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Abstract

Understanding the microeconomic details of technological catch-up processes offers great po-
tential for informing both innovation economics and development policy. We study the economic
transition of the PR China from an agrarian country to a high-tech economy as one example
for such a case. It is clear from past literature that rapidly rising productivity levels played a
crucial role. However, the distribution of labor productivity in Chinese firms has not been com-
prehensively investigated and it remains an open question if this can be used to guide economic
development. We analyze labor productivity and the dynamic change of labor productivity in
firm-level data for the years 1998-2013 from the Chinese Industrial Enterprise Database. We
demonstrate that both variables are conveniently modeled as Lévy alpha-stable distributions,
provide parameter estimates and analyze dynamic changes to this distribution. We find that
the productivity gains were not due to super-star firms, but due to a systematic shift of the
entire distribution with otherwise mostly unchanged characteristics. We also found an emerging
right-skew in the distribution of labor productivity change. While there are significant differences
between the 31 provinces and autonomous regions of the P.R. China, we also show that there are
systematic relations between micro-level and province-level variables. We conclude with some
implications of these findings for development policy.
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1 Introduction

For almost three decades, the PR China has been one of the fastest-growing economies. During this
time, it made the transition from a largely agricultural developing country to the world’s second-
largest industrial economy. Where state-owned enterprises (SOEs) ran the show in the 1980s, the
country today is home to a multitude of private corporations of international importance. The PR
China used to be a poor country and years behind in technological terms, but today, its development
trajectory is of growing importance for the world in science and innovation, in CO2 emissions, and
in technological impact on privacy, surveillance, and personal freedom. While the development is
moderately well-understood in macro-economic terms, many open questions remain with regard to
the development of the microstructure of the Chinese economy over the last decades. Which firms
were the most productive ones, which were central to the transition process? How was productivity
distributed among firms? How did this change over time? Can these processes be observed in all
regions? In all sectors? Is it mirrored in profitability and investment rates? Can other developing
economies achieve the same level of growth and development?

For developed countries, the distributions of firm-level data have been widely investigated and
discussed in the literature. Many stylized facts are known although some questions remain contested.
Ijiri and Simon (1964, 1977) proposed that firm sizes are highly skewed and follow Pareto distribu-
tions, essentially with a process following Gibrat’s law1 as the root cause of this. The observation
was later confirmed with more detailed data sets (Axtell, 2001; Gaffeo et al., 2003), although some
of the literature prefers to model the distribution as a lognormal (Cabral and Mata, 2003) and other
generating algorithms have been proposed ((Heinrich and Dai, 2016) offer an overview). It is clear
that this has important policy implications for competition law, innovation policy, labor market
governance, and the effectiveness of policy interventions in industrial organization. Connections to
firm growth, innovation, and technological change (Yu et al., 2015; Li and Rama, 2015) further add
to the importance of this distributional approach, as do the later, but equally important investiga-
tions of the distributions of firm growth rates (Bottazzi and Secchi, 2006) and productivities (Yang
et al., 2019).

An important characteristic of firm-level distributions in developed countries is that no significant
changes are observed with either time (Yang et al., 2019) or firm age (Cabral and Mata, 2003).
Developing countries, however, may be very different. They are subject to substantial and rapid
changes in sectoral structure, technology, economic policy, and social organization. Investigating
such distributional changes for developing economies may shed light on the mechanisms driving
that development, the effectiveness of policy measures, the microstructural impact of technological
change, as well as potentially the history of developed countries. Studying similar historical processes
for developed countries would require older data that is almost certainly not available in high
resolution.

For the PR China a look at the data immediately suggests that a systematic shift is underway:
Figure 1 shows the distribution (density) function of the labor productivity at the firm-level by
year in a semi-log plot (horizontal axis linear, vertical axis logarithmic); the shape of the distribu-
tion remains constant, but the right side (positive tail) moves outward and the peak becomes less
pronounced. We will discuss other systematic shifts, interpretations, and implications below (see
Section 5); for now, we emphasize that there are systematic changes in the distributional model
during this development phase of the Chinese economy.

We use a firm-level data set for the PR China for the years 1998-2013 to investigate changes in

1Gibrat’s law with lower bound produces Pareto distributions; without such bound, it generates lognormal distri-
butions (Mitzenmacher, 2004).
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Figure 1: Density of the labor productivity (LP ) distribution (full sample) by year in semi-log
(vertical axis logarithmic). Solid lines indicate Levy alpha stable distribution fits as reported in
Table 2.

the economic microstructure during the years of China’s most rapid growth from a distributional
model perspective. We will focus on the distribution of labor productivity and of labor productivity
change; these are arguably the quantities that are most closely related to economic development.
While other distributional models have been suggested for labor productivity (Yu et al. (2015)
consider Asymmetric Exponential Power (AEP) distributions and Gaussian normal distributions),
the mounting evidence for heavy tails in both labor productivity and labor productivity change
(Yang et al., 2019) suggests the Lévy alpha-stable distribution (Nolan, 1998, 2019) as a distributional
model. Lévy alpha-stable distributions generalize Gaussian normal distributions,2 but have heavy
tails for almost all parameter values.

Important consequences include that the apparent dispersion of labor productivity (Berlingieri
et al., 2017) depends on how dispersion is measured. If such dispersion exists, it may be an indicator
for misallocation of labor, capital, or other resources, a question of considerable relevance for the
economy of the PR China (Hsieh and Klenow, 2009). It also relates to the debate on granular

2For one particular parameter setting, the Lévy alpha-stable converges to a Gaussian normal distribution.
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origins of aggregate fluctuations (Gabaix, 2011; Schwarzkopf et al., 2010) and the question of how
characteristics of labor productivity distributions in firm populations should be quantified and in-
terpreted. The characteristics of labor productivity dispersion measures and the consequences for
these economic questions are studied comprehensively in Yang et al. (2019).

We demonstrate that labor productivity as well as labor productivity change and various other
firm-level characteristics in the PR China are indeed fat-tailed with infinite variance. Further, we
show that the Lévy alpha-stable distribution is an excellent fit and discuss how the characteristics
of the distribution can be specified and tracked using the parameters of the Lévy alpha-stable
fit. We discuss the emerging temporal and regional patterns as well as the behavior in other
subsamples. Finally, we demonstrate connections between the distributions of labor productivity,
labor productivity change, profitability, investment rate at the firm-level, as well as between these
firm-level patterns and aggregated level data.

The paper is organized as follows: The literature on the development of productivity in the PR
China during its period of rapid growth is reviewed in Section 2. Section 3 describes the data and the
variables of interest. Section 4 discusses the distributional models that are tested, the Lévy alpha-
stable and the Asymmetric Exponential Power, as well as the fitting procedure, and goodness of fit
measures employed. Section 5 presents the findings and corresponding interpretations. Section 6
concludes.

2 Literature

The present paper aims to contribute to the study of distributional models of firm-level data, the
investigation of the role of firm productivity in economic development, and, more specifically, the
analysis of the rapid growth and development of the P.R. China in recent decades. We, therefore,
give brief overviews of the literature in these three fields.

2.1 Distributional models of firm-level data

For developed countries, it has been established that the distributions of firm sizes, sales, etc.
are heavily skewed (Ijiri and Simon, 1964; Axtell, 2001), with the Pareto (Axtell, 2001) and the
lognormal distribution being proposed as distributional models (Cabral and Mata, 2003). The two-
sided distributions of growth rates and productivities equally have much heavier tails than normal
distributions; proposed distributional models include Asymmetric Exponential Power distributions
for growth rates (Bottazzi and Secchi, 2006; Bottazzi et al., 2007; Bottazzi and Secchi, 2011) and
Lévy alpha-stable distributions for productivities (Yang et al., 2019).

However, developed economies are relatively static. Very little change has been observed in these
distributions over the recent decades for which good data is available (see e.g. (Yang et al., 2019)),
and little change would be expected. To understand the development of firm-level distributions,
scholars have instead focussed on firms of different age groups, their survival, and their shifts over
time (Cabral and Mata, 2003). Important findings include that the form of the distribution does not
change over time (Yang et al., 2019) or with age (Cabral and Mata, 2003; Angelini and Generale,
2008), that surviving firms are slightly larger (Cabral and Mata, 2003), and that they increase their
productivity (making within-firm productivity gains important at the aggregate level) (Bartelsman
et al., 2013; Li and Rama, 2015). Cabral and Mata (2003) report that surviving firms in a Portuguese
data set have less long tails and lower skew; however, if the statistical process which the firm size
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follows in reality is heavy-tailed with low exponents3, these moments may not exist and Cabral and
Mata’s findings may be statistical artifacts (Yang et al., 2019). The hypothesis that small firms are
more dynamic and account for significant shares of productivity gains and newly created jobs has
frequently been proposed, but remains controversial (Li and Rama, 2015).

2.2 Economic development and firm-level productivity

Comprehensive firm-level data is often not available for developing countries. In turn, many studies
have to work with small and potentially biased sample sizes. Notable exceptions are studies of firms
in the P.R. China - using the Chinese Industrial Enterprise Database that we also work with - and
in India - using government census data. While the general distributional forms found for developed
countries are confirmed (Hsieh and Klenow, 2009; Ma et al., 2008; Zhang et al., 2009; Coad and
Tamvada, 2012; Sun and Zhang, 2012; Yu et al., 2015; Ding et al., 2016; Heinrich and Dai, 2016),
wider dispersions for productivities are reported for India and China specifically (Hsieh and Klenow,
2009).

In a general equilibrium interpretation, productivities should equalize, as investors should prefer
high productivities while low productivity firms should be frozen out. This should be especially true
for firms in the same sector and region, since portfolio diversification should not constitute a reason to
invest in low productivity establishments. Of course, there may be structural reasons why investment
in low productivity firms persists; and it might not be easily observable to investors. However,
implications could still be drawn in comparative analyses, if different dispersions are observed.
Hsieh and Klenow (2009) choose to follow this equilibrium interpretation; their contribution has
led to the influential interpretation that resources are more misallocated in developing countries
(Hsieh and Klenow, 2009; Song et al., 2011; Bartelsman et al., 2013; Li and Rama, 2015; Goyette
and Gallipoli, 2015) as well as occasionally strongly worded policy recommendations (Adamopoulos
and Restuccia, 2014; Poschke, 2018). This has been explained with both structural factors, such
as constraints on credit availability (Bloom et al., 2010; Cabral and Mata, 2003), and also internal
factors of the firm population of developing countries, such as bad management and reluctance to
delegate decision-making (Bloom et al., 2010; Chaffai et al., 2012). More recently, it has been found
that productivities (both labor productivity and total factor productivity, TFP) are heavy-tailed
with tail exponents below 2.0 such that most dispersion measures, including the ones used in this
line of research, are not meaningful (Yang et al., 2019).

The source of productivity gains is an important question in the study of economic development.
Three main causes are (1) within-firm improvements, (2) selection pressure (unproductive firms do
not survive), and (3) changes from distributional differences between entrants and exiting firms.
Within-firm improvements were particularly important in developing countries (Li and Rama, 2015)
and in successful developing economies such as China (Yu et al., 2015, 2017). While developed coun-
tries show some component from selection (2) and entry/exit (3) (Fariñas and Ruano, 2004; Li and
Rama, 2015)4, in some developing countries (Sub-Saharan Africa specifically) the entry-exit-process
may come down to churning without any improvements, and firms may survive because they are
born larger, not because they learn or improve (Van Biesebroeck, 2005; Li and Rama, 2015; Goyette
and Gallipoli, 2015), resulting in heteroskedastic ”missing middle“ distributions (Van Biesebroeck,
2005).

3This is indeed indicated by empirical studies (Gaffeo et al., 2003; Fujimoto et al., 2011; Heinrich and Dai, 2016)
that find tail exponents around 1.0 or between 1.0 and 3.0 for firm size depending on how firm size is measured.

4Studies also found a counter-cyclical contribution of entry and exit in developed economies (Spain): In phases of
economic growth, when credit is readily available, less productive firms enter, resulting in a negative contribution to
productivity growth (Fariñas and Ruano, 2004).
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Success and growth at the firm-level has been linked to innovation for Argentina (Chudnovsky
et al., 2006), to innovation and technological competence for Indian firms (Coad and Tamvada,
2012), and export participation for Chilean, Chinese, and European firms (Volpe Martincus and
Carballo, 2010; di Giovanni et al., 2011; Sun and Zhang, 2012).

Finally, systematic shifts in distributions have been shown for those developing countries that
undergo rapid growth: Both Yu et al. (2015, 2017) and Ding et al. (2016) find a location shift in
the productivity distributions (labor productivity and TFP respectively) for China in the 1990s and
2000s, indicating higher productivities across the entire firm population, while the functional form
did not change. Nguyen (2019) finds a similar location shift in firm-level distributions for Vietnam.
Heinrich and Dai (2016), studying the firm size distribution in Chinese provinces, find higher tail
exponents in regions with high GDP per capita or high growth.

2.3 Firm-level productivity and growth in the PR China

Chinese firm-level distributions follow the same general patterns found elsewhere (Ma et al., 2008; Yu
et al., 2015; Heinrich and Dai, 2016; Heinrich et al., 2020). While firm sizes seem to follow power laws
(Ma et al., 2008; Heinrich and Dai, 2016), for labor productivities and growth rates, two distributions
have been suggested: Asymmetric Exponential Power distributions from the exponential distribution
family (Yu et al., 2015) were found to be a much better fit than Gaussians. Lévy alpha-stable
distributions, which have power-law tails on both sides, have been suggested as an alternative
since the data seems to be heavy-tailed (Heinrich et al., 2020). The distinction has important
consequences.

The impressive economic growth of the PR China is reflected in the distributions as a location
shift in productivity levels (Yu et al., 2015, 2017; Ding et al., 2016); the shift remains present in the
gross industrial output per worker (labor productivity per wage), indicating that productivity has
grown at a faster pace than labor inputs (Zhang and Liu, 2013). It is important to note that this
is not a changing average, but a shift of the entire distribution which otherwise remains intact in
spite of continuing entry and exit processes. The changes in the distribution’s parameters have so
far not been comprehensively studied.

We give a brief overview over the contributing factors to China’s rapid growth from a historical
perspective in Appendix C.

It this worthwhile to note that state-owned enterprises (SOEs) have been found to be in general
less productive than privately owned firms, both in terms of average labor productivity and average
TFP (Song et al., 2011; Yu et al., 2015; Hsieh and Song, 2015). While productivities of firms of all
types vary widely and follow similar distributional forms as the economy as a whole (see Section 5),
the mean difference is significant. SOE productivity did improve and has converged towards the
productivity levels of private firms until at least 2007, but a gap in average productivity remains
(Song et al., 2011; Yu et al., 2015). Boeing et al. (2016) find that compared to private firms, SOEs are
less successful in converting patents into productivity improvements, although a generally positive
relationship of productivity and R&D efforts does exist (Hu and Jefferson, 2004; Boeing et al., 2016).
SOEs are often seen as a source of misallocation, thereby explaining their lower average productivity
and tying the finding to the misallocation hypothesis (Hsieh and Klenow, 2009; Song et al., 2011).
However, on the one hand, a closer look at the distributions reveals that the variation is still present
within ownership type groups. On the other, firm-level dispersion may not be larger in China than
in other countries if the measures employed in achieving these results were misleading for heavy-
tailed data (Yang et al., 2019). The reason why SOEs are catching up and the mean difference
between private firms and SOEs is converging is typically seen in the structural transformation of
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the state sector (Hsieh and Song, 2015; Jefferson et al., 2000). Greater flexibility of managers and
delegation of decision-making capabilities as well as and the effects of rising incomes and autonomy
on employee motivation have also been linked to the productivity improvements in SOEs (Groves
et al., 1994).

Finally, regional disparities in productivity and other variables are well-known and expected for a
country of the size of the PR China. Coastal provinces like Shanghai and Guangdong have a better
TFP comparing with central and western provinces (Ding et al., 2016; Chen et al., 2009). High
productivity firms prefer to concentrate their activities on regions with developed infrastructure,
good universities, and related industrial clusters; Zhu et al. (2019) finds evidence for both sorting and
adverse sorting effects. Meanwhile, officials in undeveloped regions are eager to attract investment
by providing subsidies. However, government subsidies may attract low-productivity firms, since
they have low opportunity costs (Zhu et al., 2019). Marshall and Jacobs externalities of spatial
industrial agglomerations (Beaudry and Schiffauerova, 2009) likely also play a role in creating and
maintaining regional disparities, as may the openness of regions towards outside influences, foreign
trade, and flexible economic policy (Jiang, 2011).

3 Data

3.1 Sources

We use firm-level data from the Chinese Industrial Enterprise Database (CIEDB), which records
several hundreds of thousands of firms each year for the time period between 1998 and 2013 and
is commonly used by researchers working on firm-level data in China (Brandt et al., 2012; Hsieh
and Song, 2015; Ding et al., 2016; Yu et al., 2015, 2017). The data ultimately derive from data
recorded by the PR China’s National Bureau of Statistics. Similar to data provided by the Bureau
van Dijk for Europe (ORBIS Europe), the CIEDB records data at the firm-level, not at the level of
physical entities (plants). This facilitates investigating structural characteristics such as productivity
and profitability at the firm-level, the level at which decision making and management take place.
Different from other databases like COMPUSTAT or Bloomberg, but similar to ORBIS Europe, the
CIEDB also includes small and medium-sized firms and thus provides better coverage of different
types of enterprises. The data set also records the ownership type (state-owned, foreign-owned,
private, etc.)5.

There are some notable difficulties with the data, especially for the period after 2008. These
difficulties are well-known and recognized in the literature (Brandt et al., 2014). Brandt et al. (2014)
qualify the samples after 2008 as unreliable and recommend working with the more reliable date up
to 2008 only. We largely follow this strategy. We complement this with later data from the period
2009-2013, where possible, to shed light on some developments after 2008.

Up to 2008, the database includes industrial firms with revenues above 5 million Yuan. From
2009, only firms with revenues beyond 20 million Yuan are present in the data set. The set of
recorded variables also changes significantly over this time period. For instance, we are unable to
compute value-added and productivities for the time period after 2008, as the measures required for
their computation are only reported up until 2007.

In addition, we use industry level deflators from and macroeconomic data at province level from
China Compendium of Statistics (1949-2008).

5The database does not include firms from Hong Kong, Macau, and Taiwan, we, therefore, will not cover these
three regions in the analysis.
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Year Labor
productivity

Labor
productivity

change

Labor
productivity

growth

Labor
productivity
(imputed)

Profitability Investment
rate

1998 141,790 - - 141,787 149,270 -
1999 148,982 113,684 112,996 148,973 147,636 121,091
2000 147,196 121,977 120,882 147,188 148,088 123,492
2001 158,671 116,674 116,001 158,664 157,453 119,211
2002 169,419 139,020 138,351 169,417 168,072 137,724
2003 11,404 9,503 9,490 11,404 11,369 9,461
2004 267,898 120,595 120,174 267,898 263,060 118,202
2005 262,830 227,569 227,032 262,830 261,369 223,671
2006 290,762 244,918 244,406 290,762 289,566 243,448
2007 324,638 268,614 268,376 324,638 323,131 267,151
2008 - - - - 198,945 158,114
2009 - - - - - 130,155
2010 - - - - - 152,979
2011 - - - - - -
2012 - - - 42,301 - 36,139
2013 - - - 41,625 216,817 180,634

Table 1: Number of observations per variable and year after cleaning.

3.2 Data processing

We extract variables on identity6 (ID, phone number, ZIP code), characteristics (founding year,
primary sector, ownership type), and structural and financial condition (output, assets, profits,
wages, employment, intermediate input). These variables are present in the database throughout the
years 1998-2007.7 Progressively more variables either missing or reported in substantially different
form starting in 2008. (See Table 1.) The monetary variables are deflated using industry level
deflators.

We remove duplicates in terms of ID and Year before commencing with the data analysis.
In order to observe productivity changes, we attempt to identify firms that are present over

multiple years both directly (using the unique ID) and indirectly, using phone numbers and address
details as suggested in Brandt et al. (2014).

For the analysis of regional variation, the firms are assigned to the region of their postal address.
As the region name is not typically part of the postal address, the ZIP codes were used to identify
those regions.

3.3 Variables

In order to investigate structural change at the firm-level, we analyze labor productivity and its
dispersion and dynamical change. Labor productivity has been conjectured to hold information
about the firm’s capabilities, economic potential, and growth prospects. Its dynamical change

6Ownership reforms led to continuous legal and structural changes, making it difficult to consistently identify the
same firm (Jefferson et al., 2000). Using not just the firm ID but also phone number and ZIP code for identification
is a typical way to address this (Brandt et al., 2014).

7For 2003, the number of complete observations is very small.
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facilitates investigating to what extent this potential is persistent in time. The dispersion of both
variables holds information on the structural composition of the firm population of the country, the
region, or the industry.

Labor productivity is defined as value-added per employee.

LPi,t = V Ai,t/Li,t

where i indicates the firms and t is the time. As the value-added is not part of the database, it
has to be computed as the difference between output and intermediate input.

V Ai,t = Qi,t − IIi,t

where Qi,t is output and IIi,t stands for intermediate input of firm i at time t. Alternatively,
V A can be imputed as the sum of paid wages Wi,t and profits Πi,t

Ṽ Ai,t = Wi,t +Πi,t.

Imputed value-added differs from the direct computation in that reinvestments cannot be dis-
tinguished from negative profits and remain part of the resulting quantity. Reinvestments can be
substantial and may occur in systematic patterns across the firm population.

To observe the dynamic development of labor productivities, we compute the labor productivity
change by firm

∆LPi,t = LPi,t − LPi,t−1.

An alternative choice would be labor productivity growth

˙LP i,t =
LPi,t − LPi,t−1

LPi,t−1
.

However, as this is a growth rate, it has a singularity at LPi,t−1 = 0. Changes in labor produc-
tivity in the vicinity of the singularity get grotesquely exaggerated. What is more, LPi,t may be
zero (in 1% of the observations) or negative (3% of the observations) since stocks and price changes
are allowed.8 For this reason, we refrain from using the growth rate and rely on the absolute change
∆LPi,t as our main indicator of the dynamical change of labor productivities.

The distributional models for these variables will be investigated in Section 5.1. It will be shown
that this has important consequences for the selection and interpretation of quantitative measures
for productivity dispersion. We complement the analysis of labor productivity with the study of the
behavior of and dispersion of two more variables: Return on capital will serve as an indicator for
the firms’ profitability from the perspective of investors. The investment rate is studied to assess
investment patterns and growth. These variables are computed as

ROCi,t =
Πi,t

Ki,t

IRi,t =
Ki,t −Ki,t−1

Ki,t−1

where Πi,t are the profits and Ki,t is the capital stock (fixed assets) of firm i at time t.

8Typically, output should be larger than intermediate inputs, Qi,t > IIi,t. However, both are measured in monetary
units, so whether Qi,t > IIi,t is subject to price changes. Further, the firm may maintain, built up, or reduce stocks
intertemporarily.
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Figure 2: Density of the Lévy alpha-stable distribution for different parameter settings. Upper left:
Variation of tail parameter α. Upper right: Variation of skew parameter β. Lower left: Variation
of scale parameter γ. Lower right: Variation of location parameter δ.

The number of observations for all variables by year is given in Table 1.
Additional analyses also use capital intensity, defined as:

CIi,t = Ki,t/Li,t

4 Methods

4.1 Distributional models

Most studies of labor productivity and of firm-level data, in general, are based on generative models.
They define, which effects on the measure under investigation are considered under the model; they
fix their functional forms; and they establish the resulting distribution. Typically, the approximate
form of the distribution to be explained is known, which constrains the variety of candidate models.

The advantages of the generative approach include that it is illustrative and verifiable by con-
sidering other quantities represented in the model. However, specific distributions can frequently
be generated by large numbers of different generative models, and matching the correct distribution
reveals little information about the correct generating process.

Instead, and in line with much of the modern literature (Frank, 2009; Bottazzi and Secchi,
2006; Yang, 2018; Yang et al., 2019), we consider a different approach: The attractor distribution
to which the result of aggregations of (identical, independent) distributions converges. We remain
agnostic with regard to the interpretation of the component distributions being aggregated, though
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temporal aggregation of shocks or aggregation across jobs, processes, or tasks within a firm are
natural component separations that suggest themselves. If it is indeed the correct representation
of the data, the distribution could be expected to remain stable under a number of changes to the
system, as the aggregation continues to converge to this functional form.

In particular, following Yang et al. (2019), we use the Lévy alpha-stable distribution (Nolan, 2019,
1998) as our main distributional model, although we provide fits to the 4-parameter Asymmetric
Exponential Power distribution suggested elsewhere in the literature (Bottazzi and Secchi, 2006;
Bottazzi et al., 2007; Bottazzi and Secchi, 2011; Yu et al., 2015) as a point of comparison. In
the following, we provide a non-technical explanation and some intuition why the Lévy alpha-stable
distribution may be a good distributional model. A technical description is given in the Appendix A.

Random variables distributions can be aggregated in convolutions (i.e. summation of the vari-
ables), which yields a different distribution of the results (for technical details, see Appendix A.1).
Aggregation leads to a loss of information; it washes out less strong signals and only a dominant
pattern remains. As the convoluted distributions are independent, this pattern is the one that car-
ries the least information (highest entropy), the one that is the most likely one without additional
information, the one that constitutes the maximum entropy distribution under constraints that
depend on the component distributions X.

The maximum entropy perspective may be helpful in that it allows computing the resulting dis-
tribution and understanding the type of its constraints in a concise way. The resulting distributional
form is determined by the constraints in the maximum entropy perspective, or equivalently by the
type of convolution and the characteristics of the component distributions in the convolution per-
spective. For instance, a single constraint on the mean of the distribution will yield an exponential
or Laplacian (two-sided exponential) maximum entropy distribution. The Asymmetric Exponential
Power distributions that are often used for the distributional models for firm growth (Bottazzi and
Secchi, 2006; Bottazzi et al., 2007; Bottazzi and Secchi, 2011) or productivity (Yu et al., 2015),
belong to this family, albeit with a modification that allows for asymmetry9 (for technical details,
see Appendix A.5). A single constraint on the mean of the distribution under logarithmic trans-
formation will yield a Pareto maximum entropy distribution, typically considered for distributional
models of firm size distributions. A constraint on the variance of a distribution (implying a second
constraint on the mean) will yield a Gaussian normal maximum entropy distribution.

Almost all maximum entropy distributions do not constitute attractors under further aggre-
gation. If the resulting distribution is further convoluted, it continues to change. Those that do
constitute attractors, i.e. those that yield an identical distribution under convolution are known as
Lévy alpha-stable distributions (for technical details, see Appendix A.4). The Lévy alpha-stable is a
generalization of several families of distributions, including Gaussian normal distributions, Cauchy,
distributions and Lévy distributions. The generalized central limit theorem (GCLT) states that
any sum of independent, identical distributions will converge to a Lévy alpha-stable distribution.
Specifically, if the convoluted distributions have a finite variance, the sum will converge to a Gaus-
sian normal, a member of the family of Lévy alpha-stable distributions (for technical details, see
Appendix A.2). If not, it will yield a different member of this family with a heavy tail and a tail
parameter < 2.

Lévy alpha-stable distributions do not have a closed-form representation as a function in the
frequency domain, except for special parameter sets.10 The functional form in the Fourier domain

9The maximum entropy constraint includes a sign function under this modification to distinguish the two tails and
account for different shapes of both sides.

10For α = 2 it yields a Gaussian normal distribution, for α = 1, it yields a Cauchy distribution, and for α = 0.5 it
yields a Lévy distribution.
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(the characteristic function, for technical details, see Appendix A.3) is

ϕ(s) = E[e(isx)] =




e(−γα|s|α[1+iβtan(πα2 ) sgn(s)((γ|s|)1−α−1))]+iδs) α 6= 1

e(−γ|s|[1+iβ
2
π sgn(s) log(γ|s|)]+iδs) α = 1

(1)

Figure 2 shows the bahaviour of the four parameters of the Lévy alpha-stable distribution in
semi-log scale (y-axis logarithmic). The upper left panel contrasts the Gaussian case (black curve)
with skewed fat-tailed cases for different tail indices α. Note that the curve bends outward for
the two fat-tailed cases, indicating that the tails are heavier than in an exponential distribution,
which would be linear in a semi-log scale. This is a tell-tale sign of fat-tailedness. The lower left
panel shows variations of the scale or width of the distribution. The scale, γ is another measure
of dispersion besides the tail index and is independent from it. In the Gaussian case (α = 2), the
scale is simply the standard deviation. For fat-tailed variants (α < 2) such as the ones depicted in
this panel, this is not the case, as the standard deviation is infinite. The right panels demonstrate
different skew values and a location shift respectively.

More technical details on Lévy alpha-stable distributions can be found in Nolan (1998, 2019);
a comprehensive discussion of maximum entropy, aggregation of distributions, and characteristic
equations in the Fourier domain is offered in Frank (2009).

4.2 Fitting

4.2.1 Lévy alpha-stable distributions

We use Nolan’s (Nolan, 1998, 2019) parametrization 0 for the Lévy alpha-stable distribution as
given in equation 1. Common methods to fit the distribution include maximum likelihood, the
general method of moments (GMM), and McCulloch’s (McCulloch, 1986) quantile based estimation.
Maximum likelihood is generally considered the most reliable, but requires much more computation
power than the alternatives and is, for the data sizes considered here, not practical. A direct
comparison of McCulloch’s method with GMM11 showed that for the relevant data sizes of at least
1000, 5000, and 10000 (depending on the type of the subsample, see Section 3) observations each as
considered here, McCulloch’s quantile-based estimation is more accurate and gives generally better
Soofi ID scores (see Section4.3.1).

We use the R package StableEstim (Kharrat and Boshnakov, 2016).

4.2.2 Asymmetric exponential power (AEP) distributions

Contrasting our distributional model to AEP distributions is expedient not only because it has been
suggested as a distributional model in the literature (Bottazzi and Secchi, 2006; Bottazzi et al.,
2007; Bottazzi and Secchi, 2011; Yu et al., 2015), but also because AEP distributions show radically
different tail behavior compared to Lévy alpha-stable distributions, which are heavy-tailed and have
infinite variance for α < 2. While finite samples always have a finite variance, it will diverge in
the sample size if the underlying distribution of the sample is heavy-tailed. As a result, measuring
the variance of a sample from a heavy-tailed distribution will yield misleading results (Nolan, 2019;
Emberchts et al., 1997; Yang et al., 2019), as they are tainted by other quantities such as the
sample size. Similar problems exist for other dispersion measures (Yang et al., 2019). Performing

11For this comparison, we used Hansen’s (1982) two-step algorithm with Carrasco et al.’s (2007) spectral cut-off
regularization.
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OLS correlations on variables with hevy tails will likely also fail, since the error distribution will
likely inherit the heavy tails and OLS requires errors with finite variance. For technical details, see
Appendix A.6.

We use a 4-parameter AEP distribution with the functional form given in equation 22 as an al-
ternative distributional model for comparison. Fitting relies on the L-moments method as discussed
in Asquith (2014) and implemented in the R package lmomco (Asquith, 2018).

4.3 Goodness of fit

Two measures for model selection and validation are used, both based on information theory con-
siderations. Additional techniques, such as the Kolmogorov-Smirnov test12 or cross-validation are
possible, but were not applied in the present study.

4.3.1 Soofi ID index

Our main goodness-of-fit metric is based on Soofi et al.’s (Soofi et al., 1995) information distinguisha-
bility (ID) concept, which gives the distinguishability of two distributions based on their information
content. We can use this measure to assess to what extent a fitted model p(θ|x) with parameters θ
is distinguishable from the entropy maximizing distribution q(θ|x) given a set of observations x.

Formally, ID is based on the Kullback-Leibler divergence between the two distributions

DKL(p‖q) =
∑

i

p(xi) log
p(xi)

q(xi)
,

where ‖ is the divergence operator.13 Information distinguishability is defined as

ID(p‖q|θ) = exp[−DKL(p‖q|θ)], (2)

and has support ID ∈ [0, 1]. ID = 0 indicates that the distributions are indistinguishable, while
the differences are more pronounced the higher ID. For convenience, we construct a Soofi ID score
SIDS as previously used by Yang (2018); Yang et al. (2019) by rescaling ID

SIDS = 100× (1− ID), (3)

with support SIDS ∈ [0, 100] such that SIDS = 100 indicates a perfect match while low values
indicate that the distributional model under investigation is probably not correct for the sample in
question.

4.3.2 Akaike information criterion (AIC)

Akaike’s (Akaike, 1973) information criterion (AIC) is based on the likelihood of a distributional
model fit while accounting for the number of parameters. Formally,

AIC = 2k − 2 logL(θ|x) (4)

where L(θ|x) is the likelihood function of parameters θ given data x and k is the number of
estimated parameters θ.

12The KS test is known to have low precision and to lead to many false negatives.
13I.e., for any concept of divergence, p‖q is the divergence of p and q; p‖q|θ is the divergence of p and q given θ.
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Figure 3: Density of the labor productivity change (∆LP ) distribution (full sample) by year in semi-
log (vertical axis logarithmic). Solid lines indicate Levy alpha stable distribution fits as reported in
Table 2.

The AIC relies on the same concepts as the SIDS, namely minimizing Kullback-Leibler di-
vergence, but rescales differently and applies a correction for k. It offers a measure for model
comparison, but is difficult to interpret in illustrative terms. SIDS, on the other hand, has a
straight forward interpretation as the extent of similarity with an entropy maximizing model given
the data.

5 Results

In this section, we investigate questions that are of importance for understanding developing
economies in general and the Chinese case during the decade of rapid catch-up (1999-2013, the
period for which we have data) in particular.

1. What distributional model should be used for productivity microdata for developing countries
(here, the P.R. China)? Do they differ from developed countries? (Section 5.1)
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Figure 4: LP (labor productivity) by region and year (black) in comparison to GDP growth (orange).
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Figure 5: ∆LP (labor productivity change) by region and year (black) in comparison to GDP
growth (orange).

2. Do the parameters of these distributions change with advancing development level? (Section
5.2)

3. Are there persistent differences between regions (or countries)? (Section 5.3)
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4. If there are any systematic differences or developments, how do they relate to other charac-
teristics at the micro- or macro-level (firm age, GDP growth, capital intensity, employment)?
(Section 5.4)

Although our analysis is limited to the P.R. China, we can draw comparisons to the distributions
of firm-level productivity data for developed economies (Yang et al., 2019) and conjecture that other
developing economies may show similar patterns in phases of rapid economic catch-up. We also
leverage the considerable diversity between Chinese provinces to assess regional differences, which
may be an indicator of how different developing countries should be expected to be from one another
in this regard.

5.1 Fitting productivity distributions

We performed parameter fits with the Lévy alpha-stable model and, as a point of comparison, for
the AEP model for all variables listed in section 3.3. However, we concentrate our analysis on the
labor productivity LP , and the labor productivity change ∆LP , while the other variables (ROC,
IR) serve as a point of comparison and to show that the functional forms of the distributions are
connected. Lévy alpha-stable fit lines as well as empirical density by year are shown in Figures 1
(LP ) and 3 (∆LP ). The parameter values for the fits are given in the upper two sections of Table 2,
while the goodness of fit measures are listed in Table 3.

The distributions of both variables (LP , ∆LP ) have striking and regular characteristics. They
are (i) unimodal (one pronounced peak), (ii) heavy-tailed (bent outwards in semi-log), (iii) have wide
support over both negative and positive numbers, and (iv) are highly stable over time. The Lévy
alpha-stable model is an excellent fit of the distribution and the data, better than the alternative
AEP in all cases.14 This is confirmed both in the goodness of fit measures in Table 3 and in the fit
lines in Figures 1 and 3.

5.2 Economic development and systematic changes to productivity distributions

The fundings in Section 5.1 show that the productivity distribution is found for the P.R. China
is consistent with those identified for a wide range of developed economies (Yang et al., 2019).
However, while Yang et al. (2019) find that there is no systematic change for developed economies
over a period of 10 years (2006-2015), there is a persistent shift in several parameters in the case
of China. This is evidenced by the densities and fit lines in Figures 1 (LP ) and 3 (∆LP ) not
overlaying each other but being neatly aligned next to one another in the exact order of years. The
parameter values for the complete sample are given in Table 2; further, the black line in Figures 4
and 5 illustrate the development of the average of these parameter fits for each of the P.R. China’s
31 provinces and autonomous regions.15

For both distributions, the modal value became less pronounced, while the wings (not necessarily
the tails) were pushed out, especially the one to the positive side (higher labor productivity, higher
intertemporal gains in labor productivity). For both LP and ∆LP , the location parameter δ

14This is confirmed by both goodness of fit measures employed here, the Soofi ID score (SIDS) and the Akaike
information criterion (AIC). Table 3 explicitly lists which model provides a better fit for which sample in either
criterion (SIDS or AIC). AEP performs systematically worse than Lévy alpha-stable in the labor productivity, the
labor productivity change, and the investment rate. Both models appear to be good fits for the profitability (ROC).
Only in the case of the labor productivity change in 1999, both models resulted in a Soofi ID score SIDS < 95 which
indicates a less perfect fit. It is, however, a marginal case with SIDS > 94 for both Lévy alpha-stable and AEP.

15This does not include the Special Administrative Regions Hong Kong and Macao, which are not represented in
the database.
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increases substantially from 1998 to 2008 and the scale parameter γ increases in concert. This
reflects the increase in labor productivity over the period of study with yearly changes and variation
growing proportionally. While tail index α and the skew β remain almost unchanged for LP , they
increase systematically for ∆LP . This has several implications:

• Super-star firms do not become more prevalent with China’s development push. The tail index
of LP remains approximately the same. Not even the skew of the LP distribution changes.
Instead the entire distribution shifts.

• The tails of the labor productivity change (∆LP ) distribution grow shorter (higher α, indicat-
ing that large productivity changes in one and the same firm become less common. Instead,
the productivity change remains in the body of the distribution, therefore becoming more
uniform across the economy.

• A right-skew emerges in the labor productivity change (∆LP ) distribution. The body of
the distribution stretches to the right (higher positive, but not excessively large productivity
gains).
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Year #Obs. Lévy alpha-stable fit AEP fit

α β γ δ κ h σ ξ

LP

1998 140,372 1.00 0.95 0.11 0.11 0.47 0.40 0.01 0.06
1999 147,492 1.06 0.95 0.12 0.13 0.45 0.46 0.02 0.07
2000 145,724 0.97 0.95 0.14 0.14 0.42 0.27 0.00 0.10
2001 157,083 1.08 0.95 0.15 0.18 0.42 0.48 0.02 0.10
2002 167,723 1.08 0.95 0.17 0.20 0.44 0.48 0.03 0.12
2003 11,288 1.04 0.95 0.21 0.28 0.43 0.40 0.02 0.18
2004 265,218 1.06 0.95 0.20 0.25 0.42 0.45 0.03 0.15
2005 260,200 1.03 0.95 0.25 0.30 0.40 0.45 0.03 0.17
2006 287,854 1.00 0.95 0.30 0.36 0.37 0.43 0.03 0.21
2007 321,390 0.99 0.95 0.36 0.43 0.36 0.43 0.03 0.24

∆LP

1999 112,546 0.96 -0.05 0.08 0.01 1.07 0.34 0.00 0.02
2000 120,757 0.90 0.25 0.09 -0.00 0.72 0.22 0.00 -0.04
2001 115,506 0.93 -0.11 0.10 0.01 1.28 0.24 0.00 0.07
2002 137,628 0.99 0.12 0.11 0.01 0.92 0.41 0.02 0.01
2003 9,407 0.97 0.14 0.13 0.01 0.90 0.38 0.01 0.00
2004 119,389 1.03 0.20 0.18 0.02 0.86 0.42 0.03 0.00
2005 225,293 1.01 0.26 0.19 0.04 0.84 0.42 0.03 0.02
2006 242,468 0.99 0.29 0.20 0.05 0.81 0.40 0.03 0.02
2007 265,926 0.99 0.25 0.25 0.06 0.84 0.40 0.03 0.04

ROC

1998 136,435 0.91 0.37 0.08 0.00 0.73 0.34 0.00 -0.01
1999 145,513 0.91 0.44 0.07 0.00 0.69 0.34 0.00 -0.01
2000 141,570 0.93 0.51 0.08 0.01 0.67 0.34 0.00 -0.00
2001 155,527 0.93 0.55 0.09 0.02 0.65 0.32 0.00 0.00
2002 166,246 0.98 0.61 0.10 0.03 0.64 0.34 0.00 0.01
2003 11,250 1.01 0.59 0.11 0.05 0.65 0.36 0.01 0.03
2004 260,311 0.96 0.61 0.12 0.05 0.63 0.31 0.00 0.02
2005 258,741 1.00 0.69 0.14 0.06 0.59 0.35 0.01 0.02
2006 286,602 1.01 0.78 0.14 0.06 0.56 0.35 0.01 0.03
2007 319,847 1.02 0.92 0.15 0.07 0.52 0.35 0.01 0.03
2012 40,840 1.00 0.75 0.18 0.09 0.55 0.36 0.01 0.03
2013 40,090 0.96 0.74 0.18 0.09 0.55 0.33 0.01 0.04

IR

1999 119,401 0.86 0.40 0.09 -0.04 0.61 0.24 0.00 -0.09
2000 118,108 0.86 0.40 0.09 -0.06 0.61 0.25 0.00 -0.12
2001 117,732 0.86 0.41 0.10 -0.02 0.60 0.25 0.00 -0.09
2002 136,224 0.84 0.46 0.11 -0.02 0.57 0.24 0.00 -0.08
2003 9,362 0.93 0.58 0.13 -0.05 0.53 0.23 0.00 -0.10
2004 116,966 0.92 0.66 0.24 -0.12 0.49 0.26 0.00 -0.22
2005 221,420 0.82 0.60 0.15 -0.02 0.49 0.23 0.00 -0.09
2006 240,962 0.87 0.58 0.14 -0.03 0.53 0.25 0.00 -0.09
2007 264,428 0.86 0.59 0.14 -0.04 0.52 0.25 0.00 -0.11
2008 156,516 0.78 0.59 0.15 -0.07 0.48 0.22 0.00 -0.16
2009 128,846 0.87 0.56 0.18 0.02 0.53 0.25 0.00 -0.07
2010 151,441 0.63 0.20 0.03 -0.03 0.51 0.10 0.00 -0.10
2012 8,746 0.88 0.95 0.58 -0.03 0.36 0.25 0.00 -0.22
2013 35,452 0.86 0.55 0.11 -0.05 0.54 0.22 0.00 -0.10

Table 2: Lévy alpha-stable and AEP parameter fits for labor productivity LP , labor productivity
change ∆LP , profitability ROC, and investment rate IR by year. Fits with comparatively better
goodness in either SIDS or AIC in bold, provided SIDS > 95. Details of the associated goodness
of the fits are given in Table 3.
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Year Lévy alpha-stable AEP ∆SIDS ∆AIC Preferred model

SIDS AIC SIDS AIC

LP

1998 98.78 880.11 88.71 913.49 10.07 -33.38 Lévy α-s.
1999 98.10 803.04 93.86 845.21 4.24 -42.17 Lévy α-s.
2000 99.76 1,249.25 99.14 1,320.87 0.62 -71.61 Lévy α-s.
2001 98.26 797.22 94.86 843.04 3.40 -45.82 Lévy α-s.
2002 98.43 826.50 94.88 859.14 3.55 -32.64 Lévy α-s.
2003 98.78 979.66 83.90 1,023.38 14.88 -43.72 Lévy α-s.
2004 98.45 884.45 95.01 927.27 3.44 -42.82 Lévy α-s.
2005 97.88 923.83 94.10 975.49 3.78 -51.66 Lévy α-s.
2006 97.49 972.51 93.41 1,025.50 4.08 -52.99 Lévy α-s.
2007 96.75 1,012.76 95.21 1,071.37 1.54 -58.61 Lévy α-s.

∆LP

1999 99.35 914.08 95.89 937.44 3.46 -23.36 Lévy α-s.
2000 94.48 1,322.04 94.48 1,357.34 0.00 -35.30 -
2001 97.92 1,301.04 84.58 1,337.90 13.34 -36.87 Lévy α-s.
2002 99.22 824.87 98.95 852.95 0.27 -28.09 Lévy α-s.
2003 98.96 901.36 98.85 931.11 0.11 -29.75 Lévy α-s.
2004 99.12 908.20 96.55 929.40 2.57 -21.20 Lévy α-s.
2005 99.22 925.94 99.56 948.58 -0.34 -22.64 Lévy α-s.
2006 99.14 965.16 99.53 989.38 -0.39 -24.22 Lévy α-s.
2007 99.24 1,003.31 99.33 1,024.51 -0.09 -21.20 Lévy α-s.

ROC

1998 92.99 919.04 96.53 960.82 -3.54 -41.78 AEP
1999 98.53 899.66 91.12 934.49 7.41 -34.83 Lévy α-s.
2000 98.86 920.60 99.79 961.19 -0.93 -40.60 even
2001 98.38 978.17 96.66 1,018.65 1.72 -40.48 Lévy α-s.
2002 99.06 973.09 99.11 1,017.00 -0.05 -43.92 even
2003 98.85 911.05 96.70 939.00 2.15 -27.95 Lévy α-s.
2004 99.55 1,067.32 97.29 1,110.23 2.26 -42.91 Lévy α-s.
2005 98.16 1,003.81 99.50 1,038.32 -1.34 -34.52 even
2006 97.26 1,016.92 99.15 1,047.34 -1.89 -30.41 even
2007 95.28 1,062.73 97.86 1,072.13 -2.58 -9.41 even
2012 95.20 1,031.04 97.74 1,060.46 -2.54 -29.43 even
2013 96.63 1,063.87 94.74 1,095.59 1.89 -31.72 Lévy α-s.

IR

1999 98.54 1,230.72 94.70 1,277.72 3.84 -47.00 Lévy α-s.
2000 98.27 1,221.62 94.69 1,283.48 3.58 -61.86 Lévy α-s.
2001 95.30 1,243.37 90.81 1,293.24 4.49 -49.88 Lévy α-s.
2002 96.57 1,243.78 96.28 1,296.99 0.29 -53.21 Lévy α-s.
2003 96.10 1,419.75 96.05 1,481.73 0.05 -61.98 Lévy α-s.
2004 95.63 1,408.22 93.21 1,475.98 2.42 -67.76 Lévy α-s.
2005 94.48 1,350.69 85.73 1,408.57 8.75 -57.88 -
2006 97.43 1,263.57 90.15 1,308.09 7.28 -44.52 Lévy α-s.
2007 97.06 1,239.16 79.77 1,283.18 17.29 -44.02 Lévy α-s.
2008 96.17 1,373.84 92.12 1,428.20 4.05 -54.35 Lévy α-s.
2009 97.73 1,302.20 94.31 1,351.16 3.42 -48.96 Lévy α-s.
2010 88.00 1,786.06 77.35 1,810.14 10.65 -24.09 -
2012 98.39 1,508.08 81.76 1,565.72 16.63 -57.64 Lévy α-s.
2013 95.42 1,297.17 90.06 1,342.75 5.36 -45.57 Lévy α-s.

Table 3: Goodness of fit measures for Lévy alpha-stable and AEP parameter fits for labor produc-
tivity LP , labor productivity change ∆LP , profitability ROC, and investment rate IR by year as
reported in Table 2. The last column notes the fit with comparatively better goodness in either
SIDS or AIC in bold, provided SIDS > 95.
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Figure 6: Density of LP and ∆LP for regions Guangdong and Zhejiang in 2007

5.3 Regional variation

While we only have data for one country, the P.R. China, we can investigate regional variation by
considering subsamples of the data set for the 31 Chinese provinces and autonomous regions. In
cross-country studies, where the cases are not subject to the same policy decision and idiosyncratic
influences, any systematic differences should be more pronounced.

Two of the most dynamic and economically strongest regions of the PR China are Guangdong
and Zhejiang. While Zhejiang is one of the most active regions supporting private economic sectors,
and has benefited from the early economic boom in Yangtze River Delta, Guangdong is in South
China, north of Hong Kong, and driven significantly by the opening-up endeavors. Both are coastal
provinces and have the potential to develop the same industries. Yet, the regional distributions of
LP and ∆LP differ sharply and persistently. Guangdong maintains one of the lowest tail indices
among all provinces, i.e. a very high probability weight in the tails (α∆LP = 0.93 to α∆LP = 1.03).
Zhejiang is at the other end of the provincial dispersion, with a moderately high tail index between
α∆LP = 1.05 and α∆LP = 1.18. Figure 6 shows the density of labor productivity LP and labor
productivity change ∆LP in both regions.

Figures 7 and 8 show the development of the tail index parameter α of the Lévy alpha-stable fit
of labor productivity LP and labor productivity change ∆LP at the region level. Indeed it can be
seen that Guangdong and neighboring regions (Guangxi, Jiangxi) and Zhejiang and its neighbors
(Shanghai, Anhui) persistently find themselves at opposing ends of the variation. The Guangdong
area tends to have longer tails (lower exponents) than the Shanghai/Zhejiang area.

Other regions with longer tails include the Northeast (Heilongjiang), the Beijing region, Inner
Mongolia and, in the earlier years of the period of study, the central region. As pointed out in
Heinrich and Dai (2016), this subtle change over time may reflect the transition of various regions to a
standard market economy system that occurred at different time periods (see details in Heinrich and
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Figure 7: Levy α parameter fits for LP (labor productivity) by Region

22



(a) 1999 (b) 2000 (c) 2001
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Figure 8: Levy α parameter fits for ∆LP (labor productivity change) by Region

Dai (2016)). Some regions, such as Inner Mongolia, likely stand out because of regional specificities;
in Inner Mongolia a domination of the mining sector with rather large firms and certain volatility
of empirical labor productivity depending on world market prices for metals etc. Some regions
with a smaller population of firms (Xinjiang, Guangsu) are more volatile with less confidence being
warranted for these fits.

So far, we have shown that there are strong and persistent differences in the characteristics of
the productivity distributions among the regions of China. This indicates that this would very
likely also hold between countries. Beyond that, we can show in the Chinese case that micro-level
variables are strongly interconnected: For instance, there is a cluster of regions with a shorter tail
(higher tail index α) around Shanghai and Zhejiang in both LP (Figure 7) and ∆LP (Figure 8).
This regional pattern is also present in the figures for profitability and the investment rate shown
in the Appendix D (Figures 21 and 22). Indeed, it can be shown that at the regional level, the
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Figure 9: Scatter plot of Lévy parameters of Returns on Capital (ROC) and Labor Productivity
Change (∆LP ). All four parameters tend to be positively correlated.

distributions of the key firm-level variables are interconnected. The correlations of parameters
fitted for the labor productivity change (∆LP ) distribution and investment rate (IR) distribution
are shown in Figure 9; those of the parameters for (∆LP ) and the profitability (ROC) are plotted
in Figure 10. For each pair of distributions, the same parameters are highly correlated. I.e. a high
tail index α for the labor productivity change distribution is associated with a high tail index for the
distributions of profitability and investment rate. The same is true for the skew (β) and the scale
(γ) of all distributions and the location of the modal value (δ) of ∆LP and ROC distributions.16

These systematic regional differences evident in concert in a number of variables in the Chinese
case indicate that such patterns should also be expected in cross-country comparisons. The following
section will furthermore investigate relations between productivity distributions and various other
macro- and micro-level variables using a Bayesian multi-level regression approach.

16The only exception is the δ parameter of the distribution of the investment rate, which is not associated with any
of the other fits and appears to fall into clusters. The reason is that there is a strong time signal in this variable (Lévy
parameter δ of IR) with left shifts in the investment rate distribution in 2004 and in 2008, which may be caused by
idiosyncratic shocks (such as the financial crisis hitting in 2008), by tax policy or by accounting intricacies.
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Figure 10: Scatter plot of Lévy parameters of Investment Rate (IR) and Labor Productivity Change
(∆LP ). α, β, γ tend to be positively correlated, while δ has no relationship.

5.4 Relation of productivity distributions and their parameters to other eco-
nomic measures

To understand how Lévy parameters of each variable are associated with the geographical predictors
(in this case, Chinese regions), we run a simple mixed linear regression model. We use a Bayesian
multi-level approach to properly account for group-level similarities and differences through a partial
pooling. The likelihood function is written as follows:

Parameteri ∼ Normal(µi, σ)

µi = α+ α
j[i]

+ α
t[i]

+ β1GDP r+β2 Firm Age+β3 Emp+β4Cap Intensity (5)

where the subscript t[i] and j[i] indicate the year and province index which will be used as the
main group effect variable. See Appendix B for a detailed discussion on prior specification. We as-
sume that the outcome variable Parameteri is distributed according to the Gaussian likelihood func-
tion around a mean µi and the standard deviation σ. The independent variables (predictors) include
GDP growth (GDP r), firm age, employment (Emp), as well as capital intensity (Cap Intensity)
at the regional level. The firm-level variables among these (not the GDP growth) are computed
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using the regional averages in the data set. The intercept has two varying components by year and
province along with the overall intercept.

• α: The overall intercept. The expected value of Parameteri when all other explanatory vari-
ables are zero.

• α
t[i]
: The varying intercept effect coming from the year index. The deviation in the intercept

for year t from the overall intercept α.

• α
j[i]

: The varying intercept effect coming from the province index. The deviation in the
intercept for province j from the overall intercept α.

• β1: The coefficient of GDP Growth. The expected change in GDP Growth across all t and j.

• β2: The coefficient of Firm Age. The expected change in Firm Age across all t and j.

• β3: The coefficient of Employment. The expected change in Employment across all t and j.

• β4: The coefficient of Capital Intensity. The expected change in Capital Intensity across all t
and j.

We use the Hamiltonian Monte Carlo (HMC) to obtain a sequence of random samples from a
posterior probability distribution. We use the Bayesian programming language Stan and the R-
package brms that operationalize the HMC algorithm to efficiently compute posterior distributions
(Stan Development Team, 2015; Bürkner, 2017). For a more detailed discussion on HMC and Stan,
see (Gelman et al., 2014; Carpenter et al., 2017).

Table 4 summarizes the estimation results for each variable and parameter. We only report the
mean and standard deviation (in parenthesis) of the posterior distribution of each parameter. A full
summary table can be found in the Appendix D.

Variable Parameters Intercept GDP Growth Firm Age Employment Capital Intensity

LP Change

α 0.9841 (0.0462) 0.0083 (0.0027) -0.0012 (0.0006) -0.0001 (0.0001) -0.0001 (0.0001)
β -0.0564 (0.1025) 0.0256 (0.0065) -0.0035 (0.0014) 0 (0.0001) -0.0001 (0.0002)
γ 0.0555 (0.0466) 0.0094 (0.0026) 0 (0.0005) -0.0002 (0.0001) 0.0004 (0.0001)
δ -0.0105 (0.024) 0.0054 (0.0014) -0.0001 (0.0003) -0.0001 (0) 0 (0)

LP

α 1.0823 (0.0509) 0.0007 (0.0031) -0.0001 (0.0002) -0.0001 (0.0001) -0.0001 (0.0001)
γ 0.2304 (0.063) 0.0054 (0.0032) 0 (0.0002) -0.0005 (0.0001) 0.0004 (0.0001)
δ 0.2574 (0.0681) 0.009 (0.0035) 0 (0.0002) -0.0005 (0.0001) 0.0003 (0.0001)

RoC

α 1.1235 (0.0564) -0.0033 (0.0033) -0.0008 (0.0002) -0.0003 (0.0001) -0.0001 (0.0001)
β 0.167 (0.1337) 0.0333 (0.0081) 0 (0.0004) -0.0003 (0.0002) -0.0001 (0.0002)
γ 0.0713 (0.0208) 0.0034 (0.0012) -0.0001 (0.0001) 0 (0) -0.0001 (0)
δ 0.0341 (0.0181) 0.0018 (0.0011) 0 (0.0001) -0.0001 (0) -0.0001 (0)

Inv Rate

α 0.7954 (0.0486) 0.0004 (0.0025) -0.0014 (0.0008) 0.0002 (0.0001) 0.0002 (0.0001)
β 0.4201 (0.0955) 0.0047 (0.0044) 0.0005 (0.0015) -0.0001 (0.0001) 0.0001 (0.0002)
γ 0.122 (0.0286) 0.0028 (0.0016) -0.0007 (0.0005) 0 (0) 0 (0.0001)
δ -0.0687 (0.0191) -0.0001 (0.0009) -0.0001 (0.0003) 0.0001 (0) 0 (0)

Table 4: Summary statistics of a mixed linear regression model of Lévy parameters with four
predictors: GDP Growth, Firm Age, Employment, and Capital Intensity.

For each variable, we show the regression results for Lévy parameters. Note that we do not
report on the regression of β in the labor productivity variable since it is always very close to 1
(maximal skewness) and doesn’t have much variation.
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Figure 11: Marginal effects of GDP Growth on β and δ of labor productivity change (∆LP ) and
profitability (ROC). The blue line is the mean estimate and the grey shade area is the 90%
uncertainty interval.
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Figure 12: Marginal effects of Firm Age on α of labor productivity change (∆LP ), profitability
(ROC), and investment rate IR, and β of ∆LP . The blue line is the mean estimate and the grey
shade area is the 90% uncertainty interval.

GDP Growth : A higher regional economic growth tends to be associated with a higher β, γ,
and δ in ∆LP and profitability. The GDP coefficients in labor productivity and investment rate
tend to be rather noisy except for γ. α parameter is only informative in the ∆LP case: the
higher the provincial GDP growth the higher α and thus the thinner the tails. α in other variables
has neither enough variation nor a clear pattern in relation to regional GDP growth. Figure 11
shows the marginal effects of GDP Growth on key parameters. From this, we can infer that the
economic growth in China is characterized by four distinctive patterns. As the economy grows in
China, 1) firms become more technologically dynamic and more profitable (a high δ in ∆LP and
profitability), 2) the economy has an increasing number of highly innovative and profitable firms
(a high β in ∆LP and profitability), 3) firms become more diverse in their performance (a high γ
in ∆LP , LP , profitability and investment rate), and 4) the technological competition among firms
gets more fierce over time (a high α in ∆LP ).

Firm Age : The higher the average firm age, the lower α and thus heavier tails in ∆LP , prof-
itability, and Investment rate, and the lower β in ∆LP . γ and δ are very noisy in all parameters
except for γ in profitability and investment rate. Figure 12 shows the marginal effects of firm age
on key parameters. From this, we can infer that, when the province has a higher average firm age,
1) the market tends to be less competitive for technological change, profitability, and firm growth
(a low α in ∆LP , profitability, and investment rate), 2) the economy has an increasing number of
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Figure 13: Marginal effects of Employment on α and δ of labor productivity change (∆LP ) and
profitability (ROC). The blue line is the mean estimate and the grey shade area is the 90%
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Figure 14: Marginal effects of Capital Intensity on α of labor productivity change (∆LP ), LP ,
Returns on Capital, and δ of Returns on Capital. The blue line is the mean estimate and the grey
shade area is the 90% uncertainty interval.

less innovative firms (a low β in ∆LP ), and 3) the firm performance in terms of profitability and
investment tends to be diverse but with a relatively high degree of uncertainty.

Employment : A larger average employment size is associated with a lower α in ∆LP , LP , prof-
itability, a lower β in profitability, a lower γ in ∆LP , LP , and a lower δ in ∆LP and Profitability.
Investment Rate has a somewhat different pattern and has a positive relationship between employ-
ment size and α and δ. Figure 13 shows the marginal effects of employment on key parameters.
From this, we can infer that, when the province has larger size firms with a high number of employ-
ees, 1) the market tends to become less competitive overall (a low α in ∆LP , LP , profitability), 2)
firms become less technologically dynamic and more profitable (a low δ in ∆LP and profitability),
and 3) firms become less diverse in their performance in technological change (a low γ in ∆LP and
LP ).

Capital Intensity : Higher average capital intensity is associated with a lower α in ∆LP , LP ,
and Profitability but a higher α in the Investment rate, a higher γ in ∆LP and LP , and a lower δ in
profitability. Figure 14 shows the marginal effects of capital intensity on key parameters. From this,
we can infer that, as the province has more firms with a higher capital intensity (a higher degree
of mechanization), 1) the market tends to become less competitive overall (a low α in ∆LP , LP ,
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profitability), 2) firms become more diverse in their performance in technological change (a high γ
in ∆LP and LP ), and 3) the firms tend to be less profitable overall (a low δ in profitability).

6 Conclusion

The distribution of productivity at the firm level has, like other economic quantities, been thoroughly
investigated in recent years. For the developed economies, many stylized facts are known now: The
distribution is unimodal, strongly right-skewed, has heavy tails, and is persistent in time. Yang
et al. (2019), who also summarize the state of the art, report no systematic changes in their study
covering millions of observations for European developed countries over a period of 10 years.

It is a fair question to ask if we might have systematic changes in developing countries, since
these countries experience more rapid structural, demographic, and technological changes. Is the
distribution the same? Do the parameter estimates show any trends? If so, what does that tell
us about the development process and about development policy? Can and should productivity
distributions be managed?

While we cannot provide direct evidence for the entire developing world, we did offer evidence
for one country, the PR China as an example in this paper. Our study covers a crucial period
of Chinese history, 1998-2007 (and further to 2013 with less reliable data), a period in which the
country experienced the highest growth rates; when the economy and the technology sector took
off; when the Chinese converged to the consumption and lifestyle habits of the developed world.

We demonstrated that the distributions of a wide range of quantities at the firm-level are heavy-
tailed with a Lévy alpha-stable distribution being an excellent distributional model and clearly
superior to the alternative AEP distribution that was also tested. This includes labor productivity
(LP ) and labor productivity change (∆LP ). Consistent with the developed economies, both the
shape of the distribution and the parameter values were remarkably consistent over time.

However, we did find a systematic shift: The location parameter of both productivity and
productivity change were steadily increasing over the period of the study. The scale parameter
γ followed suit. Tail index (α) and skew (β) were stable for the productivity level, but for the
productivity change, the tail grew shorter (α increasing) and the distribution developed a right skew
(β increasing). What this means is that the productivity gains China experienced in the period of
study do not come from super-star firms of exceptionally high productivity: The tail weight of LP
remained unchanged and that of ∆LP decreased. Instead, labor productivity increases became more
consistent, concentrated, and uniform across the economy (decreasing tail weight of ∆LP ) and the
body of labor productivity change extended to the right (emerging right-skew).

Further, we showed that there are significant and systematic differences across the regions of
China that persist in time over the period of the study. This is even the case for differences for
superficially similar regions such as the technology centers of Guangdong and Zhejiang/Shanghai. If
this can be shown for the regions of China, that are subject to similar policies, environmental factors,
and idiosyncratic shocks, differences in cross-country studies with multiple developing countries
would be expected to be more pronounced.

Nevertheless, there were systematic relations between the parameters of the productivity distri-
bution, a range of other distributions of micro-level variables (profitability, capital intensity, firm
age), as well as macro-level characteristics (GDP growth, employment) of the respective regions, as
shown in our Bayesian multi-level regression in Section 5.4.

The tail indices of the distributions were found to be between α = 0.9 and α = 1.2 in most
cases, implying infinite variance (since α < 2) and very slow convergence to the theoretical mean, if
the mean even exists (only for α ≥ 1). As a consequence, characteristics of the labor productivity
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distribution in the form of moments would be avoided. Such characteristics are, however, commonly
given as variants of direct moments, the mean for the location, the variance, standard deviation, or
Olley-Pakes gap for the dispersion. Hsieh and Klenow (2009) for instance, in his otherwise exemplary
study of misallocation in China and India, uses sample variances.

What does this mean for development policy? First, concentration on super-star firms - be that
domestic ones or branches of foreign groups - might be the wrong approach for successful techno-
logical catch-up. It would certainly be a different approach from that taken in China. Second, it
instead seems important to ensure that productivity gains can also be realized by other firms. The
most direct approach for this is encouraging technology transfer and providing incentives for sourc-
ing intermediate products locally (which would also lead to cooperation and technology transfer).
Technologies are arguably the most important factor in determining productivity at the firm level.
Third, other factors such as instrumental institutions and a comprehensive education system could
support this process. Fourth, significant differences would be expected between different countries.
Direct comparisons of the parameters of productivity distributions in isolation are likely of only
limited value. Instead, such comparisons should be done with a range of measures for the economic
micro-structure at the firm level (productivity, age, capital intensity, etc.) while also taking the
intertemporal development of these variables into account. Fifth, particular skepticism is advised
with respect to measures that rely on moments of the productivity distribution (or similar quanti-
ties), as these may not exist. An example is the use of variance as a dispersion indicator, which will
certainly fail.

While our findings are encouraging, more research is needed to confirm our findings for other
developing countries. Do firm-level data in India, Vietnam, Nigeria, and other rapidly developing
countries have the same characteristics? Can catch-up processes like the one showcased here be
repeated in still other developing economies in the future? What impact might the Covid-19 pan-
demic have, that changed the face of the world economy by hitting many developed economies, but
also some individual developing countries (like Tanzania) very hard?

Finally, can our example teach us something about the development history of European and
other developed countries, the USA, Japan, South Korea? These countries’ catch-up phases were
much longer ago in history, at a time, when economic microdata were not collected to the same
extent as today. We may be unable to reconstruct the microdata, but it may still be possible to
infer how the development process unfolded.
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A Technical explanation of aggregation, maximum entropy, and
distributional models

A.1 Aggregation and maximum entropy distributions

The form of aggregation of random variable distributions that is typically considered is convolution,
i.e. the summation of random processes.17 For a defense why convolution is a suitable form of
aggregation, see Frank (2009).

The sum of n independent and identically distributed (i.i.d.) random variablesX1+X2+. . .+Xn.
The distribution of (all) X is an attractor distribution, if the aggregation converges to a distribution
of the same form X. Formally (Nolan, 1998, 2019; Frank, 2009),

X1 +X2 + . . .+Xn ∼ cnX + dn (6)

where cn and dn are scalars dependent on the number of convoluted distributions n. Such a dis-
tribution is called a stable distribution. The general form of stable distributions, Lévy alpha-stable
distributions, are a generalization of Gaussian, Cauchy, and other specific distributions. We will
consequently work with Lévy alpha-stable distributions as our distributional model for labor pro-
ductivities and other firm-level variables in this paper.

Before we discuss the form, properties, and parametrizations of the Lévy alpha-stable distri-
bution, we will give some background on aggregation and convergence to the entropy maximizing
distribution under aggregation. Intuitively, aggregation leads to a loss of information; it washes
out less strong signals and only a dominant pattern remains. As the convoluted distributions are
independent, this pattern is the one that carries the least information (highest entropy), the one
that is the most likely one without additional information, the one that constitutes the maximum
entropy distribution under constraints that depend on the component distributions X.

For instance, constraints requiring a constant mean
∫∞
−∞ p(x)xdx = µ and variance

∫∞
−∞ p(x)(x−

µ)dx = σ2 lead to a Gaussian as the entropy maximizing distribution. A constraint imposing a con-
stant first moment (e.g., the mean) without constraints on the variance yields an exponential (one
sided18, constraint on mean,

∫∞
0 p(x)xdx = µ) or Laplace distribution (two-sided with discontinu-

ity, constraint on absolute deviation,
∫∞
−∞ p(x)(x − µ)dx = a). We will return to the constraint

corresponding to the more general Lévy alpha-stable distribution in Section A.4.
It should be noted that not every maximum entropy distribution is a stable distribution, since the

convolution of distributions X may have an entropy maximizing distribution with a different func-
tional form, which, in turn, may again aggregate to a distribution with another, different functional
form.

A.2 The classical central limit theorem

The most well-known stable distribution is the Gaussian. This is known as the classical central limit
theorem: Any sum over n i.i.d. random variables with fixed mean and variance will converge to a
Gaussian. The Gaussian is the solution to the entropy maximizing problem under this constraint19

(fixed variance, (x− µ)2 = σ2):

17Summation of random processes is different from summation of scalars, since the resulting densities and proba-
bilities have to be obtained through convolution.

18Note that support for the exponential distribution is (0,∞), while it is (−∞,∞) for the Laplacian.
19It has been shown that the Gaussian can be obtained with different component variables that do not have to be

i.i.d. (Lindeberg condition). However, the condition of fixed variance remains as does the fact that the Gaussian is
the stable distribution to which aggregates of i.i.d. random variable distributions with fixed variance converge. Cf.
Frank (2009).
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Λ = −

∫ ∞

−∞
p(x) log

(
p(x)

m(x)

)
dx− λ1

(∫ ∞

−∞
p(x)dx− 1

)
− λ2(p(x)(x− µ)2 − σ2) (7)

where the first term (−
∫∞
−∞−p(x) log( p(x)

m(x))dx) is the entropy (m(x) being the invariance mea-

sure), the second term the normalization constraint (probability must sum to 1) and the last term
the maximum entropy constraint.20 We obtain first-order conditions

∂Λ

∂p(x)
= 0 = − log

(
p(x)

m(x)

)
− 1− λ1 − λ2(x− µ)2

∂Λ

∂λ1
= 0 =

∫ ∞

−∞
p(x)dx− 1

∂Λ

∂λ2
= 0 =

∫ ∞

−∞
p(x)(x− µ)2dx− σ2

the first one of which directly yields the functional form of the density function p(x) as

p(x) = me−λ1e−λ2(x−µ)2 = ke−λ2(x−µ)2 (8)

where k = me−λ1 and λ2 are constants. The values of these constants can be determined by
substituting the function of p(x) into the other two first-order conditions and solving.21 We then
obtain k = 1

σ
√
2π

and λ2 =
1

2σ2 and finally the Gaussian

p(x) =

√
1

2πσ2
e−

1
2σ2 (x−µ)2 . (9)

A.3 Fourier domain representations of random variable distributions

Distributions can also be represented as characteristic functions ϕ(t) in the Fourier domain. While
density p(x) in the direct domain x gives probabilities of realizations of values x, ϕ(s) gives the
intensity of fluctuations of frequencies s in frequency space. If both functions, p(x) and ϕ(s), exist
in functional form, there is a bijective mapping (a unique, invertible, one-to-one mapping) between
the two, the Fourier transform

ϕ(s) = E[e(isx)] =

∫ ∞

−∞
e(isx)p(x)dx (10)

where E represents the expectation. The inverse operation (inverse Fourier transform) is

p(x) =
1

2π

∫ ∞

−∞
e(−isx)ϕ(s)ds. (11)

However, in some cases, as for Lévy alpha-stable distributions, there is no functional representa-
tion of the density in the direct domain p(x) and only the characteristic function ϕ(s) in the Fourier
domain exists.

Since the two representations are absolutely equivalent, the maximum entropy distribution can
equivalently be obtained in Fourier domain.

20Fixed variance is not included as a separate constraint as it is implied by the constraints in equation 7.
21Note that the function contains an exponent with a quadratic function of the variable of integration x, so the

solution can be expressed in terms of the Gaussian error function and π. The normalization to 1 in the second
first-order condition forces us to use this form.
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Let ϕ′(s) be the normalized characteristic function.22 We apply entropy S and entropy con-
straints fi(s) just like in the direct domain and maximize23

Λ = S −
∑

i

λi

∫ ∞

−∞
fi(s)ϕ

′(s)ds = −

∫ ∞

−∞
ϕ′(s) log

(
ϕ′(s)
M(s)

)
ds−

∑

i

λi

∫ ∞

−∞
fi(s)ϕ

′(s)ds (12)

with first-order conditions

∂Λ

∂ϕ(s)
= 0 = − log

(
ϕ′(s)
M(s)

)
− 1−

∑

i

λifi(s)

∂Λ

∂λi
= 0 =

∫ ∞

−∞
fi(s)ϕ

′(s)ds.

From the first condition, we obtain the general functional form of the maximum entropy distri-
bution in the Fourier domain

ϕ′(s) = M(s)e−1e−
∑

i λifi(s) = ke−
∑

i λifi(s). (13)

where k and λ1 are factors that must be fixed by solving the other first-order conditions.
Returning to the example of the Gaussian above, we obtain the characteristic function of the

same distribution (that we would also get by taking the Fourier transform of the density function
in the direct domain) if we set the same constraint. Recall that for the Gaussian, this constraint
is to fix the variance. In the Fourier domain, this is s2 = χ. Hence, we substitute f = s2 − χ in
equation 12 and after χ drops out in the derivative we obtain

ϕ′(s) = ke−λs2 , (14)

or, more generally,

ϕ′(s) = ke−λ(sα−χ) with α = 2. (15)

A.4 Lévy alpha-stable distributions

Instead of fixing the second moment, the variance, α = 2, as χ = sα = s2, the constraint can fix
lower-order moments as the highest finite moments of the distribution. These moments do not need
to be integer moments (fractional lower-order moments). They will, in fact, not be integers, except
in case α = 1 (the Cauchy distribution). The computation of the maximum entropy distribution
is equivalent, as long as we impose that the distribution is symmetric, β = 0, and centered around
zero, δ = 0. Analogous to equation 14, the distribution is now

ϕ′(s) = ke−λsα . (16)

22That is, ϕ(s) is normalized as

ϕ
′(s) =

ϕ(s)
∫∞

−∞
ϕ(s)ds

so that the area sums to one,
∫∞

−∞
ϕ′(s)ds = 1 and ϕ′(s) thus constitutes a probability distribution.

23The normalization constraint is unnecessary since the function is already normalized with the transformation to
ϕ′(s).
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For α < 2, ϕ′(s) does not have a functional representation in the direct domain any longer (except
again for the Cauchy distribution, α = 1). The tails of the distribution do, however, asymptotically
approach the power law

pTail(x) = C|x|−(α+1). (17)

and the distribution consequently has fat tails instead of quickly dropping to zero as in the
Gaussian case with α = 2.

For the general case, without imposing symmetry and central location at zero, the characteristic
equation becomes more complex and has four parameters, interpreted as the tail index (α), the skew
(β), the scale (γ), and the location (δ). The functional form is24

ϕ(s) = E[e(isx)] =




e(−γα|s|α[1+iβtan(πα2 ) sgn(s)((γ|s|)1−α−1))]+iδs) α 6= 1

e(−γ|s|[1+iβ
2
π sgn(s) log(γ|s|)]+iδs) α = 1

(18)

More technical details on Lévy alpha-stable distributions can be found in Nolan (1998, 2019);
a comprehensive discussion of maximum entropy, aggregation of distributions, and characteristic
equations in the Fourier domain is offered in Frank (2009).

A.5 Asymmetric exponential power (AEP) distributions

For the distribution of the growth rates at the firm-level, the model advanced by Bottazzi and
Secchi (2006); Bottazzi et al. (2007); Bottazzi and Secchi (2011) is considered a strong candidate,
the asymmetric exponential power (AEP) or Subbotin distribution. This model is of particular
interest here as an alternative model for comparison, since growth rates must be expected to be
related to productivities in general, and to the labor productivity in particular. Firms with high
labor productivity will generally have good prospects for future growth, while firms with low labor
productivity will likely write losses and be unable to grow or even sustain their present operations
unless supported by an inflow of additional resources.

The AEP is a generalization of the symmetric Laplace distribution, the two-sided exponential
distribution. Bottazzi and Secchi (2006) take a very similar approach to the one taken in this paper:
They characterize the distribution of growth as constant in mean absolute differences, use this as
entropy constraint |x− ξ| = σ and compute the maximum entropy distribution.

Λ = −

∫ ∞

−∞
p(x) log

(
p(x)

m(x)

)
dx− λ1

(∫ ∞

−∞
p(x)dx− 1

)
− λ2(p(x)|x− ξ| − σ) (19)

The first-order condition with respect to p(x)

∂Λ

∂p(x)
= 0 = − log

(
p(x)

m(x)

)
− 1− λ1 − λ2|x− ξ|

yields the functional form

p(x) = me−λ1e−λ2|x−ξ| = ke−λ2|x−µ|. (20)

24Observe that for β = 0, δ = 0, the function reduces to

ϕ(s) = E[e(isx)] = e
(−γα|s|α

,

the solution obtained above (with k = 1, λ = γα).
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Figure 15: Density of the Asymmetric Exponential Power (AEP) distribution for different parameter
settings. Upper left: Variation of tail parameter κ. Upper right: Variation of skew parameter h.
Lower left: Variation of scale parameter σ. Lower right: Variation of location parameter ξ.

Solving the remaining first-order conditions (not given here) fixes parameters k and λ2 and
results in the canonical form of the standard Laplace distribution,

p(x) =
1

2σ
e−

|x−ξ|
σ . (21)

Relaxing the assumptions on symmetry25 and tail behavior yields the more general functional
form of the AEP,26

p(x) =
κh

σ(1 + κ2)Γ(1/h)
e[−(κsgn(x−ξ)(|x−ξ|/σ))h (22)

where Γ is the Gamma function. The given parametrization is for the 4-parameter AEP that we
will use as an alternative model and point of comparison in Section 5. The four parameters again
stand for the tail behavior (κ), the skew (h), the scale (σ), and the location (ξ) and are visualized in
the four panels of Figure 15 in direct comparison to the Lévy alpha-stable distribution in Figure 2.
Again, the diagrams are in semi-log scale with the vertical axis being logarithmic. As expected, all
AEP variants approach a linear shape towards both tails in the semi-log form, indicating that they
belong to the family of exponential distribution forms (which are linear in semi-log). In contrast,
the Lévy alpha-stable functions above bend in outward direction and clearly have tails that are
heavier than exponential.

25Bottazzi and Secchi (2006) find an empirical symmetry very close to h = 1, the symmetric Laplace case.
26Note that this reduces to a Laplace distribution for κ = 1, h = 1.
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As an alternative to the 4-parameter AEP, there is a 5-parameter variant, which assigns two
different tail parameters for positive and negative tails. We choose to work with the 4-parameter
version to allow a more direct comparison with the 4-parameter Lévy alpha-stable function under
consideration here.

A.6 Tail behavior

While the AEP results as the maximum entropy distribution for specific conditions, it is not a
stable distribution: Summing AEPs will yield a Gaussian aggregate. While the difference may seem
academic when considering the very similar body part of the distributions in Figures 2 and 15, the
difference becomes important with the tail behavior and the finiteness of moments: In the case of
Lévy alpha-stable distributions with α < 2, the variance is infinite. That is, each sample will have
a specific variance, but the sample variance will diverge in sample size N (Nolan, 2019; Emberchts
et al., 1997; Yang et al., 2019) with

V ar(x) ∼ N
2−α
2α . (23)

The mean of the distribution may or may not (if α < 1) be finite. But as the expected deviation
from the mean is infinite, the information carried by each observation about the true mean is
practically zero. The mean, albeit existent, may be difficult or impossible to infer from a sample.

This is not to say that nothing can be known for sure about Lévy alpha-stable distributed
samples. On the contrary, both the quantiles of the distribution and its fitted parameters will
converge and convey everything there is to know about the distribution. It is merely a matter of
choosing the correct interpretation of the data and using adequate measures to characterize it.

B Prior specification of the regression model

The likelihood function and the priors of a Bayesian multi-level model in section 5.4 are written as
follows:

Parameteri ∼ Normal(µi, σ)

µi = α+ α
j[i]

+ α
t[i]

+ β1GDP Growth+β2Firm Age+β3Emp+β4Cap Intensity

α ∼ Student-t(3, 1, 10)

β1, β2, β3, β4 ∼ Normal(0, 1)

σ ∼ Student-t+(3, 0, 10)

α
j

∼ Normal(µj , σj)

αt ∼ Normal(µt, σt)

µj , µt ∼ Normal(0, 1)

σj , σt ∼ HalfCauchy(0, 1)

From line 3, we define the prior distribution for each parameter of the model. The overall
intercept (the grand mean), α is given a weakly informative prior in the form of the Student’s-t
distribution centered on 1 with 3 degrees of freedom and 10 standard deviation. The population
effect coefficients, β1, β2, β3, β4, are given a Gaussian prior centered on 0 with 1 standard deviation.
The standard deviation of the Gaussian likelihood function, σ, is given a weak prior in the form of
the half Student’s-t distribution centered on 0 with 3 degrees of freedom and 10 standard deviation.

41



The varying intercepts, αj[i] and αt[i] are given a Gaussian prior with a hierarchical structure. The
hyperpriors on the mean, µj and µt are given a Gaussian prior centered on 0 with 1 standard
deviation. The hyperpriors on the standard deviation, σj and σt are given a Half-Cauchy prior
centered on 0 with scale parameter 1. Note that σαt and σαj

represent the estimated between-year
variance and the between-province variance, respectively. For a detailed discussion on the choice of
prior in Bayesian statistics, see Gelman et al. (2017).

C Historical note on productivity growth in the PR China

What caused the period of rapid economic growth in the PR China? Since the economic reform
was initiated in 1978, the PR China has undergone significant structural change (Brandt et al.,
2008; Wu, 2011; Bosworth and Collins, 2008; Chow and Li, 2002) - going from an agricultural to an
industrial economy with growing importance of the service-sector - and achieving many important
milestones. The early period was dominated by productivity improvements in agriculture (notably
with the transformation from the production-team system to household responsibility system (HRS)
(Lin, 1992; McMillan et al., 1989). The rapid productivity growth in the agricultural sector - 6.5%
annually on average while labor input in the primary sector declines 4.5-5.5 % annually (Cao and
Birchenall, 2013; Borensztein and Ostry, 1996) - came to an end around 1984, because the slowing
new labor participation and technology adoption after 1984, and the institutional change exhausted
its catch-up potential (Lin, 1992).27 In turn, the industrial and service sectors absorbed the labor
freed in the primary sector, while also being boosted by an increasing work participation rate (Lin,
1992) and improved education and human capital accumulation Au and Henderson (2006); Gordon
and Li (1995). The 1980s saw a fundamental reform of the economic organization (enterprise reform)
followed by increasing international investment in the PR China in the 1990s, which probably
boosted economic growth through technology transfer and spillovers (Hu et al., 2005). In 2001,
the PR China was admitted to the WTO, allowing better integration in the global economy with
again a significant effect on economic growth (Brandt et al., 2017). By then, manufacturing was
the workhorse of the Chinese economy, with productivity growth in manufacturing between 1998
and 2007 being estimated as 7.7% annually Brandt et al. (2012), of which two-thirds came from the
productivity differences between entering and existing firms.

Firms in the PR China are typically categorized into seven types (Yu et al., 2015): (1) Traditional
state-owned enterprises (SOE), (2) collective owned enterprises, in particular Township and village
enterprises (TVE), (3) shareholding firms, (4) private firms, (5) Hong Kong, Macao, and Taiwan
owned companies, (6) foreign-owned companies, and (7) other domestic firms. Up to the enterprise
reform, the economy was dominated by the first two categories (SOEs and TVEs) with the first
phase of growth and rising productivity in the 1980s being carried to a significant part by TVEs,
before private ownership became legal with the enterprise reform (Goodhart and Xu, 1996; Ito,
2006; Jefferson and Rawski, 1994), which introduced categories (3) and (4). Categories (5) and (6)
would only become important with the increasing international integration of the economy of the
PR China in the 1990s and 2000s.

27Gong (2018) applies a varying coefficient production function to capture the structural change in different agri-
cultural segments. He finds that the agricultural TFP growth rate fluctuated cyclically in the past forty years, which
is typical for policy-driven sectors and demands more intensive technological investment.
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D Additional results

Profitability (RoFIAS)
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Figure 16: Density of the profitability (return on capital, ROC) distribution (full sample) by year
in semi-log (vertical axis logarithmic). Solid lines indicate Levy alpha stable distribution fits as
reported in Table 2.
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Investment Rate
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Figure 17: Density of the investment rate (IR) distribution (full sample) by year in semi-log (vertical
axis logarithmic). Solid lines indicate Levy alpha stable distribution fits as reported in Table 2.
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Figure 18: Return on capital by region and year (black) in comparison to GDP growth (orange).
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Figure 19: Investment rate by region and year (black) in comparison to GDP growth (orange).
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Figure 20: Density of ROC and IR for regions Guangdong and Zhejiang in 2007
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(a) 1998
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Figure 21: Levy α parameter fits for ROC (profitability) by Region
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(a) 1999 (b) 2000 (c) 2001

(d) 2002 (e) 2004 (f) 2005

(g) 2006 (h) 2007

Figure 22: Levy α parameter fits for IR (investment return) by Region

48



Variable Coefficient α β γ δ

Est. SE CI 5% CI 95% Est. SE CI 5% CI 95% Est. SE CI 5% CI 95% Est. SE CI 5% CI 95%

LP Change

Intercept 0.984 0.046 0.894 1.075 -0.056 0.102 -0.26 0.151 0.055 0.047 -0.033 0.143 -0.011 0.024 -0.056 0.037
GDP Growth 0.008 0.003 0.003 0.013 0.026 0.007 0.013 0.038 0.009 0.003 0.004 0.014 0.005 0.001 0.003 0.008
Firm.Age -0.001 0.001 -0.002 0 -0.003 0.001 -0.006 -0.001 0 0 -0.001 0.001 0 0 -0.001 0.001
Employment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cap Intensity 0 0 0 0 0 0 0 0 0 0 0 0.001 0 0 0 0
sd(Class) 0.043 0.008 0.029 0.06 0.065 0.017 0.037 0.1 0.038 0.007 0.027 0.054 0.019 0.004 0.012 0.028
sd(Year) 0.009 0.007 0 0.027 0.08 0.031 0.039 0.156 0.041 0.014 0.021 0.076 0.017 0.006 0.009 0.033
WAIC -586.565 30.229 -314.187 19.377 -681.084 30.577 -872.515 54.299

LP

Intercept 1.082 0.051 0.981 1.178 0.917 0.017 0.883 0.948 0.23 0.063 0.112 0.355 0.257 0.068 0.123 0.396
GDP Growth 0.001 0.003 -0.005 0.007 0.002 0.001 -0.001 0.004 0.005 0.003 -0.001 0.012 0.009 0.004 0.002 0.016
Firm.Age 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Employment 0 0 0 0 0 0 0 0 0 0 -0.001 0 0 0 -0.001 0
Cap Intensity 0 0 0 0 0 0 0 0 0 0 0 0.001 0 0 0 0
sd(Class) 0.051 0.009 0.036 0.07 0.008 0.004 0.001 0.016 0.08 0.014 0.057 0.112 0.086 0.014 0.062 0.117
sd(Year) 0.029 0.011 0.014 0.057 0.003 0.003 0 0.01 0.057 0.02 0.032 0.102 0.083 0.027 0.048 0.156
WAIC -577.335 20.28 -763.403 92.099 -626.065 39.083 -581.903 39.123

ROC

Intercept 1.124 0.056 1.009 1.227 0.167 0.134 -0.103 0.431 0.071 0.021 0.031 0.114 0.034 0.018 -0.002 0.068
GDP Growth -0.003 0.003 -0.01 0.003 0.033 0.008 0.017 0.049 0.003 0.001 0.001 0.006 0.002 0.001 0 0.004
Firm.Age -0.001 0 -0.001 0 0 0 -0.001 0.001 0 0 0 0 0 0 0 0
Employment 0 0 0 0 0 0 -0.001 0 0 0 0 0 0 0 0 0
Cap Intensity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sd(Class) 0.046 0.009 0.031 0.066 0.164 0.028 0.118 0.232 0.029 0.005 0.022 0.04 0.017 0.003 0.012 0.024
sd(Year) 0.024 0.011 0.009 0.053 0.127 0.046 0.063 0.24 0.02 0.007 0.01 0.038 0.016 0.006 0.008 0.031
WAIC -439.61 18.542 -275.578 20.391 -861.659 23.479 -869.361 32.042

Inv Rate

Intercept 0.795 0.049 0.703 0.89 0.42 0.096 0.234 0.604 0.122 0.029 0.066 0.179 -0.069 0.019 -0.107 -0.031
GDP Growth 0 0.003 -0.005 0.006 0.005 0.004 -0.004 0.013 0.003 0.002 0 0.006 0 0.001 -0.002 0.002
Firm.Age -0.001 0.001 -0.003 0 0.001 0.002 -0.002 0.004 -0.001 0 -0.002 0 0 0 -0.001 0
Employment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cap Intensity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sd(Class) 0.058 0.011 0.04 0.083 0.06 0.016 0.034 0.094 0.02 0.004 0.013 0.029 0.011 0.002 0.007 0.016
sd(Year) 0.032 0.01 0.018 0.057 0.193 0.052 0.117 0.322 0.046 0.013 0.029 0.078 0.04 0.01 0.026 0.065
WAIC -486.833 20.609 -326.147 37.232 -617.939 20.353 -754.725 31.133

Table 5: Detailed regression results
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