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Abstract 11 

Dust accumulation significantly affects the performance of photovoltaic modules and its impact can 12 

be mitigated by various cleaning methods. Optimizing the cleaning frequency is therefore essential to 13 

minimize the soiling losses and, at the same time, the costs. However, the effectiveness of cleaning 14 

lowers with time because of the reduced energy yield due to degradation. Additionally, economic 15 

factors such as the escalation in electricity price and inflation can either compound or counterbalance 16 

the effect of degradation. The present study analyzes the impact of degradation, escalation in 17 

electricity price and inflation on cleaning frequency and proposes a methodology than can be applied 18 

to maximize the profits of soiling mitigation in any system worldwide. The energy performance and 19 

soiling losses of a 1 MW system installed in southern Spain were analyzed and integrated with 20 

theoretical linear and nonlinear degradation rate patterns. The Levelized Cost of Energy and Net 21 

Present Value were used as criteria to identify the optimum cleaning strategies. The results showed 22 

that the two metrics convey distinct cleaning recommendations, as they are influenced by different 23 

factors. For the given site, despite the degradation effects, the optimum cleaning frequency is found 24 

to increase with time of operation. 25 
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Highlights 1 

·        The optimum cleaning schedule varies depending on time of operation and health state 2 

·        Different cleaning schedules can be recommended based on the LCOE and NPV 3 

·        PV degradation does not affect the LCOE based cleaning decision algorithm 4 

·        Inflation influences the profitability of cleaning schedule over time 5 

·        Nonlinear degradation affects the cleaning frequency and its profitability 6 

Nomenclature 7 

C [€/kW] Installation Costs 

CCs [€/kW] Initial Surface Cleaning Cost 

CCw [€/kW] Specific Cost of Cleaning 

d [%] Discount Rate 

Dn [€/kW/year] Annual tax depreciation 

E [kWh/kW/day] Daily Energy Yield 

Es [kWh/kW/year] Soiling ratio–corrected energy yield 

i Day of the year 

LCOE [€/kWh] Levelized Cost of Electricity 

n Year of operation 

N [Years] PV system lifetime 

nc,n Number of yearly cleanings 

Nd [year] Depreciation period 

NPV [€/kW] Net present value 

OMn [€/kW/year] Yearly Operating and Maintenance Costs 

p [€/kWh] Initial price of electricity, taxes included 

PDC [kW] DC capacity of the PV system 

ppretax [€/kWh] Initial price of electricity before taxes 

Ptype [kW] Installed capacity of the PV modules of a specific type 

PV[I(N)] [€/kW] Present value of the inflows 

PV[O(N)] [€/kW] Present value of the outflows 

RD [%/year] Degradation Rate 

fD [%] Degradation Factor 

rom [%/year] Annual escalation rate of the O&M costs 

rp [%/year] Annual escalation rate of the electricity price 

rs Daily Soiling Ratio 

T [%] Income Tax 

VAT [%] Value-added tax 

ηtype [%] Efficiency of the PV modules of a specific type 
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1.   Introduction 1 

Active monitoring of photovoltaic (PV) performance is critical for ensuring the highest energy yield 2 

and revenue, as it makes it possible to maximize the efficiency and the revenues of photovoltaic (PV) 3 

power plants through improved operation and maintenance (O&M) strategies. The ability to 4 

accurately predict the projected energy yield of such systems by also identifying trend-based 5 

performance losses allows condition-based maintenance strategies, which are important for 6 

improving O&M costs and, hence, the financial payback of a PV project.  7 

Sources of performance loss can be either reversible (i.e., lost energy can be recovered by 8 

maintenance) or irreversible (i.e., lost energy is unable to be recovered unless the component is 9 

completely replaced) [1]. Examples of reversible performance loss include dust deposition (i.e. soiling), 10 

snow, vegetation, fuse failures etc. whereas irreversible performance loss may occur due to several 11 

degradation mechanisms such as discoloration, delamination, hot spots, cracks etc. In order to 12 

account for the performance loss in PV power prediction models, a degradation rate value is usually 13 

considered, which is either taken as an assumption or extracted from a statistical model [2,3]. Such 14 

models, however, have no knowledge on whether the loss is due to reversible or irreversible effects. 15 

Furthermore, routine maintenance due to reversible performance loss, such as cleaning frequency of 16 

PV modules, is commonly executed at a fixed rate per year during the project’s lifetime.  17 

Field data demonstrated that irreversible performance loss rates (i.e., degradation rate) may not 18 

always be constant (i.e., linear) [4–6] due to a number of degradation modes that could occur during 19 

the initial and wear-out phases of a PV system’s lifetime. Even when the same lifetime performance 20 

loss is assumed under different linear and nonlinear degradation rate patterns, the economic impact 21 

will vary [4,5]. Therefore, due to the different paths of performance loss that could be observed, it is 22 

important to optimize the maintenance strategies on a condition-based manner because the energy 23 

recovery and corresponding financial gains will depend on the system’s health-state, inflation etc. In 24 

order to achieve this, algorithms must be developed to respond quickly and intelligently to different 25 

operational issues. 26 

Soiling is one of the most common reversible performance losses experienced by PV modules, as it 27 

can be generally removed by natural or artificial cleaning. Rainfall is the most frequent natural cleaning 28 

process [7,8]. Artificial cleanings are performed by O&M operators or robots, and their cost depends 29 

on a number of factors, which vary depending on the geographical location; even within the same 30 

country [9]. If not mitigated, soiling can cause significant economic losses [10,11]. Furthermore, the 31 

impact of soiling is likely to be more severe in future; this is due to the combination of increased 32 

deployment of PV modules in regions characterized by high insolation and soiling and the improved 33 

PV module efficiencies [9]. As such, soiling mitigation strategies must be optimized in order to 34 

maximize the energy output of the system, while minimizing the cleaning expenses. 35 

In 2010, Mani and Pillai listed some recommendations for mitigation strategies based on the climatic 36 

zone and the characteristics of the region where PV systems are located [12]. These are useful 37 

guidelines, but the mitigation strategy should always be refined depending on the specific conditions 38 

of each site [13,14]. Several cleaning optimization methods have been proposed in literature to 39 

maximize the profits [15–18]. These are useful methods to determine the optimum cleaning schedule 40 

at given conditions, but they do not consider that the “value” of recovered energy (i.e., difference in 41 

revenue before and after cleaning) changes with time, mainly due to the system’s health state and, in 42 

particular, degradation. Indeed, as discussed by Urrejola et al. [19], PV degradation lowers the energy 43 

yield with time. This translates directly into a lower cash inflow and makes cleaning less effective with 44 

the time of operation, considering that the impact of some economic parameters also changes. In 45 
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particular, the rise of the cleaning costs caused by inflation can compound the impact of degradation, 1 

because cleaning would become more expensive with time.  2 

In addition, it should be considered that, in some countries, the electricity price is subject to a daily 3 

market-based competition [20]. This means that the price of electricity sold by the PV system producer 4 

to the grid may vary over time, depending on supply and demand. In these markets, an escalation in 5 

the price of electricity can, at least partially, counterbalance the effects of degradation and rise in 6 

cleaning costs, increasing revenues, and therefore incentivize the cleanings. Taking these factors into 7 

account, along with the influence of discount rate, one could expect that the optimum cleaning 8 

schedule that maximizes the revenues and minimizes the costs would vary with the year of operation. 9 

In order to verify this hypothesis, a sensitivity analysis was performed to investigate the impact of 10 

different PV degradation rate patterns on the profitability of cleaning schedules taking into account 11 

the variability of economic parameters and soiling profiles extracted from a 1 MW PV plant in Spain. 12 

A similar analysis was conducted on a PV system in Chile [19] taking into account fixed values for 13 

electricity price and cleaning costs whereas the degradation rate was based on a fixed performance 14 

loss value extracted from a 2-year period. A model to optimize the optimal cleaning schedule also 15 

based on linear degradation and fixed electricity price and cleaning costs was recently presented by 16 

Alvarez et al. [21]. In the present work, these economic parameters are realistically modeled to vary 17 

annually, and the effects of their variation is thoroughly discussed. For the first time, different 18 

degradation rate patterns are considered enabling the cleaning schedule optimization over time using 19 

the levelized cost of electricity (LCOE) and net present value (NPV) metrics as criteria.  20 

2.   Methodology 21 

2.1. Soiling and degradation profiles 22 

The energy performance and the soiling profiles considered in this study were extracted from a real 23 

PV installation, whereas the degradation rate patterns are theoretical and based on previous 24 

investigations [4,5,22].  25 

1-year of hourly data from a 1 MW system installed in the province of Granada, in Southern Spain, 26 

were considered. The system consists of mono-crystalline modules facing South and mounted at a tilt 27 

angle of 30°. The installed DC capacity is 961 kW and no inverter clipping was observed. The energy 28 

yield and soiling profiles were extracted using the same methodology employed by Micheli et al. [23], 29 

considering the weather data downloaded from MERRA-2 [24]. The following PV corrections, available 30 

in the pvlib-python library [25], were employed to analyze the performance of the site: 31 

• The ASHRAE transmission model for the angular correction [26,27], 32 

• Sandia PV Array Performance Model for the spectral and temperature corrections [28]. All 33 

coefficients were sourced from the Sandia PV Module Database. 34 

The absolute and relative air mass [29,30] were defined from the apparent zenith, calculated through 35 

Ref. [31], and the MERRA-2 site pressure. 36 

The site is characterized by a seasonal soiling profile with long summer periods of no rain, exhibiting 37 

a peak power loss of 23% at the beginning of September. This is the result of a -0.28%/day soiling 38 

deposition rate occurring from mid-June to the end of the summer, a long period with no rainfall. A 39 

change in deposition rate occurred on June 22nd due to a dust-laden wind [23,32]. 40 

Although the modules were cleaned on August 5th, the effect of this action was removed in order to 41 

emulate a soiling profile as if no O&M action was performed. Similar to previously used models, the 42 

soiling extraction method used in this study is based on the assumption that the soiling rate does not 43 

change when cleaning is performed [15,33]. In order to be consistent with these assumptions, the 44 
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soiling rate after the cleaning was considered equal to the one recorded before. Furthermore, soiling 1 

is assumed to accumulate on the PV surfaces immediately after a cleaning event [15,34,35], without 2 

any “grace period” (i.e. a fixed number of days following a cleaning event in which soiling does not 3 

deposit on the PV modules) [33].  4 

According to this “no cleaning performed” assumption, it is estimated that the AC energy yield of the 5 

system would have been 1691 kWh/kW, with an average soiling loss of 2.8%. This represents the 6 

worst-case scenario, in which no mitigation is put in place to address soiling. The soiling profile in this 7 

site can be considered as representative for southern Europe and a number of Southeastern US States 8 

and also California, due to the combination of low and infrequent precipitation and elevated levels of 9 

suspended dust, which are commonly observed during the summer months. Similar yearly losses, in 10 

the order of 3 to 4% were reported for a number of studies worldwide [36–38]. Therefore, the results 11 

extracted from this study could be associated with installations exposed under similar climatic 12 

locations elsewhere. 13 

Ideally, if soiling was completely removed (i.e. soiling loss of 0%), the yield would have been 14 

1748 kWh/kW. It should be noted that the energy yield variation is larger than the average soiling loss 15 

because the highest dust deposition occurs in summer. This yield represents the best-case scenario 16 

and is used as a baseline to quantify the benefits of different cleaning frequencies. Six potential 17 

cleaning schedules were considered in this study and their effects on the soiling profile are shown in 18 

Fig.  1. The considered schedules include cleaning frequencies ranging from 0 to 5 times per year, 19 

which are assumed to be performed on the dates that maximize the soiling ratio (i.e. minimize the 20 

energy losses). For each frequency, the cleaning dates are identified solely based on the soiling profile, 21 

using the methodology described in Ref. [35]. These six profiles are analyzed in the rest of the paper, 22 

introducing the economic metrics and parameters described in Section 2.2, in order to identify the 23 

most cost competitive ones (i.e. those maximizing the difference between revenues and cleaning 24 

costs). For the purposes of this study, the soiling profile was assumed to repeat every year of operation 25 

and no change in soiling rate were considered after each cleaning [18,23,35]. 26 
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    1 

Fig.  1. Upper plot: DC performance ratio normalized to the median value (black dots), extracted soiling profile after the 2 
August 5th cleaning (red line) and modeled soiling profile without considering any cleaning (green line). Lower plot: Soiling 3 
profiles for optimized cleaning schedules with different frequencies ranging from 0 to 5 times per year. 4 

With respect to system degradation, five different performance loss patterns were considered as 5 

illustrated in Fig.  2.  These include: 6 

A. Linear degradation of -1.0%/year, 7 

B. Nonlinear: -0.5%/year initially followed by -1.5%/year, 8 

C. Nonlinear: 0%/year initially followed by -2.0%/year, 9 

D. Nonlinear: -1.5%/year initially followed by -0.5%/year, 10 

E. Nonlinear: -2.0%/year initially followed by 0%/year. 11 

All nonlinear degradation patterns assume that the rate changes on year 13 (out of 25 years of 12 

operation). Similar to [4,5,22], the theoretical linear and nonlinear patterns were selected in a way to 13 

reflect the same power loss at the end of the system's lifetime (i.e., 24% loss of power in year 25). 14 

Although normalized to cover a 25-year lifetime, these patterns could represent early life degradation 15 

modes such as light and elevated induced degradation (LeTID) [39], light induced degradation [40], 16 

and Staebler-Wronski [41] effects. Such types of degradation exhibit various time scales from a 17 

number of hours to years [4,5,22]. Furthermore, depending on the degradation-regeneration cycle of 18 

LeTID, Passivated Emitter and Rear Contact (i.e. PERC) PV modules could potentially exhibit minimal 19 

to even positive “degradation” rate in the field.  20 

For the purposes of this work, the various strings and inverters of the PV system are assumed to 21 

degrade and soil at the same rate. Further studies will be conducted in future, as new data become 22 

available, on the non-uniformity of soiling and degradation within a given site.  23 
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 1 

Fig.  2. Theoretical degradation rate profiles considered in this study. 2 

2.2. Economic metrics and parameters 3 

The cleaning schedule optimization against different degradation scenarios was assessed using the 4 

LCOE and NPV as criteria. Depending on the metric, the optimization was realized by selecting the 5 

cleaning frequency that either minimized the LCOE or maximized the NPV. The values of the economic 6 

metrics were calculated for each of the soiling profiles (Fig. 1) and degradation rate scenarios (Fig. 2), 7 

taking into account the cost of the corresponding cleaning and the revenues granted by the 8 

corresponding energy yield. 9 

The LCOE quantifies the unitary cost of each kWh of electricity generated, considering its entire 10 

lifecycle and is defined as [42]: 11 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =

𝐿𝐿 + ∑ (𝐿𝐿𝑀𝑀𝑛𝑛 + 𝑛𝑛𝑐𝑐,𝑛𝑛 ∙ 𝐿𝐿𝐿𝐿𝑤𝑤) ∙ (1 − 𝑇𝑇) ∙ (1 + 𝑟𝑟𝑜𝑜𝑜𝑜)𝑛𝑛
(1 + 𝑑𝑑)𝑛𝑛𝑁𝑁𝑛𝑛=1 − ∑ 𝐷𝐷𝑛𝑛

(1 + 𝑑𝑑)𝑛𝑛 ∙ 𝑇𝑇𝑁𝑁𝑑𝑑𝑛𝑛=1∑ 𝐿𝐿𝑠𝑠 ∙ 𝑓𝑓𝐷𝐷(𝑛𝑛)/(1 + 𝑑𝑑)𝑛𝑛𝑁𝑁𝑛𝑛=1  
(1) 

where C are the installation costs, OMn the yearly O&M costs, nc,n the number of yearly cleanings (i.e. 12 

cleaning frequency), CCw the initial Specific Cost of Cleaning (in €/W), T the income tax, rom the annual 13 

escalation rate of O&M costs, d the discount rate, Es the soiling ratio–corrected energy yield, fD(n) a 14 

factor taking into account the effect of degradation, Dn is the annual tax depreciation for the PV power 15 

plant. The term CCw is referred to as “initial” because the cleaning cost varies with time according to 16 

the escalation rate of the O&M costs (rom). In this analysis, the annual escalation rate of the O&M costs 17 

was set to be equal to the inflation rate, whose average, maximum, and minimum values in the last 18 

10 years were 1.23%, 3.20% (in 2011) and -0.50% (in 2015), respectively [43]. Tax depreciation allows 19 

recovering part of the investment cost through reduced taxes. In this work, the depreciation for tax 20 

purposes is assumed linear and constant over a given period of time (Nd) with a maximum linear 21 
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coefficient of 5% and a depreciation period of 20 years (Dn=C/Nd) [44]. It is acknowledged that the 1 

method used to model tax depreciation (e.g. straight line or declining balance) can affect the analysis. 2 

Assuming linear degradation RD, the factor fD can be calculated as: 3 𝑓𝑓𝐷𝐷(𝑛𝑛) = (1 + 𝑅𝑅𝐷𝐷)𝑛𝑛 (2) 

On the other hand, if degradation rate is indeed nonlinear exhibiting a two-step behavior, the 4 

equations can be rewritten to take into account the two different rates, RD1 and RD2 (as shown in Fig.  5 

2): 6 𝑓𝑓𝐷𝐷(𝑛𝑛) = (1 + 𝑅𝑅𝐷𝐷1)𝑛𝑛1 ∙ (1 + 𝑅𝑅𝐷𝐷2)𝑛𝑛2 (3) 

where n1 and n2 are the number of years in which RD1 and RD2 occurred, respectively, and follow these 7 

rules: n1+n2=n, n2=0 if n < N/2, n1=N/2 if n ≥ N/2.  8 

The value of each parameter used in equation (1) is defined in Table 1. The soiling ratio–corrected 9 

energy yield is calculated as: 10 

 𝐿𝐿𝑠𝑠 = �𝑟𝑟𝑠𝑠(𝑖𝑖) ∙ 𝐿𝐿(𝑖𝑖)365
𝑖𝑖=1  (4) 

with rs being the soiling ratio as shown in the lower plot of Fig.  1 and E is the daily energy yield profile 11 

in no soiling conditions. Es has a value of 1748 kWh/kW/year in conditions of no soiling and lowers to 12 

a minimum of 1691 kWh/kW/year when soiling and no cleaning are considered. The degradation rate 13 

is assumed to affect the soiling ratio – corrected energy yield, rather than the daily performance 14 

profiles. 15 

The initial Specific Cost of Cleaning can be derived from the Surface Cleaning Cost (CCs) following the 16 

methodology detailed in [9,23]: 17 

𝐿𝐿𝐿𝐿𝑊𝑊 � €𝑘𝑘𝑘𝑘� = � 𝐿𝐿𝐿𝐿𝑠𝑠𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 1
𝑘𝑘𝑘𝑘𝑚𝑚2 ∙ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

(5) 

where PDC is the DC capacity (961 kW), and ηtype and Ptype is the nameplate efficiency and power of the 18 

installed PV modules. Assuming a surface cost of cleaning of 0.09 €/m2, the specific cost of cleaning is 19 

0.62 €/kW. 20 

The Net Present Value (NPV) compares revenues and costs over the lifetime of the projects. An 21 

investment is considered profitable when NPV > 0. In this work, the following equation has been 22 

adopted: 23 𝑁𝑁𝑃𝑃𝑁𝑁 = −𝐿𝐿 + 𝑃𝑃𝑁𝑁[𝐼𝐼(𝑁𝑁)] − 𝑃𝑃𝑁𝑁[𝐿𝐿(𝑁𝑁)] (6) 

where the present value of inflows PV[I(N)] and outflows PV[O(N)] over a project’s lifetime are defined 24 

as: 25 

𝑃𝑃𝑁𝑁[𝐼𝐼(𝑁𝑁)] = �𝑝𝑝 ∙ 𝐿𝐿𝑠𝑠 ∙ (1 − 𝑇𝑇) ∙ 𝑓𝑓𝐷𝐷(𝑛𝑛) ∙ �1 + 𝑟𝑟𝑡𝑡�𝑛𝑛
(1 + 𝑑𝑑)𝑛𝑛

𝑁𝑁
𝑛𝑛=1 + � 𝐷𝐷𝑛𝑛

(1 + 𝑑𝑑)𝑛𝑛 ∙ 𝑇𝑇𝑛𝑛𝑑𝑑
𝑛𝑛=1  (7) 

𝑃𝑃𝑁𝑁[𝐿𝐿(𝑁𝑁)] =  ��𝐿𝐿𝑀𝑀𝑛𝑛 + 𝑛𝑛𝑐𝑐,𝑛𝑛 ∙ 𝐿𝐿𝐿𝐿𝑤𝑤� ∙ (1 − 𝑇𝑇) ∙ (1 + 𝑟𝑟𝑜𝑜𝑜𝑜)𝑛𝑛
(1 + 𝑑𝑑)𝑛𝑛

𝑁𝑁
𝑛𝑛=1  (8) 
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where p is the price of electricity and rp the average annual rate of increase in the price. The price of 1 

electricity is calculated as: 2 𝑝𝑝 = 𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝 ∙ (1 + 𝑁𝑁𝑉𝑉𝑇𝑇) (9) 

where ppretax is the initial price of electricity before taxes, and VAT is the value-added tax (21%). The 3 

average yearly pretax price of electricity is affected by several factors and can vary with time and 4 

location depending on the available supply and demand. Similar to the cleaning cost, p is considered 5 

as an initial electricity price, because its value varies with the year of operation. Furthermore, p was 6 

set equal to the average 2019 electricity price in Spain (i.e., 0.04778 €/kWh) [45].  7 

The majority of existing PV plants in Spain, where this investigation is conducted, sell their energy 8 

directly to the electricity market. This direct sale of produced electricity has become extremely popular 9 

- and profitable - for the past three years due to the combination of consistently high electricity prices 10 

and falling costs of PV installations. Spanish banks have long experience in financing photovoltaic 11 

projects and have been financing only those installations that sell their electricity on the market [46]. 12 

For these reasons, a varying electricity price has been taken into account as a primary scenario. In 13 

particular, the value of rp was set to 4.48%/year, which is the average yearly increase in electricity 14 

price in Spain for the last 10 years [45,47].  15 

Despite that, power purchase agreements (PPAs) are a common practice in many countries and PPAs 16 

are effective in some new PV projects in Europe [48]. This scenario, represented by an rp of 0%/year, 17 

is also discussed in the paper.  18 

Table 1. Economic parameters used in this study and sourced from the literature for utility-scale PV systems in Spain. The 19 
asterisk marks that the value has been converted from U.S. dollars, considering a 0.92 $/€ conversion factor. 20 

Parameter Symbol Value Units References 

Years of operation N 25 years   

O&M costs, cleaning excluded OMn 15 €/kW/year [42]* 

Installation Costs C 700 €/kW [49] 

Initial Surface Cleaning Cost CCs 0.09 
€/m2/clean

ing 
[9] 

Discount Rate d 6.4 %/year [42] 

Annual escalation rate of the 

operation and maintenance cost 
rom 1.23 %/year [43] 

Income Tax T 25 % [42] 

Depreciation period Nd 20 years [44] 

Average annual rate of increase in 

the price 
rp 4.48 %/year [45,47] 

Value added tax VAT 21 % [44] 

Initial pretax price of electricity ppretax 0.04778 €/kWh [45,47] 

3. Results and Discussion 21 
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3.1. Yearly Schedule Optimization 1 

The cleaning frequency that minimizes the LCOE and maximizes the NPV for each year of the system’s 2 

lifetime is calculated. Compared to the previous studies [19,21,23], where fixed numbers of cleanings 3 

throughout the lifetime of the system were assumed, in this case, the optimum cleaning frequency 4 

can vary with time due to degradation, electricity price, and O&M costs. The results of this analysis for 5 

the two metrics considered in this study are shown in Fig.  3. As expected, the optimum cleaning 6 

frequency indeed changes with time. Under the given conditions, both metrics are found to favor 7 

more frequent cleanings towards the end of the life of the system.  8 

 9 

Fig.  3. Optimum cleaning frequency as a function of LCOE and NPV, in presence of a linear degradation rate of -1%/year 10 
(Scenario A). 11 

To maximize NPV, it is recommended to switch to two cleanings/year in year 10, while to minimize 12 

LCOE, the switch is recommended in year 22. The different results are due to the different structures 13 

of the metrics. If equation (1) is solved for the cleaning cost, it is found that, in order to minimize the 14 

LCOE, the switch from a schedule of nc,n cleanings/year to nc,n+1 cleanings/year occurs in year n in 15 

which the following criterion is met: 16 𝐿𝐿𝐿𝐿𝑊𝑊 � €𝑘𝑘𝑘𝑘�
<

�𝐿𝐿𝑛𝑛𝑐𝑐,𝑛𝑛+1𝐿𝐿𝑛𝑛𝑐𝑐,𝑛𝑛 − 1� ∙ �(1 + 𝑑𝑑)𝑛𝑛 ∙ 𝐿𝐿𝑁𝑁 + 𝐿𝐿𝑀𝑀𝑡𝑡,𝑛𝑛 ∙ (1 + 𝑟𝑟𝑜𝑜𝑜𝑜)𝑛𝑛 ∙ (1 − 𝑇𝑇) − 𝐷𝐷𝑛𝑛 ∙ 𝑇𝑇 ∙ [𝑛𝑛 ≤ 𝑁𝑁𝑑𝑑]�
(1 + 𝑟𝑟𝑜𝑜𝑜𝑜)𝑛𝑛 ∙ (1 − 𝑇𝑇)

 

(10) 

where 𝐿𝐿𝑛𝑛𝑐𝑐,𝑛𝑛+1 and 𝐿𝐿𝑛𝑛𝑐𝑐,𝑛𝑛  are the corresponding energy yields for nc,n+1 and nc,n cleanings/year. First, the 17 

equation shows that the LCOE-based cleaning decision is independent of the degradation rate. This is 18 

due to the fact that the degradation has the same effect on the energy yields of the two cleaning 19 

approaches. This finding should not lead to the misunderstanding that the degradation has no impact 20 

on the LCOE. Simply, if the LCOE is used as an economic metric, the yearly cleaning schedule would 21 

not change because of the degradation pattern. Second, for the effect of discounting, the cost of 22 

cleanings in the calculation of the LCOE becomes less significant year-after-year compared to the 23 

installation cost, which is the only non-discounted parameter in equation (1). This becomes even more 24 

important if the annual tax depreciation is only valid for a number of years Nd<N. For this reason, 25 

cleanings toward the end of the PV system life have a lower economic impact on the LCOE and might 26 

contribute to reducing its overall value. 27 

On the other hand, when NPV is considered, switching from an nc,n to an nc,n+1 cleaning schedule 28 

occurs when the cost of cleaning becomes lower than the profits made per unit of power recovered: 29 
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𝐿𝐿𝐿𝐿𝑊𝑊 � €𝑘𝑘𝑘𝑘� <
𝑝𝑝 ∙ (𝐿𝐿𝑛𝑛𝑐𝑐,𝑛𝑛+1 − 𝐿𝐿𝑛𝑛𝑐𝑐,𝑛𝑛) ∙ (1 + 𝑅𝑅𝐷𝐷)𝑛𝑛 ∙ �1 + 𝑟𝑟𝑡𝑡�𝑛𝑛

(1 + 𝑟𝑟𝑜𝑜𝑜𝑜)𝑛𝑛  (11) 

As shown in the equation, the discount rate and the income taxes do not affect the cleaning decision 1 

when NPV is used as the criterion. Also, the installation, fixed O&M costs and depreciation mechanism 2 

do not impact the cleaning decision, because they would not be affected by the different energy yields 3 

and would have the same impact under any cleaning scenarios.  4 

The optimum yearly cleaning frequency varies depending on the input parameters. The sensitivity 5 

analysis taking into account the escalation rate of O&M costs and electricity prices for different 6 

degradation rates (and patterns) is shown in Fig.  4. As can be seen in Fig. 4, the switch in cleaning 7 

frequency occurs when the value of recovered energy meets the specific cost of cleaning. According 8 

to equation (11), two cleanings/year are more profitable when the value of the recovered energy ≥ 9 

CCw, otherwise one cleaning should be preferred. It should be noted that, under some conditions, no 10 

switch occurred, while in other cases, more than one switch might be recommended. 11 

      12 

Fig.  4. Sensitivity analysis of profits made from recovered energy for different values of linear degradation rate, escalation of 13 
electricity price and variation in O&M costs. The rp = 0%/year (i.e. no changes in electricity price) condition is representative 14 
for sites with a fixed PPA in place. 15 

As can be seen, the slope of the curve increases while (i) the degradation rate decreases, (ii) the 16 

escalation rate of the O&M costs decreases or (iii) the escalation rate of the electricity price increases. 17 

The initial price of electricity would not affect the slope but would only change the intercept. It is 18 

important to highlight, that the slopes can be either positive or negative. A positive slope occurs when 19 

cleanings become more profitable with time, as long as: 20 
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|𝑅𝑅𝑑𝑑| < 1 − 1 + 𝑟𝑟𝑜𝑜𝑜𝑜
1 + 𝑟𝑟𝑡𝑡  (12) 

These findings confirm that, even if the amount of energy recovered by cleaning decreases because 1 

of degradation, the inflation and the variation in the cleaning costs can make it possible to profitably 2 

increase cleaning frequency over time.  3 

For the PV site investigated in this work, a cleaning schedule with a variable number of cleanings/year 4 

leads to an increment in NPV < 0.1% compared to the case in which the modules are always cleaned 5 

twice a year. The benefits of this approach should be evaluated on a case-by-case basis, since the 6 

magnitude of this variation changes depending on the severity of degradation rate and values of 7 

discount rate. 8 

Overall, the LCOE and NPV evaluate differently the costs and benefits of the various cleaning 9 

schedules, because the parameters that influence the decision of whether to clean or not are different 10 

(Eqs 10 and 11). It is interesting to note that the cleaning schedule that maximizes the profits is not 11 

necessarily the one minimizing the cost of electricity and vice versa. At the given soiling conditions, an 12 

LCOE-optimized cleaning schedule would cause a loss in profits of 0.1% compared to an NPV-optimized 13 

cleaning. This loss becomes more substantial as soiling increases; e.g. if the soiling rates were 14 

multiplied by a factor of 1.5x and 3x, the difference in profits would become 0.4% and 0.7% 15 

respectively. In addition, this difference would become more significant for locations with higher 16 

electricity prices. Indeed, higher electricity prices would incentivize more frequent cleanings, while 17 

the LCOE recommendation would not change, since LCOE is not sensitive to electricity price. 18 

3.2. Nonlinear Degradation Rate 19 

Nonlinear degradation rate affects the cost of energy and hence, the profitability of a PV project [4,5]. 20 

The most profitable cleaning schedule changes depending on the degradation rate because, given the 21 

same soiling ratio, the amount of recovered energy per cleaning lowers. In this section, the analysis is 22 

repeated by taking into account the nonlinear degradation rate scenarios exhibited in Fig.  2. Initially, 23 

a fixed number of cleanings/year are considered for the lifetime of the system, whereas, in the second 24 

part of the section, the cleaning frequency is optimized every year. 25 

Fig. 6 illustrates the impact of the different degradation rate patterns on the LCOE and NPV as a 26 

function of cleaning frequency. The two optimum cleaning strategies include the one with the lowest 27 

cost of electricity for all the degradation rate scenarios and the one returning the highest profits (i.e. 28 

maximum NPV). 29 

Transitioning from a no-cleaning to a single annual cleaning approach leads to a decrease of 0.7% in 30 

LCOE; independently of the degradation rate pattern. When NPV is used as a criterion, the twice a 31 

year-cleaning scenario is the most profitable cleaning schedule for all the degradation scenarios but 32 

the scenario E, which favors a one-cleaning approach. The differences between the one-cleaning and 33 

two-cleaning approaches are limited in all the scenarios. Overall, the optimum cleaning frequency lead 34 

to profit raises up to 2.7%, when compared to the no-cleaning approach. 35 
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 1 

Fig.  5. LCOE and NPV depending on the cleaning frequency for various degradation rate scenarios. The optimum cleaning 2 
schedule is the one that minimizes the LCOE and/or maximizes the NPV. 3 

As shown in the previous section, the number of annual cleanings can be optimized every year. In this 4 

analysis the LCOE metric is neglected since Eq. 8 and Fig. 5 demonstrated that an LCOE-based cleaning 5 

decision is not affected by the degradation rate value and/or pattern.  6 

The cleaning frequencies were calculated and exhibited in Fig.  6 for the various degradation scenarios 7 

in order to optimize the NPV. As expected, systems with the best performances (i.e. lower initial 8 

degradation rates) require more frequent cleaning for longer periods, because cleaning tends to be 9 

more profitable. These results are explained by the lower plot in Fig.  6, where the evolution of the 10 

cleaning cost, obtained as 𝐿𝐿𝐿𝐿𝑤𝑤 ∙ (1 + 𝑟𝑟𝑜𝑜𝑜𝑜)𝑛𝑛, is compared to the revenue obtained by moving from a 11 

one-cleaning to a two-cleaning scenario (numerator of Eq. (11)), which is affected by the degradation 12 

rate and by the annual increase in electricity price. Overall, higher degradation rates lower the slopes 13 

of revenue per cleaning. The switch in cleaning frequency occurs when the cost of cleaning line 14 

intercepts the revenue per cleaning. The high initial degradation modelled in Scenario E keeps the 15 

revenue per cleaning lower than the cost of cleaning for longer time, justifying a one-cleaning 16 

approach until year 14 of operation. On the other hand, conditions for a profitable additional cleaning 17 

are reached faster in scenario C, because of the initial lack of degradation. 18 
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31 

  2 

Fig.  6. Upper plot: Numbers of annual cleanings that maximize NPV in different degradation scenarios. Lower plot: the yearly 3 
cost of cleaning per unit of power and the trends of revenues per cleaning depending on the degradation rate scenario. An 4 
additional cleaning is profitable when the revenue per cleaning is higher than the cost of cleaning. 5 

The slopes of revenue per cleaning lines are positive as long as the degradation rate is lower than the 6 

annual increase in electricity price, which is always true in the investigated case because of the high 7 

electricity price escalation rate (4.48%/year). Each subplot in Fig. 7 demonstrates how the trends 8 

would change for a different value of rp. The red lines represent the cleaning cost escalation rate, 9 

ranging from +2%/year (dashed line) to -2%/year (continuous line). The latter scenario was considered 10 

because, given the expected increasing impact of soiling in future [9], the development and wide-scale 11 

deployment of novel cleaning technologies could actually lower the soiling mitigation costs. 12 

The revenue per cleaning lines are flat when rp= RD. As expected, the slopes become negative when 13 

degradation rate becomes greater than the escalation rate in electricity price. This is the case for PV 14 

sites under a power purchase agreement with a fixed price (i.e. rp = 0%/year, left plot of Fig. 8). In 15 

these conditions, the profits made by cleaning the modules lowers with time. A once/year cleaning 16 

scenario would be recommended, unless the cost of cleaning lowered by 2.0%/year. In this case, 17 

Scenario C would be the fastest in switching to a twice/year cleaning approach.  18 

The theoretical examples demonstrated in Fig. 8 return either a fixed number of cleaning frequency 19 

or a switch from one to two annual cleanings. In reality, a switch from twice a year cleaning frequency 20 

to once a year might occur when the increase in cleaning cost is higher than the combined effect of 21 

degradation rate and electricity price inflation. 22 
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 1 

Fig.  7. The yearly cost of cleaning and the yearly values of recovered energy for variable rates of electricity prices and cost of 2 
cleanings. The left plot (rp = 0.0%/year) is representative for sites with a fixed PPA in place.  3 

4. Conclusions 4 

This study investigated the impact of degradation rate patterns on soiling mitigation strategies taking 5 

into account various economic parameters. In order to reduce the LCOE or improve the NPV, the 6 

cleaning frequency can vary annually, since the cost of cleaning and value of recovered energy may 7 

also change.  8 

First, it is found that the degradation rate does not affect the cleaning frequency that minimizes the 9 

LCOE. On the other hand, the cleaning optimization algorithm based on the NPV neglects the discount 10 

rate, income taxes and depreciation. This leads to different results for the two approaches and means 11 

that a cleaning schedule that maximizes the profits could affect the cost of electricity and vice versa. 12 

Because of the relatively low soiling rates at the investigated site, the NPV-based approach and LCOE-13 

based approaches showed limited differences, which are expected to increase with the severity of 14 

soiling and electricity prices. In addition, nonlinear degradation rate patterns can have an effect on 15 

the results of the NPV optimization algorithm, because they can influence the annual revenue rates.  16 

The investigated site is characterized by a significant seasonal soiling profile, with a maximum power 17 

drop higher than 20% in summer, but an average energy loss lower than 3%. The results of the analysis 18 

can be considered valid for climatic conditions similar to the Mediterranean region. Despite that, the 19 

methodology presented in this work can be used to analyze soiling losses, identify the most 20 

advantageous cleaning schedule and to also calculate the profitability of PV systems in any location. 21 

The results of the sensitivity analysis are presented to show the variation of the trends depending on 22 

the value of the input parameters: degradation, inflation rate, electricity price and cleaning cost. For 23 
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this reason, the benefits of a yearly optimized schedule should be considered on a case-by-case basis. 1 

More investigations should be conducted in future to characterize the correlation between the 2 

cleaning strategies and degradation rate for a larger number of sites that exhibit different soiling 3 

profiles. Future work will also include the impact of non-uniform soiling and degradation rates that 4 

may occur across different inverters and strings within the same site. 5 
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