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Abstract 

This is a summary of the paper entitled2: “The Mean Squared Prediction Error Paradox”. 

In that paper, we show that traditional comparisons of Mean Squared Prediction Error 

(MSPE) between two competing forecasts may be highly controversial. This is so because 

when some specific conditions of efficiency are not met, the forecast displaying the lowest 

MSPE will also display the lowest correlation with the target variable. Given that 

violations of efficiency are usual in the forecasting literature, this opposite behavior in 

terms of accuracy and correlation with the target variable may be a fairly common 

empirical finding that we label here as "the MSPE Paradox." We characterize "Paradox 

zones" in terms of differences in correlation with the target variable and conduct some 

simple simulations to show that these zones may be non-empty sets. Finally, we illustrate 

the relevance of the Paradox with two empirical applications. 
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1. Introduction 

"How wonderful that we have met with a paradox. Now we have some hope of making progress." 

Niels Bohr. 

In this paper, we show that traditional comparisons of Mean Squared Prediction Error 

(MSPE) between two competing forecasts may be highly controversial. This is so because 

when some specific conditions of efficiency are not met, the forecast displaying the lowest 

MSPE will also display the lowest correlation with the target variable. Given that 

violations of efficiency are usual in the forecasting literature, this opposite behavior in 

terms of accuracy and correlation with the target variable may be a fairly common 

empirical finding that we label here as the MSPE paradox3. 

It is safe to say that MSPE is one of the most popular measures in the forecast evaluation 

literature, with a long tradition in both empirical and theoretical works. Just as an 

anecdotal illustration of its relevance, the acronym "MSPE" is mentioned 77 times in West's 

(2006) survey. The rationale for using MSPE as a loss function is as follows: MSPE is a 

statistical measure of accuracy, then a forecast displaying a low MSPE is an accurate 

forecast that, on average, will be close to the target variable. Some of the most iconic 

empirical contributions in economic forecasting (such as those of  Meese and Rogoff (1983, 

1988), Goyal and Welch (2008), Stock and Watson (2003), and Timmermann (2008)) rely 

partially or completely on MSPE comparisons. Due to its importance and tractability, it is 

not surprising that many theoretical works in this literature focus on MSPE as a leading 

case (e.g., Diebold and Mariano (1995), West (1996), Giacommini and White (2006)). 

An alternative avenue to evaluate predictive ability could consider the association 

between the forecast and the target variable: the tighter the association is, the better the 

forecast is. Probably the simplest association measure between two random variables, X 

and Y, is the correlation between them. According to this intuition, a forecast more closely 

related to Y would be superior to another forecast not as closely related to Y.  In other 

words, a forecast with a higher correlation with Y should be preferable to another forecast 

displaying a lower correlation. 

Interestingly, in this paper, we show analytically and empirically that the forecast with the 

lowest MSPE does not necessarily display the highest correlation (what we call the MSPE 

Paradox). We show that both approaches are equivalent when the forecasts meet some 

conditions of efficiency (Mincer and Zarnowitz (1969)). Given that violations of efficiency 
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are usual in the forecasting literature (e.g., Ince and Molodtsova (2017)), this opposite 

behavior in terms of accuracy and correlation with the target variable may be a fairly 

common empirical finding. 

We offer a characterization of “Paradox zones” in terms of the differences in correlation 

with the target variable. Moreover, we carry out simple simulations to show that these 

Paradox zones are, in general, not empty sets. As a matter of fact, our analysis shows that 

we could have an extreme case in which a totally uncorrelated forecast with the target 

variable could be superior in terms of MSPE to an alternative forecast displaying a positive 

correlation with the same target variable. Our empirical illustration supports this idea. 

Finally, we show the relevance of the MSPE Paradox with two empirical applications in 

which some of the most accurate forecasts are, in fact, the worst in terms of correlations 

with the target variable. Both illustrations are related to the commodity-currencies 

literature. In the first exercise, we predict the returns of eleven commodities with the 

exchange rates of five commonly studied commodity-exporting economies. In the second 

exercise, we evaluate several exchange rates forecasts of the same five commodity-

exporting economies. In this case, we compare the predictions of the FX4cast survey with 

some forecasts constructed with commodity returns and some usual benchmarks as well. 

The rest of this paper is organized as follows. In section 2 we show with simple examples 

what we call the MSPE Paradox. We warn the reader that in subsection 2.1 we will be 

making very restrictive assumptions for the sake of clarity. Nevertheless, in subsection 2.2 

we relax these assumptions to analyze the Paradox with more generality. In Section 3 we 

offer a characterization of the “Paradox zones”. In section 4 we illustrate the Paradox with 

simple simulations whereas in section 5 we present two empirical illustrations. Finally, 

section 6 concludes.  

2.  The MSPE Paradox 

In this summary, we show simple examples of what we call "The MSPE Paradox." For a 

detailed discussion, see the full version of the paper (available upon request).4 

2.1 Simple examples 

In this section we illustrate with simple examples what we call "The MSPE Paradox." We 

use this name to label the fact that when comparing two competing forecasts for the same 

target variable, it might be the case that the forecast displaying the lowest MSPE will also 

display the lowest correlation with the target variable.  
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Let us consider {��} to be a mean zero target variable with variance equal 1. At time �, we 

have two competing forecasts {����} and {	���} for {��}. It is important to notice that both 

{����} and {	���} are forecasts constructed with information previous to time t and that 

they are taken as primitives (hence, we are not concerned here about parameter 

uncertainty). For clarity of exposition, we drop the sub-indexes t in what follows. Let us 

assume that the vector (�, � , 	)′ is weakly stationary (so here we assume the existence of 

second moments).  

Example 1: 

For example 1 we will also assume that both forecasts have the same non-negligible 

variance: Var(X)=Var(Z)>0, that X is a mean zero forecast and that �(��) > 0.  Many of 

these assumptions are very restrictive, but they are useful to illustrate the Paradox.   

Consider now the MSPE of both forecasts: 

����� = �(� − �)� ;  ����� = �(� − 	)� 

And let us also define the corresponding Mean Squared Forecasts (MSF) as follows: 

���� = �(��);  ���� = �(	�) 

Suppose now that we are interested in a traditional comparison of MSPE, then: 

∆���� ≡ ����� − ����� =  �(� − �)� − �(� − 	)� 

= (��� − �	�) − 2(��� − ��	)         
= (���� − ����) − 2{� !(�, �) − � !(�, 	)}  

 = (���� − ����) − 2"#$%(�) &� %%(�, �)"#$%(�) − � %%(�, 	)"#$%(	)'   

 = (���� − ����) − 2"#$%(�){� %%(�, �) − � %%(�, 	)}   

= (���� − ����) − 2"���� − (��)�{� %%(�, �) − � %%(�, 	) }  
= (���� − ����) − 2"����{� %%(�, �) − � %%(�, 	) }    (1) 

Eq.(1) illustrates an important result: the difference in MSPE depends not only on the 

correlation between the forecasts with the target variable, but also on the MSF that are not 

directly linked to properties of the target variable. The problem in this illustration relies on 

a "magnitude" effect associated to the term (���� − ����): A high MSF of a forecast could 

more than offset its high correlation with the target variable and therefore the forecast 

itself could be outperformed by another less informational forecast with a lower MSF. In 
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other words, in this example, traditional MSPE comparisons give a natural advantage to 

"small forecasts”, that is to say, forecasts with small MSF.  

Example 2:  

As a second example, let us consider a different econometric context, but similarly 

simplistic, in which Z is a zero-forecast. Consequently, #$%(	) = � !(�, 	) = �	� = 0.  

Furthermore, let us also assume that �� = 0,  Var(X) > 0 and that Var(Y) = 1.  We will have 

then  

∆���� ≡ ����� − ����� =  �(� − �)� − �(� − 	)� 

= (��� − �	�) − 2(��� − ��	)         
= (��� − �	�) − 2{� !(�, �) − � !(�, 	)}  

=(���) − 2{� !(�, �)} 

= (���) − 2"#$%(�)"#$%(�){� %%(�, �)} 

= ���� − 2"����{� %%(�, �)} 

then if "���� > 2 � %%(�, �) > 0 we will have that ����� > �����  despite that 

� !(�, �) >  � !(�, 	) = 0.  This is, of course, an extreme situation. The use of MSPE in 

this case, will suggest that the forecast with no association whatsoever with the target 

variable is preferable to another forecast with a tighter association. The problem in this 

example is that MSPE comparisons would fail to detect the usefulness of forecast X if its 

magnitude (����) overshadows its informational content.  

2.2 A general case 

In the full version of this paper (available upon request), we show a general 

decomposition of ∆���� (leaving behind the previous simplifying assumptions). We 

focus on two different scenarios: one in which Z is just a constant, and the other in which 

Z is a forecast with positive variance. We will refer to these conditions as C1 and C2: 

C1) Z is just a constant c. 

C2) Z is a forecast with positive variance. 

The general decomposition for case C2 is  

= ���� − ���� − 2"#(�) &� %%(�, �)"���) − (��)� − � %%(�, 	)"���* − (�	)�' − 2{��(�� − �	)}  (2.1) 
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While the general decomposition for case C1 is simply 

∆���� = ���� − ���� − 2� %%(�, �)"#(�)#(�) − 2��(�� − �	)    (2.2) 

Notice that our decomposition relates to Clark and West (2006, 2007) in the following 

sense: In the context of out-of-sample comparisons of nested models, Clark and West 

(2006, 2007) notice that under the null of equal population MSPE, the sample MSPE of the 

nesting model is expected to be higher than that of the nested one. The intuition is that the 

nesting model introduces noise into its forecasts through the estimation of parameters 

that, under the null, are equal to zero. This effect inflates the sample MSPE of the model 

with additional parameters. Our decomposition resembles the findings by Clark and West, 

and to some extent, it is even more general. Both Clark and West and us similarly argue 

that a plain look at MSPE comparisons may be misleading in some circumstances, given 

that they can be affected by several distortions. In the case of Clark and West, those 

distortions arise from parameter estimation error. In our approach, these distortions arise 

at the population level by comparing apple and oranges: forecasts with very different 

magnitude effects or very different biases. In other words, even at the population level, we 

may observe that some forecasts have a natural advantage in terms of MSPE relative to 

others, despite of being far less informational relative to its competitors.  

3. Some simple theoretical results 

In the following, we will assume, without loss of generality, that  � %%(�, �) ≥ � %%(�, 	) 

if Z has a positive variance. In case that Z has zero variance, we will assume without loss 

of generality that � !(�, �) ≥ � !(�, 	) = 0. In this setup the Paradox will exist whenever 

����� − ����� > 0. We will show analytically that the Paradox may exist under some 

conditions if the difference between � %%(�, �) and � %%(�, 	) is relatively small. As we 

are considering the two leading cases of positive and zero variance for Z  we will denote 

by Ω� the variance-covariance matrix of the (Y,X,Z)’ vector and by Ω� the variance-

covariance matrix of the (Y,X)’ vector: 

Proposition 1: Let Z be a constant-forecast (say, 	 = . ∀�). Let us also assume that  

0123�45
�"6(7)6(�) − 87(8��4)

"6(7)6(�) >0 

Then we will find the Paradox iif � %%(�, �) ∈ [0; 0123�45
�"6(7)6(�) − 87(8��4)

"6(7)6(�)).  
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Corollary 1: If in Proposition 1 we set 	 = . = 0, we will find the Paradox iif � %%(�, �) ∈
[0; 0123

�"6(7)6(�) − 878�
"6(7)6(�)). Moreover, in the particular case in which �� = 0, we will find 

the Paradox iif � %%(�, �) ∈ [0; "6(�)
�"6(7)). 

Proof of Proposition 1.  

The proofs of Proposition 1 and Corollary 1 are available in the full version of this paper 

(upon request). ∎ 

Proposition 2 next shows an equivalent result for the case in which Z is a forecast with 

positive variance.  

Proposition 2: Let Z be a forecast with positive variance. Let Δ = � %%(�, �) − � %%(�, 	) 

and suppose that   

���� − ����
2"#(�)#(�) − � %%(�, 	) ="#(�) − "#(	)>

"#(�) − ��(�� − �	)
"#(�)#(�) > 0 

Then we will find the Paradox iif 

Δ ∈ [0; 0123�012?
�"6(7)6(�) − @ABB(7,�)="6(�)�"6(�)>

"6(�) − 87(8��8�)
"6(7)6(�) ). 

Proof of Proposition 2.  

The proof of Proposition 2 is available in the full version of this paper (upon request). ∎ 

Next we will see that for the Paradox to exist we require inneficient forecasts. We need 

some notation first: Let CD and CE be the forecast errors of X and Z, respectively. In other 

words 

uG ≡ � − � 

uH ≡ � − 	 

Let us recall that X and Z are efficient forecasts à la Mincer and Zarnowitz (1969) as long as  

 

� !(�, I)) = � !(	, I*) = 0 

�(I)) = �(I*) = 0 
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Proposition 3: If X and Z are both efficient à la Mincer and Zarnowitz, then the Paradox is 

impossible. 

Proof of Proposition 3.  

The proof of Proposition 3 is available in the full version of this paper (upon request). ∎ 

4. Simulations 

To illustrate the Paradox and to show that the “Paradox zone” may be a non-empty set 

under inefficiencies, we carry out a set of simple simulations. In each simulation, we show 

that the Paradox zone coincides with the intervals derived in Section 3. In the full version 

of the paper (upon request), we show three different simulations: i) Z as a zero-forecast 

with arbitrary parameters, ii) Z is a more general case with arbitrary parameters, and iii) Z 

is a zero-forecast in the context of a data generating process calibrated with exchange rates 

forecasts. In this summary, we only show results for simulation i). 

4.1 Simulation with a "zero-forecast." 

Let us suppose we wish to compare two competing forecasts, X and Z, where Var(X) > 0 

and Z is a "zero-forecast." According to corollary 1 in Section 3, the Paradox zone is 

defined by 

� %%(�, �) ∈ [0; ���J
2"#(�)#(�) − �(�)�(�)

"#(�)#(�)) 

To show that [0; 012)
�"6(7)6(�) − 8(7)8(�)

"6(7)6(�)) may be a non-empty region, we consider the 

following simulation: We start by setting �� = 0.1, �� = 1, �(��) = 2 and �(��) = 2, then 

from expression (4) we have 

Δ���� = MSPEG − ����* = 1.8 − 2.8213 ∗ � %%(�, �) 

Keeping ��, ��, �(��) and �(��) constant, our decomposition is just a linear function 

between Δ���� and Corr(X,Y), with a slope of -2.8213 and an intercept of 1.8. In order to 

analyze this linear function without changing the slope nor the intercept, we generate 

different values of � %%(�, �) just by changing EYX but keeping in mind that the 

covariance matrix Ω� must be positive definite: 

Ω� = T�(��) − (��)� ��� − ����
��� − ���� �(��) − (��)�U = = 1 ��� − 0.1

��� − 0.1 1.99 > 

We parameterize EYX = 0.1 + δ, where δ is a sequence of small positive incremental 

changes of 0.001. Notice that the slope and the intercept of our linear function remain 
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unaltered in this simulation. In this case, the Paradox zone is given by � %%(�, �) ∈
Y0; 8Z�5[

�"6(7)6(�) − 8(7)8(�)
"6(7)6(�)Y = [0; 0.638). In other words, despite that forecast Z has no 

covariance with Y, it outperforms the forecast X in terms of MSPE whenever � %%(�, �) ∈ 

[0; 0.638). 
Figure 1: Illustration of the Paradox zone when Z is a zero-forecast. 

 

Source: Author's elaboration 

 

4.2 Simulation with a general forecast Z 

Available in the full version of the paper (upon request). 

4.3 Simulation calibrated with exchange rates. 

Available in the full version of the paper (upon request). 

5. Empirical illustrations of the MSPE Paradox 

In the full version of the paper (available upon request), we illustrate the Paradox with 

two empirical applications using commodities and commodity currencies. In both cases 

we will assume for simplicity that population moments are well approximated by their 

sample counterparts. In this summary, we show exclusively one empirical illustration 

forecasting commodity currencies. 

5.1 The Paradox in commodity forecasts 

Our first empirical illustration is mainly inspired by the commodity-currencies literature. 

Chen, Rogoff and Rossi (2010, 2011) seminal papers report strong predictive ability from 

the exchange rates of some exporting countries such as Australia, Canada, Chile, New 

Zealand and South Africa to some country-specific commodity indices. Additionally, 



10 

 

Pincheira and Hardy (2019a, 2019b) find strong predictive ability from the Chilean peso to 

base-metal prices and the London Metal Exchange Index (LMEX). 

In this context, we construct and compare different forecasts for 11 series of commodities 

(aluminum, copper, lead, nickel, zinc, tin, LMEX, gold, silver, S&P GSCI, and platinum) 

using the exchange rates of Australia, Canada, Chile, New Zealand and South Africa 

(relative to the U.S dollar). The econometric specifications for our forecasts closely follow 

Pincheira and Hardy (2019a, 2019b):  

Δ��� = ]Δ�R_�� + ε_  (�1) 

Where Δ��� stands for the log-difference of a commodity price, Δ�a is the log-difference 

of a generic exchange rate, ] is a regressor coefficient and ε_ is the error term. Note that we 

are only evaluating one-step-ahead forecasts. The database is collected from Thomson 

Reuters Datastream, considering monthly closing prices on commodity prices and 

exchange rates (relative to the U.S dollar). In this analysis, we consider exclusively a 

period in which all the economies pursue a pure flotation exchange rate regime; hence our 

database goes from October 1999 through May 2019 (a total of T=236 observations for each 

series). 

In addition to the five forecasts generated by each exchange rate using (M1), we also 

consider the forecasts of a Driftless Random Walk (a zero-forecast, DRW), a Random Walk 

(a forecast with the historical mean, RW) and an AR(1). Finally, the parameter ] in (M1), 

and the parameters of the AR(1) and the RW are estimated by OLS and updated with 

rolling windows of R=48 monthly observations. Notice that all our forecasts are evaluated 

out-of-sample, with a total of P=T-R=188 predictions. 

Table 1: Evaluation of commodity forecast with correlations and RMSPE  

 

Notes: RMSPE stands for Root MSPE. Source: Author's elaboration 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Australia Canada Chile NewZealand SouthAfrica AR(1) RW DRW

Correlation 0.070 -0.023 0.147 -0.118 0.031 0.151 -0.065 -

RMSPE 0.067 0.067 0.066 0.069 0.067 0.066 0.067 0.066

Correlation 0.049 -0.025 0.146 -0.178 -0.046 0.161 0.009 -

RMSPE 0.068 0.067 0.067 0.069 0.068 0.067 0.067 0.066

Correlation 0.029 -0.068 0.139 0.007 -0.087 0.137 -0.043 -

RMSPE 0.063 0.063 0.062 0.063 0.063 0.063 0.063 0.062

LMEX

Aluminum

S&P GSCI
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Table 1 reports our results when predicting GSCI, LMEX and aluminum5. First, 12 out of 

21 non zero forecasts have a positive correlation with the target variable, suggesting some 

useful information in those forecasts. Notably, the DRW is the forecast with the lowest 

RMSPE in the three commodities, despite having zero covariance with the target variable.  

Second, note that the forecasts for each commodity show very similar RMSPE, but very 

different correlations. For instance, the RMSPE for the LMEX goes between 0.066 and 

0.069, but the correlations vary between -0.178 and 0.161. In other words, relative to the 

maximums we find changes of around 4% in RMSPE and changes of around 210% for 

correlations. 

Third, there are some cases of paradoxes worth to be mentioned. For instance, for the 

LMEX, the forecast of the AR(1) has a particularly high correlation of 0.161; nevertheless, 

the DRW has a lower RMSPE. Moreover, the forecast constructed with the Australian 

dollar has a correlation of 0.049, but notably, it has greater RMSPE than the forecast 

constructed with the Canadian dollar, even though the latter has a negative correlation of -

0.025.  

To illustrate the Paradox, Figures 4 and 5 display the differences in MSPE and correlations 

between two forecasts using rolling windows of 48 observations. Figure 4 compares two 

different forecasts for aluminum: one constructed with the Australian Dollar, the other 

with the South African Rand. Figure 5 reports our results when forecasting the LMEX with 

the Australian and the Canadian Dollar. In both figures, whenever the differences in 

MSPE and correlations have the same sign, we have the MSPE Paradox. Notably, both 

figures suggest that the Paradox may appear quite often.  

 

 

 

 

 

 

 

                                                           

5 Results for the rest of commodities are presented in the Appendix of the full version of the paper (available 

upon request).  
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Figure 4: Differences in MSPE and Correlations using rolling windows. Forecasting 

aluminum with the Australian and South African exchange rates. 

 

Notes: Figure 4 displays the differences in MSPE and correlations between two competing forecasts, using 

rolling windows of 48 observations. In this illustration the target variable is aluminum one-month returns. We 

compare a forecast using the Australian Dollar with another using the South African Rand. Whenever both 

series have the same sign, we have the MSPE Paradox. The differences in MSPE have been scaled so the left 

axis represents both differences in MSPE and differences in correlations. Source: Author's elaboration  
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Figure 5: Differences in MSPE and Correlations using rolling windows. Forecasting 

LMEX with the Australian and Canadian exchange rates. 

 

Notes: Figure 5 displays the differences in MSPE and correlations between two competing forecasts using 

rolling windows of 48 observations. In this illustration the target variable is LMEX one-month returns. We 

compare a forecast using the Australian Dollar with another using the Canadian Dollar. Whenever both series 

have the same sign, we have the MSPE Paradox. The differences in MSPE have been scaled so the left axis 

represents both differences in MSPE and differences in correlations. Source: Author's elaboration 

5.2 The Paradox in exchange rates forecasts 

Available in the full version of the paper (upon request). 

6. Concluding remarks 

In this paper we show that traditional comparisons of Mean Squared Prediction Error 

(MSPE) between two competing forecasts may be highly controversial. This is so because 

when some specific conditions of efficiency are not met, the forecast displaying the lowest 

MSPE will also display the lowest correlation with the target variable. Given that violations 

of efficiency are usual in the forecasting literature, this opposite behavior in terms of 

accuracy and correlation with the target variable may be a fairly common empirical finding 

that we label here as "the MSPE Paradox." 

We characterize "Paradox zones" in terms of differences in correlation with the target 

variable and conduct some simple simulations to show that these zones may be non-empty 
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sets. Moreover, our analysis shows that we could have an extreme case in which a forecast 

and a target variable are independent random variables, which speaks of a useless forecast, 

yet, in terms of MSPE, this useless forecast might outperform a useful forecast displaying a 

positive correlation with the target variable.  

Finally, we illustrate the relevance of the MSPE Paradox with two empirical applications in 

which some of the most accurate forecasts in terms of MSPE are, in fact, some of the worst 

in terms of correlations with the target variable.  

Our paper emphasizes the need to look beyond MSPE when evaluating two or more 

competing forecasts, as a blind search for the minimum out-of-sample MSPE forecast may 

lead to an incorrect evaluation of the information contained within those predictions. In 

light of these results, an interesting avenue for future research is the elaboration of a simple 

asymptotically normal test to evaluate two competing forecasts according to their 

correlations with the target variable. 
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