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1 Introduction

Leading asset pricing theories frequently assume a single representative agent when seeking to

model expected returns. However, stock returns are considerably more volatile than aggregate

consumption growth. This empirical observation is a cornerstone of the equity premium

puzzle, see Mehra and Prescott (1985) and Breeden et al. (2014).

Seeking for explanations of this equity premium puzzle, Bansal and Yaron (2004) propose a

long-run risk (LRR) framework to account for economic uncertainty and long-run growth

prospects. Long-run risk literature frequently assumes a single representative agent when

seeking to model expected returns, see Bansal and Yaron (2004), and shows strong explanatory

power of key asset market phenomena. Recent works, such as Schorfheide et al. (2018),

extend the LRR framework by investigating the data generation process (DGP) of aggregate

consumption growth uncertainty. However, the DGP of consumption growth is analysed and

tested in ad-hoc manners. Also, aggregate consumption growth performs poorly in asset

pricing models. Other studies, for example, Campbell et al. (1993) emphasize a focus upon

heterogeneous agent asset price model, since stockholder consumption is more representative

than non-stockholder consumption for pricing equity returns. Toda and Walsh (2019) also

highlight that rising wealth holdings of the richest one percent predict excess stock returns.

Therefore, in this paper, I use stockholder consumption instead of aggregate consumption. I

incorporate stockholder consumption growth dynamics into LLR and explain stockholder

consumption growth uncertainty as the elevated consumption growth volatility of the wealthy

over the poor, as the wealth heterogeneity plays an important role in asset pricing models.

Following Lettau et al. (2019), I call the wealthy as stockholders and the poor as labour

workers. I use growth of capital share, which is defined as the capital income over the

aggregate income, to portray stockholder consumption growth. Capital share fluctuations

account for limited stock market participation and proxy the concentration of wealth. Also,

changes of capital share capture the redistribution risks between the wealthy (stockholders)
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and the poor (non-stockholders), and, therefore is tightly linked to the difference between

stockholder and labour worker consumption dynamics. Recent work by Lettau et al. (2019)

adopts heterogeneous agents and proposes capital share growth as a risk factor. It shows that

capital share growth explains expected equity returns, and empirically dominates aggregate

consumption growth and the Fama and French’s (1993) factors (Lettau et al., 2019).

The construction of the stockholder consumption growth is consistent with empirical evidences.

Using United States wealth distribution data from Saez and Zucman (2016), Lettau et al.

(2019) identify that stockholders’ and labour workers’ consumption behaviours respond

differently to capital share growth. Based on Lettau et al. (2019), I model the elevated

stockholder consumption growth volatility through capital share growth and test its asset

pricing implications.

Firstly, this paper relaxes model assumptions in Lettau et al.’s (2019) capital share model

and Bansal and Yaron ’s (2004) long-run risk framework. Instead of assuming the stockholder

consumption as capital share times the aggregate consumption as in Lettau et al. (2019),

this paper constructs the stockholder consumption growth dynamics based on empirical facts.

Also, this paper representative agent assumption in Bansal and Yaron (2004) by focusing on

the consumption growth of stockholders and omitting labour worker consumption dynamics.

Secondly, based on Epstein and Zin (1989) type recursive utility, this paper analyses the

elevated stockholder consumption volatility impacts separately under short-run and long-run

expectations. It shows that elevated stockholder consumption volatility generates short-run

equity return volatilities, while captures long-run stockholder consumption growth prospects.

This paper finds that capital share growth has strong volatility effect on the short-run equity

premium. By focusing on stockholder consumption growth, I find that elevated stockholder

consumption volatility carries asset pricing powers through capital share growth. Intuitively,

stockholders and labour workers are faced with identical long-run economic equilibrium path

and a common consumption growth trend. However, the consumption growth volatility

of stockholders differs from that of labour workers, while capital share growth is found to
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enter the elevated stockholder consumption volatility. Given that stockholders consume

primarily out of their wealth, capital share growth serves an indicator of redistribution risks.

In adjacent periods, individuals do not expect consumption shocks due to consumption

smoothing. Stockholder consumption shocks associated with the wealth redistribution are

unexpected in short-run, and, therefore, investors do not claim redistribution associated risk

premiums. In this case, capital share growth only affects the volatility of the short-run equity

premium.

I proposes a capital return variability (CRV) as a risk factor to capture the long-term risk-

return relationship between redistribution risks and the equity premium. In the long-run,

the volatility effect of capital share growth accumulates and generates significant risk prices.

Intuitively, the wealth redistribution in the long-run falls within investor’s expectations, as

the wealth accumulation rate of richest cohorts is much higher than that of the poor (Saez

and Zucman, 2016). The predictable capital return variability implies better long-run growth

prospects of the stockholder consumption and, therefore, raises equity prices. Therefore,

as a proxy for accumulated capital share volatility effects, CRV captures expected excess

stockholder consumption growth and explains long-term redistribution risks. In asset pricing

tests, CRV explains over a half of cross-sectional return variations. Also, CRV outperforms

and strongly dominates the capital share growth factor of Lettau et al. (2019). Therefore,

my theoretical predictions are justified by empirical evidences. My findings are also in line

with Lettau et al. (2019) as the long-term capital share growth outperforms its short-term

counterparts.

This paper is structured as follows. Section 2 presents a theoretical asset pricing model with

heterogeneous agents, in which stockholder consumption volatility operates through capital

share growth. Section 3 conducts an empirical analysis of the theoretical model. This section

includes data, empirical methodologies and evidences on the asset pricing performance of

capital share growth and the capital return variability factor. Finally, Section 4 provides

concluding remarks of this paper.
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2 Theoretical Framework

In this section, I present an asset pricing model that incorporates the capital share risks

through elevated stockholder consumption volatility. This model combines the heterogeneous

model by Lettau et al. (2019) and the long-run risk framework by Bansal and Yaron (2004).

This paper models a stock market equilibrium which only considers stockholders, since labour

workers are absent from the market. I assume that stockholders have Epstein and Zin

(1989) type utility function to disentangle risk attitude from the degree of intertemporal

substitutability, and separate the utility impact instantaneous consumption from the long-run

expectation of consumption (Epstein and Zin, 1989). Also, the assumption that stockholders

consume all their capital income can be relaxed by only considering stockholder consumption

growth. Intuitively, stockholders are highly likely to have non-zero reinvestment rate and

self-finance their consumption, given the limited saving of labour workers and high wealth

accumulation of stockholders (Saez and Zucman, 2016). Empirical evidences also show that

the consumption-wealth ratio is a function of expected equity returns (Lettau and Ludvigson,

2001a). Therefore, stockholders do not consume all income and adjust their consumption

share in account for expected equity returns.

2.1 The Stockholder Consumption Growth

In this subsection, I construct the stockholder consumption growth according to empirical

evidences. Going beyond the homogeneous agent model of Bansal and Yaron (2004), the

stockholder consumption growth gst is underpinned by the particular consumption patterns

of heterogeneous agents.1 According to Lettau et al. (2019), the consumption growth of

stockholders is more volatile than that of those labour workers who derive income from wages.

Intuitively, the top of the wealth distribution has a larger discretionary consumption on

1In our paper, gst and gwt denotes the consumption growth of stockholders and labour workers calculated from

gnt = Cn
t+1/Cn

t − 1, n ∈ {s, w}, respectively. Cs
t and Cw

t are the time-t consumption of stockholders and labour

workers, respectively.
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luxury goods (Ait-Sahalia et al., 2004). Stockholders’ large discretionary consumption linked

to volatile asset prices, while labour workers spend a larger proportion on the same essential

goods each month.

Capital share captures the proportion of stockholder income in the economy. Therefore,

capital share growth is strongly and positively correlated with the stockholder consumption

growth, while strongly negative correlated with the labour worker consumption growth

(Lettau et al., 2019). Accordingly, I derive the aggregate consumption growth ḡt as the

weighted average of consumption growth of labour workers and stockholders:

ḡt = wsgst + (1 − ws)gwt (1)

ws denotes the stockholder population weight. gst and gwt are the consumption growths of

stockholders and labour workers, respectively.

The consumption growth volatility of stockholders is higher than that of average households

in economy. Therefore, I adopt the aggregate consumption as a benchmark for modelling

stockholder consumption volatility. The relationship between stockholder (gst ) and aggregate

(ḡt) consumption growths is defined as follows:2

gst = ḡt +
1

ws
gkt ξt (2)

where gkt is capital share growth. The stochastic term ξt ∼ Ni.i.d(0,Σ) captures the elevated

consumption growth volatility of the stockholder consumption compared to aggregate con-

sumption, as the top wealth consumption is more volatile. gKS,t is capital share growth. Σ

denotes a constant variance for ξt. The ξt term, therefore, also defines the variance of the

consumption distribution of the economy. This paper does not make an autocorrelation

assumption for ξt to avoid possible explosive growth. Equation (2) is consistent with Mankiw

and Zeldes’s (1991) finding that stockholder consumption is more volatile than the aggregate

consumption.
2Based on the data correlations identified by Lettau et al. (2019), I adopt capital share growth gkt as a multiplier

directly to capture its volatility effect on stockholder consumption growth. The robustness test of equation (2) is in

Appendix. The labour worker consumption growth is defined as gwt = ḡt(1 − 1
1−ws gkt ξt) according to equations (1)

and (2).
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A positive capital shock increases stockholder consumption growth. This shock is absorbed

by the labour workers since labour workers adjust their consumption according to decreased

relative labour income level. The overall volatility generated by stockholder and labour

worker consumption growths must be consistent with the volatility pattern of aggregate

consumption ḡt. I ignore the labour worker consumption growth in the theoretical model

since labour workers do not invest. Overall, the aggregate consumption growth ḡt remains

on its equilibrium path. The stockholder population weight ws does not affect the analysis

in following sections, given any percentage at the top can be used to illustrate how the

concentration of wealth affects the intensive margin of the stock market (Lettau et al., 2019).3

The stockholder consumption contains a persistent component, as aggregate consumption

growth ḡt enters equation (2)4 Following Bansal and Yaron (2004), I define the aggregate

consumption growth rate ḡt+1 = µ+ xt + σηt+1, where xt is the predictable term. Therefore,

the stockholder consumption growth in equation (2) can be rewritten as:

gst+1 = µ+ xt +
1

ws
gkt ξt + σηt+1 (3)

The time-varying uncertainty of stockholder consumption growth is defined as 1
ws
gkt ξt +σηt+1,

which is a function of capital share growth gkt . Also relevant to our model is the consumption

volatility risk (CVR) factor derived by Boguth and Kuehn (2013). In the theoretical motivation

of their volatility risk factor, the consumption growth is assumed to switch between high and

low volatility states according to agent’s beliefs. In our model, instead of assuming a Markov

switching process based upon changing beliefs, volatility is explicitly modeled using a capital

share factor.

3The wealth-weighted participation rate is lower than the aggregate participation rate, regardless which quantile of

wealth distribution is selected as a benchmark (Lettau et al., 2019).
4The DGP of stockholder consumption growth is consistent with the assumption of Bansal and Yaron’s (2004)

long-run risk framework.
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2.2 Capital Return Uncertainty and Long-run Risks

In this subsection, I combine the stockholder consumption growth in equation (3) with the

long-run risk model proposed by Bansal and Yaron (2004). In line with the assumption by

Lettau et al. (2019), labour workers do not influence equity prices and, consequently, they

are independent from the stock market and their participation is not modeled.

To solve the relationship between equity returns and capital share growth, this paper extends

the model of Bansal and Yaron (2004) to derive the equity premium explicitly. I develop

a hybrid model of the constant volatility case (Case I) and the time-varying volatility case

(Case II) of Bansal and Yaron (2004). The uncertainty in the stockholder consumption growth

contains both σ that captures economic fundamental uncertainties and 1
ws
gkt ξt that captures

time-varying uncertainty associated with capital returns.

Consider a representative stockholder with Epstein and Zin (1989) type recursive preferences.

Based upon the recursive preference utility function, the asset pricing restrictions for gross

return Ri,t+1 satisfy

Et[δ
θ(Gs

t+1)
−
θ
ψR

−(1−θ)
a,t+1 Ri,t+1] = 1 (4)

where θ = (1 − γ)/(1 − 1
ψ

). In the following parts of this paper, expectations are conditional

on the stockholders’ information set, which is omitted in equations for simplifying the model.

In equation (4), Gs
t+1 is the stockholder consumption growth. Ra,t+1 is the gross return on an

asset that generates dividends that cover the aggregate stockholder consumption. 0 < δ < 1 is

the time discount factor, γ ≥ 0 is the risk-aversion parameter, and ψ ≥ 0 is the intertemporal

elasticity of substitution (IES). logGs
t+1 = gst+1 holds by a standard Taylor approximation.5

Given the asset pricing constraint in equation (4), the intertemporal marginal rate of

substitution (IMRS) is:

mt+1 = θlogδ −
θ

ψ
gst+1 + (θ − 1)ra,t+1 (5)

where gst+1 and ra,t+1 are the natural logarithm of Gs
t+1 and Ra,t+1, respectively.

5Gs
t+1 =

Cs

t+1

Cs

t

where Cs
t is the stockholder time-t consumption.
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We also adopt the standard approximation proposed by Campbell and Shiller (1988b) to

derive the functional form of the equity premium. The innovation of log gross consumption

ra,t+1 and log market return rm,t+1 are assumed to follow:

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1 (6)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1 (7)

where zt is the log price-consumption ratio (log(Pt
Ct

)) and zm,t is the log price-dividend ratio

(log( Pt
Dt

)).6

I incorporate the stockholder consumption growth in equation (3) into the long-run risk

framework and set gt+1 = gst+1 for simplifying notations. In my model, the stock market

is driven by a persistent growth component (xt+1), economic fundamental uncertainty (σ),

capital share growth (gkt ) and elevated stockholder consumption volatility (ξt+1). The system

is as follows:

xt+1 = ρxt + φeσet+1

gt+1 = µ+ xt +
1

ws
gkt+1ξt+1 + σηt+1

gd,t+1 = µd + φxt + φdσd,t+1ut+1 (8)

et+1, ut+1, ηt+1 ∼ Ni.i.d.(0, 1) ξt ∼ Ni.i.d.(0,Σ)

where gd,t+1 is the dividend growth rate, and ρ is the persistence of the expected growth rate

process. Parameters µ and µd are the constant component of gt+1 and gd,t+1, respectively.

Following Bansal and Yaron (2004), I set φe > 1 and φd > 1. The parameter φ can be

interpreted as the leverage ratio on expected consumption growth, see Bansal and Yaron

(2004) and Abel (1999). The stochastic error terms et+1, ut+1, and ηt+1 are independent from

each other (Bansal and Yaron, 2004). σ is a constant which captures the volatility of xt+1

and gt+1.
7

6Dt denotes the dividend.
7Bansal and Yaron (2004) Case II adds time varying volatility and fluctuating economic uncertainty into their

model through a general error term. Our model does not assume a stochastic innovation of σ in order to isolate the

volatility effect generalized by the introduction of the capital share factor.
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The dividend growth volatility is correlated with consumption growth volatility, as suggested

by Bansal and Yaron (2004). Therefore, σd,t+1 is assumed to be partially correlated with

both gkt+1ξt+1 and σ in our model.8 Intuitively, the level change of capital share represents

the capital return fluctuations. As important sources of capital returns, dividends should be

correlated with the magnitude of capital share when the labour supply is constant. Therefore,

the uncertainty of dividend returns should be correlated with capital share growth.

The innovation of gd,t+1 which is found to be more volatile than gt+1 (Campbell, 1999) is

tackled by φd. Prices are partially myopic to future fundamentals but very sensitive to capital

flows in inelastic markets (Gabaix and Koijen, 2020). Our model therefore assumes the

capital share growth operates in the volatility of the dividend growth gd,t+1. We formalises

uncertainty in terms of the impact of high income consumption variability, rather than a

generic uncertainty as set out by Bansal and Yaron (2004).

In addition, this paper defines the dynamics of capital share growth to solve the equity

premium. According to Lettau et al. (2019), the capital share growth follows an AR(1)

process:9

gkt+1 = ρkgkt + ekt+1 (9)

where ekt+1 captures unexpected shocks and ρk captures the persistence of capital share growth.

Since the consumption growth gt, dividends growth gd,t, and the capital share growth are

exogenous processes in my model, the functional form of the innovation of consumption

return, the pricing kernel, and equity returns in this economy can be derived explicitly using

equations (5)-(9).10

Following Bansal and Yaron (2004), I derive solutions for the log price–consumption ratio

z, t and the log price–dividend ratio zm,t to characterize the returns ra,t+1 and rm,t+1. zt and

8The specification of σd,t+1 also relaxes the setting by Bansal and Yaron (2004) Case II, in which gt+1 and gd,t+1

are cointergated, to be consistent with empirical literature (Campbell and Cochrane, 1999).
9The constant is not significant according to our AR(1) estimation.

10Detailed proofs are provided in the Appendix.
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zm,t are assumed to satisfy zt = A0 + A1xt + A2ξt and zm,t = A0,m + A1,mxt + A2,mξt.
11 The

relevant state variables in solving for the equilibrium are xt and ξt. We modify the functional

form of the log price-consumption and log price-dividend ratios assumed by Bansal and Yaron

(2004) to include the time-varying part of stockholder consumption growth volatility.12

I first solve the parameters of the persistent consumption growth xt and excess volatility ξt

on price-consumption and price-dividend ratios, which track expected risk prices (Campbell

and Cochrane, 2000). In my model, the resulting A1 and A1,m are identical to Bansal and

Yaron (2004). The sensitivity of the price-consumption (and price-dividend) ratio to the

excess volatility ξt is constant over time. A2 (and A2,m) are constants when holding ws, ρk

and gkt constant:13

A2 =
1 − 1

ψ

ws(1 − κ1)
ρkgkt (10)

A2,m = −
ρk

wsψ(1 − κ1,m)
gkt (11)

A2,m is always negative in my model. This finding is consistent with Bansal and Yaron (2004)

that a rise in economic uncertainty lowers the price–consumption ratio and increases risk

prices. Notice that, in this paper, the IES of stockholders is not necessarily to be greater

than 1 to ensure a positive effect of rising capital return uncertainty on equity premiums.14

A non-zero A2,m is based upon the assumption that the capital share growth is sufficiently

persistent over time. Lettau et al. (2019) find that the long-term capital share growth has

strong pricing power when ρk is statistically insignificant from 1. This paper investigates the

importance of capital share growth persistence in the asset pricing performance. I conduct

the Lettau et al.’s (2019) F-MB test on the 2, 4, 6, 8, 10 and 12-month capital share growth

and plot the results in Figure 1. Also, I estimate an AR(1) model of the 2, 4, 6, 8, 10 and

12-month capital share growth. As shown in Figure 1, the R2 of capital share growth increases
11A0 and A0,m are constants; A1 and A1,m are parameters of the persistent consumption growth component xt;

A2,t and A2,m are parameters of the excess volatility ξt
12See Bansal and Yaron (2004) Case II.
13A2 and A2,m are derived in Online Appendix.
14The sign of A2,m is independent from IES and is always to be negative.
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as we increase the growth horizon. The AR(1) coefficients of the 2, 4, 6, 8, 10 and 12-month

capital share growth are 0.702, 0.833, 0.903, 0.927, 0.938 and 0.954, respectively. Therefore,

the pricing power increases as the persistence of capital share growth raises. This empirical

finding implies that the persistence of capital share growth is important for a constant A2,m.

When capital share growth is not sufficiently persistent, its impact on price-consumption

ratio will not be priced, which explains the poor performance of short-term capital share

growth as in Lettau et al. (2019).

According to the parameters of excess volatility in equations (10) and (11), given the stochastic

nature of ξt, the capital share growth does not have an impact on the magnitude but affects

the uncertainty of the price-consumption and price-dividend ratios.

2.3 Short-run versus Long-run Expectations

In this subsection, I derive equity premiums under short-run and long-run expectations,

respectively.15 With Epstein-Zin type recursive utilities, equity premiums are affected by both

the covariance between asset returns and instantaneous consumption growth, and that between

asset returns and the long-run consumption growth (Gârleanu and Panageas, 2020). Therefore,

I now set out equity returns in the short-run and the long-run. The difference between these

two settings is due to the difference between short-run and long-run expectations of ξt+1.

Conditioning on information at t, the short-run (conditional) expectation Et(ξt+1) = ξt due

to smoothed consumption and the locally deterministic instantaneous consumption growth

as in Gârleanu and Panageas (2020), while the long-run (unconditional) expectation of ξt+1

is zero.

I start from the short-run case. Conditional on information at time t, the stockholder

consumption is expected to be locally deterministic. Therefore, the short-run innovation of

the pricing kernel mt+1 is:

mt+1 − Et(mt+1) = λησηt+1 + λeσet+1 + λξ,t+1ξt+1 (12)

15Full details are in the Online Appendix.
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The short-run innovation of market return rm,t+1 is:

rm,t+1 − Et(rm,t+1) = φdσd,t+1ut+1 + λm,eσet+1 + λm,ξξt+1 (13)

In equations (12) and (13), λm,e, λη and λe are constants, while λm,ξ and λξ,t+1 are functions of

ekt+1.16 Therefore, the conditional pricing kernel innovation in equation (12) is only correlated

to unexpected capital share growth ekt , but the conditional market return innovation is

correlated with capital share growth through σd,t+1.

The equity premium is determined by the conditional covariance between the return rm,t+1

and the SDF mt+1 (Bansal and Yaron, 2004). Following Bansal and Yaron (2004), the

time-varying equity premium in the presence of short-run consumption uncertainty is:

Et(rm,t+1 − rf,t) = − (λm,eλe − 0.5λ2
m,e)σ

2 + 0.5φ2
dσ

2
d,t+1 + Et(λm,ξλξ,t+1 − 0.5λ2

m,ξ)

= − (λm,eλe − 0.5λ2
m,e)σ

2 + 0.5φ2
dσ

2
d,t+1 (14)

where rm,t+1 is the market return rate and rf,t is the risk free rate. At time t, the short-run

expectation Et(ξt+1) = ξt, so the effect of predictable capital share growth is omitted in

equation (14). Therefore, Et(λm,ξλξ,t+1 − 0.5λ2
m,ξ) = 0 holds. As shown by equation (14), the

conditional equity premium is constant in the short-run and has one source of systematic

risk that relates to the expected consumption growth volatility σ2. However, the capital

share factor enters the innovation of market return in equation (13). Hence, the elevated

consumption volatility of stockholders, through capital share growth, is linked to the equity

return volatility. The unexpected stockholder consumption volatility is perceived as a fraction

of the systematic uncertainty σ under short-run expectations.

Under long-run expectations, the consumption growth uncertainty of stockholders is identical

to the fundamental uncertainty of the economy. Therefore, E(ξt) = 0 in this case. The

long-run innovation of the pricing kernel is as follows:

mt+1 − E(mt+1) = λησηt+1 + λeσet+1 + λuξ,t+1ξt+1 (15)

16Details of λm,e, λη, λe, λm,ξ and λξ,t+1 are in Appendix.
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The long-run innovation of market return is:

rm,t+1 − E(rm,t+1) = φdσut+1 + λm,eσet+1 + λum,ξξt+1 (16)

Detailed functional forms of the parameters in equations (15) and (16) are in the Appendix.

Using equations (15) and (16), the long-run equity premium is calculated as:

E(rm,t+1 − rf,t) = −(λm,eλe − 0.5λ2
m,e − 0.5φ2

d)σ
2 + E

[

λum,ξλ
u
ξ,t+1 − 0.5(λum,ξ)

2
]

(17)

where E
[

λum,ξλ
u
ξ,t+1 − 0.5(λum,ξ)

2
]

is positively correlated with E
[

(gkt+1)
2
]

.17 Under long-run

expectations, the equity premium is a function of fluctuations in expected consumption

growth σ2 and capital return variability E
[

(gkt+1)
2
]

.

Overall, due to constant excess volatility between two adjacent periods, capital share growth

does not shift the expected rate of return under short-run (conditional) expectations. However,

in the long-run, volatility shocks fail to feature in expectations and the increased uncertainty

of returns generate redistribution risks between stockholders and labour workers.

2.4 The Capital Return Variability Factor

In this subsection, I propose a new asset pricing factor, namely the capital return variability

factor (CRV), as a long-run proxy for the capital return impact on the equity return volatility.

As shown by equation (17), the CRV (E
[

(gkt+1)
2
]

) enters the equity premium under long-run

expectations. The unexpected shocks of capital return associated stockholder consumption

uncertainty, captured by ekt in equation (17), is very small and gets magnified under long-run

expectations because of the long-lasting nature of the volatility shock (Bansal and Yaron,

2004). Therefore, only the predictable component of capital share growth has asset pricing

powers.

Intuitively, the ratio of the conditional risk premium to the conditional volatility of the market

portfolio fluctuates with consumption volatility (Bansal and Yaron, 2004). The maximal

17Details of λm,e, λη, λe, λum,ξ and λξ,t+1 are in Appendix. The functional form of E
[

λum,ξλ
u
ξ,t+1 − 0.5(λum,ξ)

2
]

is

in equation (B.48).
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Sharpe ratio approximated by volatility of the pricing kernel innovation also varies with

consumption volatility. In my model, the stockholder consumption volatility operates through

capital share growth. Therefore, risk prices will rise as economic uncertainty rises.

The model calibration of Bansal and Yaron (2004) indicates that the stockholder IES is

greater than 1. Also, Ogaki and Atkeson (1997) and Andreasen and Jørgensen (2020) find

stockholders that are wealthy and relatively less risk averse tend to have higher IES than

labour workers. Therefore, the coefficients of capital share growth in parameters A2,t in

equation (10) and A2,m in equation (11) are both negative, which ensures that capital share

growth is negatively correlated with the uncertainty in the price-consumption and the price-

dividend ratio. In response to lower expected equity return uncertainty, asset demand rises to

generate positive risk prices of CRV. The utility study of Colacito et al. (2018) also highlights

that increased macroeconomic volatility increases the stochastic discount factor under the

recursive utility framework, thus rises expected returns and generates a positive volatility

risk price.

The model specification of Boguth and Kuehn’s (2013) consumption volatility risk factor is a

potential explanation of the nonlinear relationship between the equity premium and capital

share growth in equation (17). Changes in beliefs about consumption growth volatility are

found important in explaining unconditional equity returns by Boguth and Kuehn (2013),

which indicates that the assumption of two volatility states is reasonable. My model can

be alternatively explained by assuming infinite states of stockholder consumption growth

volatility. At each time t, consumption growth volatility has only two latent states, but ξt

is an unknown stochastic variable and, hence, this is a setup that is consistent with the

quadratic relationship between equity returns and capital share growth in my model.
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3 Empirical Analysis

In this section, I present empirical justifications of the theoritical model in Section 2. My

theoretical model provides following asset pricing implications. Under short-run expectations,

capital share growth captures the market volatility and is not priced. Under long-run

expectations, capital return variability (CRV) proxies the impact of elevated stockholder

consumption growth uncertainty on equity returns. Therefore, the capital return variability

(CRV) is a long-run risk factor.

The empirical analysis by Lettau et al. (2019) does not allow for time variation of the capital

share parameters. However, empirically risk factor loadings may vary over time, see Jensen

(1968), Jagannathan and Wang (1996) and Lewellen and Nagel (2006). For instance, the static

CCAPM fails to capture the effect of time-varying investment opportunities (Lettau and

Ludvigson, 2001b). The non-zero unconditional price anomalies do not necessarily indicate

non-zero conditional alphas, given time-varying factor loadings that are correlated with the

equity premium or market volatility (Lewellen and Nagel, 2006).

Therefore, I use both conditional (parameters are time-varying) and unconditional (parameters

are time-invariant) estimations to measure the short-run and long-run factor risk exposures,

respectively. For testing the short-run case, I use a rolling-window multiplicative GARCH

approach to test if the capital share growth is significant in equity return variance, and the

Bayesian time-varying beta with stochastic volatility (B-TVB-SV) estimation from Bianchi

et al. (2017) to estimate risk price of the capital share growth. For testing the short-run case,

I adopt the bootstrapped Fama-MacBeth (FMB) procedure that is identical to Lettau et al.

(2019).

3.1 Data

In this subsections, I specify the data used for empirical tests. Capital share is calculated as

one minus labour share. Labour share data used in this paper is the nonfarm sector labor
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share, which is identical to that used by Lettau et al. (2019) and Gomme and Rupert (2004).

Lettau et al. (2019) use quarterly capital share and quarterly portfolio returns converted

from monthly data. In this paper, instead of modifying monthly to quarterly returns in

a relatively ad-hoc manner, I interpolate the capital share using a reasonable indicator to

reduce information loss.18 The theoretical model addresses the importance of the capital

share growth persistence in pricing asset returns. Therefore, I first test capital share growth

over different horizons and select the one with highest pricing power. The construction

of capital return variability (CRV) factor is based on the selected long-term capital share

growth.

3.1.1 Long-term Capital Share Growth and Capital Return Variability

This part reports the construction of long-term capital share growth and capital return

variability. Long-term capital share growth is adopted to partial out the measurement error

effect, as measurement error leads to biased estimation of CAPMs (Lettau et al., 2019).19

Following Lettau et al. (2019), the H-period capital share growth tested in this paper is:

gkt =
kt
kt−H

(18)

where kt denotes time-t capital share. In the test of the capital share growth, Lettau et al.

(2019) compare H = 1, 4, 8, 12 and 16-quarter cases and select the one with highest asset

pricing powers. The 4-quarter capital share growth is found to have the highest pricing power.

Under the monthly frequency setting, I conduct similar test as in Lettau et al. (2019). 20

The results are plotted in Figure 3. As shown by the Figure 3, the 12 and 24-month capital

share growth both have the highest R2. Following Lettau et al. (2019), I adopt 12-month

capital share growth as the risk factor in this paper.

18The monthly capital share is obtained by the Chow-Lin interpolation. Detailed capital share interpolation is in

Appendix. Data for constructing capital share and the Chow-Lin indicator is from FRED.
19During the data collection process, the filtering approach introduces measurement error problem.
20In the first stage of F-MB regression, I regress the 3, 12, 24, and 36-month capital share growth on 3, 12, 24, and

36-month size/BM sorted portfolio returns, respectively. The second stage is identical to a standard F-MB regression.
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According to the long-run case of equity premium in equation (17), CRV, also denoted as

(E(gk)
2), enters the unconditional mean equation of equity returns. CRV is constructed based

on the AR(1) innovation process of gk as in Lettau et al. (2019):

gkt+1 = ρkgkt + ekt+1 (19)

where ekt+1 captures unexpected shock in capital share growth. The magnitude of the estimate

of ρk is 0.947, which is statistically indifferent from 1. The innovations of capital share growth

and CRV are plotted in Figure 2. The summary statistics of the capital share factor and

CRV are reported in Table A10 in the Appendix.

3.1.2 Portfolio Returns

In this paper, capital share growth and CRV are tested on different groups of portfolio returns.

The portfolio groups used include 25 size/BM, 10 long-term reverse (REV), 25 size/INV, and

25 size/OP sorted portfolio returns. Descriptive statistics of benchmark portfolio returns

are reported in Appendix. For the multiplicative GARCH estimation, this paper takes

cross-sectional averages of size/BM, REV, size/INV, and size/OP sorted portfolio returns

respectively to mimic different market portfolios. All portfolio returns are monthly from the

Kenneth R. French Data Library. Sample spans January 1964 to August 2018.

3.2 The Short-run Case

Following structure of Section 2, I first test the short-run case. This subsection reports the

rolling-window multiplicative GARCH and the B-TVB-SV results. The B-TVB-SV estimates

the risk prices of the capital share growth when capital share betas are allowed to move freely.

The rolling-window multiplicative GARCH tests the significance of capital share growth in

the time-varying variance of equity premium.
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3.2.1 Rolling-window Multiplicative GARCH

The rolling-window multiplicative GARCH assumes that capital share growth influences

the equity premium volatility only. The innovation of market return in equation (13) is

correlated with capital share growth, while the innovation of equity premium in equation

(14) is independent from capital share growth. Therefore, the rolling-window multiplicative

GARCH is used to test equations (13) and (14) jointly.

Within each regression window, the asset pricing model estimated by the multiplicative

GARCH is as follows:

ri,t = βi0,t + ǫi,t ǫi,t ∼ N(0, σ2
i,t) (20)

where V ar(ǫi,t) = σ2
i,t, and σ2

i,t is consistent with the form in equation (22) below.

In the short-run expectation case, the conditional variance of equity premium is correlated

with the capital share growth. To test this theoretical prediction, I employ a general form for

the variance equation:

σ2
i,t = γk(gkt )

2 (21)

where γk is the coefficient of squared capital share growth. The functional form in equation

(21) is motivated by the market return innovation in equation (13), as capital share growth is

an O(n2) addend in the variance equation σ2
i,t.

Following Judge et al. (1988), I rewrite equation (21) as follows to ensure σ2 ≥ 0 holds:

σ2
i,t = exp

[

λ0 + λ1log
(

(gkt )
2
)]

(22)

Due to the limitation of maximum likelihood convergence, 60 and 90-month window lengths

are selected by this paper for the GARCH estimates. The magnitude of the GARCH estimates

are not of interest. However, significant GARCH coefficients can justify that capital share

growth has variance effects. log
(

(gkt )
2
)

in the variance equation (22) is expected to be

significant over time if equations (13) and (14) hold. Also, the significance of GARCH

coefficients is expected to decrease as the window length increases.
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The 60 and 90-month rolling-window GARCH estimates for capital share growth are plotted

in Figures 4 and 5, respectively. In Figure 4, 60-month GARCH estimates show that capital

share growth is always significant in the equity premium variance. However, in Figure 5, the

90-month GARCH estimates are less significant, which is expected given that the capital

return variability fells within stockholders’ expectations over horizons that is sufficiently long.

The magnitude of 60-month GARCH estimates are significant and stable. Therefore, the

capital share growth has a strong impact on the variance equation of equity premium in

the short-run. This variance effect dominates the mean effect under conditional estimations,

which empirically justifies the short-run innovation of market return in equations (13) and

equity premium in equation (14).

3.2.2 Time-Varying Beta With Stochastic Volatility

I now test the short-run equity premium in equation (14) independently. Following Bianchi

et al. (2017), I adopt the Bayesian time-varying beta with stochastic volatility (B-TVB-SV)

model to estimate capital share growth in the mean equation of the short-run equity premium.

This method allows the factor loadings varying over time and partials out the volatility

effects of capital share growth. Capital share growth is expected to be insignificant when

the econometric model specification fully captures time variation of factor loadings and the

stochastic volatility.

The B-TVB-SV model for asset return ri,t as a function of risk factors Fj,t is:

ri,t = βi0,t +
K

∑

j=1

βij,tFj,t + σi,tǫi,t ǫi,t ∼ N(0, 1) (23)

Factor risk prices λj,t are estimated by:

ri,t = λ0,t +
K

∑

j=1

λj,tβij,t + ei,t ei,t ∼ N(0, τ 2) (24)

The B-TVB-SV framework assumes the time-varying betas βij,t and residuals in equation

(23) take the following forms:

βij,t = βij,t−1 + κij,tηij,t j = 0, ..., K (25)

20



ln(σ2
i,t) = ln(σ2

i,t−1) + κiv,tυi,t i = 0, ..., N (26)

where κij,t is the structural break of factor loading βij,t, and κiv,t is the structural break of

idiosyncratic variance ln(σ2
i,t).

21 The stochastic terms ηij,t and υi,t follow normal distributions

with zero mean and variances q2
ij and q2

iv, respectively. A κij,t equal to one indicates that

structural breaks are present in the factor loadings, and κiv,t equal to one indicates that

structural breaks are present in the idiosyncratic variance. The advantage of including

structural breaks is that the model captures discrete movements of the factor loadings. 22

Other detailed break and risk price prior specifications and sampling approaches are discussed

in the Appendix.

As shown in equations (26) and (23), the B-TVB-SV estimation allows volatility change to

have structural breaks and autocorrelations, incorporating variance effects of the risk factors

that are assumed to enter the mean equation.23 The B-TVB-SV approach is a robustness

check for the true data dynamics of the short-run equity premium in equation (14), as a risk

factor will generate significant factor loadings and risk price estimates if this factor enters

the mean equation. Therefore, the distribution of capital share risk prices is expected to be

centered at zero as indicated by equation (14), and the variance of this distribution should

change over time, as in equation (13).

Following Bianchi et al. (2017), I use 2,000 burn-ins and 10,000 iterations of the Markov

chain Monte Carlo (MCMC) to estimate a parsimonious capital share growth model. 24 All

Bayesian estimates in this paper passed the Geweke (1991) convergence diagnostic.

Figure 6 plots the time-average break probabilities calculated by averaging all estimated κij,t

in equation (25). The average break probabilities of capital share growth are around 0.427

among the four equity portfolio classes. I also plot the capital share growth loadings in Figure
21As specified by the B-TVB-SV model, κij,t is a binary variable that equals 0 or 1. Therefore, the estimated

time-average break probabilities can be viewed as a structural break test (structural breaks exist when the break

probability estimates are non-zero).
22In equation (25), the innovation of factor loading maintains the random walk properties to retain the shrinkage

power of the selected prior to the largest extent. Therefore, the B-TVB-SV approach tackles factor selection

automatically.Weak priors are used for the distributions of βij,t and ln(σ2
i,t). Evidence indicates when the number of

21



Table 1: B-TVB-SV Risk Price Estimates

Average Std.err t-stat p-value 2.5% 50% 97.5%

Panel A: size/BM sorted portfolios

β0 0.832** 0.214 5.610 0.000 −9.512 1.126 9.403

gk −0.017 0.197 −0.085 0.932 −7.296 −0.019 7.784

Panel B: REV sorted portfolios

β0 0.652** 0.201 3.249 0.001 −9.620 0.950 8.717

gk 0.104 0.242 0.431 0.667 −7.932 0.154 8.632

Panel C: size/INV sorted portfolios

β0 0.839** 0.215 3.909 0.000 −9.404 1.176 9.406

gk −0.054 0.157 −0.344 0.731 −6.505 −0.015 8.066

Panel D: size/OP sorted portfolio

β0 0.801** 0.216 3.707 0.000 −9.579 1.166 9.302

gk 0.085 0.149 0.568 0.570 −6.338 0.053 8.119

Note: This table reports B-TVB-SV risk price estimates. The short-run equity premium in equation (14) is tested

by including capital share growth gk in the mean equation. Estimates in this table are robust to time variation and

volatility clustering of factor loadings. Risk prices (%) in panels A, B, C and D are estimated by the capital share

growth model using size/BM, REV, size/INV, and size/OP sorted portfolios, respectively. The 2.5%, 50%, and 97.5%

quantiles of estimated risk price distribution are included in this table. ** and * denote significance at the 5% and

10% levels, respectively. Data used are monthly from January 1964 to August 2018.The first 10-year data in the

sample is used for hyperparameter estimation. Sample estimates cover January 1974 to August 2018.

7. In this figure, the width of factor loadings is very volatile over time. Overall, loadings of

capital share growth βij,t follow a jump process with frequent structural breaks over time.

Also, the capital share growth loadings for all portfolios are around zero. Factor loadings are

shrunk toward zero by the weak prior when the risk factor has little effect on the level of the

variable is small (K=5), flat prior works quite well with the sparse specification and performs modest with the dense

specification (Huber et al., 2020). The weak prior adopted by V-TVB-SV approach also has shrinkage effects.
23The prior specification of factor loading allows volatility clustering and frequent structural breaks.
24Following Bianchi et al. (2017), to robustify structural break estimates, this paper demeans all risk factors within

both the training and the estimation samples to cancel out all potential bias caused by multicollinearity between the
constant and the risk factors. The demeaned factors will not affect the results estimated by the B-TVB-SV since all

level movements and moment conditions are retained in the sample.
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true equity premium. These findings indicate that capital share growth performs poorly in

capturing equity premium dynamics when factor loadings are allowed to change over time.

Figure 8 plots risk prices of capital share growth, and Table 1 reports numerical results. In

Figure 8, the distribution of risk prices of capital share growth is centered at zero. The

risk prices in Table 1 are insignificant for all portfolios. Therefore, risk prices of capital

share growth are insignificant in the short-run equity premium, after ruling out the potential

influence of outliers and stochastic volatility. Therefore, I conclude that capital share growth

does not enter the mean equation of the short-run equity premium, which is consistent with

the theoretical model in equation (14).

3.3 The Long-run Case and Capital Return Variability Factor

For testing the long-run case, I adopt the Fama-Macbeth (FMB) approaches following Lettau

et al. (2019). I conduct identical FMB test as in Lettau et al. (2019), and estimate long-run

risk prices of capital share growth and capital return variability (CRV). 25 Significant risk

price estimates indicate that there is a risk-reward relationship between the factor tested and

the equity premium. Therefore, I estimate risk prices of capital share growth proposed by

Lettau et al. (2019) and CRV in equation (17) in different settings.

As shown in Section 2, the capital share growth explains the variance of the short-run equity

premium, see equation (13). According to equation (17), CRV enters the long-run equity

premium dynamics. The static FMB makes a strong assumption that factor loadings are

time-invariant. When a risk factor enters the variance equation of the true DGP, the ordinary

least squares (OLS) regression in FMB first stage will be biased due to heteroskedasticity

problems. In second stage, risk price estimates of this factor will be significant due to width

25The FMB bootstrap is based upon the static FMB procedure, and can be used to correct both cross-sectional

correlations and firm effects (Lettau et al., 2019). Lettau et al. (2019) adopt the non-overlapping block residual

bootstrap for both stages of the FMB procedure. Although it is argued that utilizing the overlapping bootstrap is a

more robust method, Andrews (2004) compares overlapping and non-overlapping block bootstraps, and reaches the

conclusion that although the former is often favored in applications, the latter generates similar numerical results.
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changes of the factor loading distribution. Therefore, in this paper, FMB tests/estimates will

generate significant capital share growth prices as capital share growth has variance effects.

I first plot FMB test results for capital share growth and CRV in Figures 9 and 10, respectively.

In Figure 9, due to the higher variation in monthly data, the R2 estimates are generally lower

for each portfolio class compared to the quarterly data estimates by Lettau et al. (2019). In

addition, the R2 estimated by REV sorted portfolios is 0.26 in this figure, while other R2

estimated from monthly data deviate modestly from their quarterly counterparts. Overall,

the monthly capital share growth has substantial explanatory power for expected returns.

However, slope of regression lines in Figure 9 significantly deviates from 1, which implies

a presence of heteroskedasticity or non-linearity. In Figure 10, although the average of R2

estimated by CRV is lower, the R2 estimates across equity portfolios are more stable than

those of Figure 9. Also, slopes of regression lines estimated by the CRV is closer to 1 than

those estimated by capital share growth. The FMB results of the CRV are more robust to

heteroskedasticity or nonlinearity problems than that of capital share growth. The empirical

evidences are in line with the long-run equity premium innovation, see equation 17.

I report FMB bootstrap estimates of risk prices in Table 2. In this table, Panel A reports the

single capital share growth model estimates, Panel B reports the single CRV model estimates,

and panel C reports a 2-factor model that includes capital share growth and the CRV for

comparison.

Panel A tests the asset pricing performance of monthly capital share growth. In Panel A, all

of the risk prices estimates of capital share growth (gKS) are statistically significant at 5%

level. For the bootstrap interval of R2 estimates, the lower bound of R2 for REV portfolios

is 0.000, while for other portfolios are all above 0.300. Overall, the monthly data estimates

for capital share growth are significant and capital share growth captures equity premium

dynamics. However, the pricing power of capital share growth diminishes in higher frequency

data. This finding indicates that capital share growth might be correlated with the volatility

of the long-run equity premium. According to the theoretical model. capital share growth
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generates significant risk prices due to its non-linear relationship with the equity premium

dynamics. The multicollinearity between capital share growth and CRV also explains the

significance of capital share growth prices.26

Panel B justifies the asset pricing power of CRV. In Panel B, CRV risk prices are significant

for all equity returns. The R̄2 estimates are stable across different portfolios and, overall, are

higher than those estimated by the capital share growth model in Panel A. For REV sorted

portfolios, the R̄2 estimate is insignificant since its lower bound of confident interval is zero.

All R̄2 estimates are significant in Panel B. Therefore, for REV portfolios, the low R2 in

Panel B explains the insignificant capital share growth risk price in panel A. The correlation

relationship between CRV and the long-run equity premium dominates that between capital

share growth and the long-run equity premium.

Panel C compares capital share growth and CRV. In Panel C, the R̄2 estimates are of similar

magnitude as those in Panel B, which is due to the multicolinearity between CRV and capital

share growth. In panel C, capital share growth is strongly dominated by CRV. Following the

inclusion of CRV, risk prices of capital share growth decrease significantly for all portfolios.

Also, for REV sorted portfolios, capital share growth turns insignificant. Although, CRV risk

prices also decrease following the inclusion of the capital share factor due to the colinearity

between the capital share factor growth, the partial effect of CRV remains significant in the

2-factor model.

This paper also estimates the risk price of CRV using Generalized Method of Moments

(GMM) following Hansen (1982).27 The GMM estimate of CRV risk price is 5.657 (%) and

factor loading is 4.832 using the monthly sample. The factor loading of CRV is also a measure

of risk aversion in the long-run. Therefore, the magnitude of CRV factor loading is consistent

with literature, see Bansal and Yaron (2004) and Andreasen and Jørgensen (2020).

26gKS,t and CRV all contains the mean of gKS,t plus terms containing deviation from the mean. Therefore, gKS

and CRV are correlated.
27Detailed GMM settings are in Appendix.
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According to empirical evidences, I conclude that CRV captures the true long-run equity

premium dynamics. Therefore, the theoretical model in Section 2 is justified by the empirical

analysis in this section. In the long-run setting, CRV explains high cross-sectional equity

return variations and dominates the capital share growth.
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Table 2: FMB Bootstrap Risk Price Estimates

Size/BM REV Size/INV Size/OP

Panel A: capital share growth

α 1.213** 1.256** 1.170** 1.189**

[1.068, 1.362] [0.769, 1.731] [1.055, 1.288] [1.085, 1.291]

gk 2.405** 2.560** 2.010** 2.124**

[1.755, 3.073] [0.756, 4.262] [1.517, 2.554] [1.858, 2.708]

R̄2 0.697 0.511 0.721 0.832

[0.372, 0.898] [0.000, 0.898] [0.429, 0.903] [0.618, 0.944]

Panel B: capital return variability (CRV)

α 1.139** 1.054** 1.092** 1.181**

[0.992, 1.280] [0.735, 1.411] [0.952, 1.227] [0.959, 1.409]

CRV 8.488** 7.611** 6.966** 9.230**

[6.277, 10.730] [3.462, 11.79] [4.943, 9.081] [6.109, 12.460]

R̄2 0.705 0.623 0.659 0.612

[0.425, 0.888] [0.083, 0.935] [0.366, 0.866] [ 0.256, 0.854]

Panel C: 2-factor model

α 1.220** 1.099** 1.170** 1.197**

[1.054, 1.384] [0.657, 1.544] [1.021, 1.315] [1.066, 1.327]

gk 1.769** 0.980 1.768** 2.237**

[0.969, 2.540] [-0.615, 2.562] [1.001, 2.539] [1.787, 2.707]

CRV 6.811** 6.475** 4.423** 4.464**

[4.707, 8.967] [2.093, 10.83] [2.125, 6.787] [2.786, 6.203]

R̄2 0.777 0.561 0.752 0.849

[0.498, 0.930] [0.000, 0.913] [0.468, 0.922] [0.641, 0.952]

Note: This table reports FMB bootstrap estimations of factor risk prices (%). Factor estimated are capital share

growth and CRV. CRV captures the true DGP of long-run equity premium in equation (17). For maintaining the

consistency of moments and distribution functions (Horowitz, 1997), I set the optimal block-length as 536( 1
5

) ≈ 4

following Hall et al. (1995). The optimal block-length for FMB second stage is identical to Lettau et al. (2019). I use

10,000 simulations for bootstraps. In this table, Panel A reports the capital share growth model estimates, Panel B

reports the CRV model estimates, and Panel C reports estimates of a 2-factor model including both capital share

growth and CRV. Portfolio returns used for estimation are size/BM, REV, size/INV, and size/OP sorted portfolios.

Bootstrapped 95% confidence intervals are reported in square brackets. ** denotes the estimate is significant at 5%

level. * denotes the estimate is significant at 10% level. Sample spans January 1974 to August 2018.
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4 Conclusion

Inspired by Lettau et al. (2019), I further investigate the role of capital share growth

theoretically in pricing equity returns. My paper develops a theoretical model of capital share

growth and proposes capital return variability (CRV) as an long-run risk factor.

Based on the long-run risk model by Bansal and Yaron (2004), this paper develops a

heterogeneous asset pricing model that separates stockholders from labour workers. My

theory finds that the elevated stockholder consumption growth volatility operates through

capital share growth. Under short-run expectations, capital share growth is found to affect

the innovation of market returns. However, the short-run equity premium is not determined

by capital share growth. Under long-run expectations, CRV is a priced risk factor as a proxy

for accumulated volatility effect of capital share growth.

Empirical evidences are in line with the theoretical predictions. Capital share growth is

significant in the variance but insignificant in the mean equation of short-run equity return.

For the long-run equity premium, both capital share growth and CRV generate significant

risk prices. However, capital share growth has non-zero long-run risk prices is due to the

accumulation of its volatility effect. After the inclusion of CRV, the volatility effect of capital

share growth is captured by CRV. Therefore, CRV strongly dominates capital share growth

in pricing long-run equity returns.
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Figure 1: Pricing powers of capital share growth over different horizon. This figure plots the Fama-MacBeth results of

capital share growth over 2, 4, 6, 8, 10 and 12-month. The Fama-MacBeth procedure used for this figure is identical to Lettau et al.

(2019). Portfolio used are 25 size/BM sorted portfolios. The sample spans January 1964 to August 2016 due to the limitation of data.
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Figure 2: Capital share growth and CRV (%). Sample spans January 1964 to

August 2018.
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Figure 3: Pricing powers of capital share growth over different horizons. This figure plots the FMB results of capital share

growth over 3, 12, 24 and 36-months. The FMB test used for this figure is identical to Lettau et al. (2019). Portfolio used are 25

size/BM sorted portfolios. Sample spans January 1964 to August 2016.
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Figure 4: 60-month rolling-window multiplicative GARCH estimates (%). This

figure shows estimates for testing short-run market return in equation (13) and equity

premium in (14). Capital share growth enters the variance equation of the short-run equity

premium. The coefficient of capital share growth is estimated using monthly average returns

of size/BM sorted portfolios. The 95% confidence intervals are plotted using dashed lines.

Sample spans July 1975 to August 2018.

37



Figure 5: 90-month rolling-window multiplicative GARCH estimates (%). This

figure shows estimates for testing short-run market return in equation (13) and equity

premium in (14). Capital share growth enters the variance equation of the short-run equity

premium. The coefficient of capital share growth is estimated using monthly average returns

of size/BM sorted portfolios. The 95% confidence intervals are plotted using dashed lines.

Sample spans June 1980 to August 2018.
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Figure 6: B-TVB-SV average break probabilities of factor loadings, the capital share growth model.

The break probabilities are estimated using 25 size/BM sorted portfolios. Average probabilities reported are the

time-average for each portfolios. Sample spans January 1964 to August 2018. The first 10-year data in the sample

is used for hyperparameter estimation. Sample estimates cover January 1974 to August 2018.
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Figure 7: B-TVB-SV factor loadings, the capital share growth model. Factor loadings are

estimated by the capital share growth model using monthly size/BM sorted portfolio returns. The 95%

confidence intervals are plotted using dashed line. Sample spans January 1964 to August 2018. The first

10-year data in the sample is used for hyperparameter estimation. Sample estimates cover January 1974 to

August 2018.
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Figure 8: B-TVB-SV risk prices (%), the capital share growth model. This figure

plots risk prices estimated by the capital share growth using monthly size/BM sorted portfolio

returns. The 95% confidence intervals are plotted using dashed lines. Sample spans January

1964 to August 2018. The first 10-year data in the sample is used for hyperparameter

estimation. Sample estimates cover January 1974 to August 2018.
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Figure 9: Capital share growth betas (%). This plot depicts the betas constructed by the F-MB regression

of average portfolio returns on capital share beta. The monthly average returns are on the y-axis and the portfolio

factor betas are on the x-axis. The portfolios estimated include size/BM, REV, size/INV and size/OP sorted

portfolios or using all equities together. R2 estimates of each regression are reported in the graph. Sample spans

January 1974 to August 2018.
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Figure 10: Capital return variability (CRV) betas (%). This plot depicts the betas constructed by the

F-MB regression of average portfolio returns on CRV beta. The monthly average returns are on the y-axis and the

portfolio factor betas are on the x-axis. The portfolios estimated include REV, size/BM, size/INV and size/OP

sorted portfolios or using all equities together. R2 estimates of each regression are reported in the graph. Sample

spans January 1974 to August 2018.
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Appendix - Online Supplement
This appendix is not for publication and describes the Bayesian time varying beta with

stochastic volatility (B-TVB-SV) specification, the detailed theoretical induction of my model,

the construction of the dataset, and basic statistics and estimations.

A The B-TVB-SV model specification

Bianchi et al. (2017) assumes the structural breaks are independent both across portfolio

returns and over time. Equation (A.1) defines the structural break probabilities:

Pr[κij,t = 1] = πij i = 1, ..., N

Pr[κiv,t = 1] = πiv j = 0, ..., K (A.1)

The probabilities πij and πiv are sampled using a uninformative prior to retain the robustness

of estimations. The priors are assumed to follow beta distributions:

πij ∼ Beta(aij, bij) i = 1, ..., N

πiv ∼ Beta(aiv, biv) j = 0, ..., K (A.2)

The structural break estimation in Bianchi et al. (2017) uses an efficient generation of mixing

variables developed by Gerlach et al. (2000). In modeling intervention in dynamic mixture

models, this sampling approach allows the state matrix to be singular and, hence, estimations

are allowed to depend on unknown parameters. The breaks innovations κij,t in equation (25)

are assumed to be conditional on the residual variance matrix (Σ), the break probability

matrix of σ (Kσ), the simulated model parameter θ, excess returns R, and factors F . In

equation (26), κiv,t is assumed to follow a similar innovation process to κij,t. The conditional

variance parameters of the size of the structural breaks are assumed to follow an inverted

Gamma-2 distribution, of which the shape parameter is linked to the scale parameter (Bianchi

et al., 2017).
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The prior of the second step risk prices is a mixture of 10 random normal distributions. Priors

of these normal distributions are proposed by Omori et al. (2007). The risk price prior is as

follows:

λ ∼ MN(λ, V ) (A.3)

The prior of τ 2 in equation (24) follows a inverse Gamma-2 distribution with shape parameter

ψ̄0 and scale parameter Ψ, where

Ψ = Ψ0 + (r − βλ)′(r − βλ) (A.4)

The risk prices are sampled conditional on the price error matrix r−βλ linking the time-series

regression in equation (23) and the second-step cross-sectional regression in equation (24).

Therefore, although the risk prices are estimated in a similar manner to the F-MB procedure

within each iteration, the estimated standard deviations of risk prices are robust when a firm

effect is present in portfolio returns.

B Theoretical Framework

B.1 Stockholder Consumption Growth

In this subsection, I provide empirical evidences for the functional form of stockholder

consumption growth in equation (2). I first approximate the stockholder consumption using

the aggregate consumption deduct the product of labour share and the personal disposable

income. Following Lettau et al. (2019), I assume that the labour workers consume all their

income. This assumption is also justified by their low IES by Gârleanu and Panageas (2015)

and low wealth accumulation by Saez and Zucman (2016). Empirically, the stockholder

consumption growth is approximated as follows:

gst+1 =
C̄t+1 − PIt+1lt+1

C̄t − PItlt
− 1 (B.1)

where C̄t is aggregate consumption, PIt is the personal disposable income and lt is the labour

share. The correlation between monthly stockholder consumption growth and the aggregate

consumption growth is 0.726. I plot the two time series in Figure A1.
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Figure A1: Stockholder consumption growth and aggregate consumption growth (%). This

figure plots stockholder consumption growth constructed in equation (B.1) and aggregate consumption growth.

Sample spans January 1964 to August 2018.

Figure A1 is consistent with Lettau et al. (2019) that the consumption growth of the top

wealth distribution is more volatile than that of the rest of the population.

I also derive the elevated stockholder consumption growth volatility using the stockholder

consumption growth constructed in equation (B.1) minus the aggregate consumption growth.

The correlations between capital share growth and aggregate consumption growth, capital

share growth and the stockholder consumption growth, and the capital share growth and the

elevated stockholder consumption growth volatility are -0.035, 0.120, and 0.145, respectively.

Therefore, capital share growth is weakly correlated with aggregate consumption growth.

Also, the correlation between capital share growth and the stockholder growth comes from

the elevated stockholder consumption growth volatility. Empirical evidences imply that

the magnitude of elevated stockholder consumption volatility operates trough capital share

growth.
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I further carry out a test of the relationship between the elevated stockholder consumption

growth volatility and capital share growth. I test different modifications of gkt in Table A1.

This table reports correlations between the the excess stockholder consumption growth and

different functional forms of capital share growth.

Table A1: Functional Forms of gKS,t

Functional Forms Corr.

gk
t 0.1451*

exp(gk
t ) 0.1449

log(1 + gk
t ) 0.1454**

(gk
t )2 -0.0176

|gk
t |

1
2 0.0000

Note: This table reports the correlation between the excess stockholder consumption volatility and functional forms

of capital share growth. The excess stockholder consumption volatility is constructed as difference between the

stockholder consumption in equation (B.1) and aggregate consumption. Sample spans January 1964 to August 2018.

Given Table A1, I can conclude that the standard form for the capital share growth better

captures the elevated stockholder consumption growth volatility. Therefore, the stockholder

consumption growth in equation (2) is robust to empirical evidences.

B.2 Baseline Model

In this subsection, I derive the impact of elevated shareholder consumption volatility on the

price-consumption ratio (see equation (10) in the main text) and the price-dividend ratio (see

equation (11) in the main text). Also, the short- and long-run innovation of the pricing kernel

(equations (12) and (15)), the short- and long-run innovation of equity returns (equations

(13) and (16)). The equity premium with the short- and long-run expectations (equations

(14) and (17)) in the main text are derived in this section.
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With Epstein and Zin (1989) recursive preferences, the asset pricing restrictions for gross

return Ri,t+1 satisfy

Et[δ
θ(Gs

t+1)
−
θ
ψR

−(1−θ)
a,t+1 Ri,t+1] = 1 (B.2)

where θ = (1 − γ)/(1 − 1
ψ

). In equation (4), Gs
t+1 denotes the stockholder consumption

growth, and Ra,t+1 denotes the gross return on an asset that generates dividends that cover

the aggregate stockholder consumption. 0 < δ < 1 is the time discount factor, γ ≥ 0 is the

risk-aversion parameter, and ψ ≥ 0 is the intertemporal elasticity of substitution (IES).

Our system equation is:

xt+1 = ρxt + φeσet+1

gt+1 = µ+ xt +
1

ws
gkt+1ξt+1 + σηt+1

gd,t+1 = µd + φxt + φdσd,t+1ut+1 (B.3)

et+1, ut+1, ηt+1 ∼ Ni.i.d.(0, 1) ξt ∼ N(0,Σ)

According to Bansal and Yaron (2004), dividend growth volatility is correlated with consump-

tion growth volatility. Thus, σd,t+1 is partially correlated with gkt+1ξt+1.

The IMRS is

mt+1 = θlogδ −
θ

ψ
gt+1 + (θ − 1)ra,t+1 (B.4)

Consumption return follows:

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1 (B.5)

where

zt = A0 + A1xt + A2,tξt (B.6)

where A2,t is assumed to vary over time. However, this paper will prove A2,t is a constant next

and uses A2 in the main text. Following Bansal and Yaron (2004), assuming ra,t+1 = ri,t+1,

IMRS in equation (B.4) indicates:

logδ −
1

ψ
gt+1 + ra,t+1 = 0 (B.7)
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Substituting equations (B.3), (B.5) and (B.6) into equation (B.7), I get:

logδ + (1 −
1

ψ
)(µ+ xt +

1

ws
Et(g

k
t+1)Et(ξt+1) + σηt+1)

+ κ0 + κ1(A0 + A1ρxt + A1φeσ + Et(A2,t+1)Et(ξt+1)) − (A0 + A1xt + A2,tξt) = 0 (B.8)

To ensure equation (B.8) holds, the following must hold:

(1 −
1

ψ
)xt + κ1ρA1xt − A1xt = 0 (B.9)

(1 −
1

ψ
)

1

ws
Et(g

k
t+1)Et(ξt+1) + κ1Et(A2,t+1)Et(ξt+1) − A2,tξt = 0 (B.10)

Notice that although the long-run expectation of ξt+1 is zero, this term is relatively stable

between t and t+1. My model assumes the existence of an rξ such that ξt−rξ < ξt+1 < ξt+rξ

due to smoothed consumption of each income group. rξ is a very small number which allows

ξt+1 to deviate from ξt while ruling out explosive growth. Therefore, Et(ξt+1) ≈ ξt. My model

also assumes Et(A2,t+1) = A2,t due to the following relationship derived from equation (B.10):

Et(A2,t+1) = (1 −
1

ψ
)

1

ws
ρkgkt
κ1

+ A2,t (B.11)

Assume that the value of A2,t equals A2,0 at t = 0, it is easy to solve that:

A2,t = (1 −
1

ψ
)

1

ws
[

κ1

ρk(κ1 − ρk)
(gk0 −

gkt
κt1

) +
A2,0

κt1
] (B.12)

According to Bansal and Yaron (2004) and Campbell and Shiller (1988a), the magnitude of

κ1 is very close to 1. The value of A2,t is bounded by definition, thus the true κ1 and A2,0

are not concerns. As shown by equation (B.12),

Et(A2,t+1) = (1 −
1

ψ
)

1

ws
[

κ1

ρk(κ1 − ρk)
(gk0 − ρk

gkt
κt+1

1

) +
A2,0

κt+1
1

]

≈ (1 −
1

ψ
)

1

ws
[

κ1

ρk(κ1 − ρk)
(gk0 −

gkt
κt1

) +
A2,0

κt1
]

= A2,t (B.13)

when κ1 ≈ ρk ≈ 1. Therefore, assuming Et(A2,t+1) = A2,t = E(A2,t+1) is reasonable, and I

use A2 in the main text.
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Following Lettau et al. (2019), this paper assumes that the capital share growth rate follows

an AR(1) process28:

gkt+1 = ρkgkt + ekt (B.14)

The functional form of A1 and A2 have been solved:

A1 =
1 − 1

ψ

1 − κ1ρ
(B.15)

A2 =
1 − 1

ψ

ws(1 − κ1)
ρkgkt (B.16)

Following the same steps used in deriving the consumption premium, this paper further

derives the equity premium. Equity returns have the following functional form:

rm,t+1 = κ0,m + κ1,mzt+1 − zt + gd,t+1 (B.17)

where

zt = A0,m + A1,mxt + A2,m,tξt (B.18)

where A2,m,t is assumed to vary over time. However, this paper will prove that A2,m,t is a

constant when holding gkt constant, and uses A2,m in the main text.

To further derive the equity premium rm,t, this paper invokes the Euler condition E[exp(mt+1+

rm,t+1)] = 1. The following condition holds:

θlogδ −
θ

ψ
gt+1 + (θ − 1)ra,t+1 + rm,t+1 = 0 (B.19)

To solve A1,m and A2,m,t, substitute equations (B.4), (B.5), (B.17) and (B.18) into equation

(B.19), collecting all terms containing xt and ξt respectively:

(θ − 1 −
θ

ψ
)xt + (θ − 1)(κ1ρ− 1)A1xt + κ1,mA1,mρxt − A1,mxtφxt

= −
1

ψ
xt + κ1,mA1,mρxt − A1,mxt + φxt = 0 (B.20)

(θ − 1 −
θ

ψ
)

1

ws
Et(g

k
t+1)Et(ξt+1) + (θ − 1)(κ1Et(A2,t+1)Et(ξt+1) − A2,tξt)

+ κ1,mEt(A2,m,t+1)Et(ξt+1) − A2,m,tξt

= −
1

ψ
ρkgkt

1

ws
+ κ1,mA2,m,t − A2,m,t = 0 (B.21)

28The constant is not significant due to the AR(1) estimation. The magnitude of ρk is 0.947.
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The functional form of A1,m and A2,m,t can now be solved as:

A1,m =
φ− 1

ψ

1 − κ1ρ
(B.22)

A2,m,t = −
ρk

wsψ(1 − κ1,m)
gkt (B.23)

Therefore, A2,m is a constant and I use A2,m in the main text.

B.3 Short-Run Case: Conditional on information set at time t

The short-run innovation of consumption return is:

ra,t+1 − Et(ra,t+1) =σηt+1 + κ1A1φeσet+1 + (
1

ws
gkt+1 + κ1A2,t+1)ξt+1

− Et(
1

ws
gkt+1 + κ1A2,t+1)ξt+1

=σηt+1 + λr,eσet+1 + λr,ξ,t+1ξt+1 (B.24)

The short-run innovation of the pricing kernel is:

mt+1 − Et(mt+1) =(θ − 1 −
θ

ψ
)σηt+1 + (θ − 1)(κ1A1φe)σet+1

+ (θ − 1)[κ1(A2,t+1 − Et(A2,t+1))]ξt+1

=λησηt+1 + λeσet+1 + λξ,t+1ξt+1 (B.25)

In equations (B.24) and (B.25), the parameters are as follows:

λr,e = κ1

1 − 1
ψ

1 − κ1ρ
φe (B.26)

λr,ξ,t+1 = (
1

ws
+ κ1

1 − 1
ψ

ws(1 − κ1)
ρk)e

k
t+1 (B.27)

λη = θ − 1 −
θ

ψ
(B.28)

λe = (θ − 1)(κ1

1 − 1
ψ

1 − κ1ρ
φe) (B.29)

λξ,t+1 = (θ − 1)(κ1

1 − 1
ψ

ws(1 − κ1)
ρk)ekt+1 (B.30)
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The short-run consumption premium in the presence of time-varying economic uncertainty is

Et(ra,t+1 − rf,t) =covt((mt+1 − Et(mt+1))(ra,t+1 − Et(ra,t+1)) + 0.5V art(ra,t+1)

= − (λη + λr,eλe − 0.5λ2
r,e − 0.5)σ2

+ Et(λr,ξ,t+1λξ,t+1 − 0.5λ2
ξ,t+1) (B.31)

The short-run innovation of equity return is:

rm,t+1 − Et(rm,t+1) =φdσd,t+1ut+1 + κ1,mA1,mφeσet+1 + κ1,mA2,m,t+1ξt+1

=φdσd,t+1ut+1 + λm,eσet+1 + λm,ξ,t+1ξt+1 (B.32)

In equation (B.32), the parameters are as follows:

λm,e =κ1,m

φ− 1
ψ

1 − κ1ρ
(B.33)

λm,ξ,t+1 =κ1,m

1
ws
ρk

ψ(1 − κ1,m)
ekt+1 (B.34)

where λm,ξ,t+1 is a constant when holding ekt+1 constant. The short-run equity premium in

the presence of time-varying economic uncertainty is

Et(rm,t+1 − rf,t) =covt((mt+1 − Et(mt+1))(rm,t+1 − E(rm,t+1)) + 0.5V ar(rm,t+1)

= − (λm,eλe − 0.5λ2
m,e)σ

2 + 0.5φ2
dσ

2
d,t+1

+ Et(λm,ξ,t+1λξ,t+1 − 0.5λ2
m,ξ,t+1) (B.35)

where Et(λm,ξ,t+1λξ,t+1 − 0.5λ2
m,ξ,t+1) = 0 due to Et(e

k
t+1) = 0; σ2

g is close to σ2 due to very

small ξ2. Therefore, the expected equity premium can be viewed as a constant when the

model only contains capital share growth as the independent variable. The deviation of

equity returns is correlated with σd,t+1 which is a function of gkt+1 and ξr+1. In the short-run

case, gkt+1 is a variable that enters the variance equation.
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B.4 Long-run Case: Unconditional Expectations

Under long-run expectations, E(ξt) = 0. Therefore, the long-run innovation of consumption

return is:

ra,t+1 − E(ra,t+1) =σηt+1 + κ1A1φeσet+1 + (
1

ws
gkt+1 + κ1A2,t+1)ξt+1

=σηt+1 + λr,eσet+1 + λur,ξ,t+1ξt+1 (B.36)

The long-run innovation of the pricing kernel is:

mt+1 − E(mt+1) =(θ − 1 −
θ

ψ
)σηt+1 + (θ − 1)(κ1A1φe)σet+1 + (θ − 1)(κ1A2,t+1)ξt+1

=λησηt+1 + λeσet+1 + λuξ,t+1ξt+1 (B.37)

The long-run consumption premium in the presence of time-varying economic uncertainty is

E(ra,t+1 − rf,t) =cov((mt+1 − E(mt+1))(ra,t+1 − E(ra,t+1)) + 0.5V ar(ra,t+1)

= − (λη + λr,eλe − 0.5λ2
r,e − 0.5)σ2

+ E[λur,ξ,t+1λ
u
ξ,t+1 − 0.5(λur,ξ,t+1)

2] (B.38)

In equations (B.36), (B.37) and (B.38), the parameters are as follows:

λr,e = κ1

1 − 1
ψ

1 − κ1ρ
φe (B.39)

λur,ξ,t+1 =
1

ws
gkt+1 + κ1

1 − 1
ψ

ws(1 − κ1)
ρkgkt+1 (B.40)

λη = θ − 1 −
θ

ψ
(B.41)

λe = (θ − 1)(κ1

1 − 1
ψ

1 − κ1ρ
φe) (B.42)

λuξ,t+1 = (θ − 1)(κ1

1 − 1
ψ

wsψ(1 − κ1)
ρkgkt+1) (B.43)

where λur,ξ,t+1 and λuξ,t+1 are functions of gkt+1. Therefore, I set λur,ξ,t+1 = λur,ξ(g
k
t+1) and

λuξ,t+1 = λuξ (g
k
t+1). The long-run innovation of equity returns is:

rm,t+1 − E(rm,t+1) =φdE(σd,t+1)ut+1 + κ1,mA1,mφeσet+1 + κ1,mA2,m,t+1ξt+1

=φdσut+1 + λm,eσet+1 + λum,ξ,t+1ξt+1 (B.44)
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The long-run expectation of E(σd,t+1) equals to σ due to E(ξt) = 0. In equations (B.44) and

(B.47), the parameters are as follows:

λum,e =κ1,m

φ− 1
ψ

1 − κ1ρ
(B.45)

λum,ξ,t+1 = − κ1,m
ρk

wsψ(1 − κ1,m)
gkt+1 (B.46)

where λum,ξ,t+1 is a function of gkt+1 and I set λum,ξ,t+1 = λum,ξ(g
k
t+1) Therefore, the long-run

equity premium in the presence of time-varying economic uncertainty is

E(rm,t+1 − rf,t) =cov((mt+1 − Et(mt+1))(rm,t+1 − E(rm,t+1)) + 0.5V ar(rm,t+1)

= − (λm,eλe − 0.5λ2
m,e − 0.5φ2

d)σ
2

+ E[λum,ξ,t+1λ
u
ξ,t+1 − 0.5(λum,ξ,t+1)

2] (B.47)

where E
[

λum,ξ,t+1λ
u
ξ,t+1 − 0.5(λum,ξ,t+1)

2
]

is a function of E
[

(gkt+1)
2
]

:

E
[

λm,ξ,t+1λξ,t+1 − 0.5(λum,ξ,t+1)
2
]

= (1 − θ)κ1κ1,m

(ρk)2(1 − 1
ψ

)

(wsψ)2(1 − κ1)(1 − κ1,m)
E

[

(gkt+1)
2
]

− 0.5(κ1,m
ρk

wsψ(1 − κ1,m)
)2E

[

(gkt+1)
2
]

= κ1,m(ρk)2
(1 − θ)κ1(1 − 1

ψ
)(1 − κ1,m) − 0.5κ1,m(1 − κ1)

(wsψ)2(1 − κ1)(1 − κ1,m)2
E

[

(gkt+1)
2
]

(B.48)

Given the DGP of capital share growth in equation (B.14), the E
[

(gkt+1)
2
]

is a predicted

value derived by an AR(1) model. In the long-run case, E
[

(gkt+1)
2
]

is a risk factor that enters

the mean equation.

B.5 Factor Interpolation

This paper estimates the risk exposure and risk premium of the capital share factor in

a monthly setting. However, the highest frequency of capital share data is quarterly. I

interpolate capital share into monthly data due to the following reasons: 1) to avoid likely

information loss when converting monthly portfolio returns into quarterly data; 2) to maintain
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a high degree of freedom in the training set in Bayesian estimations; 3) to avoid projection

errors: in the projection process of the capital share factor, the quarterly horizon is more

sensitive than the monthly horizon in terms of model missimplification (Lamont, 2001). To

convert the factor into monthly frequency, this paper adopts the Chow-Lin interpolation

approach, which is a linear regression based model with autocorrelation in the error term

(Chow and Lin, 1971).

B.5.1 Indicator calculation

The commonly used Chow-Lin interpolation (Chow and Lin, 1971) and other alternative

interpolation approaches (see Fernandez (1981), Litterman (1983), etc.) are all based upon the

assumption that the monthly observations of interest satisfy a multiple regression relationship

with some related series. Accordingly, regression based interpolation methods require related

series as indicators to capture the latent monthly movement out of a quarterly time series.

The capital share at time t, denoted by kt, can be calculated as

kt = 1 − lt (B.49)

under the assumption that all risk sharing across workers and stockholders is imperfect

(Lettau et al., 2019). lt denotes labour share at time t.

Table A2 shows the personal income and its disposition. The personal income and the

compensation of employees are selected by this paper for indicator construction. An additional

assumption is made to increase the robustness of the indicator, as shown in equation (B.50),

which is that the share of compensation of employees is constantly proportional to the labour

share.

ESt = γmlt (B.50)

In equation (B.50), ESt denotes the compensation of employees share over personal income,

and γm is a constant.
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Table A2: Personal income and its disposition (FRED, 2019b)

Unit: Bil. of % 2011:12 Percentage 1972:01 Percentage

Personal income 13,572.40 100% 898.8 100%

Compensation of employees 8,283.50 61% 644.5 72%

Proprietors’ income with inventory

valuation and capital consumption adjustments
1,286.10 9% 80.2 9%

Rental income of persons with capital

consumption adjustment
508.30 4% 21.1 2%

Personal income receipts on assets 2,049.30 15% 122.4 14%

Personal current transfer receipts 2,367.10 17% 81 9%

Less: Contributions for government

social insurance, domestic
922.00 7% 50.3 6%

Less: Personal current taxes 1,478.80 11% 97.5 11%

Equals: Disposable personal income 12,093.60 89% 801.3 89%

Less: Personal outlays 11,153.00 82% 694.5 77%

Equals: Personal saving 940.50 7% 106.8 12%

Note: Personal income is the income obtained from provision of labour, land, and capital used in current production

and the net current transfer payments received from business and government. Percentage denotes the proportion of

each element in personal income. Data selected are monthly, and covers the period from January 1972 to December

2011.

The intuition behind the indicator selection is simple. Labour share is calculated by labour

compensation divided by national income.29 Lettau et al. (2019) uses the labour share of

national income in the nonfarm business sector to compute capital share. However, national

income is only available quarterly. Therefore, personal income is the most appropriate proxy

for monthly interpolation due to its relevantly stable relationship with national income.

In Table A2, personal income refers to the broad measure of household income, and the

compensation of employees denotes the gross wages paid to employees within a certain

period.30 Personal income is calculated by national income minus indirect business taxes,

29Labour compensation: compensation of employees in national currency.
30Here the period is one year.
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corporate income taxes and undistributed corporate profits, then adds transfer payments.31

Gomme and Rupert (2004) show that indirect taxes and subsidies are stable over time. Hence,

when studying the movement of data, the difference between national income and personal

income can be ignored, because the difference is mainly caused by indirect tax and subsidies.

The calculation method for ESt is as follows:

ESt =
Comt

PIt
(B.51)

where Comt denotes the compensation of employees and PIt denotes personal income.

To roughly estimate γm, this paper assumes that γm and γq share the same data generation

process (DGP). Quarterly compensation share ESq and labour share lq can be used to

calculate quarterly γq using the following function:

γq =
ESq
lq

(B.52)

Table A3: Descriptive Statistics of γq

Min. 1st Qu. Median Mean 3rd Qu. Max. Std.dev

1.048 1.087 1.097 1.099 1.110 1.154 0.020

Note: γq is estimated by compensation of employee share in personal income over labour share (equation B.52). Data

is quarterly and covers the sample period 1972:Q1−2011:Q4. γq is assumed to share the same DGP as γm.

Table A3 shows the descriptive statistics of γq calculated using equation (B.52). The standard

deviation of γq is 0.020, and the mean and median are close to each other. The dispersion of

γq is low according to the descriptive statistics. Therefore, monthly γm can be treated as a

constant according to properties of quarterly γq.

31Personal income equals to national income minus corporate profits with inventory valuation and capital consumption

adjustments, taxes on production and imports less subsidies, contributions for government social insurance, net

interest and miscellaneous payments on assets, business current transfer payments (net), current surplus of government

enterprises, and wage accruals less disbursements, plus personal income receipts on assets and personal current transfer

receipts (FRED, 2019a)
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The movement of labour share can be represented by the share of compensation of employees.

In the Chow-Lin Interpolation, the constant multiplier of the indicator is unimportant due to

the regression nature of the approach. Therefore, the monthly indicator, denoted by Indt, is

calculated as follows:

Indt = 1 − ESt (B.53)

Figures A2 and A3 show the patterns of quarterly capital share factor and indicator, respec-

tively. Although the capital share factor is overall more volatile compared to the indicator,

comovements between them can still be found easily by eyeballing the two figures.

Figure A2: Capital share (quarterly).

B.5.2 Interpolation of Capital Share

Chow and Lin (1971) proposes an interpolation approach based upon the assumption of

a regression relationship between the latent monthly time series of interest and indicators.

Based upon Chow-Lin method, Fernandez (1981) and Litterman (1983) approaches introduce

unit roots in the error term. This paper adopts the Chow-Lin approach for interpolation
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Figure A3: Indicator Dynamics

and also takes potential autocorrelations in the error term of the target time series into

consideration.

Therefore, this paper assumes the following relationship holds:

kmonthly = β0 + βindInd+ µ (B.54)

The error term µ has the following form to avoid spurious discontinuities between the last

month of the previous year and the first month of the next year:

µt = ρ µt−1 + ǫt (B.55)

where KSmonthly denotes the target time series data matrix after interpolation. Ind is the

monthly indicator. µt is assumed to be an autocorrelated variable as shown in equation

(B.55). The covariance matrix of µ is denoted by V . β0 and βInd denote the constant

and the coefficient of the indicator, respectively. ρ is the coefficient of µt−1 and captures

the autocorrelation is present in the error term. ǫt is i.i.d. and follows a standard normal

distribution.
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The generalized least squares estimators are defined as follows in this paper:

βInd = (Ind′ V −1 Ind)−1 Ind′ V −1 kmonthly (B.56)

where

V = C(A′A)−1C ′ (B.57)

In equation (B.57), A is an auxiliary matrix with the following form (n equals to the quarterly

data length) to factor in the autocorrelation of the error term:

A =









































(1 − ρ2)
1
2 0 0 0 . . .

−ρ 1 0 0 . . .

0 −ρ 1 0 . . .
...

...
. . . . . .

...
...

...
. . . . . .

−ρ 1

−ρ









































3n×3n

(B.58)

C is an n× 3n matrix with the following form:

C =



























1 0 0 0 . . .

0 0 0 1 0 0 . . .

. . .

0 . . . 1 0 0



























n×3n

(B.59)

Grid search is used in the estimation process of the autocorrelation coefficient ρ. The objective

function of grid searches could be the Weighted Least Square or the Log Likelihood Function.

The formats of the objective functions are as follows (Bournay and Laroque, 1979):

WLS = µ′V −1µ (B.60)

LL = −
n

2
ln(2π

µ′V −1µ

n− 1
) −

1

2
log(|V |) −

n

2
(B.61)

To select proper options of the Chow-Lin interpolation, Table A4 shows the information

criteria values under different settings. According to this table, the first element Chow-Lin
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interpolation with constant and WLS as an objective function has the lowest AIC and BIC.

Hence, this paper chooses this Chow-Lin setting to generate artificial monthly capital share

data.

Table A4: Information Criteria of Different Chow-Lin Settings

Chow-Lin Settings (N=160, n=480, Quarterly to Monthly)

Last Element

(opc, rl)
WLS LL

AIC BIC AIC BIC

(0, [ ]) −11.222 −11.183 −11.201 −11.162

(1, [ ]) −11.384 −11.327 −11.349 −11.291

First Element

(opc, rl)
WLS LL

AIC BIC AIC BIC

(0, [ ]) −11.349 −11.310 −11.329 −11.291

(1, [ ]) -11.404 -11.346 −11.373 −11.315

Note: opc denotes the option related to the constant. When opc equals zero or one, the regression includes zero or

one constant respectively. rl denotes the innovational parameter. rl = [ ] indicates the autocorrelation parameter ρ is

generated by grid search, and the calculation process adopts 100 grids of ρ ∈ [0.050, 0.999]. WLS and LL denotes the

objective function for the grid search: Weighted Least Square and Log Likelihood Function respectively.

The coefficients calculated by the Chow-Lin interpolation are shown in Table A5. The

estimated constant and the indicator coefficient are both larger than two standard deviations.

Although the estimated ρ is close to the upper bound (0.999) of the grid search, since ρ does

not go beyond 1, the conditions of partition of residuals still hold (Bournay and Laroque,

1979). Figure A4 plots the interpolated monthly capital share data.
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Table A5: Chow-Lin coefficients under selected model specification

Values Std.dev t-stat

Constant (β0) 0.192 0.055 3.515

βInd 0.449 0.121 3.704

ρ 0.989

Notes: Bold denotes significant or feasible autocorrelation coefficients. β0 and βInd are both significant at

95% confident level. The estimated autocorrelation coefficient ρ is within the range of ρ ∈ [0.050, 0.999] for

grid search, indicating no unit roots present in the error term.

Figure A4: Interpolated Capital Share
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C Descriptive Statistics

The descriptive statistics of all portfolio returns and control factors are in Tables (A6) to

(A9) below:

Table A6: 10 REV sorted portfolio returns (%)

10 Size/REV sorted portfolios, value-weighted

Portfolio/Factor Mean Median Std.dev Sharp ratio

LoPRIOR 1.000 1.135 7.184 0.139

PRIOR2 1.152 1.140 5.674 0.203

PRIOR3 1.154 1.375 5.040 0.229

PRIOR4 1.039 1.335 4.656 0.223

PRIOR5 0.996 1.165 4.422 0.225

PRIOR6 0.907 1.240 4.270 0.213

PRIOR7 0.892 1.105 4.227 0.211

PRIOR8 0.881 1.155 4.375 0.201

PRIOR9 0.750 0.855 4.676 0.161

HiPRIOR 0.676 0.795 5.403 0.125

Notes: Data frequency is monthly. Time span of data is from January 1964 to August 2018.

D Robustness Check

This section presents the robustness check of the empirical works in the main text. The

monthly rolling-window estimation and GMM settings are included in this section. Also, I

test the pricing power of quarterly capital share growth and CRV.

D.1 Rolling-Window Fama-MacBeth

This subsection presents the rolling-window FMB setting and estimation results. The rolling-

window FMB estimates are supplementary evidence of the theoretical model in the main text.
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As shown by equation (14), the mean equation of the equity premium is independent from

the capital share factor. I compare the performance of capital share factor loadings under

different window length to infer the latent DGP of capital risks. To visualize the volatility

pattern, I first adopt rolling-window regressions to estimate factor loadings in a time-varying

manner as suggested by Lewellen and Nagel (2006). This paper estimates the FMB first step

regression following Lewellen and Nagel (2006) with 12, 30, 60, 90-month window lengths.

The second step estimation of risk prices is identical to the original cross-sectional regression

of the FMB approach. The results of the rolling-window regression serves as a benchmark for

the true DGP of factor loadings under the assumption of a modest level of temporal variation.

I start with a very short window for estimation is adopted for the following reasons. Within

each window, the regression using short horizon data can be viewed as an estimation that

is robust to firm effects, especially since the autocorrelation of stock returns is weaker over

a relatively short regression window (Fama and French, 1988). Another function of the

rolling-window regression is to serve as a volatility estimator. Volatility is constant within

each window, but varies across windows.

I only investigate the volatility patterns using the rolling-window approach due its widely

known limitations. The rolling-window FMB is an appropriate approximation for time-varying

factor loadings, only conditional on the assumption that there are no structural breaks present

within each window. The time variations are still not fully captured due to the ad-hoc window

length selection: robustness of the rolling-window approach is diminished when extreme

outliers are present in the sample. Therefore, the assumption of rolling-window FMB is

still too strong and vulnerable. Further, the rolling-window FMB is subject to a common

problem of 2-step estimations, which is that the second step estimation is dependant on the

first step results. This approach cannot pass the variability of factor loadings into the second

step estimation and, therefore, is insufficient to ensure unbiased estimation of risk prices.

The rolling-window approach also views the factor loading as a constant at each time point,

causing information carried by the change of factor loading volatilities to be retained within
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the first step estimation. The time variation of risk prices are thus inflated compared to

the true underlying DGP by the rolling window FMB approach when stochastic volatility is

present in factor loadings.

As shown by the innovation of market premium in equation (14), the loading of the capital

share factor is expected to be centered at zero, and a strong volatility clustering is expected

to be present under rolling-window estimation. Due to heteroskedasticity and the model

misspecification problem highlighted by Jagannathan and Wang (1996), risk price estimates

should be insignificant but vary dramatically over time for short window lengths, and the

significance should raise as the window length increase.32

I estimate the factor loadings using a rolling-window regression in the first step of the FMB

procedure. Risk prices are estimated in the same manner as the static FMB but within each

window. Table A11 reports the rolling-window estimates of the parsimonious capital share

factor model. As shown in this table, the capital share risk prices are insignificant for under

all window lengths. Statically insignificant FKS rules out the possibility that the capital

share factor is priced under short-run expectations.

Figure A5-A8 plots the 12, 30, 60, 90-month rolling-window estimated factor loadings of the

parsimonious capital share model, and the portfolio returns estimated are size/BM sorted

portfolios. As the Figure A5 shows, the factor loadings have small jumps in levels but big

structural breaks in volatilities under conditional estimation. The overall level of factor

loadings is centered at zero. Figure A5 also shows a strong volatility clustering pattern in

factor loadings. As I increase the window length, the volatility clustering diminishes and the

factor loading’s volatility increase. Also, the capital share factor loading distribution narrows

as I increase the window length. Rolling-window results further enhance the possibility that

the factor model estimated might be misspecified, in the sense that the capital share factor

does not enter the mean equation if I account for the time evolution of risk prices.

32An insignificant risk factor in the true equity dynamic might be significant under FMB estimations.
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Figure A5: 12-month rolling-window estimation of capital share factor loadings, single factor model.

The factor loadings are estimated using monthly size/BM sorted portfolio returns and 12-month window length.

The 95% confidence intervals are plotted using dashed line. Sample spans January 1974 to August 2018.
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Figure A6: 30-month rolling-window estimation of capital share factor loadings, single factor model.

The factor loadings are estimated using monthly size/BM sorted portfolio returns and 12-month window length.

The 95% confidence intervals are plotted using dashed line. Sample spans July 1975 to August 2018.
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Figure A7: 60-month rolling-window estimation of capital share factor loadings, single factor model.

The factor loadings are estimated using monthly size/BM sorted portfolio returns and 12-month window length.

The 95% confidence intervals are plotted using dashed line. Sample spans January 1978 to August 2014.
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Figure A8: 90-month rolling-window estimation of capital share factor loadings, single factor model.

The factor loadings are estimated using monthly size/BM sorted portfolio returns and 90-month window length.

The 95% confidence intervals are plotted using dashed line. Sample spans July 1980 to August 2018.
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Figure A9 plots the capital share risk prices estimated by the single factor model using

12-month window length. This figure shows that, the time variation of risk prices is very

high across the sample, and the level of risk prices witnesses frequent structural breaks. In

the first step of the rolling-window FMB estimation, the factor loadings only capture the

effects caused by level changes and not the effects caused by volatility changes. In the second

step estimation, the factor loadings at each time are treated as a constant, leading to a more

volatile risk price series over the time when volatility varies across windows.

Figure A9: Rolling-window capital share factor risk price (%). Following

Fama and MacBeth (1973) and Lewellen and Nagel (2006), the factor loadings are

estimated using monthly size/BM sorted portfolio returns and 12-month window length.

The 95% confidence intervals are plotted using dashed line. The sample spans January

1974 to August 2018.

Overall, the rolling-window FMB estimates are consistent with the theoretical model in

equations (13) and equation (14) in that the capital share factor loadings are centered at zero

with strong volatility clustering. However, this analysis cannot rule out the potential impact

of large outliers on risk price estimates due to the very short window length used. The results
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derived by the rolling-window FMB procedure also support accounting for structural breaks

and stochastic volatility for further robustness in the main text using Bayesian analysis.

D.2 GMM estimation

This subsection includes details of GMM estimation of monthly CRV risk prices. In this

paper, I use two-pass regression GMM estimation following Lettau et al. (2019).

The moment conditions for the expected return-beta representations are:

gT (b) =













E(Re
t − λ0 − βλ)

E(Re
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
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
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











0

0

0


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







(D.1)

where α = [α1...α25]
′ is the vector of constants, and β = [β1...β25] is the vector of factor

loadings. Re
t is the vector of expected portfolio returns.33 The parameter vector b′ = [α β λ0 λ].

λ0 is the constant and λ is the CRV risk price. The point estimates from GMM are identical

to those from FMB regressions (Lettau et al., 2019). Therefore, α and β are obtained in the

first-stage time-series regression of the standard FMB procedure. λ0 and λ are obtained in

the second-stage cross-sectional regression of the standard FMB procedure. As in Lettau

et al. (2019), I choose parameters b to set the following linear combination of moments to

zero:

aTgT (b) = 0 (D.2)

where

aT =







I 0

0 [125 β]′





 (D.3)

33⊗ is the Kronecker tensor product.
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Following Hansen (1982), I compute the d matrix of derivatives for computing standard

errors:

d =
∂gT (b)

∂b′

=












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t ) 025×2

−025×25 −I25×25 ⊗ λ −[125 β]
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




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(D.4)

The the spectral density matrix S at frequency zero in this paper is:

S =
∞
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Following Lettau et al. (2019), denote:

ht(b) =


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(D.6)

and use the Newey-West (1986) correction to the standard errors with lag L:

ST =
L

∑

j=−L

(
L− |j|

L
)

1

T

T
∑

t=1

ht(b̂)ht−j(b̂)
′ (D.7)

The optimal lag length in this paper is L = 656
1
3 ≈ 9. Therefore, for λ estimation, I use the

asymptotic standard variance as:

V ar(b̂) =
1

T
(αTd)

−1αTSTα
′

T (αTd)
′−1 (D.8)

The GMM estimate of CRV risk price is 5.657 (%) and factor loading is 4.832.

D.3 Quarterly Estimations

This subsection presents quarterly data estimates using size/BM sorted portfolio returns.

The quarterly size/BM returns converted from monthly data as in Lettau et al. (2019).
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Figure A10: Capital share growth betas (%), quarterly. This plot depicts the betas

constructed by the F-MB regression of average portfolio returns on capital share beta. The

quarterly average returns are on the y-axis and the portfolio factor betas are on the x-axis.

R2 estimates of each regression are reported in the graph. Sample spans 1974Q1 to 2018Q3.

To obtain the quarterly excess return, I use the following method:

Rp
q =(1 +Rp

m1)(1 +Rp
m2)(1 +Rp

m3) − (1 +Rf
m1)(1 +Rf

m2)(1 +Rf
m3) (D.9)

where Rp
q is the quarterly excess return. Rp

m1, Rp
m2, and Rp

m3 are monthly return of the first,

second and third month in this quarter, respectively. Rf
m1, R

f
m2, and Rf

m3 are monthly risk

free rate of the first, second and third month in this quarter, respectively.

The FMB tests of 4-quarter capital share growth and quarterly CRV are plotted in Figures

A10 and A11. In quarterly data, both capital share growth and CRV explains high cross-

sectional return variations, as estimated R2 for these two factors are both 0.55. The slop of

regression line is closer to 1 in Figure A11 than that in Figure A10. Therefore, the monthly

conclusion that CRV captures the true DGP also holds in quarterly data.
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Figure A11: Capital return variability betas (%), quarterly. This plot depicts the

betas constructed by the F-MB regression of average portfolio returns on capital share beta.

The quarterly average returns are on the y-axis and the portfolio factor betas are on the

x-axis. R2 estimates of each regression are reported in the graph. Sample spans 1974Q1 to

2018Q3.

I also reports the quarterly FMB bootstrap estimates of risk prices in Table A12. In this

table, Column A reports a single capital share growth model estimates, Column B reports

a single CRV model estimates, Column B reports estimates of a 2-factor model including

capital share growth and CRV. In Column A, capital share growth generates significant a risk

price, but the R̄2 is low. In Column B, CRV is significant and generates higher R̄2 than that

estimated by capital share growth. In Column C, capital share growth is strongly dominated

by CRV, and both CRV risk price and R̄2 are of similar magnitudes as those in Column B.

Therefore, in quarterly data, CRV is a long-run risk factor that outperforms capital share

growth and captures the true DGP.
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Table A7: 25 Size/BM sorted portfolio returns (%)

25 Size/BM sorted portfolios, value-weighted

Portfolio/Factor Mean Median Std.dev Sharp ratio

SMALLLoBM 0.681 1.060 7.854 0.087

ME1BM2 1.213 1.523 6.849 0.177

ME1BM3 1.192 1.254 5.934 0.201

ME1BM4 1.407 1.450 5.644 0.249

SMALLHiBM 1.491 1.485 5.946 0.251

ME2BM1 0.923 1.376 7.094 0.130

ME2BM2 1.174 1.456 5.924 0.198

ME2BM3 1.273 1.530 5.374 0.237

ME2BM4 1.315 1.528 5.197 0.253

ME2BM5 1.367 1.788 5.964 0.229

ME3BM1 0.920 1.546 6.515 0.141

ME3BM2 1.20 1.505 5.383 0.223

ME3BM3 1.19 1.486 4.943 0.230

ME3BM4 1.268 1.442 4.855 0.261

ME3BM5 1.414 1.524 5.587 0.253

ME4BM1 1.035 1.157 5.823 0.178

ME4BM2 1.018 1.215 5.052 0.201

ME4BM3 1.091 1.354 4.906 0.222

ME4BM4 1.229 1.420 4.720 0.260

ME4BM5 1.210 1.423 5.626 0.215

BIGLoBM 0.893 0.998 4.569 0.195

ME5BM2 0.915 1.073 4.375 0.209

ME5BM3 0.942 1.215 4.231 0.223

ME5BM4 0.872 0.995 4.581 0.190

BIGHiBM 1.052 1.319 5.326 0.198

Notes: Data frequency is monthly. Time span of data is from January 1964 to August 2018.
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Table A8: 25 Size/INV sorted portfolio returns (%)

25 Size/INV sorted portfolios, value-weighted

Portfolio/Factor Mean Median Std.dev Sharp ratio

SMALLLoINV 1.353 1.376 7.183 0.188

ME1INV2 1.357 1.413 5.599 0.242

ME1INV3 1.385 1.631 5.603 0.247

ME1INV4 1.266 1.561 5.926 0.214

SMALLHiINV 0.783 1.028 7.049 0.111

ME2INV1 1.280 1.636 6.298 0.203

ME2INV2 1.296 1.586 5.209 0.249

ME2INV3 1.315 1.490 5.197 0.253

ME2INV4 1.287 1.595 5.633 0.228

ME2INV5 0.900 1.235 6.893 0.131

ME3INV1 1.263 1.460 5.673 0.223

ME3INV2 1.310 1.475 4.775 0.274

ME3INV3 1.196 1.383 4.761 0.251

ME3INV4 1.206 1.495 5.273 0.229

ME3INV5 0.919 1.307 6.441 0.143

ME4INV1 1.160 1.455 5.318 0.218

ME4INV2 1.127 1.388 4.709 0.239

ME4INV3 1.152 1.402 4.620 0.249

ME4INV4 1.154 1.269 4.867 0.237

ME4INV5 0.972 1.224 6.240 0.156

BIGLoINV 1.083 1.125 4.554 0.238

ME5INV2 0.937 0.920 3.957 0.237

ME5INV3 0.894 1.000 4.066 0.220

ME5INV4 0.883 1.045 4.379 0.202

BIGHiINV 0.877 1.113 5.390 0.163

Notes: Data frequency is monthly. Time span of data is from January 1964 to August 2018.
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Table A9: 25 Size/OP sorted portfolio returns (%).

25 Size/OP sorted portfolios, value-weighted

Portfolio/Factor Mean Median Std.dev Sharp ratio

SMALLLoOP 0.955 0.980 7.218 0.132

ME1OP2 1.331 1.471 5.791 0.230

ME1OP3 1.273 1.581 5.583 0.228

ME1OP4 1.357 1.505 5.739 0.237

SMALLHiOP 1.240 1.477 6.546 0.190

ME2OP1 1.001 1.522 6.944 0.144

ME2OP2 1.193 1.633 5.640 0.212

ME2OP3 1.209 1.510 5.244 0.230

ME2OP4 1.194 1.298 5.509 0.217

ME2OP5 1.352 1.698 6.143 0.220

ME3OP1 0.948 1.208 6.535 0.145

ME3OP2 1.154 1.485 5.091 0.227

ME3OP3 1.138 1.384 4.866 0.234

ME3OP4 1.146 1.286 5.106 0.225

ME3OP5 1.302 1.554 5.753 0.226

ME4OP1 0.955 1.077 6.044 0.158

ME4OP2 1.087 1.391 5.057 0.215

ME4OP3 1.066 1.250 4.720 0.226

ME4OP4 1.131 1.293 4.833 0.234

ME4OP5 1.200 1.558 5.307 0.226

BIGLoOP 0.753 1.051 5.444 0.138

ME5OP2 0.753 0.926 4.412 0.171

ME5OP3 0.903 1.033 4.325 0.209

ME5OP4 0.870 1.127 4.357 0.200

BIGHiOP 0.992 1.106 4.273 0.232

Notes: Data frequency is monthly. Time span of data is from January 1964 to August 2018.
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Table A10: Descriptive Statistics of Risk Factors(%)

Portfolio/Factor Mean Median Std.dev Sharp ratio

gk

January 1964 - January 1974 −0.245 −0.502 2.690 −0.091

January 1974 - August 2018 0.435 0.195 2.336 0.186

January 1964 - August 2018 0.310 0.074 2.416 0.129

E
[

(gk)2
]

January 1964 - January 1974 0.065 0.024 0.085 0.764

January 1974 - August 2018 0.051 0.017 0.083 0.615

January 1964 - August 2018 0.054 0.018 0.084 0.643

Notes: gk denotes the capital share growth and E
[

(gk)2
]

denotes CRV. The training sample spans January 1964 to

January 1974. The sample used for estimation spans January 1974 to August 2018. The full sample spans January

1964 to August 2018.

Table A11: Capital Share Beta Rolling-window Estimations

12-month 30-month 60-month 90-month

β0 0.674** 0.857** 0.861** 0.923**

(0.000) (0.000) (0.000) (0.000)

FKS −0.623* 0.325 0.361 −0.188

(0.530) (0.596) (0.551) (0.689)

R2 0.380 0.392 0.477 0.487

Note: This table reports risk prices (%) of the capital share factor. Conditional equity premium in equation (14)

is tested by including capital share factor FKS , which is the 12, 30, 60, or 90-month capital share growth, in the

mean equation. Portfolio returns used for estimation is size/BM sorted portfolios. The model estimated is a single

capital share factor model, where β0 is the constant and FKS,t is the capital share factor. the P-values are reported in

parentheses below estimates. ** and * denote significance at the 5% and 10% levels, respectively. Sample spans the

period January 1974 to August 2018.
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Table A12: FMB Bootstrap Risk Price Estimates

Column A Column B Column C

α 3.505** 3.615** 3.612**

[2.664, 4.358] [2.702 4.475] [2.533, 4.705]

gk 1.397** 0.481

[1.755, 3.073] [-0.860, 1.842]

CRV 2.951** 2.978**

[1.067 4.813] [1.517, 2.554]

R̄2 0.192 0.335 0.340

[0.000 0.530] [0.000, 0.675] [0.000, 0.691]

Note: This table reports FMB bootstrap estimations of factor risk prices (%). Factor estimated are capital share

growth and CRV. CRV captures the true DGP of long-run equity premium in equation (17). For maintaining the

consistency of moments and distribution functions (Horowitz, 1997), I set the optimal block-length as 536( 1
5

) ≈ 4

following Hall et al. (1995). The optimal block-length for FMB second stage is identical to Lettau et al. (2019). I

use 10,000 simulations for bootstraps. This table reports the capital share growth model estimates, the CRV model

estimates, and estimates of a 2-factor model including both capital share growth and CRV. Portfolio returns used

for estimation are size/BM sorted portfolios. Bootstrapped 95% confidence intervals are reported in square brackets.

** denotes the estimate is significant at 5% level. * denotes the estimate is significant at 10% level. Sample spans

1974Q1 to 2018Q3.
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