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Abstract: Generation (or a posteriori) methods in Multi-Objective Mathematical Programming (MOMP) is the 

most computationally demanding category among the MOMP approaches. Due to the dramatic increase in 

computational speed and the improvement of Mathematical Programming algorithms the generation methods 

become all the more attractive among today‟s decision makers. In the current paper we present the generation 
method AUGMECON2 which is an improvement of our development, AUGMECON. Although AUGMECON2 

is a general purpose method, we will demonstrate that AUGMECON2 is especially suitable for Multi-Objective 

Integer Programming (MOIP) problems. Specifically, AUGMECON2 is capable of producing the exact Pareto 

set in MOIP problems by appropriately tuning its running parameters. In this context, we compare the previous 

and the new version in a series of new and old benchmarks found in the literature. We also compare 

AUGMECON2‟s performance in the generation of the exact Pareto sets with established methods and algorithms 
based on specific MOIP problems (knapsack, set packing) and on published results. Except from other 

Mathematical Programming methods, AUGMECON2 is found to be competitive also with Multi-Objective 

Meta-Heuristics (MOMH) in producing adequate approximations of the Pareto set in Multi-Objective 

Combinatorial Optimization (MOCO) problems.  

Keywords: Multi-Objective Programming, ε-constraint method, exact Pareto set 

1. Introduction 

The rapid improvement in computer performance, software and algorithms transformed the almost 

unsolvable calculation problems of previous decades into trivial tasks. This is especially true for 

Mathematical Programming where problems with thousand of variables and constraints can be solved 

in seconds or minutes. It is well known that the Multiple Objective Mathematical Programming refers 

to the solution of Mathematical Programming problems with more than one objective functions. Given 

that usually there is no unique optimal solution (optimizing simultaneously all the objective functions), 

the aim is to find the most preferred among the Pareto optimal solutions [1]. Therefore, MOMP 

methods have to combine optimization with decision support.  

In the late seventies Multiple Objective Mathematical Programming methods were classified by 

Hwang and Masud into three classes according to the phase in which the decision maker was involved 

in the decision making process [2]: The a priori methods, the interactive methods and the a posteriori 

or generation methods. The latter class was somehow neglected at this time as it was the most 

computationally demanding and only small problems could be addressed mostly with academic 

software.  
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Nowadays, with the vast improvement in computer power the generation approaches become all the 

more popular as they have some significant advantages. The solution process can be divided into two 

separate phases: Phase one is the generation of the Pareto optimal solutions (all or a subset of them). 

Phase two is the subsequent involvement of the decision maker when all the information is on the 

table. No re-optimizations and further interaction are needed (especially important whenever the DM 

is hardly available) and the fact that none of the potential solutions has been left undiscovered, 

reinforces the DM‟s confidence on the final decision.   

AUGMECON is a generation method introduced by Mavrotas in [3]. It is an improvement of the 

original ε-constraint method which is along with the weighting method one of the two most popular 

methods for generating representations of the Pareto front. As it is described in [3], the ε-constraint 

method has certain advantages in relation to the weighting method especially in the presence of 

discrete variables (Mixed Integer or Pure Integer problems). In the current work we are going one step 

further, introducing AUGMECON2 an improvement of AUGMECON that exploits the information 

from the slack variables in every iteration. The improvements regard the reduction in computation 

time as many redundant iterations are avoided.  

These improvements are more effective when the problem contains discrete variables and the feasible 

region is non-convex. AUGMECON2 proved to be very efficient in Multi-Objective Integer 

Programming (MOIP) problems where the Pareto set is finite and countable. In this kind of problems 

we can adjust the method in order to produce all the Pareto optimal solutions. In the literature, several 

versions of the ε-constraint method have been appeared trying to improve its performance or adapt it 

to a specific type of problems like MOIP problems (see e.g. [4-6]). 

This is extremely important as the optimization community is interested in methods producing the 

exact Pareto set in Multi-Objective Combinatorial Optimization (MOCO) problems (see e.g. [7-9]). 

Various methods have been proposed, either generic or specific (for specific MOCO problems like e.g. 

the knapsack problem) that are able to find all the Pareto optimal solutions in MOCO problems. This 

kind of problems can be formulated as mathematical programming problems and more specifically as 

MOIP problems (usually with only 0-1 variables).  

In the last decade a rapid growth on the Multi-Objective Meta-Heuristic (MOMH) methods has been 

observed. These methods provide an approximation of the Pareto front using multi-objective versions 

of established metaheuristics (e.g. genetic algorithms, tabu search, simulated annealing among others). 

The MOMH algorithms are usually compared in terms of speed and coverage. The latter can be briefly 

defined as the portion of the true (exact) Pareto front that they are able to discover [8]. Therefore there 

is a need for calculating the exact Pareto front in big MOCO problems in order to use them as 

benchmarks for MOMH algorithms. This makes the present work for calculating the exact Pareto set 

in MOIP and MOCO problems even more important. 

The rest of the paper is organized as follows: Section 2 reviews the related literature. In Section 3 the 

novel parts of the AUGMECON2 method are described and the application of the proposed method in 

the generation of the exact Pareto front in Multiobjective Integer Programming problems is illustrated. 

In Section 4 the computational experiment for the evaluation of the proposed method in MOIP test 

problems is described. The results of the comparison of AUGMECON2 with other methods (including 

its older version) in a variety of new and existing in the literature test problems are discussed in 

Section 5. In Section 6 we apply the method in an illustrative example of project selection. Finally in 

Section 7 the basic concluding remarks are discussed.   
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2. Related literature 

A non exhaustive literature review for the general MOIP problem, as well as for specific MOCO 

problems that we will use in our work, namely the Multi-Objective version of the Multidimensional 

Knapsack Problem (MKP) and the Bi-Objective Set Packing Problem (BOSPP) is presented. 

The general Multi-Objective Integer Programming (MOIP) problem can be formulated as in 

Chinchuluun and Pardalos [10] 

 

max  

. .    

           0        n

Cx

s t Ax b

x x



 

  (1) 

where C  is a k n  matrix,  A  is a m n  matrix and b is a m  vector 

In the following, the discussion regarding MOIP solution techniques is focused specifically on the 

class of generation methods. Early work on MOIP starts with Bitran in late „70s [11, 12] who 

developed algorithms for solving multiobjective linear programs with binary variables based on 

enumerative schemes. Klein and Hannan [13] proposed a sequential method to generate all efficient 

points of the multiobjective integer programming problem. Their method included the solution of a 

series of integer linear programs where new constraints which depend on previously discovered 

efficient points are added for all but one objectives. Chalmet et al. [14] studied the MOIP problem for 

the biobjective case using the well known weighted sum method. Since the weighted sum method 

provides only the supported efficient solutions, the authors include an additional constraint which 

ensures access also to the unsupported efficient solutions. Jahanshahloo et al. [15] proposed a method 

to find all efficient solutions of 0-1 MOLP problem. These solutions are specified without generating 

all feasible solutions. In every iteration of the algorithm, for obtaining some efficient solutions of 0-1 

MOLP, a 0-1 single objective LP problem is solved. Also, Sourd and Spanjaard [16] developed a 

multiobjective Branch-and-Bound framework for MOCO  problems. The bounding in their method is 

performed via a set of points rather than a single ideal point. Numerical experiments regard the bi-

objective spanning tree problem and the method handles easily problems up to 500 nodes. Ralphs et al. 

[17] implemented an improved algorithm based on the weighted Tchebycheff scalarization and 

provided evidence on the biobjective knapsack problem and a capacitated network routing problem. 

The open source SYMPHONY MIP solver is utilized in their approach. An interesting approach is that 

of Ozlen and Azizoglu [18], who presented a general method to generate all non-dominated solutions 

of a MOIP problem. Their approach is based on the identification of objective efficiency ranges, 

which are identified by solving simpler MOIP problems with fewer objectives. Their method is 

presented for a tri-objective integer programming problem and is generalized to a MOIP problem with 

k objectives. Also, Przybylski et al. [19] presented a generalization of the two phase method to solve 

MOIP with more than two objectives. It is well known that phase one aims at computing all supported 

efficient solutions. The authors generalized the second phase which aims at computing the non-

supported efficient points, a task which is difficult to describe in the general multi-objective case. 

Experimental results of the method are given for the three-objective assignment problem. 

A stream of research on MOIP utilizes the ε-constraint method [20] with some enhancements for the 

generation of the efficient solutions. Laumanns et al. [5] implemented an adaptive scheme for varying 

the right hand side of the ε-constraint method, and called their method adaptive ε-constraint. The 

complexity of their method is 1( )mO k   where k is the number of Pareto optimal solutions and m is the 

number of objectives. Laumanns et al. [5] tested their approach on the multiobjective 
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multidimensional knapsack problem. Also, the adaptive ε-constraint method has been tested in 

Rayside et al. [21]. Ehrgott and Ruzika [22] proposed an improved ε-constraint method. They 

criticized the traditional ε-constraint method for two weaknesses: the lack of easy-to check conditions 

for properly efficient solutions and the inflexibility of the constraints. Then, they presented two 

modifications which addressed these weaknesses. First they included slack variables in the 

formulation and second they elasticized the constraints by including surplus variables. The improved 

ε-constraint method they proposed combined both modifications. Nevertheless, the authors did not 

give any computational results in their study. Finally, Mavrotas [3] presented an effective 

implementation of the ε-constraint method for generating the Pareto optimal solutions in a 

multiobjective mathematical program. The author proposed a novel version of the method, augmented 

ε-constraint method (AUGMECON) which avoids the generation of weakly Pareto optimal solutions 

and accelerated the whole process by avoiding redundant iterations. The method AUGMECON has 

been implemented in GAMS, a widely used modeling language, and has already been used in several 

applications. 

Other scalarization techniques for MOIP include the methods of Sylva and Crema [23], [24], Lokman  

[25] and Koksalan and Lokman [26]. Sylva and Crema in [23] presented an algorithm for enumerating 

all non-dominated solutions of multi-objective integer programming problems. Employing a 

straightforward theoretical approach, the problem is solved using a sequence of progressively more 

constrained integer programs, thus generating a new solution at every step. This algorithm is suitable 

for medium sized problems, because at every step new constraints and binary variables are added for 

every computed efficient solution. Subsequently, Sylva and Crema in [24] presented an algorithm for 

generating a subset of non-dominated vectors of multi-objective mixed integer programming 

problems. Starting from an initial non-dominated vector, the procedure finds at every iteration a new 

vector that maximizes the infinity-norm distance from the set dominated by the previously found 

solutions. This algorithm works also for MOLP as well as MOIP problems. Lokman in her MSc thesis 

[25] proposed two algorithms for the exact solution of MOIP. The first exact algorithm is an 

improvement of the algorithm of Sylva and Crema [23], since the number of binary variables and 

constraints introduced to the model for each new efficient solution is decreased. The second exact 

algorithm is quite different and employs searching and sorting to generate the efficient solutions. In 

the computational results, Lokman presents evidence from the multiobjective multidimensional 

knapsack problem that Algorithm 2 is much more efficient than Algorithm 1, while Algorithm 1 is 

already much more efficient than Sylva and Crema [23] exact method. Additionally, specifically for 

Algorithm 2, results from multiobjective minimum spanning tree and multiobjective shortest path 

problems are presented. The largest instance of multiobjective multidimensional knapsack solved is 3 

objectives, 3 constraints and 200 items, solved in 184,608.70 sec with 27,260 efficient solutions, 

solved by Algorithm 2 (e.g. see [25],  pp. 56). Koksalan and Lokman in [26] present a heuristic 

approach to approximate the nondominated frontier of MOIP by fitting smooth hypersurfaces. For a 

given problem, they fit the hypersurface using a single non-dominated reference vector. The authors 

experimented with different types of MOIP problems and demonstrated that in all cases the fitted 

hypersurfaces approximate all nondominated vectors well. They discuss that such an approximation is 

useful to find the neighborhood of preferred regions of the nondominated vectors with very little 

computational effort. Further computational effort can be spent in the identified region to find the 

actual nondominated vectors the decision maker will prefer. The interested reader is referred to 

excellent review papers on MOIP (including interactive methods and specific combinatorial 

problems), e.g. Teghem and Kunsch [27], Ulungu and Teghem [28], Rasmussen [29], Ehrgott and 

Gandibleux [30] and Alves and Climaco [31]. 
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The specific MOIP problems tackled in this paper are the Multi-Objective Multidimensional Knapsack 

Problem and the Bi-objective Set Packing Problem, briefly discussed in the following.  

The Multi-Objective Multidimensional Knapsack Problem (MOMKP) can be formulated as in [9] and 

[32-38]. 

 

max  

. .    

           0        {0,1}n

Cx

s t Ax b

x x



 

  (2) 

where C  is a k n  matrix,  A  is a m n  matrix and b is a m  vector 

Zitzler and Thiele in [33] first introduced the MOMKP and proposed a strength pareto evolutionary 

algorithm (SPEA) to solve it. They also introduced the well known instances with k=m=2,3,4 and 

n=100,250,500,750 (12 instances). The elements of C and A are uncorrelated random numbers from 

Uniform[10,100] and b corresponds to a tightness ratio of 50%. The instances of this paper have been 

solved by numerous papers and are used also in our computational study. Instances with larger 

coefficients, thus from Uniform[100,1000], and also correlation between matrices C and A have been 

created by us for further experiments and they are available along with their solutions (exact Pareto 

fronts) in the web site: https://sites.google.com/site/kflorios/augmecon2  

Florios et al. in [9] solved exactly instances of the MOMKP with k=m=3 and n=10 to 50 using the 

Multicriteria Branch and Bound (MCBB) method and suitable branching and construction heuristics. 

The authors also solved approximately the same instances using SPEA2 and NSGAII. Comparison 

included the adaptive ε-constraint (ADECON) method of Laumanns et al. [5]. MCBB with suitable 

heuristics was found to be noticeably faster than adecon in small and medium instances (up to 50 

items). Nevertheless, as the size of the problem increased, the advantage of MCBB over adecon 

deteriorated. In the present paper, a larger instance of k=m=3 and n=100 (not solvable with MCBB 

plus heuristics) is solved with AUGMECON in a fraction (1/8) of the run time needed by ADECON in 

the past (see Laumanns et al. [39]). Recently, Shah and Reed in [36] proposed the epsilon-

nondominated hierarchical Bayesian optimization algorithm (ε-hBOA) for the MOMKP and compared 

to SPEA2 and ε-NSGAII. The authors also introduced for the first time weakly correlated coefficients 

for A and C. They did not account though for larger coefficients, drawing A and C coefficients 

typically from Uniform[10,100] as in Zitzler and Thiele in [33]. Finally, Lust and Teghem in [37] 

present an analytical survey of the MOMKP along with its solution methods (especially 

metaheuristics) and propose a new approach, the two-phase Pareto local search (2PPLS) adapted to the 

MOMKP. The authors provide computational results in the Zitzler and Thiele data found in [33]. 

Nevertheless, the simulations do not account for larger coefficients and/or weakly correlated data. 

Regarding the second MOIP problem treated in this paper, it is well known that the single objective 

Set Packing Problem (SPP) is a classic combinatorial optimization problem which is among the first 

ones to be proven NP-complete [40]. The Bi-objective Set Packing Problem (BOSPP) has been 

introduced by Delorme et al.  [41]. Also, Tricoire [42] has applied his Multi-Directional Local Search 

method to the BOSPP. There are benchmarks for this problem by Delorme et al. [41], available at the 

MOCOlib website maintained by X.Gandibleux. The BOSPP is less studied in the literature compared 

with the MOMKP.  

https://sites.google.com/site/kflorios/augmecon2
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3. Methodological part 

3.1 The improved version of the augmented ε-constraint (AUGMECON2) 

We start this section by briefly describing the original version of the augmented ε-constraint method, 

named AUGMECON [3] for the integrality of the paper. AUGMECON enhances the conventional ε-

constraint method for generating the Pareto optimal solutions in Multi-Objective Mathematical 

Programming problems. It is well known that the ε-constraint has certain advantages in relation to the 

weighting method as described in [3]. AUGMECON addresses some weak points of the conventional 

ε-constraint, namely, the guarantee of Pareto optimality of the obtained solution in the payoff table as 

well as in the generation process and the increased solution time for problems with several (more than 

two) objective functions.  

In the original AUGMECON method the problem solved is the following: 

max (f1(x) + eps (S2 /r2 + S3 /r3 +…+ Sp /rp))         

st 

f2(x) – S2 = e2  

f3(x) – S3 = e3            (3) 

. . .  

fp(x) – Sp = ep 

x  S  and  Si  R+ 

where e2, e3,...,ep are the parameters for the RHS for the specific iteration drawn from the grid points 

of the objective functions 2,3,...,p. The parameters r2, r3,...,rp are the ranges of the respective objective 

functions. S2, S3,..., Sp are the surplus variables of the respective constraints and eps  [10-6, 10-3]. 

In AUGMECON2, the improved version of AUGMECON we slightly modify the objective function 

as follows: 

max (f1(x) + eps (S2 /r2 + 10-1 S3 /r3 +…+ 10-(p-2)  Sp /rp)) 

This modification is done in order to perform a kind of lexigographic optimization on the rest of the 

objective functions if there are any alternative optima. For example, with this formulation the solver 

will find the optimal for f1 and then it will try to optimize f2, then f3 and so on. With the previous 

formulation the sequence of optimizations of f2 to fp was indifferent, while now we force the 

sequential optimization of the constrained objective functions (in case of alternative optima). 

As it is explained in [3], for each objective function 2...p we calculate the objective function range. 

Then we divide the range of the k-th objective function to qk equal intervals using (qk-1) intermediate 

equidistant grid points. Thus we have in total (qk+1) grid points that are used to vary parametrically 

the RHS (ek) of the k-th objective function. The total number of runs becomes (q2+1)  (q3+1)  . . .  

(qp+1). Let rk be the range of the objective function k (k=2...p). Then the discretization step for this 

objective function is given as: 

stepk = rk/qk 

The RHS of the corresponding constraint in the t-th iteration in the specific objective function will be:  

ekt = fmink + t × stepk 

where fmink is the minimum from the payoff table and t the counter for the specific objective function. 
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In each iteration we check the surplus variable that corresponds to the innermost objective function. In 

this case it is the objective function with p=2. Then we calculate the bypass coefficient as: 

b = int(S2/step2) 

where int( ) is the function that returns the integer part of a real number. When the surplus variable S2 

is larger than the step2, it is implied that in the next iteration the same solution will be obtained with 

the only difference being the surplus variable which will have the value S2-step2. This makes the 

iteration redundant and therefore we can bypass it as no new Pareto optimal solution is generated. The 

bypass coefficient b actually indicates how many consecutive iterations we can bypass.  

This can be shown with the following example: Assume that we have a three-objective problem with 

the following payoff table (all objective functions to be maximized): 

Table 1. Payoff table 

 f1(x) f2(x) f3(x) 

max f1(x) 980 796 803 
max f2(x) 836 876 765 
max f3(x) 809 821 905 

 

From the payoff table we have r2=80 and r3= 140. We then divide the two ranges in 10 equal intervals 

with step2=8 και step3=14. The AUGMECON2 process is the following: 

For i=0 to 10 
 e3=765 + i×14 

For j=0 to 10  
  e2=796 + j×8 
  Solve (3) 
 Next j 
Next i 

The objective function f2(x) is the innermost loop (j counter). Assume that we are in the 2nd outermost 

(where i=1) and the 5th innermost iteration (where j=4) where e3=779 and e2=828 which are the shaded 

cells in Table 2.  

Table 2. Grid points of the problem 

obj. 
function 

counter 
grid points 

0 1 2 3 4 5 6 7 8 9 10 

f2(x) j 796 804 812 820 828 836 844 852 860 868 876 

f3(x) i 765 779 793 807 821 835 849 863 877 891 905 

 

After the optimization we obtain S2=18 and S3=9, which mean that in this iteration the value for the 

second objective function is: 

 f2 = e2 + S2 = 828+18 = 846         and        f3 = e3 + S3 = 779+9 = 788.  

We conclude that it is redundant to perform the next two iterations with j=5 and j=6 (strikethrough in 

table 2) because we will result in the same Pareto optimal solution with f2=846. The only difference is 

that the surplus variables will be 10 (=18-8) and 2 (18-28) for j=5 and j=6 respectively. Therefore we 



 8 

can bypass these two iterations and go directly from j=4 to j=7 (value for e2=852 in Table 2). The 

bypass coefficient b is calculated as b = int(18/8) = 2.  

The flowchart of the new algorithm is shown in Figure 1: 

 

Create payoff table

(lexmax fk(X), k=1…p )

Problem P

max [f1(X) + eps  (S2 /r2 + 10-1 S3 /r3 +…+ 10-(p-2)  Sp /rp)]

St

XF
fk(X) – Sk = ek k=2...p

where 

fk(X) objective functions to be maximized 

ek = lbk + ik stepk   

lbk: lower bound for objective function k

stepk = rk/gk : step for the objective function k

rk: range of the objective function k

gk: number of intervals for objective function k 

Sk: surplus variable for objective function k

F: the feasible region

eps: a very small number (usually 10 -3 to 10-6)

nP: number of Pareto optimal solutions

b = int(S2/step2): bypass coefficient – int() means integer part

Set lower bounds lbk for k=2…p

Calculate ranges rk for k=2…p

Divide rk into gk intervals 

(set number of gridpoints =gk+1)

Initialize counters:

ik=0 for k=2…p,    nP=0

Solve problem P

Feasible?

ip < gp?

ip-1 < gp-1?

i2 < g2?

ip = ip + 1

ip-1 = ip-1 + 1

i2 = i2 + 1

nP = nP + 1
Calculate b

b= int(S2/step2)

i2 = g2

i2 = 0

ip-1 = 0

i2 = i2 + b

END

START

YES

NO NO

YES

YES

NO

NO

YES

 

Figure 1. Flowchart of the AUGMECON2 method 

In this way, using the bypass coefficient to exploit the information from the slack/surplus variables of 

the constrained objective functions we greatly accelerate the algorithm as we avoid redundant 

iterations. As we will see in the subsequent section the “jumps” caused in the innermost loop become 
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even more significant when we reduce the step size (increase the grid density). Therefore, we take 

advantage of this property in order to produce the exact Pareto front in MOIP problems in reasonable 

computation time. The GAMS code with some instructions and instances/results of this paper are 

available in https://sites.google.com/site/kflorios/, while a representative model is available in GAMS 

model library http://www.gams.com/modlib/libhtml/epscmmip.htm . 

3.2 Calculation of the exact Pareto set in MOIP problems using AUGMECON2 

As it was mentioned, the ε-constraint method can be properly used for the generation of the Pareto 

optimal solutions in MOMP problems with discrete variables. In the case of MOIP and 0-1MOMP 

problems (MOIP problems with only 0-1 variables as integer variables which are the vast majority of 

MOIP problems) the ε-constraint method can be used to produce the exact (or complete) Pareto set, 

which means all the Pareto optimal solutions. As it is well known the size of the Pareto set is finite in 

MOIP problems and the AUGMECON2 is therefore suitable for generating the exact Pareto set for 

these problems. The only conditions are the following: 

1. The objective function coefficients must be integer  

2. The nadir points of the Pareto set must be known 

In order to relax the first condition we can easily transform the problem to have integer objective 

function coefficients by multiplying with the appropriate power of 10. For example if we have one 

decimal digit in the objective function coefficients, we multiply them with 10, if we have two decimal 

digits we multiply them with 100. It must be noted that the greater the magnitude of the objective 

function coefficients the more time consuming is the generation of the exact Pareto set (see e.g. 

section 4 in the computational experiment). The reason is that the range of the objective functions is 

inevitably greater. 

In order to relax the second condition it is adequate to know a lower bound of the nadir point (for 

maximization problems). The payoff table in multi-objective programming provides the individual 

optima of the objective functions (in the diagonal). However, it is well known (see e.g. Isermann and 

Steuer [43]) that it does not guarantee the calculation of the nadir points except only for problems with 

just two objective functions. For problems with three and more objective functions the minimum of 

the payoff table‟s columns do not necessarily provide the nadir point of the problem. Consequently, in 
order to be sure that we have the true nadir points we cannot rely on the values of the payoff table. We 

must either calculate them using one of the methods in the literature, or estimate some lower bounds of 

them. The latter usually results in slightly higher computational effort afterwards, during the 

AUGMECON2 process. The closer is the lower bound to the nadir point the less is the computational 

time as the objective function range becomes narrower.  

In order to calculate the nadir point several approaches have been proposed in the literature (see e.g. 

[43-47]). In the case of MOIP problems the procedure of Jorge [47] is suitable to our case. 

Specifically, one can just reverse the direction of optimization of the p-1 objective functions and 

optimize them over the integer efficient set, obtaining thus the elements of the nadir vector. The 

calculation of the nadir vector can be considered as a pre-processing phase to our method that can be 

triggered whenever needed.     

The computational strategy for calculating the exact Pareto set in MOIP problems with integer 

objective function coefficients is the following (without loss of generality, assume that all the 

objective functions are to be maximized): 

https://sites.google.com/site/kflorios/
http://www.gams.com/modlib/libhtml/epscmmip.htm
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1. Calculate the objective function ranges of the p-1 objective functions. This means that we 

have to calculate or estimate lower bounds for the nadir points. If the nadir points are not 

given (e.g. in the literature for the specific problem), we may apply an appropriate method 

(43-47].  

2. Assume that the objective function range for the k-th objective function is rk (integer). We 

select for each objective function a unity step so that for each one of them the number of grid 

points is exactly rk+1  

3. We apply AUGMECON2 and obtain the exact Pareto set. The unity step size and the 

calculation (or approximation with lower bounds) of the nadir point guarantee that no Pareto 

optimal solutions are left undiscovered.  

The above calculation procedure is straightforward and can be easily coded either using an external 

solver with a programming language or in a modeling language. In our case it is coded in GAMS 

modeling language [48].  

 

4. Computational experiment 

4.1 Two objective MKP 

The improved augmented epsilon constraint with jumps (AUGMECON2) presented in this study is 

compared to the original version of augmented epsilon constraint (AUGMECON) developed in [3], 

firstly in a test bed of 16 artificial datasets (in total, 32 runs). The structure of these datasets is 

illustrated in Table 3. 

Table 3. The test bed of 16 datasets for two objective MKP 

U instances  W instances 

2 digits for C 3 digits for C  2 digits for C 3 digits for C 
2kp100 2kp100b  2kp-W-100 2kp-W-100b 
2kp250 2kp250b  2kp-W-250 2kp-W-250b 
2kp500 2kp500b  2kp-W-500 2kp-W-500b 
2kp750 2kp750b  2kp-W-750 2kp-W-750b 

 

There are 3 parameters in the creation of Table 3 datasets: a) Type of instances b) digits for C matrix 

and c) number of items, n 

a)  Type of instances. In the literature only the U type of instances is present (“U” stands for 
Uncorrelated instances for C and A matrix elements) and especially with 2 digits for C matrix. In this 

type belong the mostly used data of Zitzler and Laumanns available at [33] and [49] (which appear in 

the web site  http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/ ) that have 

been extensively used in the literature. These are called 2kp100, 2kp250, 2kp500 and 2kp750 in our 

study. They comprise two objectives, two constraints and n=100,250,500,750. These are the standard 

benchmarks. U type refers to C matrix elements derived from a Uniform distribution, either in 

U[10,100] (2 digits) or U[100,1000] (3 digits).  

In addition to U type instances, we have added according to Shah and Reed in [36] the new type of 

“W” instances, which stands for Weakly correlated instances for C and A matrix elements. Following 

Shah and Reed in [36] we have also introduced correlations between C and A matrix elements. For 

http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/
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each knapsack i, the technological coefficients aij are generated randomly between 10 and 100 (e.g. 

aijU[10,100]) and the objective function coefficients cijU[aij – 10, aij + 10]. This correlation level is 

a realistic factor because e.g. in project selection settings it is expected that probably higher cost 

candidate projects may have higher evaluation score in some quality criteria. In general the W type 

problems are harder to solve than the U type. These datasets with their exact Pareto fronts are 

available in https://sites.google.com/site/kflorios/augmecon2. 

b) Digits for C matrix. It is expected that when larger coefficients for the objective functions are 

present, the MOIP problem becomes more difficult to be solved exactly, since the pay off table results 

in an order of magnitude greater range between ideal and nadir point co-ordinates. So, also instances 

with 3 digits for C matrix elements have been studied which come from the corresponding 2 digit 

instances by simply adding a small error term e   U[0,9] and multiplying the scale of the 2 digit 

instances by a factor of 10. So, the structure of each instance is not altered by a different sampling. We 

note that only the C coefficients have been refined to 3 digits precision. The A coefficients remain in 2 

digits precision, so the constraints and thus feasible region of MOIP remain unchanged. We have only 

increased precision in the measurement of the objective functions. This makes the 3 digits instances 

harder to solve exactly. This is also true even for Dynamic Programming algorithms in single 

objective single constraint knapsack  problems as stated in an example in Papadimitriou and Steiglitz 

[50], pp.424-425. 

c) Number of items, n. Following Zitzler and Laumanns standard datasets, we have restricted our 

study in the range n=100, 250, 500, 750 items. Also, larger samples have been created with 1000, 

1250 and 1500 items, but were not solved because the exact solution of the 750 item benchmarks was 

already time consuming, and we chose to expand to factors a) and b) previously mentioned and not 

just expand the size of the instance, n, keeping only U type and 2 digits instances into account. For U 

type and 2 digits for C coefficients instances, (the Zitzler-Laumanns benchmarks) Lust has made 

available also the datasets and the Pareto Fronts at his site for the two objectives case 

https://sites.google.com/site/thibautlust/research/multiobjective-knapsack 

4.2 Three objective MKP 

The three objective MKP was analysed using only 3 datasets which are illustrated in Table 4. 

Table 4. The three datasets for three objective MKP 

 2 digits for C 

U instances 3kp40 
 3kp50 
 3kp100 

 

The dataset coding 3kpX means knapsack problems with three objective functions, three constraints 

and X binary variables. The instances 3kp40 and 3kp50 are taken from Laumanns et al. [5] while 

3kp100 is taken from Laumanns et al. [39] and also the Zitzler-Laumanns TestProblemSuite site 

mentioned in Section 4.1. The instances 3kp40 and 3kp50 have been also solved in Florios et al. [9]. 

The main interest here is the solution of 3kp100 which is rather challenging. According to Laumanns 

et al. in [39], 255h (=hours) was the run time for this instance with adaptive epsilon constraint. In this 

study, the AUGMECON2 method proposed improves greatly in this run time, being roughly an order 

of magnitude faster. 

https://sites.google.com/site/kflorios/augmecon2
https://sites.google.com/site/thibautlust/research/multiobjective-knapsack
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4.3 Two objective SPP 

The formulation of the Bi-objective Set Packing Problem (BOSPP) is as follows: 
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  (4) 

Number of constraints is m, number of variables is n, the objective function 1 coefficients are c(1), the 

objective function 2 coefficients are c(2) and the matrix tij is as follows. For each constraint i=1,…,m in 
matrix t, it is tij=1 if variable j=1,…,n is involved in the i=1,…,m constraint. Else, tij=0. Matrix t is a 

sparse matrix, containing 0-1 elements tij. The max number of 1s in a row i of matrix t is the parameter 

max-one. Also, note that the RHS of the ≤ constraints in model (4) is 1 (set packing constraints) and 

this is a vector maximization problem (BOSPP). 

AUGMECON2 presented in this study is compared to the dichotomic procedure with additional 

constraints ([41], [51] and [52]), in a collection of 120 benchmarks for the BOSPP available at the site 

http://www.emse.fr/~delorme/SetPacking.html#BOSPP. These datasets are also available via the 

MOCO lib web site http://xgandibleux.free.fr/MOCOlib/. The structure of these datasets is illustrated 

in Table 5. For every Number ranging from 1 to 20, there exist 6 types of instances, namely 

A,B,C,D,E,F so there are totally 20×6=120 instances.  

 

Table 5. The 120 benchmarks for the BOSPP [41] 

No Instances # Variables # Constraints Density (%) Max-One 
1 2mis100_300 100 300 2.00 2 
2 2mis100_500 100 500 2.00 2 
3 2mis101_300 100 300 2.00 2 
4 2mis101_500 100 500 2.00 2 
5 2mis200_1000 200 1000 1.00 2 
6 2mis200_600 200 600 1.00 2 
7 2mis201_1000 200 1000 1.00 2 
8 2mis201_600 200 600 1.00 2 
9 2spp100_300 100 300 3.08 4 
10 2spp100_500 100 500 2.96 4 
11 2spp101_300 100 300 2.97 4 
12 2spp101_500 100 500 3.03 4 
13 2spp200_1000 200 1000 1.49 4 
14 2spp200_600 200 600 1.50 4 
15 2spp201_1000 200 1000 1.49 4 
16 2spp201_600 200 600 1.49 4 
17 2spp202_1000 200 1000 2.48 8 
18 2spp202_600 200 600 2.48 8 
19 2spp203_1000 200 1000 2.49 8 
20 2spp203_600 200 600 2.56 8 

 

http://www.emse.fr/~delorme/SetPacking.html#BOSPP
http://xgandibleux.free.fr/MOCOlib/
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5. Results and Discussion 

The MOMKP model and the augmecon2 method proposed in this paper have been created and solved 

in GAMS 23.5 environment using CPLEX 12.2 solver. The OS is Windows 7 32-bit and the hardware 

is a standard core i3 notebook at 2.13 GHz with 4GB RAM for the 5.1 Subsection runs (two objectives 

MKP) and a standard core i5 notebook at 2.40GHz with 4GB RAM for the 5.2 Subsection runs (three 

objectives MKP), the 5.3 Subsection runs (BOSPP) and the 5.4 Subsection runs (approximate solution 

of MOMKP). 

5.1 Two objective MKP results 

The results from the two objective multidimensional knapsack problems are shown in Table 6. The 

Grid points are actually the second objective function‟s range increased by one. The Models solved are 
the number of IP problems solved for each problem, i.e. the model described in (3). |PF*| is the 

cardinality of the Pareto set (number of Pareto optimal solutions in the exact Pareto Front) 

Table 6. AUGMECON2 and AUGMECON statistics for 2-objective MOMKP  

Problem 
type 

Problem 
dimensions 

Grid 
points |PF*| Models solved CPU time sec 

U Type 
[10,100] 

   AUGMECON AUGMECON2 AUGMECON AUGMECON2 

2kp100 823 121 823 144 227 40 

2kp250 2534 568 2534 594 2781 932 

2kp500 4176 1416 4176 1654 15290 9601 

2kp750 7232 3030 7232 3699 55483 43355 

U Type 
[100,1000] 

       

2kp100b 8225 135 8225 136 2457 48 

2kp250b 25341 732 25341 746 30621 1914 

2kp500b 41774 2332 41774 2396 145686 17132 

2kp750b 71966 5868 - 6143 - 92913 

W Type 
[10,100] 

       

2kp-W-100 278 111 278 111 568 309 

2kp-W-250 666 375 666 375 4593 4251 

2kp-W5-00 1944 834 1944 968 9052* 7514* 

2kp-W-750 1914 1251 1914 1556 13562* 12579* 

W Type 
[100,1000] 

       

2kp-W-100b 2803 197 2803 205 6765 816 

2kp-W-250b 7267 967 7267 1678 59831 24032 

2kp-W-500b 19527 2980 19527 3256 130022* 46569* 

2kp-W-750b 19619 4960 - 5529 - 128454* 

 

The asterisk (*) indicates that four threads of CPLEX have been used for the IP sub-problems 

(otherwise only one thread of CPLEX has been used). Dashes “-“ in the cells mean that the specific 

runs did not terminate after 48 hours. 

Table 6 reports on the CPU time, Grid points, Models Solved and |PF*| of the corresponding datasets. 

By looking at the first part of Table 6 results, we see a significant decrease of CPU time and Models 

Solved in favour of AUGMECON2 over original AUGMECON.  This advantage is attributed to the 

jumps introduced (see section 3.1) which skip redundant gridpoints. This is even more apparent in the 

second part of Table 6, where the digits of C matrix are three (U-type [100-1000]) and the gridpoints 

are ten times more, due to larger integer coefficients. The models solved for AUGMECON2 in Table 6 

are driven by |PF*|, being a desirable feature of the algorithm, while the models solved for the original 
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AUGMECON are driven by the gridpoints‟ number, which is very high, due to the large coefficients 

present. The example of Figure 2 is characteristic. It depicts the computational time and the “models 
solved” parameters for the four 2kp problems with large coefficients (U-type [100-1000]).  

 

Figure 2. Computational time and “models solved” for the 2kp problems of U-type with objective 

function coefficients in [100-1000] 

This is a key finding of this study, which justifies the improved version of AUGMECON2. Also, the 

differences are overwhelming in the CPU time in the second part of Table 6 between the two versions. 

AUGMECON2 is found to be an order of magnitude faster than the original AUGMECON, and also 

AUGMECON2 solves the hardest 2kp750b dataset, whilst the original AUGMECON cannot solve it 

in 2 days limit.  

By looking at W type [10-100] results (third part of Table 6) we evaluate the newly introduced W type 

instances. Firstly, the size of the Pareto front in these instances seems to be less than the size of the 

Pareto front in corresponding U type instances, with the same number of digits for C elements. Also, 

while for smaller number of items, W type instances seem to be harder than U type instances, the 4 

thread use of CPLEX makes even the larger 500 and 750 item datasets affordable. Comparing 

AUGMECON2 to the original AUGMECON, we see that in these datasets, AUGMECON2 is 

marginally faster again. The W type [100-1000] instances (fourth part of Table 6) are probably the 

hardest to solve since both complicating factors are present, W type and 3 digits for C elements. 

Again, we note that the number of Models solved  for AUGMECON2 is driven by the |PF*| number, 

whilst for original AUGMECON the models solved are driven by the gridpoints which eventually 

result in a prohibitive number, due to the large coefficients present. AUGMECON2 again solves a 

dataset, namely 2kp-W-750b that the original AUGMECON cannot solve in 2 days limit.  

5.2 Three objective MKP results 

Table 7 presents the results for the exact solution of U type instances with 2 digits for C in three 

objectives and three constraints. From Section 5.1, one concludes that AUGMECON2 dominates 

AUGMECON in all benchmarks with two objectives and two constraints. This is by far confirmed in 

the three objective cases. Additionally, in this section we compare AUGMECON2 with method 

ADECON of Laumanns et al. [5, 39] and MCBB [9, 53]. For large instances ADECON is clearly 

better than MCBB. Nevertheless, for small to medium instances (up to 30-40 binary variables), MCBB 

remains the fastest method, but it failed to provide a solution for the 100 binary variables (stopped 

after 48h). It should be noticed that there is a dominated objective vector among the 6501 Laumanns et 

al. report on their website. Our results conform to those of Lust at his web site. We find exactly 6500 

non dominated vectors for 3kp100. The nadir vectors of these problems which are necessary for the 

implementation of AUGMECON2, were given as the exact Pareto front of these benchmarks is 
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available in the literature. As it was mentioned, the runs of AUGMECON2 and AUGMECON were 

made by the authors in an i5 2.4GHz and the results of the previous methods (computational times of 

ADECON and MCBB) are adjusted according to the benchmarks of Dongarra [54] and the use of 

LINPACK utility for standardization of system performance. It must be emphasized that the 

computational times, although standardized to a common base, they must be used with much caution 

for inter-method comparisons. On the contrary, they are very useful for examining the evolution of 

computational time with the size of the problem for each method.  

 

Table 7.  AUGMECON2 statistics and comparison with AUGMECON, Adecon, and MCBB for 3-

objective MOMKPs (U-Type) 

U Type 
[10,100] 

CPU time Grid points per 
obj. function 

Models 
solved 

|PF*| 

AUGMECON2     
3kp40 37 min 540 7802 389 
3kp50 159 min 846 24903 1048 
3kp100 33 h 1236 103049 6500 
     
AUGMECON     
3kp40  15 h 540 242386 389 
3kp50  41 h 846 489746 1048 
3kp100  dnt* 1236 dnt dnt 
     
ADECON [5, 39]     
3kp40 29 min - 26846 389 
3kp50  209 min - 128695 1048 
3kp100  120 h - 644689 6501 
     
MCBB [9, 53]     
3kp40 6.5 min - - 389 
3kp50 164 min - - 1048 
3kp100  dnt - - dnt 

*dnt = did not terminate within 48 hours which means problem too big for the method 

5.3 Two objective SPP results 

Regarding the results for the Bi Objective Set Packing Problem (BOSPP), there are 20 problems with 

6 instances each (A, B, C, D, E, F). In their work, Delorme et al. [52] present the mean running time 

results for the 120 datasets which are presented in Table 8 along with the runs from AUGMECON2. It 

must be noted that Delorme et al. [52] CPU times are standardized to our system (where 

AUGMECON2 runs) using Dongarra‟s benchmarks from LINPACK [54]. We observe that the 

running times are slightly higher for AUGMECON2 in the case of 100 variables but for the 200 

variables they are significantly lower. This finding simply verifies the fact that our approach is 

practical for BOSPP too, although it cannot provide a rigorous conclusion on whether it is in general 

faster than Delorme et al. [52] exact procedure. All results for the Bi-Objective Set Packing Problem 

(BOSPP) are presented analytically (i.e. for every benchmark No 1-20) in an online Appendix in 

http://sites.google.com/site/kflorios/augmecon2 (in the BOSPP section). 

 

 

 

http://sites.google.com/site/kflorios/augmecon2
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Table 8. Comparison of AUGMECON2 with Delorme et al. [52] mean performance for BOSPP 

benchmarks No 1-20 averaged over types A-F. 

 CPU time in seconds  
AUGMECON2     
 A B C D E F Average 
100 21 27 24 17 7 7 17 
200 2979 2596 2975 2269 3591 3161 2928 
        
Delorme et al. [52]    
 A B C D E F Average 
100 19 24 21 13 7 6 15 
200 12256 10052 10473 11328 9203 12537 10975 

 

5.4 Approximate solution with AUGMECON2 and comparison with SPEA2  

Apart from the computation of the exact Pareto set in MOIP problems, we test AUGMECON2 as a 

provider of approximations of the Pareto set. Approximations of the Pareto set can be obtained much 

faster than the exact Pareto sets (especially when the required degree of accuracy is low) and they are 

very common in practice. This is exactly the reason why MOMH algorithms are so popular the last 

years. An additional advantage of AUGMECON2 is that it can be used also as an approximate method 

with an adjustable degree of approximation. The tunable parameter is the resolution of the grid for 

every constrained objective. Defining the number of intervals gk (which means gk+1 grid points) for 

k=2,3,…,p we can obtain a representation of the Pareto set with a predetermined density. We will 
examine the performance of AUGMECON2 in computing approximations of the Pareto set in 

benchmark problems that we used before and we will compare it with SPEA2 [49], a very popular 

MOMH method. The SPEA2 algorithm implemented in PISA [55, 56] has been employed as a 

standard MOMH for this problem. Our aim is to show that the use of AUGMECON2 which is a 

general purpose algorithm is competitive with a general purpose MOMH algorithm like SPEA2. It 

must be noted that in a previous work of ours, SPEA2 was found superior to NSGAII for MOMKP 

problems [9]. 

 

5.4.1 MOMKP problem with 3 objective functions 

We will apply AUGMECON2 for providing an approximation of the Pareto set in the 3kp100 problem 

elaborated in section 5.2. In Table 9 we show the evolution of the Pareto set representation as a 

function of grid points that we divide the ranges of the second and third objective function. We also 

record the computational time in a system core i5, 2.40 GHz and 4GB RAM running Windows 7 32-

bit. The efficiency of the representation is expressed by the coverage metric C(A,B). The coverage 

metric, in our case, presents the percentage of Pareto optimal solutions in set B, which are weakly 

dominated by a solution discovered by the approximate algorithm in set A. The term “weakly” is used 
to incorporate the cases of identical solutions in the two sets ([8]; p. 325).  

 | :
( , )

wb B a A a b
C A B

B

   
      (5) 

the symbol w  represents weak dominance, that also holds true if f(a) = f(b). Therefore, the coverage 

metric C(AUGMECON2, EPS) indicates how many solutions from AUGMECON2 are also found in 

the Exact Pareto Set (EPS). It actually reports the % of discovered Pareto optimal solutions by 
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AUGMECON2 and the closer to 1 is the coverage metric C(AUGMECON2, EPS) the better is the 

representation. The number of gridpoints varies from 10 to 700. From Table 9 we can see that with 

400 gridpoints per objective function we can achieve a rough 80% coverage in 35,446 seconds. Going 

to 90% coverage means almost doubling the computational time (almost 63,708 seconds).  

Table 9. AUGMECON2 statistics for 3kp100 dataset of Laumanns et al. [39]. 

No. Grid points C(AUGMECON2, EPS) CPU time (sec) 
10 0.0103 53 
20 0.0348 201 
30 0.0685 383 
40 0.1094 678 
50 0.1489 979 
60 0.1954 1389 
70 0.2329 1836 
80 0.2815 2400 
90 0.3109 2752 
100 0.3546 3691 
120 0.4284 5094 
140 0.4736 7140 
160 0.5213 8458 
180 0.5659 10465 
200 0.5998 12010 
240 0.6670 16334 
280 0.7162 19198 
320 0.7410 23345 
360 0.7860 27234 
400 0.8091 35446 
460 0.8371 42281 
520 0.8765 48043 
580 0.8949  56498 
640 0.9048  63708 
700 0.9126  70429 

 

Subsequently we applied the popular SPEA2 algorithm for calculating a representation of the Pareto 

set in the specific problem using the PISA platform ([55, 56]) and the GNU gcc 4.6.2 C compiler. The 

SPEA2 algorithm with a population of 7000 chromosomes was executed for 1000 generations, taking 

42840 seconds (=11h 54min) to run. The SPEA2 algorithm produced 1719 distinct solutions in the 

final population of 7000 chromosomes. Out of these, 1390 were dominated by the exact Pareto front of 

6500 solutions and 329 were the actually nondominated objective vectors. Thus, the Coverage metric 

is computed as C(SPEA2, EPS)=329/6500=5.06%. If we look at Table 9, we see that the heuristic 

application of AUGMECON2 with sparse grids is capable of producing an approximation to the exact 

Pareto front with Coverage(AUGMECON2,EPS)= 0.0685 in CPU time=383sec (using only 30 

gridpoints per objective function). Even if we want to consider all 1719 solutions of SPEA2 as 

practically Pareto optimal which yields a value of Coverage=1719/6500=26.45%, we see from Table 

9, that AUGMECON2 would produce such an approximation in only 2400sec with a 

Coverage=0.2815 (using only 80 grid points per axis). So we see that in 40minutes, a heuristic use of 

AUGMECON2 yields a higher quality result than 11h 54min of computation with SPEA2 in the same 

hardware. 
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5.4.2 MOMKP problem with 2 objective functions 

We also applied AUGMECON2 and SPEA2 in the knapsack problems with two objective functions 

that we used in section 5.1 and specifically in the U instances with 2 digits (2kp100, 2kp250, 2kp500, 

2kp750). We fix the number of gridpoints to 800 for all four runs as we aimed at approximations of 

the Pareto set (the number of gridpoints for the exact Pareto set is available in Table 6 for the four 

cases). The calculation time and the coverage for the four cases are depicted in Table 10: 

Table 10. Approximations of the Pareto set with AUGMECON2 (800 gridpoints) 

Problem C(AUGMECON2, EPS) CPU time (sec) 
2kp100 0.9835 39 
2kp250 0.6884 630 
2kp500 0.4025 3324 
2kp750 0.2092 12195 

 

Subsequently we solved the four problems with SPEA2 using the PISA platform. After some 

preliminary experiments we used the parameters shown in Table 11 that provide best results:  

Table 11. Parameters used in SPEA2 simulations (following PISA terminology). 

Parameter 2kp100 2kp250 2kp500 2kp750 3kp100 
Alpha 1500 2000 2500 3000 7000 
Mu 750 1000 1250 1500 3500 
Lambda 750 1000 1250 1500 3500 
Maxgen 1000 3000 3000 2000 1000 
Dim 2 2 2 2 3 
Cost evaluations 3,000,000 12,000,000 15,000,000 12,000,000 21,000,000 

 

In the above table Alpha is the population size, Mu is the number of parents, Lambda is the number of 

children, Maxgen is the maximum number of generations, Dim is the number of objective functions 

and constraints and Cost evaluations = Dim × Maxgen × Alpha. Using the above parameters the 

calculation time and the coverage for the four cases are depicted in Table 12: 

Table 12. Approximations of the Pareto set with SPEA2 

Problem C(SPEA2, EPS) CPU time (sec) 
2kp100 0.5950 1799 
2kp250 0.0000 10258 
2kp500 0.0000 15780 
2kp750 0.0000 15179 

 

We can observe that except the smallest problem the coverage achieved by SPEA2 is zero. This means 

that all the solutions produced are dominated by the Pareto optimal solutions of the exact Pareto set. 

The outperformance of AUGMECON2 over SPEA2 is evident and it can be better illustrated also in 

terms of the produced Pareto fronts as shown in Figure 3.  
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Figure 3. Visualization of Pareto front approximations for SPEA2 and AUGMECON2 for the two 

extreme cases (2kp100 and 2kp750) 

It is observed from Figure 3 that the SPEA2 implementation for MOMKP suffers from the „middling 

effect‟ (fail to catch the Pareto optimal solutions at the two edges), which is caused by the greedy 

repair technique in the knapsack module. 

6. Case study: R&D project selection in a University  

The selection of R&D projects is a complex problem, which is faced by universities, research 

institutes, firms etc on a regular basis. In this study, this problem is modeled as a multi-objective 

optimization problem, and particularly a Multi-objective Integer Programming problem (MOIP). The a 

posteriori approach to multi-objective optimization is adopted aiming at generating exactly all Pareto 

optimal solutions of the problem. Mavrotas et al. [57] solved this problem with a combined MCDA 

and IP approach. In the current work we follow a different approach. We avoid expressing criterion 

weights information and solve the problem in a truly multi-objective fashion. The aim is to provide the 
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decision makers as much information as possible before they express their preferences (weights, etc). 

The statement of the problem is as follows: 

A Greek university has to decide on funds distribution among 150 candidate R&D projects. Every 

project belongs in one of the nine departments of the university. Furthermore, every project is 

classified as basic or applied research. The available budget is 6,000,000 Euros. Every project has 

obviously a relevant cost associated with it. The evaluation phase by a committee assigned scores in 

the range 1 to 10 for every project for three criteria: Innovation, Usefulness and Faculty Sufficiency. 

The data of the problem are available in [57]. 

We model the problem as a MOIP. The objective functions are total Innovation, Usefulness and 

Faculty Sufficiency scores associated with a solution or decision by the university. Decision variables 

are 0-1 variables equal to 1 if a project is approved and 0 if not. There are three objective functions to 

take into account, so this is a multi-objective optimization problem. No weight information is asked 

for by the DM at this point of analysis. Also, no equal weights are assumed. There is a budget 

constraint of 6,000,000€ available funds. Also, there are important policy (or segmentation) 

constraints dictated by the R&D policy of the university. Funds approved to every department must be 

in a certain range for every department, as a percentage of the total approved budget of the 

Programme. This ensures that all departments, more or less, obtain some funds. Also, that no super 

department accumulates all funds instead of another weaker department. These constraints are stated 

as lower and upper bounds on the total approved budget of the Programme. These bounds are different 

for every department and are proportional to e.g. the size of the department. Also, there is a statement 

that the basic research must be protected. So at least, 30% of the approved projects must come from 

the basic research type. While lower and upper bounds for departments are based on a percentage of 

total cost, this lower bound on basic research is based on a percentage of the number of approved 

projects. 

The MOIP model is as follows: 
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The variables are xi{0,1} and the various parameters are ini, usei, fsi the Innovation, Usefulness and 

Faculty Sufficiency scores of every project in a range 1-10 (data), costi the cost associated with every 
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project in €, d(k) is the set of projects from k-th department (k in {1,2,3,..,ND}), basic is the set of basic 

research projects, lbk is a decimal in [0, 1] as a lower bound for funds approved to department k as a 

portion of total funds, ubk a decimal in [0, 1] as an upper bound for funds approved to department k as 

a portion of total funds, lbbasic a decimal in [0, 1] as a lower bound for the number of projects approved 

to basic research as a portion of the total number of projects approved. In the following lbbasic=0.30, 

ND=9, N=150, budg=6,000 k€ and lbk and ubk, k=1,…, ND are as in [57]. 

The model MOIP is solved with AUGMECON2 in GAMS 23.5 using CPLEX 12.2 in order to 

produce the exact Pareto set. This means that all the Pareto optimal project portfolios based on these 

three objective functions are generated, or, in other words, there is no Pareto optimal project portfolio 

that is left undiscovered. In total, 4075 Pareto optimal solutions (project portfolios) are generated. The 

computational time is 7,633 seconds and 11,477 IP models are solved. It must be noted that using the 

original AUGMECON method the computational time was 19,522 seconds and 29,122 IP models 

were solved. The coefficients for the three objective functions are integer and the calculated objective 

function ranges for the second and third objective function is 180 for both of them. For every one of 

the 4075 Pareto optimal solutions we calculate some useful indicators such as the share of budget for 

each department (ShareBudgetDept(k)), the shares of Applied and Basic research projects, the total 

number of projects approved and the consumed budget. In Table 13 we summarize the statistics of 

these indicators.  

 

Table 13. Indicators statistics for the Pareto optimal solutions of MOIP (|PF*|=4075) 

 mean std min max Median 
ShareBudgetDept(%)      
A 14.22 0.31 14 15.77 14.14 
B 16.72 1.21 12.34 18.98 16.51 
C 7.05 0.84 3.87 8.74 7.35 
D 12.62 0.87 9.48 14 12.86 
E 6.79 1.12 4.3 8.81 6.22 
F 11.69 1.37 10.02 17.94 11 
G 9.77 0.37 9 10.7 10.03 
H 8.57 1.30 4.77 10.18 8.44 
I 12.56 1.24 9 15.42 12.39 
      
Ratio of projects(%)      
Applied 54.39 1.76 50 61.25 54.22 
Basic 45.61 1.76 38.75 50 45.78 
      
Budget Approved 5995 9.18 5940 6000 5998 
Projects Approved 82.08 1.49 77 86 82 
      

 

In a decision making process the calculation of the exact Pareto front is the first step towards the final 

choice. The decision makers have a set of candidate solutions (project portfolios) among which they 

must select. No other project portfolio except those in the Pareto front may be considered by a rational 

decision maker. In other words, it may be used to deter inferior solutions (that may be suggested 

exogenously) from being adopted. Therefore the generation of the exact Pareto front by 

AUGMECON2 may be considered as a first screening of options that provide fruitful information to 

the decision maker. For example, we can observe which projects are present in all Pareto optimal 

portfolios and which are in none of them. We call the former „elite’ projects (projects that are anyway 
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selected, independently of which Pareto optimal solution will eventually be selected) and the latter 

„junk’ projects (projects that will be never selected, independently of which Pareto optimal solution 

will eventually be selected). In the specific problem we found out that we have 27 „elite‟ projects and 
23 „junk‟. If we relax the relevant conditions (e.g. „elite‟ projects should be considered those that 
appear in more than 99% or 95% of the Pareto optimal solutions and correspondingly „junk‟ those 
appear in less than 1% or 5%) these sets can be even more populated. If we sort the projects by their 

participation frequency in the Pareto Front (PF*) and then create the relative graph we obtain useful 

information as depicted in Figure 4.  
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Figure 4. Relative frequencies of every project in the Pareto optimal population of solutions 

(|PF*|=4075). 

 

By looking at Figure 4, we can see the 27 „elite‟ projects that have 100% relative frequency (top 
horizontal line) and the 23 projects with zero frequency („junk‟). By drawing a vertical line we can see 

the frequency of each project (it is reminded that they are sorted according to their relative frequency 

on the Pareto optimal portfolios). In addition, by drawing a horizontal line to e.g. 80% we can observe 

that 67 projects appear in the 80% of the Pareto optimal portfolios. Subsequently, the decision makers, 

exploiting this information, they can proceed using an interactive approach (like e.g. the interactive 

filtering introduced by Steuer in [1]) to their final selection. However the description of this process is 

beyond the scope of the present paper.  

7. Concluding remarks 

The aim of this paper is to propose and evaluate an enhancement of the original augmented ε-

constraint method which is especially suitable to cope with MOIP problems. Specifically, the new 

version AUGMECON2 proved to be very efficient in providing the exact Pareto set in MOIP 

problems compared to the previous version and some other methods in the literature. The basic 

innovation in AUGMECON2 in relation to the original version is the introduction of the bypass 
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coefficient. The bypass coefficient exploits the slack/surplus information of the innermost constrained 

objective function and skips an often considerable number of grid points before it proceeds to the next 

call to the solver. This is done with no cost whatsoever to the accuracy of the algorithm as only 

redundant iterations resulting in the same Pareto optimal solution are skipped. So, being a win-win 

feature, the bypass coefficient is proven a valuable characteristic of AUGMECON2 over 

AUGMECON as shown in the computational experiment with several MOIP problems. In the 

computational experiments we used known benchmarks found in the literature as well as some new 

benchmarks that are published for first time. The problems in which the performance of the proposed 

method is evaluated is a well studied MOIP problem, namely the Multi-Objective Multidimensional 

Knapsack Problem (MOMKP) and also the Bi-Objective Set Packing Problem (BOSPP). Finally the 

AUGMECON2 method is also tested in a real case study from the literature where it provides the 

exact Pareto set in a project selection problem regarding research grants. 

Regarding the MOMKP, the proposed method solved successfully difficult bi-objective instances of 

the MOMKP, both uncorrelated and weakly correlated. It greatly improves the original version 

AUGMECON and this is more apparent where larger integer coefficients for the objective functions 

are present. The key finding is that the “models solved” metric for AUGMECON2 is linear in the size 
of the Pareto front in all bi-objective MOMKP instances, while for the original AUGMECON method 

the “models solved” metric is proportional to the number of grid points which is actually the range of 

the payoff table for the constrained objective. Especially in the case of 3 digit objective function 

coefficients (i.e. in the range [100, 1000]) the economies of AUGMECON2 over AUGMECON are 

impressive. As it is obvious, the 3 digit objective function coefficient problems are harder to solve 

than the regular 2 digit coefficients problems. In addition, it is also noticed that the newly introduced 

W type instances are harder to solve than the regular U type instances, although the cardinality of their 

Pareto front is noticeably smaller. The three objective problems are much more challenging than bi-

objective problems. For three objectives and three constraints, only up to 100 items are solved, in high 

computational time. We tested AUGMECON2 in benchmark problems found in the literature and we 

compared it also with two other exact methods, namely, the adaptive ε-constraint (ADECON) and 

MCBB. The results were favourable for AUGMECON2 especially in the larger instances.  

Regarding the BOSPP, the AUGMECON2 method is compared with the dichotomic procedure in 

[41]. The results are encouraging, even after taking into account the faster hardware used in our 

experiments through the use of the Linpack benchmark [54]. The performance of AUGMECON2, 

especially in the larger datasets, is a positive sign for its applicability in demanding MOIP 

benchmarks, as the BOSPP instances of [41], available also at the MOCOlib of X.Gandibleux. 

In addition to the use of AUGMECON2 as an exact method, a heuristic use of the proposed method is 

made in order to compute approximations to the Pareto front. Our method proves very practical, 

compared to an available implementation of SPEA2 within the PISA framework ([55, 56]). 

Nevertheless, comparison to specialized MOMH for MOMKP was not undertaken, because we wanted 

to consider only widely available general purpose MOMH techniques, such as SPEA2. Used as a 

heuristic technique using sparse grids, AUGMECON2 is faster and more accurate than SPEA2/PISA 

in MOMKP.  

Finally, in order to test AUGMECON2 in practical MOIP problems with no special structure, a case 

study concerning a R&D Project Selection problem at a University i.e. a typical capital budgeting 

problem is solved exactly with the proposed method. This is a MOIP problem with different structure 

than those studied before (MOMKP, BOSPP). It has three objective functions, 150 binary variables 

and complex policy, logical and segmentation constraints. The model is coded and solved in GAMS. 



 24 

The exact Pareto front is generated in almost two hours containing 4075 Pareto optimal project 

portfolios.  This means that AUGMECON2 can be effectively used in large practical MOIP problems 

with no specific structure providing the exact Pareto set.   

Future research includes methodological and technical issues. The methodological issues have to do 

with the further exploitation of the information provided in every iteration of the ε-constraint method 

(to create bypass rules not only for the innermost loop) and the safe calculation of lower bounds for 

the nadir values. The technical issues have to do with coding AUGMECON2 in other than GAMS 

environments (MATLAB, C) and directly connect it with solvers‟ dlls like CPLEX and GUROBI. 
Parallelization of the process is also within our future plans as well as testing of the method in other 

MOIP problems like e.g. Multi-Objective Set Covering problems, Multi-Objective Shortest Path 

problems and Multi-Objective Spanning Tree problems.  
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