...) in the associated cooperative game. Third, we define

the rule in the original problem as the solution applied to the cooperative game associ-

ated with the original problem. This indirect approach is quite standard and has been

considered in many economic problems. Some classical examples are the airport problem

(Littlechild and Owen, 1973), where the cost of a runway has to be divided among dif-

ferent airplanes, and bankruptcy problems (O’Neill, 1982; Aumann and Maschler, 1985)

where an estate should be divided among several claimants. Other recent examples are

the museum pass problem (Ginsburgh and Zang, 2003; Bergantiños and Moreno-Ternero,

2015), where the revenue generated by the sale of museum cards has to be divided among

the museums, and the broadcasting problem (Bergantiños and Moreno-Ternero, 2020),

where the revenues from broadcasting sport league events must be divided among the

teams.

In this second approach, the most studied case in the literature is the case of private

nodes. It is assumed that, when computing the value of a coalition, agents in such

coalition can use only the nodes of such coalition. However, there are other possible

approaches, as for example the case of public nodes, where it is assumed that agents in

a coalition can use nodes outside the coalition.

So far, there have been up to five cooperative games in the literature of mcstp: the

private game, the irreducible game, the optimistic game, the public game, and the cycle-

complete game.

Private game Bird (1976) associates with eachmcstp a cooperative game with transfer-

able utility where the worth o each coalition S is computed assuming that agents in

N \S are not participating. It is a pessimistic approach because agents in N \S are

supposed not to cooperate. The private assumption makes their nodes unavaliable.

Irreducible game Given an mcstp (N0, C) , Bird (1976) defines the irreducible associ-

ated problem (N0, C
∗) . The idea is to reduce the costs of C as much as possible

without reducing the cost of the minimal tree of C. The irreducible game associ-

ated to a mcstp (N0, C) is the private game associated to the irreducible problem

(N0, C
∗) .

Optimistic game Bergantiños and Vidal-Puga (2007b) associate with each mcstp a

cooperative game with transferable utility where the cost fo each coalition S is

computed assuming that agents in N \S are already connected. This game is called

optimistic because agents in N \ S are already connected to the source and agents

in S can connect to the source through agents in N \ S for free.
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Public game Bogomolnaia and Moulin (2010) were the first to formally consider the

case where the cost of each coalition S is computed assuming that, even though

agents in N \ S are not connected to the source, agents in S can connect to the

source through agents in N \ S by paying the costs of the arcs they use.

Cycle-complete game Given an mcstp (N0, C) , Trudeau (2012) defines the associated

cycle-complete problem (N0, C
∗∗) . The idea is to achieve concavity by reducing the

costs of C as much as possible without reducing the cost of any minimal cycle. The

cycle-complete game associated to a mcstp (N0, C) is the private game associated

to the cycle-complete problem (N0, C
∗∗) .

The most studied solutions in the five cooperative games we review are the core and the

Shapley value. Nevertheless, some other solutions, for instance the nucleolus (Schmeidler,

1969) and weighted Shapley values (Shapley, 1953a; Kalai and Samet, 1987), have also

been considered. We have tried to be exhaustive and to mention all papers studying

deeply some aspect of the five cooperatives games.

The paper is organized as follows. In Section 2, we introduce mcstp and cooperative

games with transferable utility. In Section 3, we review the results obtained for the private

game. In Section 4, we review the results obtained for the irreducible game. In Section

5, we review the results obtained for the optimistic game. In Section 6, we review the

public game. In Section 7, we review the results obtained for the cycle-complete game.

In Section 8, we study the relation between the cores of these games. In Section 9, we

conclude.

2 Preliminaries

In this section we formally define minimum cost spanning tree problems and cooperative

games.

Let N+ = {1, 2, ...} be the set of possible agents (nodes). We denote by N a general

finite subset of N+, usually assumed to be N = {1, ..., n} .

Given a non-empty, finite subset N ⊂ N+, let ΠN denote the set of all orders in N .

Given π ∈ ΠN , let Pre (i, π) denote the set of nodes in N which come before node i in

the order given by π, i.e.,

Pre (i, π) = {j ∈ N | π (j) < π (i)} .

For notational simplicity, given π ∈ ΠN , we denote node i ∈ N with π (i) = s as πs.
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Moreover, given π ∈ ΠN and S ⊂ N , let πS denote the order induce by π among agents

in S.

For each non-empty, finite N ⊂ N+, let ∆(N) =
{

x ∈ R
N
+ :

∑

i∈N xi = 1
}

.

2.1 Minimum cost spanning tree problems

We consider networks whose nodes are elements of a set N0 = N ∪ {0}, where N ⊂ N+

is non-empty and finite, and 0 is a special node called the source.

A cost matrix C = (cij)i,j∈N0
represents the cost of direct link between any pair of

nodes. We assume that cij = cji ≥ 0 for each i, j ∈ N0 and cii = 0 for each i ∈ N0. Since,

cij = cji we work with undirected arcs, i.e., (i, j) = (j, i).

We denote the set of all cost matrices over N as CN . Given C, C ′ ∈ CN , we say C ≤ C ′

if cij ≤ c′ij for all i, j ∈ N0.

A minimum cost spanning tree problem, briefly an mcstp, is a pair (N0, C) where

N ⊂ N+ is a finite set of agents, 0 is the source, and C ∈ CN is the cost matrix.

Given an mcstp (N0, C), we define the mcstp induced by C for S ⊂ N as (S0, C).

A network g over N0 is a subset of {(i, j) : i, j ∈ N0} . The elements of g are called

arcs.

Given a network g and a pair of nodes i and j, a path from i to j in g is a sequence

of different arcs {(ih−1, ih)}
l

h=1 satisfying (ih−1, ih) ∈ g for all h ∈ {1, 2, ..., l}, i = i0, and

j = il. A cycle is a path from i to i in g with i ∈ N0 and at least two different arcs.

Let GN denote the set of all networks over N0, and let GN
0 denote the set of all networks

where every agent i ∈ N is connected to the source, i.e., there exists a path from agent i

to the source.

Given a network g ∈ GN , let P (g) = {Sk(g)}
n(g)
k=1 denote the partition of N0 in con-

nected components induced by g. Formally, P (g) is the only partition of N0 satisfying

the following two properties:

1. If i, j ∈ Sk(g), then agent i and agent j are connected in g.

2. If i ∈ Sk(g), j ∈ Sl(g) and k 6= l, then agent i and agent j are not connected in g.

Given a network g ∈ GN and i ∈ N0, let S(P (g), i) denote the set in P (g) to which

agent i belongs to.

Given an mcstp (N0, C) and g ∈ GN , we define the cost associated with g as

c (N0, C, g) =
∑

(i,j)∈g

cij.
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When there is no ambiguity, we write c (g) or c (C, g) instead of c (N0, C, g).

A spanning tree is a network such that for all i ∈ N there is a unique path from agent

i to the source. A minimal tree for (N0, C), briefly an mt, is a spanning tree t∗ over N0

such that

c (t∗) = min
g∈GN

0

c (g) .

It is well-known that an mt exists, even though it is not necessarily unique. Bor̊uvka

(1926); Kruskal (1956); Prim (1957) provide algorithms for computing an mt. Given an

mcstp (N0, C) , we denote the cost associated with any mt for (N0, C) as m (N0, C).

Given an mcstp (N0, C) and an mt t∗, Bird (1976) defines the minimal network
(

N0, C
t∗
)

associated with t∗ as follows: ct
∗

ij = max(k,l)∈g∗ij {ckl} , where g∗ij denotes the

unique path in t∗ from agent i to agent j. It is well known that Ct∗ is independent from

the chosen t∗. Hence, we can define the irreducible form (N0, C
∗) of an mcstp (N0, C) as

the minimal network
(

N0, C
t∗
)

associated with any mt t∗.

Given an mcstp (N0, C), Trudeau (2012) defines the cycle-complete network (N0, C
∗∗)

as follows: c∗∗ij = max(k,l)∈g∗∗ij {ckl} , where g∗∗ij denotes the cycle with minimal cost con-

taining both agent i and agent j. It is clear that c∗∗ij = cij whereas (i, j) belongs to a

cycle with minimal cost (among those containing both agent i and agent j), and hence

C∗∗ is independent of the criterion used to chosen minimal cycles, in case there are more

than one.

Next example illustrates some of the concepts introduced above.

Example 2.1 Figure 1(a) depicts a minimum cost spanning tree problem. There are

three agents 1, 2, and 3. The source is denoted by 0. These nodes are represented by

circles, where the connection between them are represented by straight lines. Numbers by

the lines represent the cost of each connection. The minimal tree is {(0, 1) , (1, 2) , (1, 3)} .

The irreducible form (b) and the cycle-complete network (c) are are also depicted.

A (cost sharing) rule is a function f such that f (N0, C) ∈ R
N and

∑

i∈N fi (N0, C)

= m (N0, C) for each mcstp (N0, C). As usual, fi (N0, C) represents the cost assigned to

agent i.

2.2 Rules defined through the problem

In this subsection we mention some rules of the literature that are defined directly through

the problem, without using cooperative games.

We first consider rules defined through algorithms for computing an mt. The idea is

as follows. The algorithm selects the arc we construct and the rule decides how the cost
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(a)

0

1 2

3
12 15

20

4

6 8

(b)

0

1 2

3
12 12

12

4

6 6

(c)

0

1 2

3
12 15

15

4

6 8

Figure 1: Example of a mcstp (a) and its irreducible (b) and cycle-complete (c) forms.

of the selected arc is divided between the agents. Finally, each agent pays the sum of the

costs over the arcs selected by the algorithm.

We also consider rules that are defined through a cone-wise decomposition. The idea

is as follows. We first decompose the original problem as the sum of simpler problems.

We solve these simpler problems. The solution to the original problem is obtained by

adding the solutions to the simpler problems.

Rules defined through Prim’s algorithm

Prim (1957) provides an algorithm for computing a minimal tree. The idea is as follows.

Starting from the source, we sequentially add arcs with the lowest cost and without

introducing cycles. We now introduce two rules based on Prim’s algorithm.

The Bird’s rule, denoted as B (N0, C) , was introduced by Bird (1976) in mcstp with a

unique mt, and further studied in Granot and Huberman (1981); Feltkamp et al. (2000);

Gómez-Rúa and Vidal-Puga (2011). The idea is the following. Agents connect sequen-

tially to the source paying their connection cost. Let (N0, C) be an mcstp with a unique

mt, denoted by t∗. Given i ∈ N , let i0 be the first node in the unique path in t∗ from

agent i to the source. Then, for each i ∈ N, we define

Bi (N0, C) = ci0i.

Later on, Dutta and Kar (2004) extend this definition for any mcstp as an average

of the trees associated with Prim’s algorithm. Given π ∈ ΠN , they defined Bπ (N0, C)

as the allocation obtained when applied the previous protocol to (N0, C) and solved the

indifferences by selecting the first agent given by π. Then they defined

B (N0, C) =
1

n!

∑

π∈ΠN

Bπ (N0, C) .
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Chun and Lee (2012) introduce the family of sequential contributions rules for mcstp

with a unique mt. The connection cost of each agent is paid by this agent and the agents

that connect to the source through this agent. Notice that the Bird’s rule is a member

of this family.

The Dutta-Kar’s rule, denoted as DK (N0, C) , was introduced by Dutta and Kar

(2004). It is also defined through Prim’s algorithm. Let (N0, C) be an mcstp with a

unique mt. Assume that agents connect to the source via Prims’s algorithm, but with

a pivotal switch in the allocation cost at each step. When there are more than one mt,

they define a rule DKπ for each π ∈ ΠN , obtained by selecting the first agent given by

π. See Dutta and Kar (2004) for a formal definition.

Dutta and Kar (2004) extend this definition for any mcstp similarly to the Bird’s rule.

Namely,

DK (N0, C) =
1

n!

∑

π∈ΠN

DKπ (N0, C) .

Rules defined through Kruskal’s algorithm

Kruskal (1956) defines another algorithm for computing an mt. The mt is constructed by

sequentially adding arcs with the lowest cost without introducing cycles.

Formally, we start with A0(C) = {(i, j) | i, j ∈ N0, i 6= j} and g0(C) = ∅.

Stage 1: Take an arc (i1(C), j1(C)) ∈ A0 (C) such that ci1(C)j1(C) = min(i,j)∈A0(C) {cij} .

If there are several arcs satisfying this condition, select one of them. We then update

A1 (C) = A0 (C) \ {(i1(C), j1(C))} , and g1 (C) = {(i1 (C) , j1 (C))}.

Stage p + 1: Given Ap (C) and gp (C) , consider an arc (i, j) ∈ Ap (C) such that

cij = min(k,l)∈Ap(C) {ckl} . If there are several arcs satisfying this condition, select one of

them. Two cases are possible:

1. If gp (C)∪{(i, j)} has a cycle, then repeat Stage p+1 with Ap (C) \ {(i, j)} instead

of Ap (C) and the same gp (C).

2. If gp (C)∪{(i, j)} has no cycles, then take (ip+1 (C) , jp+1 (C)) = (i, j) , Ap+1 (C) =

Ap (C) \ {(i, j)}, and gp+1 (C) = gp (C) ∪ {(i, j)}.

This process is completed in |N | stages. Let g|N |(C) be the tree obtained following

Kruskal’s algorithm. This algorithm leads to a tree, which is not always unique. When no

confusion arises, we write Ap, gp, and (ip, jp) instead of Ap(C), gp(C), and (ip(C), jp(C)).

Norde et al. (2004) present a subtraction algorithm, closely related to Kruskal’s, for

the determination of minimum cost spanning trees.
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Bergantiños et al. (2010, 2011) consider a family of rules through Kruskal’s algorithm.

At each step of the algorithm, an arc is added to the network. The cost of the arc is

divided between the agents according with a function ̺ specifying the part of the cost

paid by each agent. Each agent pays the sum of the costs of the arcs selected by Kruskal’s

algorithm.

We now introduce this family formally.

Let P(N0) denote the set of all partitions over N0. Let P = {S0, S1, . . . , Sm} be a

generic element of P(N0) such that 0 ∈ S0. We assume that for all k = 0, . . . ,m, Sk 6= ∅.

Given P, P ′ ∈ P(N0), we say that P is 1-finer than P ′ if P ′ is obtained from P by merging

two elements of .

A sharing function ̺ associates with each pair of partitions (P, P ′) , where P is 1-finer

than P ′, a vector ̺ (P, P ′) ∈ ∆(N) satisfying the following path independence condition

(see Bergantiños et al. (2010) for the definition of this condition). For each sharing

function ̺, we define the rule f̺ as follows. Given an mcstp (N0, C) and i ∈ N , we define

f̺
i (N0, C) =

|N |
∑

p=1

cipjp · ̺i
(

P
(

gp−1
)

, P (gp)
)

.

These functions are called Kruskal’s sharing rules. We now consider some rules and a

family of rules in the literature which are members of the the family of Kruskal’s sharing

rules.

Obligation rules, introduced by Tijs et al. (2006a), are defined through obligation

functions, that specify the obligation of each agent in each coalition.

An obligation function for N is a map o that assigns to each S ∈ 2N0 \ {∅} a vector

o(S) ∈ R
S satisfying the following three conditions:

• For each S ∈ 2N0 \ {∅} such that 0 /∈ S, o(S) ∈ ∆(S).

• For each S ∈ 2N0 \ {∅} such that 0 ∈ S, oi(S) = 0 for each i ∈ S.

• For each S, T ∈ 2N0 \ {∅} with S ⊂ T and i ∈ S, oi(S) ≥ oi(T ).

Given an obligation function o we can define the Kruskal sharing rule f̺o where for

each i ∈ N,

̺i
(

P
(

gp−1
)

, P (gp)
)

= oi(S(P (gp−1), i))− oi(S(P (gp), i)).

Bergantiños et al. (2011) prove that the set of obligation rules is given by

{

f̺o (N0, C) : o is an obligation function
}

.
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We now introduce some distingueshed elements of the family of obligation rules.

The folk rule, denoted by F (N0, C), was firstly considered in Feltkamp et al. (1994).

It can be seen as a Kruskal sharing rule where ̺ satisfies the following principles:

• Only agents who benefit directly when adding an arc pay for that arc.

• All agents in the same group pay the same.

• The total amount paid by a group is proportional to the new agents to whom this

group is connected.

Formally, the folk rule corresponds with the obligation function o where for each

S ⊂ N and each i ∈ S,

oi(S) =
1

|S|
.

The folk rule is, probably, the most studied rule in this literature. It can be defined

in several ways, different from the Kruskal’s algorithm approach considered above. Be-

sides, it has also been studied thorough the axiomatic approach and the non-cooperative

approach. Some papers studying the folk rule are Branzei et al. (2004); Bergantiños and

Vidal-Puga (2009, 2010); Ciftci and Tijs (2009); Bergantiños et al. (2014); Subiza et al.

(2016); Norde (2019); Giménez-Gómez et al. (2020); Hernández et al. (2020).

Optimistic weighted Shapley rules are introduced in Bergantiños and Lorenzo-Freire

(2008b,a). Each agent i has a weight wi > 0. The sharing function ̺ is defined propor-

tionally to such weights. Formally, for each weight system w = (wi)i∈N , the optimistic

weighted Shapley rule f̺ow is the Kruskal sharing rule associated with the obligation

function o where for each S ⊂ N and each i ∈ S,

oi(S) =
wi

∑

j∈S wj

.

Pessimistic weighted Shapley rules are introduced in Lorenzo and Lorenzo-Freire

(2009). Each agent i has a weight wi > 0. The sharing function ̺ is defined through

such weights as follows. For each weight system w = (wi)i∈N , the pessimistic weighted

Shapley rule f̺pw is the Kruskal sharing rule associated with the obligation function o

where for each S ⊂ N and each i ∈ S,

oi(S) =
∑

π∈Π(S\{i})

s−1
∏

j=1

wπ−1(j)
∑j

k=1 wπ−1(k) + wi

.
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Rules defined through Boruvka’s algorithm

Bor̊uvka (1926) provides an algorithm for computing an mt. Bergantiños and Vidal-Puga

(2011) introduce a rule based on Boruvka’s algorithm. We provide an informal definition

of Boruvka’s algorithm and the rule associated with it. We refer the reader to Bergantiños

and Vidal-Puga (2011) for a formal definition.

We start with an empty network. Besides, each agent is a single component. Then, se-

quentially, for each connected component, we add the cheapest arc joining this connected

component with some agent outside this connected component but without introducing

cycles. The cost of each arc selected by Boruvka’s algorithm is divided among the agents

following three principles. First, each agent only pays the arc selected by the component

it belongs to. Second, all agents pay the same proportion of the arc selected by the

component. Third, the proportion paid should be as large as possible. Bergantiños and

Vidal-Puga (2011) prove that this rule coincides with the folk rule.

Rules defined through a cone-wise decomposition

Norde et al. (2004) prove that every mcstp can be written as a non-negative combination

of the so called elementary (or simple) mcstp, in which the costs of the arcs are 0 or 1.

Formally, for each mcstp (N0, C), there exists a family {Cq}
m(C)
q=1 of cost matrices and

a family {xq}
m(C)
q=1 of non-negative real numbers satisfying three conditions:

1. C =
∑m(C)

q=1 xqCq.

2. For each q ∈ {1, . . . ,m(C)}, there exists a network gq such that cqij = 1 if (i, j) ∈ gq

and cqij = 0 otherwise.

3. Let q ∈ {1, . . . ,m(C)} and {i, j, k, l} ⊂ N0. If cij ≤ ckl, then cqij ≤ cqkl.

Assume we know how a rule R should share the cost in any elementary problem.

Then, we can extend the rule R for elementary problems to any general mcstp by using

de decomposition given by Norde et al. (2004) as follows:

R (N0, C) =

m(C)
∑

q=1

xqR (N0, C
q) .

Several authors have followed this approach for defining rules or family of rules. We

mention some of them.

Branzei et al. (2004) proved that the folk rule can be obtained in this way. Given an

elementary problem (N0, C
q) , agents in the same component as the source (and hence
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connected to the source through a path of cost 0) pay 0. Agents in any other component

equally divide the cost of connecting them to the source, which is 1. Formally,

F (N0, C
q) =

{

1
S(P (gq),i)

if 0 /∈ S(P (gq), i)

0 otherwise.

Bergantiños and Lorenzo-Freire (2008b) prove that optimistic weighted Shapley rules

can also be obtained in this way by taking

f̺ow (N0, C
q) =







wi∑
j∈S(P (gq),i) wj

if 0 /∈ S(P (gq), i)

0 otherwise.

Bogomolnaia and Moulin (2010) consider the following family of rules. Given an

elementary problem (N0, C
q) and agent i ∈ N, let δi denote the number of non-null edges

in Cq containing agent i. For each λ ∈ [0,+∞) ,

Rλ (N0, C
q) =







λδi
∑

j∈S(P (gq),i) λ
δj

if 0 /∈ S(P (gq), i)

0 otherwise

and for λ = +∞

Rλ (N0, C
q) =

{

argmaxj∈S(P (gq),i) δj if 0 /∈ S(P (gq), i)

0 otherwise.

2.3 Cooperative games

We briefly review some concepts of cooperative games used in this paper. In some cases,

we simply give an informal definition, the notation, and a reference where it is possible

to find the formal definition.

A cooperative game with transferable utility, briefly a TU game, is a pair (N, v) where

v : 2N → R satisfies that v (∅) = 0.

We say that (N, v) is concave if, for all S, T ⊂ N and i ∈ N such that S ⊂ T and

i /∈ T ,

v (S ∪ {i})− v (S) ≥ v (T ∪ {i})− v (T ) .

The core is defined as

core (N, v) =

{

x ∈ R
N :

∑

i∈N

xi = v (N) and
∑

i∈S

xi ≤ v (S) , ∀S ⊂ N

}

.

The Shapley value (Shapley, 1953b), denoted as Sh (N, v) , is defined as the average

of marginal contributions over all possible orders in which agents may appear. Namely,
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for each i ∈ N,

Shi (N, v) =
1

|N |!

∑

π∈Π(N)

[v (Pre (i, π) ∪ {i})− v (Pre (i, π))] .

An alternative to marginal contributions are the reduced marginal contributions (Vidal-

Puga, 2004) defined as

sπi (v) = vs (N \ Pre(i, π))− vs (N \ (Pre(i, π) ∪ {i}))

where s =
(

sπj (v)
)

j∈Pre(i,π)
and (N \ Pre(i, π), vs) is the reduced game defined as

vs(T ) =







0 if T = ∅

maxS⊆Pre(i,π)

{

v(T ∪ S)−
∑

j∈S si

}

otherwise

for all T ⊆ N \ Pre(i, π).

Shapley (1953a) introduced the family of weighted Shapley values for TU games.

Each agent i ∈ N has positive weight wi. These weights are the proportions in which the

players share in unanimity games. Kalai and Samet (1987) further studied this family.

We denote by Shw (N, v) the weighted Shapley value associated with the weight system

w = (wi)i∈N . For each i ∈ N,

Shw
i (N, v) =

∑

π∈Π(N)

pw(π) [v(Pre(π, i) ∪ {i})− v(Pre(π, i))]

where pw(π) =
∏|N |

j=1

wπ(j)
∑j

k=1wπ(k)
.

Owen (1977) introduced a value for TU games with a group structure. Agents are

partitioned into different groups. We denote by P such partition. We should divide v (N)

among the agents taking into account the partition P . Owen (1977) proved that his value

generalizes the Shapley value. We call it the Owen value and denote it as Ow (N, v, P ).

We say that a permutation π ∈ ΠN is admissible with respect to P if given i, i′ ∈

P k ∈ P and j ∈ N with π(i) < π(j) < π(i′), then j ∈ P k. We denote by ΠG the set of

all permutations over N admissible with respect to P . Given (N, v, P ) and i ∈ P k ∈ P,

Owi (N, v,G) =
1

|ΠG|

∑

π∈ΠG

[v (Pre (i, π) ∪ {i})− v (Pre (i, π))] .

Weber (1988) introduced the marginalistic values of a cooperative game as general-

izations of the Shapley value. Weber considers that agent i’s marginal contribution to a

coalition S is weighted by an exogenously specified factor. Let pi be a weight scheme for

agent i ∈ N , where negative weights are also allowed. Formally, pi ∈ R
|{S:S⊂N\{i}}| and

13



∑

S⊂N\{i} p
i (S) = 1. We define the marginalistic value f p associated with a collection of

weight schemes p = {pi}i∈N as follows. Given the TU game (N, v) and i ∈ N,

f p
i (N, v) =

∑

S⊂N\{i}

pi (S) (v (S ∪ {i})− v (S)) .

3 The private game

Bird (1976) associated with each mcstp (N0, C) a TU game (N, vpC) where the cost of

each coalition S is computed under the assumption that agents in N \S are not available.

We call this game private because the nodes in N \ S belong to these agents and hence

their participation is needed in order to use their nodes.

Formally, the TU game (N, vpC) associated with each mcstp (N0, C) is defined as

follows. For each coalition S ⊆ N ,

vpC (S) = m (S0, C) . (1)

When no confusion arises, we write vp instead of vpC .

We compute vp in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vp (S) 12 15 20 16 18 23 22

Hence, vp ({2, 3}) is computed using only nodes 2 and 3. Thus, the minimal tree in the

problem ({2, 3}0 , C) is {(0, 3) , (2, 3)} .

Kobayashi and Okamoto (2014) provide sufficient and necessary conditions for vp to

be a concave game. Moreover, when the costs are restricted to two possible values, low

and high (as in elementary problems), then vp is concave if and only if the cycles formed

by arcs of low cost are either adjacent to the source or pairwise adjacent. This condition

can be verified in polynomial time.

Bird (1976) proved that for each mcstp (N0, C) , the core of vp is nonempty. Later on,

the core was studied by other authors. We mention some other results about the core.

Theorem 3.1 1. (Bird, 1976) For each mcstp (N0, C) , the Bird’s rule B (N0, C) be-

longs to the core of vp.

2. (Feltkamp et al., 1994) For each mcstp (N0, C) , the folk rule F (N0, C) belongs to

the core of vp.

3. (Dutta and Kar, 2004) For each mcstp (N0, C) , the Dutta-Kar’s rule DK (N0, C)

belongs to the core of vp.
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4. (Tijs et al., 2006a) For each mcstp (N0, C) , each obligation rule f̺o (N0, C) belongs

to the core of vp.

5. (Bogomolnaia and Moulin, 2010) For each mcstp (N0, C) and each λ ∈ [0,+∞) ,

Rλ (N0, C) belongs to the core of vp.

6. (Trudeau and Vidal-Puga, 2017) For each mcstp (N0, C) , the core of vp is the

convex hull of the reduced marginal contributions vectors.

Since optimistic weighted Shapley rules are obligation rules (Bergantiños and Lorenzo-

Freire, 2008a,b) and pessimistic weighted Shapley rules are also obligation rules (Lorenzo

and Lorenzo-Freire, 2009), both belong to the core of vp.

Moreover, Moretti et al. (2002) study some monotonicity properties of the core of vp.

Next result applies to mcstp with a unique mt :

Theorem 3.2 (Chun and Lee, 2012) The unique sequential contributions rule that selects

a core allocation in the private game vp for each mcstp with a unique mt is the Bird’s

rule.

Next result applies to elementary mcstp:

Theorem 3.3 (Kuipers, 1993)

1. For each elementary mcstp, there exists an associated concave elementary graph

game, which has the same core as vp.

2. For each elementary mcstp, its extreme core allocations are marginal allocation

vectors of the game vp.

We now mention, briefly, some single values for mcstp that has been defined through

the game vp.

Granot and Huberman (1981, 1984) study the core and the nucleolus of vp. They

prove that the core and the nucleolus can be obtained as a Cartesian product of the core

and the nucleolus of some subproblems. They also provide efficient algorithms for the

computation of the core and the nucleolus.

Faigle et al. (1998) prove that computing the nucleolus is NP -hard.

Kar (2002) defines a rule as the Shapley value of vp. Namely, for each mcstp (N0, C),

he considers Sh (N, vp) . He obtains an axiomatic characterization of this value. Ando

(2012) proves that computing this Shapley value is NP -hard, even for elementary games.
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Trudeau and Vidal-Puga (2017, 2020) study the permutation-weighted average of

extreme points of the core in elementary cost matrices. Moreover, Trudeau and Vidal-

Puga (2020) provide a necessary condition for the coincidence of these three values, i.e.,

the nucleolus, the Shapley value, and the permutation-weighted average of extreme points

of the core of vp.

4 The irreducible game

We associate with each mcstp (N0, C) a TU game (N, viC) defined as the private game

associated with the irreducible form (N0, C
∗) . Thus, for each coalition S ⊆ N ,

viC (S) = m (S0, C
∗) . (2)

This game was already considered in Bird (1976). When no confusion arises, we write

vi instead of viC .

We compute vi in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vi (S) 12 12 12 16 18 18 22

Now, vi ({2, 3}) is also computed using only the nodes 2 and 3, but considering C∗ instead

of C. Thus, the minimal tree in problem ({2, 3}0 , C
∗) is {(0, 3) , (2, 3)} , but the cost is

18 (instead of 23).

Bird (1976) proved that for each mcstp (N0, C) the core of vi (usually called the

irreducible core) is nonempty and it is a subset of the core of vp. Later on, the core of vi

was studied by other authors.

We mention some other results about the irreducible core.

Theorem 4.1 1. (Bird, 1976) For each mcstp (N0, C), the irreducible core is the

convex combination of the set of allocations induced by Prim’s algorithm.

2. (Aarts and Driessen, 1993) For each mcstp (N0, C), vi is concave.

3. (Bird, 1976) For each mcstp (N0, C) , the Bird’s rule B (N0, C) belongs to the core

of vi.

4. (Feltkamp et al., 1994) For each mcstp (N0, C) , the folk rule F (N0, C) belongs to

the core of vi.
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5. (Tijs et al., 2006a) For each mcstp (N0, C) , each obligation rule f̺o (N0, C) belongs

to the core of vi.

6. (Tijs et al., 2006b) The core of vi is the largest solution which is efficient, non-

negative, upper-bounded by the stand-alone costs, and cone-wise positive linear.

7. (Bergantiños and Vidal-Puga, 2015) For each mcstp (N0, C) , the core of vi coin-

cides with the set of allocation induced by the set of all monotonic rules over the

cost matrix and the set of agents.

Since optimistic weighted Shapley rules are obligation rules (Bergantiños and Lorenzo-

Freire, 2008a,b), and pessimistic weighted Shapley rules are also obligation rules (Lorenzo

and Lorenzo-Freire, 2009), both belong to the core of vi.

We now consider the Shapley value of vi. We also consider other values of TU closely

related with the Shapley value.

Bergantiños and Vidal-Puga (2007a) define a rule as the Shapley value of vi. Namely,

or each mcstp (N0, C) , they consider Sh (N, vi) .

Theorem 4.2 1. (Bergantiños and Vidal-Puga, 2007a) For each mcstp (N0, C) , the

folk rule of (N0, C) coincides with Sh (N, vi) .

2. (Bergantiños and Vidal-Puga, 2007a) For each mcstp (N0, C) , the Bird’s rule of

(N0, C
∗) coincides with Sh (N, vi) .

3. (Lorenzo and Lorenzo-Freire, 2009) The family of pessimistic weighted Shapley rules

coincides with the family of weighted Shapley values of vi.

4. (Bergantiños and Kar, 2010) For each mcstp (N0, C) , the set of obligation rules is

a subset of the set of marginalistic values of vi.

A comparative of the Shapley value in the irreducible game (folk solution) and in the

private game (Kar solution) can be found in Trudeau (2014b). Ando and Kato (2010)

prove that the Shapley value in the irreducible game, as well as the egalitarian solu-

tion and the nucleolus, can be computed in time O(|N |2). For irreducible cost matrices,

Trudeau and Vidal-Puga (2020) show that the the Shapley value, the nucleolus and the

permutation-weighted average of extreme points of the core of vi coincide.

Moreover, Bergantiños and Gómez-Rúa (2010, 2015) study the rule given by the Owen

value of vi.
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5 The optimistic game

As an alternative to Bird’s approach, Bergantiños and Vidal-Puga (2007b) associate with

each mcstp (N0, C) a cooperative game (N, voC) where the worth of each coalition S

is computed assuming that agents in N \ S are already connected. We call this game

optimistic because agents in N \S can connect to the source through agents in N \S for

free.

Let (N0, C) be an mcstp, and S, T ⊂ N with S ∩ T = ∅. We define the associate

mcstp
(

S0, C
T
)

assuming that agents in S have to be connected to the source, agents in

T are already connected, and the agents in S can connect to the source through agents

in T . Formally, cTij = cij for all i, j ∈ S and cT0i = minj∈T0 cji for all i ∈ S.

Bergantiños and Vidal-Puga (2007b) defined the TU game (N, voC) associated with

each mcstp (N0, C). For each coalition S ⊆ N ,

voC (S) = m
(

S0, C
N\S

)

. (3)

When no confusion arises, we write vo instead of voC .

We compute vo in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vo (S) 4 4 6 10 10 10 22

Hence, vo ({2, 3}) is computed assuming that agent 1 is already connected. Thus, agents

2 and 3 connect to the source through tree {(1, 2) , (1, 3)} , which has a cost of 10.

We say that two mcstp (N0, C) and (N0, C
′) are tree-equivalent if there exists a span-

ning tree t∗ such that t∗ is an mt for both (N0, C) , and (N0, C
′) and cij = c′ij for all

(i, j) ∈ t∗.

In the next theorem we summarize some results obtained for vo.

Theorem 5.1 1. (Bergantiños and Vidal-Puga, 2007b) If (N0, C
∗) is irreducible, then

vp and vo are dual, i.e.,

vp (S) + vo (N \ S) = m (N0, C)

for all S ⊂ N.

2. (Bergantiños and Vidal-Puga, 2007b) If (N0, C) and (N0, C
′) are tree-equivalent,

then voC = voC′ .

3. (Bergantiños and Vidal-Puga, 2007b) The optimistic game associated to any mcstp

(N,C) coincides with the optimistic game associated to its irreducible form (N,C∗),

i.e., voC = voC∗ .
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In the next theorem, we summarize some results obtained for the Shapley value (and

othere related values) of vo.

Theorem 5.2 1. Bergantiños and Vidal-Puga (2007b) For all mcstp (N0, C) ,

Sh (N, voC) = Sh
(

N, viC
)

= Sh (N, voC∗) .

2. (Bergantiños and Lorenzo-Freire, 2008b) The family of optimistic weighted Shapley

rules coincide with the family of weighted Shapley values of vo.

Since Sh (N, vo) = Sh (N, vi), and the folk rule coincides with Sh (N, vi), the Shapley

value of vo is just another way for obtaining the the folk rule.

The family of optimistic weighted Shapley rules is studied from an axiomatic point of

view in Bergantiños and Lorenzo-Freire (2008a). Moreover, Gómez-Rúa and Vidal-Puga

(2017) prove that a version of such an optimistic weighted Shapley rule is immune to

manipulation by merging or splitting of nodes in a slightly more general model.

6 The public game

A natural alternative to the private case is to assume that there are no property rights

on nodes and agents in S can use, paying their cost, the nodes of their neighbors in N \S

to connect to the source. This approach was first explicitly studied by Bogomolnaia and

Moulin (2010).

We compute vu in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vu (S) 12 15 18 16 18 22 22

Now, vu ({2, 3}) is computed assuming that agent 1 is available. Thus, agents 2 and 3

connect to the source through tree {(0, 1) , (1, 2) , (1, 3)} , which has a cost of 22.

The public game has not received much attention in the literature, and it has been

limited to the contrast with the private game (Trudeau, 2013; Trudeau and Vidal-Puga,

2017, 2019). A possible reason for this lack of attention is that the private game is more

tractable. Notice, for example, that vu(S) = minS⊆T vp(T ), i.e., it requires much more

effort to compute vu(S). Moreover, the core allocations of the public game coincide with

the core allocations of the private game with non-negative cost shares, as first noted by

Bogomolnaia and Moulin (2010) and formally proved by Trudeau and Vidal-Puga (2017):

Theorem 6.1 (Trudeau and Vidal-Puga, 2017) core(N, vu) = core(N, vp) ∩ R
N
+ .
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Additionally, the public game associated with the irreducible form of amcstp coincides

with the private game associated with this irreducible form. Hence, the irreducible game

can be defined from either the private or the public approach.

As a consequence, most of the results for the private game also hold for the public

game. For the sake of completeness, we replicate these results for the public game. The

proof is an immediate consequence of Theorem 3.1 and the non-negativity of the rules

mentioned in the respective item.

Theorem 6.2 1. For each mcstp (N0, C) , the Bird’s rule B (N0, C) belongs to the

core of vu.

2. For each mcstp (N0, C) , the folk rule F (N0, C) belongs to the core of vu.

3. For each mcstp (N0, C) , the Dutta-Kar’s rule DK (N0, C) belongs to the core of

vu.

4. For each mcstp (N0, C) , each obligation rule f̺o (N0, C) belongs to the core of vu.

5. (Bogomolnaia and Moulin, 2010) For each mcstp (N0, C) and each λ ∈ [0,+∞) ,

Rλ (N0, C) belongs to the core of vu.

6. (Trudeau and Vidal-Puga, 2017) For each mcstp (N0, C) , the core of vu is the

convex hull of the reduced marginal contributions vectors.

Next result applies to mcstp with a unique mt :

Theorem 6.3 The unique sequential contributions rule that selects a core allocation in

the public game vu for each mcstp with a unique mt is the Bird’s rule.

Proof. Under Theorem 6.2(1), we know that the Bird rule is a sequential contribution

rule that select a core allocation in the public game. Under Theorem 6.1, the core of vu

is a subset of the core of vp. Hence, any sequential contribution rule that select a core

allocation in the public game does so also in the private game. Under Theorem 3.2, such

a rule coincides with the Bird’s rule.

Next result applies to elementary mcstp:

Theorem 6.4 (Trudeau and Vidal-Puga, 2017) For elementary mcstp problems, the folk

solution is the permutation-weighted average of extreme core allocations of the game vu.
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7 The cycle-complete game

The last alternative to be considered is to associate with each mcstp (N0, C) a TU game

(N, vcC) defined as the private game associated with the cycle-complete network (N0, C
∗∗) .

Thus, for each coalition S ⊆ N ,

vcC (S) = viC∗∗ (S) = m (S0, C
∗∗) . (4)

As usual, we write vc instead of vcC .

This approach was studied by Trudeau (2012).

We compute vc in Example 2.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vc (S) 12 15 15 16 18 23 22

Now, vc ({2, 3}) is again computed using only the nodes 2 and 3, but considering C∗∗. In

this case, there are two minimal trees in problem ({2, 3}0 , C
∗∗) , which are {(0, 3) , (2, 3)}

and {(0, 2) , (2, 3)} , both with cost 23.

Theorem 7.1 (Trudeau, 2012) The game (N, vc) is concave.

Theorem 7.1 is not tight in the sense that there are concave mcstp which are not

cycle-complete. However, this result is tight if we look only at elementary mcstp.

It is well-known that the Shapley value of a concave cost game belongs to its core.

Moreover, it is clear that core(N, vc) ⊆ core(N, vp). Hence, the Shapley value of (N, vc),

which Trudeau (2012) calls cycle-complete solution, belongs to both cores.

Theorem 7.2 (Trudeau, 2012) For each mcstp (N0, C) , the cycle-complete solution be-

longs to the core of the game vp.

Next result applies to elementary mcstp:

Theorem 7.3 (Trudeau and Vidal-Puga, 2017) For elementary problems, the cycle-

complete solution is the permutation-weighted average of extreme core allocations of the

game vp.

A comparative of the Shapley value in the cycle-complete game (cycle-complete solu-

tion) and in the irreducible game (folk solution) can be found in Trudeau (2014a).
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8 Relation between cores

It is clear from their definition that the cost of the grand coalition in all the games

coincide, i.e., vp(N) = vi(N) = vo(N) = vu(N) = vc(N) = C(N), whereas for each

coalition S ⊂ N,

vo(S) ≤ vi(S) ≤ vu(S) ≤ vp(S)

and

vo(S) ≤ vi(S) ≤ vc(S) ≤ vp(S).

Notice that both vu(S) and vc(S) lie between vi(S) and vp(S). They are not related

though.

As an implication, we have the following relations:

core(N, vo) ⊆ core(N, vi) ⊆ core(N, vu) ⊆ core(N, vp)

and

core(N, vo) ⊆ core(N, vi) ⊆ core(N, vc) ⊆ core(N, vp).

The core of vo is, in general, empty. The rest of the cores are always nonempty. This

implies that any stable cost allocation for vi is stable in all the other games except vo,

and that we can always find such an allocation. As a counterpart, focusing on the core

of vi rules out other relevant properties for the private game, such as strict monotonicity

and strict ranking (Trudeau, 2012).

9 Conclusions and future research

In this paper, we have reviewed the contribution of cooperative game theory to the

problem of sharing the cost of mcstp between the agents. This contribution is, however,

far from being closed, as there are numerous natural extensions, many of them deriving

in balanced games, that have not been fully explored yet.

Some examples of extensions with nonempty core that have received some attention

in the literature are the following:

• Minimum cost spanning tree problems where some agents are indifferent (Trudeau,

2014c), i.e., they can connect to the source (and get rewarded for it) if it helps

others agents.

• Arborescences (Dutta and Mishra, 2012; Bahel and Trudeau, 2017), where the costs

are not symmetric, i.e., cij 6= cji in general.
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• Minimum cost spanning tree problems where the costs are uncertain and represented

by closed intervals (Moretti et al., 2011).

• Minimum cost spanning tree problems with multiple sources (Bergantiños and

Navarro-Ramos, 2019b,a; Bergantiños and Lorenzo, 2020; Bergantiños et al., 2020)

where agents want to be connected to several sources.

• Multi-period shorted path problems (Streekstra and Trudeau, 2020) generalize

mcstp to several periods, so that the agents should receive from the source dif-

ferent amount of services in different periods.

Some examples of extensions with empty core are the following:

• Steiner tree problems (Megiddo, 1978), where agents can use some special (Steiner)

nodes, if needed, to connect to the source. However, some special cases are always

balanced (Skorin-Kapov, 1995), as for example when all Steiner nodes belong to an

optimal tree (Skorin-Kapov and Skorin-Kapov, 2012).

• Multi-criteria minimum cost spanning tree games (Fernández et al., 2004), where

the cost of the arcs are vectors instead of numbers. In this extended class of

games, the dominance core (where inequalities apply to at least some dimension) is

nonempty, whereas the preference core (where inequalities apply to all dimensions)

may be empty.

• Minimum cost spanning tree problems with revenues (Bergantiños and Lorenzo,

2008; Estévez-Fernández and Reijnierse, 2014) are games where some agents have

a limited budget, i.e., they connect if their assigned payment is not more than

their connection revenue, or budget. These problems also generalize minimum cost

spanning tree problems where some agents are indifferent.

• k-Hop minimum cost spanning tree problems (Bergantiños et al., 2012, 2014), where

no agent can be more than k nodes away from the source.

• Directed acyclic graph games (Sziklai et al., 2016) arise from problems where some

directions are unfeasible, so that the graph is directed, it has no cycles, and there

always exists at least one path from each agent to the source. Moreover, some nodes

are optional (Steiner nodes) and hence these problems also generalize Steiner tree

problems.
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• Minimum cost spanning tree problems with priced nodes (Trudeau and Vidal-Puga,

2017) generalize Steiner tree problems in the sense that each Steiner node has

assigned a price, so that players should pay the price of the nodes they use.

In the other direction, some limited results have been obtained for some relevant

subclasses of mcstp, as for example information graph games, which are characterized by

elementary mcstp. Kuipers (1993) studies the core and Núñez and Vidal-Puga (2020)

study the stable sets (von Neumann and Morgenstern, 1944) of these games. Since stable

sets may exist for nonbalanced games, this research is also a promising open field of study

in games where the core is empty.
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Bergantiños, G. and Gómez-Rúa, M. (2015). An axiomatic approach in minimum cost

spanning tree problems with groups. Annals of Operations Research, 225(1):45–63.
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Subiza, B., Giménez-Gómez, J.-M., and Peris, J. E. (2016). Folk solution for simple

minimum cost spanning tree problems. Operations Research Letters, 44(5):598–601.

Sziklai, B., Fleiner, T., and Solymosi, T. (2016). On the core and nucleolus of directed

acyclic graph games. Mathematical Programming, 163(1):243–271.

Tijs, S., Branzei, R., Moretti, S., and Norde, H. (2006a). Obligation rules for minimum

cost spanning tree situations and their monotonicity properties. European Journal of

Operational Research, 175(1):121–134.

Tijs, S., Moretti, S., Branzei, R., and Norde, H. (2006b). The Bird core for minimum cost

spanning tree problems revisited: Monotonicity and additivity aspects. In Seeger, A.,

editor, Recent Advances in Optimization, volume 563 of Lecture Notes in Economics

and Mathematical Systems, pages 305–322. Springer, Berlin Heidelberg.

Trudeau, C. (2012). A new stable and more responsible cost sharing solution for mcst

problems. Games and Economic Behavior, 75(1):402–412.

Trudeau, C. (2013). Characterizations of the Kar and folk solutions for minimum cost

spanning tree problems. International Game Theory Review, 15(2):1340003–16.

30



Trudeau, C. (2014a). Characterizations of the cycle-complete and folk solutions for min-

imum cost spanning tree problems. Social Choice and Welfare, 42(4):941–957.

Trudeau, C. (2014b). Linking the Kar and folk solutions through a problem separation

property. International Journal of Game Theory, 43:845–870.

Trudeau, C. (2014c). Minimum cost spanning tree problems with indifferent agents.

Games and Economic Behavior, 84:137–151.

Trudeau, C. and Vidal-Puga, J. (2017). On the set of extreme core allocations for minimal

cost spanning tree problems. Journal of Economic Theory, 169:425–452.

Trudeau, C. and Vidal-Puga, J. (2019). The Shapley value in minimum cost spanning

tree problems. In Algaba, E., Fragnelli, V., and Sánchez-Soriano, J., editors, Chapters

in Game Theory: The Shapley value, chapter 24. CRC Press, Taylor & Francis Group.

Trudeau, C. and Vidal-Puga, J. (2020). Clique games: A family of games with coincidence

between the nucleolus and the shapley value. Mathematical Social Sciences, 103:8–14.

Vidal-Puga, J. (2004). Bargaining with commitments. International Journal of Game

Theory, 33(1):129–144.

von Neumann, J. and Morgenstern, O. (1944). Theory of games and economic behavior.

Princeton UP, first edition.

Weber, R. (1988). Probabilistic values for games. In Roth, A. E., editor, The Shapley

value: Essays in honour of Lloyds S. Shapley, pages 101–119. Cambridge University

Press, Cambridge.

31


	Introduction
	Preliminaries
	Minimum cost spanning tree problems
	Rules defined through the problem
	Cooperative games

	The private game
	The irreducible game
	The optimistic game
	The public game
	The cycle-complete game
	Relation between cores
	Conclusions and future research

