
Munich Personal RePEc Archive

Generation of the exact Pareto set in

multi-objective traveling salesman and

set covering problems

Florios, Kostas and Mavrotas, George

National Technical University of Athens

15 June 2014

Online at https://mpra.ub.uni-muenchen.de/105074/

MPRA Paper No. 105074, posted 01 Jan 2021 12:59 UTC



1 
 

Generation of the exact Pareto set in multi-objective traveling 

salesman and set covering problems  

 

Kostas Florios, George Mavrotas1 

 Laboratory of Industrial and Energy Economics, School of Chemical Engineering,  

National Technical University of Athens, Zographou Campus, Athens 15780, Greece 

 Tel: +30 210-7723202, fax: +30 210 7723155 

 

Abstract: The calculation of the exact set in Multi-Objective Combinatorial Optimization (MOCO) problems is one 

of the most computationally demanding tasks as most of the problems are NP-hard. In the present work we use 

AUGMECON2 a Multi-Objective Mathematical Programming (MOMP) method which is capable of generating the 

exact Pareto set in Multi-Objective Integer Programming (MOIP) problems for producing all the Pareto optimal 

solutions in two popular MOCO problems: The Multi-Objective Traveling Salesman Problem (MOTSP) and the 

Multi-Objective Set Covering problem (MOSCP). The computational experiment is confined to two-objective 

problems that are found in the literature. The performance of the algorithm is slightly better to what is already found 

from previous works and it goes one step further generating the exact Pareto set to till now unsolved problems. The 

results are provided in a dedicated site and can be useful for benchmarking with other MOMP methods or even 

Multi-Objective Meta-Heuristics (MOMH) that can check the performance of their approximate solution against the 

exact solution in MOTSP and MOSCP problems.   

Keywords: multi-objective, traveling salesman problem, set covering problem, ε-constraint, exact Pareto set  

 

Table of Abbreviations 
Abbreviation Meaning 
2PPLS Two-Phase Pareto Local Search 
2P-SAECON Two Phase Simulated Annealing Epsilon Constraint method 
AM Approximate Method 
AUGMECON Augmented Epsilon Constraint 
AUGMECON2 Augmented Epsilon Constraint 2 
B&C Branch and Cut algorithm 
BCH Branch and Cut and Heuristic 
BCHTSP Branch and Cut and Heuristic algorithm for Traveling Salesman Problem 
BOSCP Bi-Objective Set Covering Problem 
BOTSP Bi-Objective Traveling Salesman Problem 
CONCORDE The relevant CONCORDE solver for TSP 
EPS Exact Pareto Set 
GAMS General Algebraic Modeling System 
HV Hypervolume metric 
IP Integer Programming 
LKH Lin-Kernighan algorithm of Helsgaun 
MCO Multi-Criteria Optimization 
MOCO Multi-Objective Combinatorial Optimization 

                                                      
1 Corresponding author: mavrotas@chemeng.ntua.gr 



2 
 

MOIP Multi-Objective Integer Programming 
MOMH Multi-Objective Meta-Heuristics 
MOMP Multi-Objective Mathematical Programming 
MOSCP Multi-Objective Set Covering Problem 
MOTSP Multi-Objective Traveling Salesman Problem 
MS Models Solved  
MTZ Miller-Tucker-Zemlin formulation for the TSP 
PE Potentially Efficient solutions 
PF* exact Pareto Front 
PMA Pareto Memetic Algorithm 
POS Pareto Optimal Solution(s) 
R Reference Set 
RHS Right Hand Side 
SCP Set Covering Problem 
SE Supported Efficient solutions 
SLS Stochastic Local Search 
TSP Traveling Salesman Problem 

 

1. Introduction 

Multi-Criteria Optimization (MCO) attracts all the more interest mainly due to two reasons: (1) the 

multiple points of view (expressed as criteria or objective functions) that allow the decision maker to 

make more balanced decisions through a Multi-Objective Decision Making approach (2) MCO is a 

computational intensive task that can take advantage of the vast improvement in computational systems 

and algorithms. Usually there is no unique optimal solution (optimizing simultaneously all the criteria) 

but a set of Pareto optimal solutions which are mathematically equivalent (Pareto set). The decision 

maker must be involved in order to express his preferences in order to find the most preferred among the 

Pareto optimal solutions [1]. Therefore, MCO methods have to combine optimization with decision 

support.  

Multi-Objective Mathematical Programming (MOMP) deals with the MCO problem when it is 

formulated as a Mathematical Programming problem with more than one objective functions. Hwang and 

Masud [2] classified the MOMP methods into three classes according to the phase in which the decision 

maker was involved in the decision making process: The a priori methods, the interactive methods and the 

a posteriori or generation methods. The a posteriori methods were given lower priority at these days as 

they were the most computationally demanding and the solution of even medium-sized problems was 

impossible.  

From the beginning of the 21st century MOMP entered the area of Multi-Objective Combinatorial 

Optimization (MOCO) problems (Ehrgott and Gandibleux [3]). The basic characteristic of MOCO 

problems is that the decision variables are integer (mostly binary) and the relevant problems are most of 

the time NP-complete even in their single objective version. In addition, the discrete feasible region 

allows for the calculation of all the Pareto optimal solutions, at least theoretically. The difficulty of 

calculating the exact Pareto set i.e. all the Pareto optimal solutions, gave rise to approximate methods 

mainly based on metaheuristic algorithms (Coello et al. [4]).  



3 
 

The aim of this paper is to apply the recently proposed improved version of the augmented ε-constraint 

method (AUGMECON2, Mavrotas and Florios [5]), which is suitable for general MOIP problems, to two 

popular MOCO problems, namely, the Multi-Objective Traveling Salesman Problem (MOTSP) and the 

Multi-Objective Set Covering Problem (MOSCP). Although AUGMECON2 is designed for the general 

case, here it is applied to bi-objective problems confined by benchmark-data availability. We test the 

AUGMECON2 method, a MOMP method which is capable of producing the exact Pareto set in Multi-

Objective Integer Programming (MOIP) problems, in some of the well known benchmarks. After some 

experimentation with available formulations, the proposed method was eventually a combination of a 

general purpose MOIP model (AUGMECON2), with a Branch-and-Cut-and-Heuristic model (BCHTSP) 

available in General Algebraic Modeling System (GAMS) model library. 

Our proposed method solves exactly for first time, 16 specific benchmarks of symmetric MOTSP with 2 

objectives and 100 cities which were previously only heuristically solved. The same is done for 44 

MOSCP benchmark problems found in the literature, some of them never solved exactly. We publish the 

exact Pareto Fronts in a website (https://sites.google.com/site/kflorios/motsp), in order to promote 

benchmarking of Multi-Objective Metaheuristics (MOMHs). In other words, having the exact Pareto set 

for MOTSP or MOSCP benchmarks, the MOCO community is able to assess the effectiveness of state-of-

the-art Multi-Objective Metaheuristics (MOMHs).  

In addition, we stress our approach to produce the exact Pareto front (1) to a bigger bi-objective TSP 

problem with 150 cities and (2) to a three objective TSP problem aiming at exploring the limits of our 

approach. For bi-objective TSP problems with more than 150 cities, a combination of simulated annealing 

and ε-constraint that produces an approximate (not the exact) Pareto front is also developed and compared 

with relevant available algorithms. It must be noted that even in the cases that an approximation of the 

Pareto set in MOCO problems is sought; all the solutions that are obtained with AUGMECON2 are 

confirmed to be true Pareto Optimal solutions (e.g. there are no other undiscovered solutions that 

dominate them).  

The structure of the paper is as follows: In Section 2 we review the literature in MOTSP and MOSCP and 

present the corresponding problem formulations. Section 3 describes the methodology, mainly the 

AUGMECON2 method, the Branch and Cut and Heuristic (BCH) model for the TSP and their coupling 

for the solution of MOTSP problems. MOSCP solution is more straightforward since its MOIP 

formulation is simpler. In Section 4, the computational experiment is described, mainly presenting the 

specific benchmarks that we solve. The results are discussed in Section 5, focusing on run-time analysis 

for our proposed approach and on comparison with existing state-of-the-art metaheuristic approaches 

(mainly multi-objective local search methods) and exact methods (mainly adaptive epsilon constraint). 

Finally, in Section 6 the basic concluding remarks are discussed. 

2. Related literature 

In Section 2.1 we present a non exhaustive literature review for the Multiobjective Traveling Salesman 

Problem (MOTSP). In Section 2.2 we present a non exhaustive literature review for the Multiobjective 

Set Covering Problem (MOSCP). 

https://sites.google.com/site/kflorios/motsp


4 
 

2.1 Multi-Objective Traveling Salesman Problem literature review 

The Multi-Objective Traveling Salesman Problem (MOTSP) is conceptually defined as in Lust and 

Teghem [6]: given N cities and p costs ,
k

i j
c , k=1,…,p associated with traveling from city i to city j, the 

MOTSP is aiming at finding a tour, i.e. a cyclic permutation   of the N cities, minimizing 

 
1

( ), ( 1) ( ), (1)
1

min  ( )
N

k k

k i i N

i

z c c   





   (1) 

A solution    is Pareto optimal (nondominated, efficient) if and only if it is feasible and there is no other 

feasible   such that ( ) ( )
k k

z z    for k=1,…,p with at least one strict inequality. The set of the Pareto 

optimal solutions is coined as the Pareto set (in the decision variable space). In the MOTSP it is actually 

the set of the nondominated permutations   whose corresponding images ( ),
k

z   k=1,…,p into 
p comprise the Pareto front (in the criteria space). 

A non-exhaustive literature review on MOTSP is presented, focusing on early contributions, 

mathematical programming approaches, survey papers, and the main heuristic approaches. Probably, the 

first paper on MOTSP was in 1982 by Fischer and Richter [7] who proposed a dynamic programming 

solution method for MOTSP. The interest in MOTSP is revived after Borges and Hansen [8], Hansen [9] 

and Jaszkiewicz [10]. Since then, a continuously increasing number of papers on MOTSP has been 

published focusing mainly on local search methods, evolutionary methods and ant colony optimization 

methods. Paquete and Stützle [11, 12] proposed two local search methods for MOTSP, namely two-phase 

local search and stochastic local search, respectively. Lust and Teghem [13] proposed the Two-Phase 

Pareto Local Search (2PPLS) for MOTSP with two objectives and 100, 300 and 500 cities. Lust and 

Jaszkiewicz [14] developed speed-up techniques for large scale biobjective TSP with up to 1000 cities. 

Jaszkiewicz and Zielniewicz [15] suggested the Pareto memetic algorithm (PMA) with path relinking for 

biobjective TSP. Genetic algorithms have been tested on MOTSP by Peng et al. [16] and Samanlioglu et 

al. [17]. The Ant colony optimization algorithm was proposed by García-Martínez et al. [18] , Cheng et 

al. [19] and López-Ibáñez and Stüzle [20] for the bi-criteria TSP. Very recently, Liefooghe et al. [21] used 

the dominance-based multiobjective local search on traveling salesman (and scheduling) problems. Two 

excellent PhD theses on MOTSP are Paquete [22] and Lust [23]. A survey on MOTSP has been presented 

by Lust and Teghem [6] focusing on metaheuristic methods. 

The mathematical programming approaches to MOTSP are rather scarce. Approaches are either restricted 

to specific cases of MOTSP which are polynomially solvable (see Özpeynirci and Köksalan [24, 25]) or 

to regular symmetric instances of rather small size (with up to 50 cities and p=2 objectives, see 

Stanojević, et al. [26]). An interesting variant of MOTSP is the so called traveling salesman problem with 

profits. The work of Bérubé et al. [27] used an exact ε-constraint method with CPLEX for the solution of 

the problem, but the details of their ε-constraint method are different from our approach (i.e. 

AUGMECON2) and also the problem is a selective TSP (the salesman is not obliged to visit all cities, he 

can skip some). Another interesting paper on TSP with profits is Jozefowiez et al. [28] employing a 

metaheuristics approach as a main solution method. A more theoretical paper, from a computer science 

perspective, is Manthey and Shankar Ram [29] which explores approximation algorithms for multi-

criteria TSP. 



5 
 

Regarding the single objective TSP, the interested reader is referred to the classic papers of Laporte [30], 

Papadimitriou [31], Applegate et al. [32] and Volgenant [33]. Regarding general Multiobjective 

Programming, a recent work on Multiobjective Integer Programming problems is Jahanshahloo et al. [34], 

on Multiobjective Mixed 0-1 Linear Programming, Mavrotas and Diakoulaki [35], while a general survey 

can be found in Chinchuluun and Pardalos [36]. Additionally, we note that the AUGMECON method has 

already been used in several applications e.g. Khalili-Damghani et al. [37]. 

2.2 Multi-Objective Set Covering Problem literature review 

As most of the work in the literature is for the bi-objective version of the MOSCP (denoted as BOSCP for 

Bi-Objective Set Covering Problem), we also restrict ourselves to BOSCP. The formulation of BOSCP is 

as follows (Lust et al. [38], Jaszkiewicz [39] and Prins et al. [40]): 

 

(1)

1

(2)

1

1

min  

min       

1     1,...,

{0,1}      1,...,

n

j j

j

n

j j

j

n

ij j

j

j

c x

c x st

t x i m

x j n







 

 







 (2) 

The number of constraints is m, the number of variables is n, the first objective function‟s coefficients are 

c(1), the second objective function‟s coefficients are c(2) and the matrix tij is as follows. For each constraint 

i=1,…,m in matrix t, it is tij=1 if variable j=1,…,n is involved in the i=1,…,m constraint. Else, tij=0. 

Matrix t is a sparse matrix, containing 0-1 elements tij. The maximum number of 1s in row i of the matrix 

tij is the parameter max-one. Also, note that the RHS of the ≥ constraints in model (2) is 1 (set covering 

constraints) and this is a vector minimization problem (BOSCP).  

Recently, in the literature there are efforts to solve BOSCP instances. Lust et al. [38] implement the 

adaptive ε-constraint  in a collection of 44 benchmarks for the BOSCP. These problems are also solved 

approximately in Jaszkiewicz [39], Prins et al. [40] and are available in the MOCOlib library at 

http://xgandibleux.free.fr/MOCOlib/MOSCP.html. The BOSCP is less studied in the literature compared 

with the MOTSP. Nevertheless, the single objective set covering problem has been extensively studied 

(Nemhauser and Wolsey [41]). 

3. Methodological part 

3.1 The improved version of the augmented ε-constraint (AUGMECON2) 

AUGMECON2 (Mavrotas and Florios, [5]) is an improvement of the original AUGMECON method 

(Mavrotas, [42]) which was an attempt to effectively apply the well known ε-constraint method for 

generating the Pareto Optimal Solutions (POS) in Multi-Objective Programming models. For the 

integrality of the paper we briefly describe the characteristics of AUGMECON2 for Multi-Objective 

Integer Programming (MOIP) problems where all the decision variables are discrete (integer or binary).  

http://xgandibleux.free.fr/MOCOlib/MOSCP.html


6 
 

AUGMECON2 follows the main concept of ε-constraint i.e. it keeps one objective function and 

appropriately transforms the remaining objective functions to constraints. By systematically varying the 

right hand side of these constraints, the relevant POS are generated. The proposed version achieves 

computational economy by applying early exit from the loops where infeasibilities are met (Mavrotas 

[42]) and “jumping” over several grid points when specific conditions are met (Mavrotas and Florios [5]).  

It must be noted that the ε-constraint method is preferable than the weighting method especially in MOIP 

problems as it is the MOTSP. The weighting method cannot produce unsupported efficient solutions in 

MOIP problems, while the ε-constraint method does not suffer from this pitfall (Mavrotas, [42]; Steuer, 

[1]; Miettinen, [43]). The flowchart of the AUGMECON2 is shown in Figure 1. 

As it is described in Mavrotas and Florios [5] AUGMECON2 can achieve great computational economy 

by applying “jumps” based on the bypass coefficient that is calculated at each iteration. This is 

particularly useful in MOIP problems where the feasible region is discrete and the number of POS is 

finite. The algorithm actually allocates equidistant grid points at the range of the objective functions and 

afterwards scans the grid points solving one Integer Programming problem per grid point. The number of 

grid points per objective function determines the density of the produced Pareto front.   

In the case of integer coefficients in the objective functions of the MOIP problems the values of the 

objective functions are also integer. Therefore, by fixing the number of grid points equal to the objective 

function range it is assured that no Pareto optimal solution can be located in between the grid points. 

Consequently AUGMECON2 can be used to produce the exact (or complete) Pareto set in MOIP 

problems and therefore in MOTSP. Moreover if the objective function coefficients are not integer we can 

easily transform the problem to have integer objective function coefficients by multiplying with the 

appropriate power of 10. 

In the present study we deal with bi-objective problems (BOTSP and BOSCP). Although the 

computational experiments deal with the bi-objective versions the method can be extended to MOTSP 

and MOSCP. The computational strategy for calculating the exact Pareto set in these problems with 

integer objective function coefficients is the following (without loss of generality, assume that all the 

objective functions are to be minimized): 

1. Calculate the objective function ranges of the p-1 objective functions. This means that we have to 

calculate or estimate upper bounds for the nadir points. If the nadir points are not straightforward 

(e.g. when more than two objective functions are considered), an appropriate method may be 

applied (see Mavrotas and Florios [5]).  

2. Assume that the objective function range for the k-th objective function is rk (integer). We select 

for each objective function a unity step so that for each one of them the number of grid points is 

exactly rk+1  

3. We apply AUGMECON2 and obtain the exact Pareto set. The unity step size and the calculation 

of the nadir point guarantee that no POS is left undiscovered.  

 



7 
 

Create payoff table

(lexmin fk(X), k=1…p )

Problem P

min [f1(X) - eps  (S2 /r2 + 10-1 S3 /r3 +…+ 10-(p-2)  Sp /rp)]

St

XF
fk(X) + Sk = ek k=2...p

where 

fk(X) objective functions to be minimized 

ek = ubk - ik stepk   

ubk: upper bound for objective function k

stepk = rk/gk : step for the objective function k

rk: range of the objective function k

gk: number of intervals for objective function k 

Sk: slack variable for objective function k

F: the feasible region

eps: a very small number (usually 10 -3 to 10-6)

nP: number of Pareto optimal solutions

b = int(S2/step2): bypass coefficient – int() means integer part

Set upper bounds ubk for k=2…p

Calculate ranges rk for k=2…p

Divide rk into gk intervals 

(set number of gridpoints =gk+1)

Initialize counters:

ik=0 for k=2…p,    nP=0

Solve problem P

Feasible?

ip < gp?

ip-1 < gp-1?

i2 < g2?

ip = ip + 1

ip-1 = ip-1 + 1

i2 = i2 + 1

nP = nP + 1
Calculate b

b= int(S2/step2)

i2 = g2

i2 = 0

ip-1 = 0

i2 = i2 + b

END

START

YES

NO NO

YES

YES

NO

NO

YES

 

Figure 1. Flowchart of the AUGMECON2 method 

  

3.2 The branch-and-cut-and-heuristic facility for the TSP (BCHTSP) 

In the two following sub-sections we focus on the TSP. The most efficient way to solve TSP using 

Mathematical Programming in a Modeling Language is to use the Branch-and-Cut-and-Heuristic Facility 



8 
 

(BCH) available in GAMS. For a general MIP problem the BCH is documented in 

http://www.gams.com/docs/bch.htm (see Bussieck [44]).  

It is well known that solving difficult MIP problems can be enhanced by using user supplied routines that 

generate cutting planes and good integer feasible solutions. Modellers traditionally supply cutting planes 

and an integer feasible point as part of the model given to the solver, by adding a set of constraints 

indicating likely to be violated cuts and a feasible solution. A truly dynamic interaction between a branch-

and-cut (B&C) solver like CPLEX and user supplied routines was not possible until recently. The 

Branch-and-Cut-and-Heuristic (BCH) facility serves this purpose. More details about the GAMS coding 

of BCH facility can be retrieved at [44].  

The specific implementation of the BCH facility we have used is the one for the TSP problem, which is 

model „bchtsp‟ available in the GAMS Model Library with No.348 [45, 46]. The model is titled 

„Traveling salesman problem instance with BCH‟ and accepts format “.tsp” for input files, as defined by 

the maintainers of the TSPLIB (Reinelt, [47, 48]). The subtour elimination constraints are supplied 

dynamically while GAMS/CPLEX is running. The incumbent checking BCH call checks if the integer 

solution contains subtours, stores the corresponding cuts, and rejects the solution. The cut BCH call 

supplies the cuts produced by the previous call. Model „bchtsp‟ can handle asymmetric TSP problems and 

therefore symmetric as well. The coupling of AUGMECON2 method and BCHTSP model ensures the 

efficient treatment of MOTSP in a flexible Modeling Language environment (e.g. GAMS [49]). The exact 

Pareto Front, PF*, is effectively generated with our approach, for the first time, for 16 MOTSP instances 

with 100 cities, two objectives, and symmetric cost matrices of various types (Euclidean, random matrix, 

mixed-type of the previous two). 

3.3 Coupling of AUGMECON2 and BCHTSP for solution of MOTSP 

In order to couple AUGMECON2 method with BCHTSP model, the BCHTSP model is altered in order to 

solve the augmented ε-constraint sub-problem described in Eq. (3).  

 

1 2
1

1 1 2

2
2

1 1

2 2 2

max max min
2 2 2 2

min  z   st

( )

N N

ij ij

i j

N N

ij ij

i j

s
c x

r

z c x

z s

z z z

x S





 

 

 

 



 

   





 (3) 

The first objective function is kept, and the second is turned into a „≤‟ constraint (corresponding to a 

„minimization‟ objective). The ε-constraint problem accepts a dimensionless parameter η[0,1]. The 

parameter δ is a small number typically 10-3 to 10-6. Consequently, in the GAMS model „bchtsp‟ the 

following operations are added: 

a) Input of the cost matrix c2 for the 2nd objective function 

b) Input the nadir value max
2z  and the ideal value min

2z  of the 2nd objective function as obtained from the 

individual optimization of both objective functions.     

http://www.gams.com/docs/bch.htm


9 
 

c) Solve bchtsp(η) for specific η [0,1] externally defined from the AUGMECON2 procedure. 

d) Return the counter of the Pareto Optimal Solution (cPOS), the values of the objective functions (z1, z2), 

the Right Hand Side (ε2), the bypass coefficient (b), the counter of the grid point (i), the CPU time in 

seconds (runtime) and the resulting tour   for every time procedure bchtsp(η) is called from 
AUGMECON2.  

The pseudo-code of the computational procedure is the following: 

 

AUGMECON2-BCHTSP(N,C(1),C(2)) 

1   π=argmin z1 = 
1

1 1
( ), ( 1) ( ), (1)

1

N

i i N

i

c c   






  

2   max
2z = z2(π) 

3    π=argmin z2 = 
1

2 2
( ), ( 1) ( ), (1)

1

N

i i N

i

c c   






  

4   min
2z =z2(π) 

5   // calculate range of objective function 2 

6   r2= max
2z  - min

2z  

7   // do some initializations  
8   i= -1 
9   stepsize=1 
10 ηstepsize=stepsize/float(r2) 
11 cPOS=0 
12 // the main loop 
13 while (i ≤ r2) 
14        i=i+1 
15        η=i  ηstepsize 
16        // Run procedure bchtsp(η) which solves Eq. (3) in GAMS returning the bypass coefficient b=s2 
17        bchtsp(η,z1,z2,b,ε2,runtime,π)  
18        i=i+b 
19        cPOS=cPOS+1 
20        write cPOS, z1, z2, i, b, ε2, runtime, π // write useful info in a diary file 
 

The above procedure implements AUGMECON2 for MOTSP with p=2 objectives and has been coded in 

Fortran with Intel Visual Fortran Compiler 11.1. For η=i/r2=0 (i.e. i=0) the Eq. (3) is solved with RHS, 

ε2=
max
2z . On the other hand, for η=i/r2=1 (i.e. i=r2) the Eq. (3) is solved with RHS, ε2=

min
2z . So, as the 

value of i increases from 0 to r2 through the relations i=i+1 and i=i+b, we solve progressively more 

constrained problems with respect to the constraint which is derived from the second objective. 

Furthermore, we parallelize the computational process by splitting the while loop in 3 parts, with each one 

corresponding to a different thread of the CPU. Specifically, in thread 1 we have the iterations for i=1 to 

int(0.60×r2) where int() denotes the integer part of a number. For thread 2 we have the iterations for 

i=int(0.60×r2)+1 to  int(0.85× r2) and finally for thread 3 we have the iterations for i=int(0.85× r2)+1 to r2. 

This is easily done by only altering lines 8 and 13 of the algorithm. The split points 0.60 and 0.85 were 

found after some experimentation in order to have the three loops with almost equal computational time. 



10 
 

The computational time depends mainly on the number of solver calls which is not proportional to the 

number of grid points in r2. For example, in the first iterations AUGMECON2 is making greater “jumps” 
so the number of solver calls in the interval [z2

max, z2
max - 0.6 × r2] is almost equal to the number of solver 

calls in the interval [z2
max - 0.6 × r2,

 z2
max - 0.85 × r2]. The flowchart of the AUGMECON2-BCHTSP 

algorithm is shown in Figure 2. 

 

Solve BCHTSP for min f1 z1
min, z2

max

Record  (z1, z2, tour(xn), b )

Start

i=Lj, j=1,…,J 

i = i + b

i  <Uj ? END
NOYES

Solve BCHTSP for min f2 z1
max, z2

min

r2=z2
max- z2

min

Solve BCHTSP for min(f1-δ s2/r2)

with f2  z2
max – i  ( f2+s2 = z2

max – i)

This is the AUGMECON2 algorithm adapted for bi-objective TSP 

problems that  use the BCHTSP code to solve the corresponding 

single objective problem. 

r2 is the range of the second objective function and b is the 

bypass coefficient as defined in Mavrotas and Florios  [5]. In each 

iteration BCHTSP accepts as an argument the value of b that was 

obtained from the previous iteration. δ is a very small number 

and Lj, Uj are lower and upper bounds for the counter i that can 

be adjusted for parallelization. In the current case it holds for j=3 

threads:

L1 = -1                      U1 = 0.60  r2

L2 = 0.60  r2 - 1     U2 = 0.85  r2

L3 = 0.85  r2 - 1     U3 = 1.00  r2

b=s2

i=i+1

 
Figure 2. Flowchart of the AUGMECON2 – BCHTSP method 

 

We have compiled three applications, called thread1.exe, thread2.exe and thread3.exe for the 

AUGMECON2-BCHTSP algorithm and we have run them always in parallel in a 4 thread personal 

computer, in order to perform as much calculations as possible in parallel. The sub-problems bchtsp(η) 
with η[0,1] are independent so the split works fine. Special care needs to be paid to the fact that η must 
be defined as a double precision variable (we always printed and read 12 significant digits for η among 
GAMS/Fortran and text files) since truncation errors may lead to non-discovered Pareto Optimal 

Solutions if only 7-8 significant digits are used (with single precision for η). It must be noted that the 

BCHTSP model (due to its implementation) cannot take advantage of the parallel mode of CPLEX, so 

parallelization is only possible the way we have implemented it, by splitting the while loop for counter i 

in three parts, for L1 ≤ i ≤ U1, L2 ≤ i ≤ U2, L3 ≤ i ≤ U3, and assigning each part in a different thread of a 

multi-core PC. In this way, parallelization of AUGMECON2-BCHTSP has been accomplished which can 

be generalized to more than 3 threads (if available) and so improve computational performance for larger 



11 
 

MOTSP problems. From a technical point of view, step 17 is performed calling GAMS from the 

Operating System with an environment variable (called EtaValue) equal to the given number of η defined 
inside the loop. The GAMS call is easily written in a batch file (for variable η values) within Fortran. Any 

modern computer language can be used to code the aforementioned algorithm, and only I/O in text files is 

assumed and ability for system calls.  

4. Computational experiment  

4.1 Bi-Οbjective TSP (BOTSP) 

AUGMECON2 using the branch-and-cut-and-heuristics facility for the solution of the ε-constraint sub-

problem of type TSP (BCHTSP) is used in order to compute the exact Pareto Front, PF*, of 16 datasets 

available in the literature. The structure of these datasets is illustrated in Table 1. 

Table 1. The test bed of 16 datasets for the bi-objective TSP 

Lust’s Instances Name Paquete’s Instances Name 

L1 kroAB100 P1 euclAB100 
L2 kroAC100 P2 euclCD100 
L3 kroAD100 P3 euclEF100 
L4 kroBC100 P4 randAB100 
L5 kroBD100 P5 randCD100 
L6 kroCD100 P6 randEF100 
L7 euclAB100 P7 mixdGG100 
L8 clusAB100 P8 mixdHH100 
L9 randAB100 P9 mixdII100 

L10 mixdGG100   

Lust‟s datasets have been used in his PhD thesis [23], in Lust and Teghem ([6]) (instances L7-L10, also 

called the DIMACS instances) and in Lust and Teghem ([13]) (instances L1-L6, also called the 

Krolak/Felts/Nelson instances - with prefix kro in TSPLIB). The data are downloadable from [50]. 

Paquete‟s datasets have been used in his PhD thesis [22] as well as in Paquete and Stützle ([12]). The data 

are downloadable from [51]. Note that L7 is the same as P1, L9 is the same as P4 and finally L10 is the 

same as P7. So, we have in total 16 different datasets to solve. Especially the Krolak instances of Table 1 

have been solved approximately in numerous papers in the past, especially with metaheuristic approaches 

e.g. genetic algorithms, ant colony optimization and multi-objective local search methods (see 

Jaszkiewicz [10] and references therein).  

4.2 Bi-Objective SCP (BOSCP) 

 AUGMECON2 will be used in a collection of 44 benchmarks for the BOSCP available at the MOCO 

library (MOCOlib) and are downloadable from [52]. These benchmarks are solved approximately in 

Jaszkiewicz [39], Prins et al. [40] and Lust et al. [38]. Especially, Lust et al. [38] implemented the 

adaptive ε-constraint (Laumanns et al. [53]) in order to solve exactly several instances of MOSCP from 

MOCOlib. Also, Prins et al. [40] have solved the smallest benchmarks of MOSCP from MOCOlib 

exactly in the past. For every model ranging from 1 to 11, there exist 4 instances, namely A,B,C,D so 

there are totally 11×4=44 instances.  



12 
 

Table 2. The benchmarks for the BOSCP  

No Model name # Constraints # Variables 
1 11 10 100 
2 41 40 200 
3 42 40 400 
4 43 40 200 
5 61 60 600 
6 62 60 600 
7 81 80 800 
8 82 80 800 
9 101 100 1000 

10 102 100 1000 
11 201 200 1000 

From Jaszkiewicz, [39], Prins et al., [40], Lust et al., [38] 

5. Results and Discussion 

The MOTSP model and the AUGMECON2-BCHTSP method proposed in this paper have been created 

and solved in GAMS 23.5 environment using CPLEX 12.2 solver. The OS is Windows 7 64-bit and the 

hardware is an Intel Q9650 core 2 quad CPU at 3.00 GHz with 4GB RAM. The time limit was set up to 

60 hours wall clock time. 

5.1 Bi-Objective TSP results with 100 cities 

5.1.1 Lust et al. benchmarks 

Table 3 presents the results for the exact solution of Lust instances. 

Table 3. AUGMECON2 results using the BCHTSP model for the bi-objective TSP (Lust, 10 datasets, [13, 6]) 

Dataset Pareto front 
size |PF*| 

Models Solved 
(MS) 

CPU time (h) in Parallel Processing 
 Thread 1 (h) Thread 2 (h) Thread 3 (h) 

L1 3332 3372 39 37 58 
L2 2458 2509 30 26 18 
L3 2351 2370 12 16 21 
L4 2752 2790 24 25 28 
L5 2657 2705 21 23 22 
L6 2044 2078 7 11 21 
L7 1812 1839 16 9 16 
L8 3036 3110 12 13 27 
L9 1707 1718 6 7 21 
L10 1848 1863 12 9 17 

      

(*) Hardware is a core 2 quad CPU capable of running 4 threads with Windows 7 64bit. 

The critical information in Table 3 is the cardinality of the exact Pareto Front, expressed as |PF*|. Thus, 

there are exactly 3332 POS for L1 (=kroAB100) problem, 2458 POS for L2 (=kroAC100) problem, and 

so on. The Models Solved number (MS) is the number of augmented ε-constraint subproblems solved 

(essentially problems of Eq. (3), see Section 3.3). We see that MS is very close to |PF*| (slightly larger of 



13 
 

course) which indicates that our proposed approach is very economic in the calls to the single objective 

solver it makes. The last three columns of Table 3 indicate the CPU time in hours of every one of the 

three applications thread1.exe, thread2.exe and thread3.exe described in Section 3.3, which essentially 

implement the parallel AUGMECON2-BCHTSP algorithm. The wall clock time, w, of our approach is 

w=max(t1, t2, t3), where ti, i=1,2,3 is the CPU time of thread i. The wall clock time is illustrated with grey 

cells in Table 3, and can be lowered by splitting the while loop of Section 3.3 in more than 3 parts, 

apparently 6 or more parts if a machine with more threads (e.g. 8 threads) is available for computations. It 

is noticed that the third part of the second objective function range [0.85 r2, r2] is in most cases the most 

computational demanding part (due to the increased number of Models Solved). Τhe graphical 

illustrations of the Pareto fronts for instances kroAB100 (L1) and euclAB100 (L7) are shown in Figure 3. 

5.1.2 Paquete et al. benchmarks 

Table 4 presents the results for the exact solution of Paquete instances (9 DIMACS of various types, 

Paquete and Stützle [12]) 

Table 4. AUGMECON2 results using the BCHTSP model for the bi-objective TSP (Paquete, 9 datasets, [12]) 

Dataset |PF*| MS CPU time (h) in Parallel Processing 
   Thread 1 (h) Thread 2 (h) Thread 3 (h) 

P1 1812 1839 16 9 16 
P2 2268 2294 19 14 34 
P3 2530  2559 11 18 23 
P4 1707 1718 6 7 21 
P5 1850 1868 11 12 16 
P6 1882 1902 9 14 21 
P7 1848 1863 12 9 17 
P8 2108 2137 8 9 18 
P9 1883 1906 11 13 16 

      

(*) Hardware is a core 2 quad CPU capable of running 4 threads with Windows 7 64bit. 

In Table 4, the cardinality of the exact Pareto Front is displayed as |PF*|. For instance, there are 1812 

POS in problem P1 (=euclAB100), 2268 POS in problem P2 (=euclCD100), and so on. Again, the 

Models Solved number (MS) is the number of augmented ε-constraint subproblems of Eq. (3) solved in 

the AUGMECON2-BCHTSP approach. We see that, like before, MS is very close to |PF*| (MS is 

obviously always slightly larger than |PF*|) which is very advantageous for our proposed approach. The 

last three columns of Table 4 indicate the CPU time of every one of the three thread applications for 

AUGMECON2-BCHTSP we used in parallel. The wall clock time for every dataset is shown in grey 

color. The Pareto fronts for instances randAB100 (P4) and mixedGG100 (P7) are shown in Figure 4. 



14 
 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

o
b

je
ct

iv
e

 2
  

objective 1  

Benchmark kroAB100  (L1), |PF*|=3332 

 
 (a) kroAB100 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

o
b

je
ct

iv
e

 2

objective 1

Benchmark euclAB100  (L7), |PF*|=1812 

 
(b) euclAB100 

Figure 3. Visualization of exact Pareto front for kroAB100 and euclAB100 datasets for biobjective TSP from Lust 

and Teghem [13, 6]. 



15 
 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

0 40000 80000 120000 160000 200000 240000

o
b

je
ct

iv
e

 2

objective 1

Benchmark randAB100  (P4),  |PF*|=1707 

 
(a) randAB100 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

o
b

je
c
ti

v
e

 2

objective 1

Benchmark mixedGG100   (P7),  |PF*|=1848

 
(b) mixedGG100 

Figure 4. Exact Pareto front for randAB100 and mixedGG100 datasets from Paquete and Stützle [12]. 



16 
 

 

5.1.3 Comparison with state-of-the-art approximate methods 

In the following, we will evaluate state-of-the-art metaheuristic methods which have already been used 

for the approximation of the Pareto Fronts in MOTSP problems. Since we have solved the same datasets 

exactly with our approach, the evaluation of the metaheuristic approaches can be made taking into 

consideration the information on the Exact Pareto Set (EPS), which is for first time available in our work. 

First, we define the coverage metric C(A,B). The coverage metric, in our case, presents the percentage of 

Pareto optimal solutions in set B, which are weakly dominated by a solution discovered by the 

approximate algorithm in set A. The term “weakly” is used to facilitate the cases of identical solutions in 
the two sets (Deb, [54], p. 325). 

 
 | :

( , )

w
b B a A a b

C A B
B

   
  (4) 

the symbol w  represents weak dominance (for minimization problems), that also holds true if f(a) = f(b). 

Therefore, the coverage metric C(AM, EPS) indicates how many solutions from the Approximate Method 

(AM) are also found in the Exact Pareto Set (EPS). It actually reports the % of discovered Pareto optimal 

solutions by the Approximate Method and the closer to 1 is the coverage metric C(AM, EPS) the better is 

the approximation. 

Table 5 presents the coverage metric values for the method two-phase Pareto Local Search developed in 

Lust and Teghem [13] for Lust-1 to Lust-6 datasets and Lust and Teghem [6] for Lust-7 to Lust-10 

datasets.The second column of Table 5 denotes the exact Pareto Front, |PF*|, obtained by AUGMECON2. 

The third column denotes the Potentially Efficient solutions, |PE|, by 2PPLS over 20 runs. The fourth 

column describes the dominated part, |D|, of |PE| for 2PPLS. In the fifth column, the non-dominated part, 

|ND|, of |PE| for 2PPLS is given. Finally, C(2ppls,EPS) is coverage of 2ppls over EPS. 

Additionally, in Table 5 the convergence metric (Khare et al., p.379 [55]) of 2PPLS in relation to the full 

Pareto front is presented for the ten problems. The „convergence‟ metric gives the average Euclidean 
distance of the solutions of the obtained approximation to the true Pareto front. 

Table 5. Coverage and Convergence metrics for two phase Pareto Local Search (2PPLS) (Lust and Teghem [13, 6]) 

dataset |PF*| |PE| |D| |ND| C(2ppls,EPS) Convergence 
 exact 2ppls 2ppls 2ppls = |ND|/|PF*| (2ppls,EPS) 

L1 3332 2640 988 1652 0.4958 1.6105e-4 
L2 2458 2007 679 1328 0.5403 1.2093e-4 
L3 2351 1885 730 1155 0.4913 1.8511e-4 
L4 2752 2200 740 1460 0.5305 1.1034e-4 
L5 2657 2058 579 1479 0.5566  1.0208e-4 
L6 2044 1673 610 1063 0.5201 1.8434e-4 
L7 1812 1397 502 895 0.4939 1.8457e-4 
L8 3036 2557 878 1679 0.5530 1.1048e-4 
L9 1707 663 266 397 0.2326  2.5694e-4 
L10 1848 1011 376 635 0.3436 2.3069e-4 

 



17 
 

The main conclusion is that even if we gather the elite solutions after 20 runs of 2PPLS, the method 

2PPLS has a coverage of approximately 50% compared to the exact Pareto set for Krolak instances (L1-

L6). Also, regarding DIMACS instances, the coverage for 2PPLS is as low as 25%-35% for Random 

Matrix (L9) and Mixed instances (L10). The first two DIMACS instances (L7 and L8) are also x-y 

coordinate based and achieve a coverage near 50% just like the other x-y coordinate based Krolak 

instances. 

Moreover, with respect to the „convergence‟ metric, we see that the approximation of 2PPLS elite 
solutions in relation to the full Pareto front is of high quality since in all cases the convergence metric is 

of the order 10-4. 

With respect to the „coverage‟ metric, we have indications that 2PPLS performs better in x-y coordinate 

based datasets (L1-L6, L7, L8), rather worse in mixed datasets (L10) and is least effective in random 

matrix datasets (L9). Nevertheless, the coverage metric values are at most 50%-55%. 

Table 6 presents the coverage and convergence metric values for an ensemble of methods titled „best non-

dominated set found‟ used in Paquete and Stützle [11], Paquete [22]. The same datasets have been solved 

in Paquete and Stützle [12], with Stochastic Local Search (SLS), also approximately. 

Table 6. Coverage and Convergence metrics for an ensemble of methods „best non-dominated set found‟ of Paquete 
and Stützle [11] and Paquete [22]. Datasets are approximately solved in Paquete and Stützle [12], also. 

dataset |PF*| |PE| |D| |ND| C(best,EPS) Convergence 
 exact best 

known 
best 

known 
best 

known 
= |ND|/|PF*| (best,EPS) 

P1 1812 1719 76 1643 0.9067 1.5090e-5 
P2 2268 2123 121 2002 0.8827 1.5538e-5 
P3 2530 2387 68 2319 0.9166 8.3322e-6 
P4 1707 1247 497 750 0.4394 2.1464e-4 
P5 1850 1424 402 1022 0.5524 1.5730e-4 
P6 1882 1287 611 676 0.3592 2.5196e-4 
P7 1848 1644 145 1499 0.8111 4.1347e-5 
P8 2108 1892 225 1667 0.7908 5.8902e-5 
P9 1883 1724 132 1592 0.8455 4.1221e-5 

The second column of Table 6 denotes the exact Pareto Front, |PF*|, obtained by AUGMECON2. The 

third column denotes the Potentially Efficient solutions, |PE|, which are the solutions of the „best non-

dominated set found‟ available at   [51]. The fourth column describes the dominated part, |D|, of |PE| for 

„best non-dominated set found‟. In the fifth column, the non-dominated part, |ND|, of |PE| for „best non-

dominated set found‟ is given. Finally, C(Best Known,EPS) is coverage of „Best Known‟ over EPS. 

We note that P1-P3 are Euclidean instances, P4-P6 are random matrix instances and P7-P9 are mixed 

instances. The coverage metric of „best known‟ by Paquete for the Euclidean instances is very high, 
around 90%, which means a very good approximation of the EPS. Nevertheless, for random matrix 

datasets the coverage metric of „best known‟ by Paquete drops to 35%-55% which is low enough. The 

coverage metric for mixed datasets (i.e. one objective Euclidean, one objective random matrix type) is 

between the two previously found values, close to 80%-85%. 



18 
 

Moreover, with respect to the „convergence‟ metric, we see that the approximation of „best Nondominated 
set found‟ at [51]  in relation to the full Pareto front is of even higher quality since in most cases the 
convergence metric is of the order 10-5. 

We conclude that the Pareto Front approximations supplied by Paquete at his webpage are of better 

quality than the approximations supplied by Lust at his website. This is confirmed for the datasets which 

are present in both testbeds (P1-P9) and (L1-L10). 

 For L7=P1, Paquete finds 90.67% of the POS, and Lust‟s method only 49.39% of the POS.  

 For L9=P4, Paquete finds 43.94% of the POS, and Lust‟s method only 23.26% of the POS. 

 For L10=P7, Paquete finds 81.11% of the POS, and Lust‟s method only 34.36% of the POS. 

Overall, both methods perform rather well, having a significant coverage of the Exact Pareto Set. 

Especially, Lust and Teghem method (2PPLS) finds considerably fewer POS, than the ensemble of 

methods called „best non-dominated set found‟ of Paquete. 

All the generated exact Pareto fronts (the objective function values along with the corresponding tours) 

are published in https://sites.google.com/site/kflorios/motsp. We also publish the corresponding Fortran 

code and the GAMS models that combine AUGMECON2 with BCHTSP.  

 5.1.4 Detailed analysis of AUGMECON2 approach featuring BCHTSP 

We present the working of our approach especially for one representative dataset, namely L1 (or 

kroAB100). Specifically for kroAB100, we present the bypass coefficient values for all Models Solved as 

well as the run-time for every Models Solved (i.e. of Eq. (3)). Figure 5 presents this detailed information 

on AUGMECON2 featuring BCHTSP for kroAB100. 

 

 
(a) bypass coefficient, b 

 
(b) CPU sec 

Figure 5. Visualization of bypass coefficient, b, and CPU sec per iteration ‘Models Soved’ (MS) of our approach for 

the solution of kroAB100. 

We see that for kroAB100, which is actually the hardest dataset to solve, the bypass coefficient is almost 

always below 500, (note that the range of the second objective function is r2=156,305) and it takes 3372 

calls to the BCHTSP solver to span this range. The CPU time for every iteration is always below 1000 

seconds, and often below 500 seconds which is affordable for 3372 iterations.  

https://sites.google.com/site/kflorios/motsp


19 
 

In order to perform the 3372 iterations concurrently we have made three executables, called thread1.exe, 

thread2.exe and thread3.exe as described in Section 3.3. The split of the computational load has been 

made according to Figure 6. Figure 6 presents the way that thread1 takes η values in [0, 0.60], thread2 

takes η values in [0.60, 0.85] and thread3 takes η values in [0.85, 1.00]. Every thread discovers a separate 

part of the Pareto Front as presented in Figure 6. 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 25000 50000 75000 100000 125000 150000 175000 200000

o
b

je
ct

iv
e

 2

objective 1

Benchmark kroAB100  (concurrent computations)

thread1

thread2

thread3

 

Figure 6. AUGMECON2 concurrent computations in 3 threads  for the solution of kroAB100 

Also, a video (created by MATLAB R2011a code) illustrating the conflicting nature of objectives for 

tour1 (kroA100) and tour2 (kroB100) is available at: https://sites.google.com/site/kflorios/motsp.  

5.1.5 Supported and unsupported Pareto Optimal Solutions  

In addition to the above work, it is very interesting to study the proportion of the supported POS in the 

total number of the generated POS. We remind that the supported POS are those that can be obtained 

from a convex combination of the objective functions. As a consequence, the weighting method when 

used in MOIP problems produces only the supported POS, while the ε-constraint method does not suffer 

from this pitfall. Regarding the 16 benchmark problems the results concerning the ratio of supported POS 

to the total number of generated POS are shown in Table 7. The supported POS are calculated ex post 

from the exact set of POS using an ad hoc slope increasing algorithm. 

It is impressive that, on average, only 4.39% of the POS are supported. This actually means that when 

someone uses the weighting sum method for generating the POS in a MOTSP problem with N=100 cities, 

more than 95% of the true POS are left undiscovered. These results are in accordance with the 

conclusions from Visée et al. [56], Ehrgott and Gandibleux [3], Przybylski et al. ([57, 58]) which state 
that the number of supported POS is a small proportion among the generated POS.  

https://sites.google.com/site/kflorios/motsp


20 
 

 

 

Table 7. Percentage of Supported Efficient solutions over all POS in 16 datasets   

 dataset |PF*| |SE| |SE|/|PF*| 
  exact weighted sum ratio 
1 L1 3332 111 3.33% 
2 L2 2458 106 4.31% 
3 L3 2351 90 3.83% 
4 L4 2752 114 4.14% 
5 L5 2657 112 4.22% 
6 L6 2044 98 4.79% 
7 L7 1812 95 5.24% 
8 L8 3036 109 3.59% 
9 L9 1707 77 4.51% 
10 L10 1848 98 5.30% 
11 P2 2268 96 4.23% 
12 P3 2530 100 3.95% 
13 P5 1850 85 4.59% 
14 P6 1882 89 4.73% 
15 P8 2108 96 4.55% 
16 P9 1883 92 4.89% 
   Average 4.39% 

|PF*|: cardinality of exact Pareto Front obtained by AUGMECON2 

|SE| : Number of Supported Efficient solutions as obtained from a weighting sum approach 

 

5.2 Larger bi-objective TSP results  

5.2.1 Exact solution of a bi-objective TSP instance with 150 cities 

In order to test the scalability of our approach, we solved a larger bi-objective instance that has been 

generated with the DIMACS generator „portgen‟ available in the website  
http://dimacs.rutgers.edu/Challenges/TSP/codes.zip with parameter MAXCOORD=1000 and seed 1977 

for objective 1 x-y coordinates and seed 1978 for objective 2 coordinates. The result is a bi-objective 

Euclidean DIMACS dataset like the ones of Section 5.1, but with N=150 cities and x-y coordinates in the 

range 1 – 1000. We call this problem „2tsp-150‟. The range of the 2nd objective function is r2=73,085. 

This dataset is computationally very difficult to solve and it took several days of computations to generate 

the Exact Pareto Set. It was solved exactly with AUGMECON2-BCHTSP, and it has a Pareto Front with 

|PF*|=4701 Pareto Optimal Solutions which was computed after MS=4934 Models Solved i.e. problems 

of Eq. (3). The Pareto Front is shown in Figure 7. So, we conclude that problems with N=150 cities and 

range of coordinates equal to 1-1000 is the limit of our exact approach with current hardware technology. 

 

http://dimacs.rutgers.edu/Challenges/TSP/codes.zip


21 
 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

o
b

je
ct

iv
e

 2

objective 1

Benchmark 2tsp-150,  |PF*|=4701

 

Figure 7. Visualization of exact Pareto front for 2tsp-150 dataset for biobjective TSP generated by ‘portgen’. 

5.2.2 Approximate solution of bi-objective TSP instances with 300 up to 1000 cities 

Although the subject of this paper is the exact solution of multi-objective TSP problems, we tried an 

approximate method based on ε-constraint for problems with more than 150 cities.  For this reason we 

developed a variant of Simulated Annealing which solves ε-constraint sub-problems in order to generate 

approximately the POS. This approach uses reversal and transport moves as described in [59] (p.366-374) 

and also a pre-processing phase with the Lin-Kernighan algorithm of Helsgaun (LKH) [60]. Using this 

heuristic approach, we were able to compute good approximations to the problems kroAB300, kroAB500, 

kroAB750 and kroAB1000 available in [50].The relevant approximations are shown in Figure 8 for 300 

and 1000 city problems. Also, Table 8 reports the convergence [55], hypervolume ratio [54] and spread 

[54] metrics for the simulated annealing algorithm vs. 2PPLS. The convergence metric for method „two 
phase simulated annealing ε-constraint‟ (2P-SAECON) has been computed for 100 grid points of the ε-

constraint method. Phase one was conducted with the LKH heuristic and 40 grid points for the weights. 

Phase two was conducted with ε-constraint/simulated annealing and 100 grid points for the RHS of the 

constraint objective 2. As is well known, phase one aims at discovering the supported POS through a 

weighted sum approach, and phase two finds the unsupported POS (e.g. in our case with ε-constraint). 

By observing Figure 8 and Table 8, we see that the simulated annealing algorithm scales up well with the 

problem size and the approximation obtained with 100 grid points for 2P-SAECON is satisfactory in 

relation to state-of-the-art 2PPLS. The convergence metric of 2P-SAECON in relation to 2PPLS is of the 

order of 10-3 for all problem sizes. The hypervolume ratio is over 0.99 with maximum desired value equal 

to 1. Finally, the spread is well below the value of 1, and relatively close to 0 (always well below 0.50) 



22 
 

which indicates a well distributed Nondominated front. The run time of 2P-SAECON is much shorter 

than AUGMECON2-BCHTSP but also significantly larger than the run time of 2PPLS. 

 

(a) kroAB300 

 

(b) kroAB1000 

Figure 8.  Two phase simulated annealing ε-constraint algorithm (2P-SAECON) compared to 2PPLS approximate 

results in BOTSP problems with (a) 300 cities and( b) 1000 cities 

 



23 
 

Table 8. Convergence, Hypervolume Ratio and Spread metrics for two phase Simulated Annealing ε-Constraint 

(2P-SAECON) with respect to two phase Pareto Local Search (2PPLS) of Lust and Teghem ([13, 6]) in larger scale 

datasets of BOTSP with up to 1000 points of interest. 

dataset Reference Convergence HV(2p-saecon)    Spread(2p-saecon) 
 Set, R (2p-saecon, R) / HV(R)  
kroAB100 3332* 0.0026620 0.992829 0.44071 
kroAB300 14867 0.0038793 0.991295 0.37600 
kroAB500 33929 0.0040101 0.991519 0.36756 
kroAB750 61184 0.0042229 0.991772 0.36412 

kroAB1000 98151 0.0042333 0.992035 0.38035 

*In kroAB100, R=PF*, and in other larger datasets, R=2PPLS run 1 out of 20. 

 

5.3 Three objective TSP results  

Finally, in order to test the AUGMECON2 algorithm in more than two objectives, we constructed a 

dataset which we called „3tsp-15‟ with the „portgen‟ generator available in the website  
http://dimacs.rutgers.edu/Challenges/TSP/codes.zip   with parameter MAXCOORD=1000 and ncities=15 

with seeds 1977, 1978 and 1979 for coordinates of objectives 1, 2 and 3, respectively. This is a three 

objective TSP problem that was solved with our proposed approach AUGMECON2 using the Miller, 

Tucker and Zemlin [61] formulation of the TSP (MTZ). It was solved in 5 hours of CPU providing a 

Pareto Front of |PF*|=630 POS which was computed with MS=16886 models solved. This is an exact 

solution, which shows that the AUGMECON2 approach can handle three objective TSP problems, but 

obviously the number of cities is very small (N=15) in accordance to the literature [62, 63]. Therefore, it 

is obvious from these results that in 3-objective problems the number of the Models Solved is much 

higher than the number of Pareto Optimal Solutions, especially in relation to the 2-objective cases that we 

studied. Conclusively, the generation of the exact Pareto front for 3-objective TSP problems, even of 

small size (20-30 cities), is rather an utopian task and the use of approximate algorithms seems to be our 

only choice. Our website contains information on the solutions of problems described in Sections 5.2-5.3 

as well as on the well-known instances from Section 5.1.  

5.4 Two objective SCP results 

The AUGMECON2 method was applied to the 44 instances of BOSCP that are described in section 4.2. 

The formulation of the problem is the one presented in section 2.2, properly adjusted for the 

AUGMECON2 method. The results for the benchmarks with 1 to 11, and types A-D are presented in 

Table 9. Where an asterisk (*) is noted, which is the case for 9C, 10C, 10D, 11A, 11B datasets, it means 

that 4 threads of CPLEX have been used for the IP sub-problems. Otherwise only one thread of CPLEX 

has been used. In their work, Prins et al. [40] present the results for the 4/11 or 16/44 smaller datasets of 

Table 9 with up to 40 constraints and 400 variables.  

http://dimacs.rutgers.edu/Challenges/TSP/codes.zip


24 
 

Table 9. AUGMECON2 performance for BOSCP benchmarks No 1-11. 

No File Type # constraints # variables CPU sec |PF*| Models 
Solved 

1 11 A 10 100 8.64 39 39 
  B   6.26 43 44 
  C   2.78 10 11 
  D   1.45 5 7 
2 41 A 40 200 18.01 107 108 
  B   16.63 108 109 
  C   7.96 24 25 
  D   23.87 43 44 
3 42 A 40 400 35.83 208 210 
  B   52.04 276 280 
  C   31.79 87 91 
  D   7.14 15 16 
4 43 A 40 200 12.80 46 47 
  B   7.51 28 30 
  C   3.78 13 14 
  D   3.48 13 14 

5 61 A 60 600 83.66 257 261 
  B   114.01 338 344 
  C   18.49 28 31 
  D   167.29 67 68 
6 62 A 60 600 58.10 98 99 
  B   60.20 99 100 
  C   211.26 6 7 
  D   134.17 38 45 
7 81 A 80 800 148.66 424 430 
  B   130.26 354 363 
  C   7.76 14 17 
  D   9.33 12 13 
8 82 A 80 800 116.51 132 135 
  B   38.16 88 94 
  C   671.76 8 9 
  D   1511.86 44 47 
9 101 A 100 1000 375.84 157 270 
  B   225.50 141 142 
  C   20933* 13 14 
  D   3812 24 25 
10 102 A 100 1000 104.76 83 87 
  B   211.48 86 91 
  C   2464* 14 15 
  D   16724* 16 23 
11 201 A 200 1000 6850* 274 282 
  B   4278* 282 288 
  C   dnt dnt dnt 
  D   dnt dnt dnt 
        

* 4 threads of CPLEX have been used 



25 
 

For these smaller datasets, the |PF*| we have found with AUGMECON2 conforms with Prins et al. 

results. Furthermore, Lust et al. [38] (p. 265) report that in their work the datasets 201a and 201b 

(1000×200) could not be exactly solved. In our paper, we were able to compute the Exact Pareto Set for 
201a and 201b in no more than 2hours each. Nevertheless, the 201c and 201d variants (with plateaus at 

the objective function coefficients for BOSCP) did not terminate within 24h. 

As in the case of the MOTSP we can also observe that the number of models solved is very close to the 

cardinality of the Pareto set. This means that AUGMECON2 is very effective in avoiding redundant 

iterations that do not result in new POS. This is mainly attributed to the “jumps” caused by the bypass 
coefficient b (see section 3.1 and section 3.3) that greatly accelerate the process.  

6. Concluding remarks 

The aim of this paper is to apply the recently proposed improved version of the augmented ε-constraint 

method (AUGMECON2), which is suitable for general MOIP problems, to two popular MOCO 

problems, namely, the Multi-Objective Traveling Salesman Problem (MOTSP) and the Multi-Objective 

Set Covering Problem (MOSCP). Although AUGMECON2 is designed for the general case, here it is 

applied to bi-objective problems confined by benchmark-data availability.  

For the MOTSP case the proposed method was a combination of a general purpose MOIP model 

(AUGMECON2), with a Branch-and-Cut-and-Heuristic model (BCHTSP) available in GAMS model 

library. It was found that the ε-constraint sub-problem is solved almost as many times as the cardinality of 

the Exact Pareto Set, which is a very favourable characteristic for a generation approach (no redundant 

iterations). Obviously, the BCHTSP model is appropriately modified in order to solve the ε-constraint 

sub-problem. Relying on the efficiency of the modified BCHTSP which is used as a subroutine, the 

AUGMECON2 method is able to effectively calculate the Exact Pareto Set in 24-60h wall clock time for 

every instance of our test bed. A novel feature of our implementation is the parallelization of the 

AUGMECON2 loop into indicatively three threads. In general, the AUGMECON2 method is appropriate 

for parallelization as the main loop can be divided into independent segments. 

In our work it was reaffirmed that MOTSP is among the hardest MOCO problems. Even bi-objective 

instances with 100 cities have not been solved exactly in the literature. To the best of our knowledge our 

work is the first one that generates the exact Pareto set for 16 popular MOTSP instances with 2 objectives 

and 100 cities, studied intensively in the literature. In general, our approach is among the few 

implementations able to solve the MOTSP exactly (i.e. produce the exact Pareto set). We also created and 

solve exactly a bi-objective problem with 150 cities but probably this is the upper limit for the exact 

solution of bi-objective problems with our method and the current hardware. Moving to three objective 

functions, the difficulty of generation of the exact Pareto front escalates dramatically and the upper limit 

seems to be 15-20 cities, which make the use of exact algorithms prohibitive even for small size multi-

objective TSP problems. We think that a great contribution of our work is that the data sets and the results 

are available in https://sites.google.com/site/kflorios/motsp for the interested readers.   

Having the exact Pareto set for the BOTSP we were able to assess the effectiveness of state-of-the-art 

Multi-Objective Metaheuristics (MOMHs) previously utilized to approximately solve the same 16 

datasets. The MOMHs are evaluated, using the two set coverage and convergence metrics exploiting the 

information of the Exact Pareto Set. In our case the coverage metric is actually the percentage of POS 

https://sites.google.com/site/kflorios/motsp


26 
 

found by the MOMH. The coverage metric in the MOTSP problems varied from 25% to 90% depending 

on the type of instances. Euclidean instances were better approximated by MOMH techniques. Random 

matrix instances showed poor performance for MOMHs. The mixed type instances yielded 

approximations better than random matrix but worse than Euclidean instances, as expected. With respect 

to the convergence metric, we found that, in general, state-of-the-art MOMHs approximate very well the 

Exact Pareto Set. The magnitude of the convergence metric with respect to the true Pareto Front found by 

our work, was either of the order of 10-4 or 10-5, depending on the MOMH type and the instance type. 

Another important finding which is in accordance with similar results from other researchers in MOCO, is 

that the number of supported POS is only a small proportion among the generated POS. Consequently, 

the POS produced using the weighting method (that produces only supported POS) is a remarkable 

underestimation of the true Pareto set for the MOTSP.  

Regarding the BOSCP, AUGMECON2 succeeded in solving the previously unsolved benchmarks 

(instances 201a and 201b) of the MOCOlib for the MOSCP problem. In total, 42 out of 44 benchmarks 

were exactly solved, leaving only 2 datasets unsolved (in a 24 hours time limit).  

In general, for both kinds of problems, namely MOTSP and MOSCP, the effectiveness of the 

AUGMECON2 method is reflected on the fact that for each benchmark the number of model solved is 

very close to the cardinality of the Pareto set, indicating good performance and computational economy.  

In order to contribute to the testing of relevant algorithms (MOMH or exact algorithms) for the MOTSP 

and the MOSCP a web site was created that gathers all the datasets and the results, as well as source code 

in Fortran implementing AUGMECON2 and GAMS implementing modified BCHTSP for the ε-

constraint sub-problem. 

Extension of our approach, AUGMECON2-BCHTSP to three objective TSPs and massive parallelization 

(using more than 3 threads for computations) is studied. The optimal allocation of computational load for 

many processors in the bi-objective case is an interesting problem. Also, parallelization of 

AUGMECON2 for three objective problems is more delicate, since only the outer loop can be parallelized 

safely. Perhaps, the research stream with the most potential for the exact solution of MOTSP is to 

substitute the BCHTSP part of the AUGMECON2-BCHTSP algorithm with a fast dedicated exact solver 

like CONCORDE [64] or TSP1 [33] but this needs nontrivial programming. The ε-constraint sub-problem 

has to be programmed inside CONCORDE or TSP1 which requires effort but would be worthwhile. Also, 

comparison of the AUGMECON2 method with other exact schemes for general MOIP problems as well 

as the specific MOTSP seems promising (e.g. methods of Lemesre et al. [65] and Dächert et al. [66]).  

 

References 
[1] R.E. Steuer, Multiple Criteria Optimization. Theory, Computation and Application, Krieger, Malabar FL, 

1986. 
[2] C.L. Hwang, A. Masud, Multiple Objective Decision Making. Methods and Applications: A state of the art 

survey, Lecture Notes in Economics and Mathematical Systems, 164, Springer-Verlag, Berlin, 1979. 
[3] M. Ehrgott, X. Gandibleux, A survey and annotated bibliography of multiobjective combinatorial 

optimization, OR Spectrum 22 (2000) 425-460. 
[4] C.A. Coello Coello, D.A. Van Veldhuizen, G.A. Lamont, Evolutionary Algorithms for Solving Multi-

Objective Problems, Kluwer Academic Publishers, Boston MA, 2002. 



27 
 

[5] G. Mavrotas, K. Florios, An improved version of the augmented ε-constraint method (AUGMECON2) for 
finding the exact pareto set in multi-objective integer programming problems, Applied Mathematics and 
Computation 219 (2013) 9652-9669. 

[6]   T. Lust, J. Teghem, The multiobjective traveling salesman problem: A survey and a new approach, Studies in 
Computational Intelligence 272 (2010) 119-141. 

[7] R. Fischer, K. Richter, Solving a multiobjective traveling salesman problem by dynamic programming, 
Mathematische Operationsforschung und Statistik - Series Optimization 13 (1982) 247-252. 

[8] P.C. Borges, M.P. Hansen, A basis for future successes in multiobjective combinatorial optimization, 
Technical Report, Institute of Mathematical Modelling, Technical University of Denmark, 1998. 

[9] M.P. Hansen, Use of substitute scalarizing functions to guide a local search based method: The case of 
moTSP, Journal of Heuristics 6 (2000) 419-431. 

[10] A. Jaszkiewicz, Genetic local search for multi-objective combinatorial optimization, European Journal of 
Operational Research 137 (2002) 50-71. 

[11] L. Paquete, T. Stützle, A two-phase local search for the biobjective traveling salesman problem, Lecture Notes 
in Computer Science 2632 (2003) 479-493. 

[12] L. Paquete, T. Stützle, Design and analysis of stochastic local search for the multiobjective traveling salesman 
problem, Computers & Operations Research 36 (2009) 2619-2631. 

[13] T. Lust, J. Teghem, Two-phase Pareto local search for the biobjective traveling salesman problem, Journal of 
Heuristics 16 (2010) 475-510. 

[14] T. Lust, A. Jaszkiewicz, Speed-up techniques for solving large-scale biobjective TSP, Computers & 
Operations Research 37 (2010) 521-533. 

[15] A. Jaszkiewicz, P. Zielniewicz, Pareto memetic algorithm with path relinking for bi-objective traveling 
salesperson problem, European Journal of Operational Research 193 (2009) 885-890. 

[16] W. Peng, Q. Zhang, H. Li, Comparison between MOEA/D and NSGA-II on the multi-objective travelling 
salesman problem, Studies in Computational Intelligence 171 (2009) 309-324. 

[17] F. Samanlioglu, W.G. Ferrell Jr, M.E. Kurz, A memetic random-key genetic algorithm for a symmetric multi-
objective traveling salesman problem, Computers & Industrial Engineering 55 (2008) 439-449. 

[18] C. García-Martínez, O. Cordón, F. Herrera, A taxonomy and an empirical analysis of multiple objective ant 
colony optimization algorithms for the bi-criteria TSP, European Journal of Operational Research 180 (2007)  
116-148. 

[19] J. Cheng, G. Zhang, Z. Li, Y. Li, Multi-objective ant colony optimization based on decomposition for bi-
objective traveling salesman problems, Soft Computing 16 (2012) 597-614. 

[20] M. López-Ibáñez, T. Stüzle, An analysis of algorithmic components for multiobjective ant colony 
optimization: A case study on the biobjective TSP, in: P. Collet et al. (Eds.), EA 2009, LNCS 5975, Springer-
Verlag, Berlin Heidelberg, 2009, pp. 134-145. 

[21] A. Liefooghe, J. Humeau, S. Mesmoudi, L. Jourdan, E-G. Talbi, On dominance-based multiobjective local 
search: design, implementation and experimental analysis on scheduling and traveling salesman problems, 
Journal of Heuristics 18 (2012) 317-352. 

[22] L. Paquete, Stochastic local search algorithms for multiobjective combinatorial optimization: Methods and 
analysis. Dissertations in Artificial Intelligence, Vol. 295, AKA Verlag/ IOS Press, 2006. 

[23] T. Lust, New metaheuristics for solving MOCO problems: application to the knapsack problem, the traveling 
salesman problem and IMRT optimization, PhD Thesis, Université de Mons, Mons, Belgium, 2009. 

[24] O. Özpeynirci, M. Köksalan, Pyramidal tours and multiple objectives, Journal of Global Optimization 48 
(2007) 569-583. 

[25] O. Özpeynirci, M. Köksalan, Multiobjective traveling salesperson problem on Halin graphs, European Journal 
of Operational Research 196 (2009) 155-161. 

[26] M. Stanojević, M. Vujošević, B. Stanojević, Computation results of finding all efficient points in 
multiobjective combinatorial optimization, International Journal of Computers, Communications & Control 3 
(2008) 374-383. 

[27] J.F. Bérubé, M. Gendreau, J-Y. Potvin, An exact ε-constraint method for bi-objective combinatorial 
optimization problems: Application to the traveling salesman problem with profits, European Journal of 
Operational Research 194 (2009) 39-50. 

[28] N. Jozefowiez, F. Glover, M. Laguna, Multi-objective meta-heuristics for the traveling salesman problem with 
profits, Journal of Mathematical Modelling and Algorithms 7 (2008) 177-195. 

[29] B. Manthey, L. Shankar Ram, Approximation algorithms for multi-criteria traveling salesman problems, 
Algorithmica 53 (2009) 69-88. 



28 
 

[30] G. Laporte, The traveling salesman problem: An overview of exact and approximate algorithms, European 
Journal of Operational Research 59 (1992) 231-247. 

[31] C.H. Papadimitriou, The euclidean traveling salesman problem is NP-complete, Theoretical Computer Science 
4 (1977) 237-244. 

[32] D. Applegate, R. Bixby, V. Chvátal, W. Cook, On the solution of travelling salesman problems, Documenta 
Mathematica 3 (1998) 645-656. 

[33] A. Volgenant, Symmetric traveling salesman problems, European Journal of Operational Research 49 (1990)  
153-154. Source Code available at ftp://www.mathematik.uni-kl.de/pub/Math/ORSEP/VOLGENAN.ZIP. 

[34]  G.R. Jahanshahloo, F. Hosseinzadeh, N. Shoja, G. Tohidi, A method for generating all efficient solutions of 0-
1 multi-objective linear programming problem, Applied Mathematics and Computation 169 (2005) 874-886. 

[35] G. Mavrotas, D. Diakoulaki, Multi-criteria branch & bound: A vector maximization algorithm for Mixed 0-1 
Multiple Objective Linear Programming, Applied Mathematics and Computation 171 (2005) 53-71. 

[36]  A. Chinchuluun, P.M. Pardalos, A survey of recent developments in multiobjective optimization, Annals of 
Operations Research 154 (2007) 29-50. 

[37] K. Khalili-Damghani, M. Tavana, S. Sadi-Nezhad, An integrated multi-objective framework for solving multi-
period project selection problems, Applied Mathematics and Computation 219 (2012) 3122-3138. 

[38] T. Lust, J. Teghem, D. Tuyttens, Very large-scale neighborhood search for solving multiobjective 
combinatorial optimization problems, in: R.H.C. Takahashi et al. (Eds.), EMO 2011, LNCS 6576, Springer-
Verlag, Berlin Heidelberg, 2011, pp. 254-268. 

[39] A. Jaszkiewicz, A comparative study of multiple-objective metaheuristics on the bi-objective set covering 
problem and the Pareto memetic algorithm, Annals of Operations Research 131 (2004) 135-158. 

[40] C. Prins, C. Prodhon, R.W. Calvo, Two-phase method and Lagrangian relaxation to solve the bi-objective set 
covering problem, Annals of Operations Research 147 (2006) 23-41. 

[41] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, 1999. 
[42] G. Mavrotas, Effective implementation of the ε-constraint method in multi-objective mathematical  

programming problems, Applied Mathematics and Computation 213 (2009) 455-465. 
[43] K.M. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, 1998. 
[44] M.R. Bussieck, Introduction to GAMS Branch-and-Cut Facility, Technical report, GAMS Development Corp., 

2003. http://www.gams.com/docs/bch.htm 
[45] GAMS Corp., Traveling Salesman problem with BCH, http://www.gams.com/modlib/libhtml/bchtsp.htm. 
[46] M.R. Bussieck, Column generation in GAMS – Extending the GAMS Branch-and-Cut-and-Heuristic (BCH) 

facility, 83rd Working Group Meeting Real World Optimization, Workshop “Mathematical Optimization in 
Transportation – Airline, Public, Transport, Railway” GOR, Bad Honnef, Germany, 2009. Available online at: 
http://www.gams.com/presentations/bussieck_cg.pdf   

[47] G. Reinelt, TSPLIB – A traveling salesman problem library, ORSA Journal on Computing 3 (1991) 376-384. 
[48] G. Reinelt, TSPLIB95, URL: http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/. 
[49] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, GAMS. A user‟s guide, GAMS development corporation, 

Washington, 1998. 
[50] https://sites.google.com/site/thibautlust/research/multiobjective-tsp (last accessed on July 24th 2013). 

[51] http://eden.dei.uc.pt/~paquete/tsp  (last accessed on July 22nd 2013). 

[52] http://xgandibleux.free.fr/MOCOlib/MOSCP.html  (last accessed on July 29th 2013). 
[53] M. Laumanns, L. Thiele, E. Zitzler, An efficient, adaptive parameter variation scheme for metaheuristics based 

on the epsilon-constraint method, European Journal of Operational Research 169 (2006) 932-942.  
[54] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Chichester, 2001. 
[55] V. Khare, X. Yao, K. Deb, Performance scaling of multi-objective evolutionary algorithms, in: C.M. Fonseca 

et al. (Eds.), EMO 2003, LNCS 2632, Springer-Verlag, Berlin Heidelberg, 2003, pp.376-390.  
[56] M. Visée, J. Teghem, M. Pirlot, E.L. Ulungu, Two-phases method and branch and bound procedures to solve 

the bi-objective knapsack problem, Journal of Global Optimization 12 (1998) 139-155.  
[57] A. Przybylski, X. Gandibleux, M. Ehrgott, Two phase algorithms for the bi-objective assignment problem, 

European Journal of Operational Research 185 (2008) 509-533.  
[58] A. Przybylski, X. Gandibleux, M. Ehrgott, A two phase method for multi-objective integer programming and 

its application to the assignment problem with three objectives, Discrete Optimization 7 (2010) 149-165.  
[59] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Pascal. The art of 

Scientific Computing, Cambridge University Press, 1989. 
[60] K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic, European 

Journal of Operational Research 126 (2000) 106-130.  

ftp://www.mathematik.uni-kl.de/pub/Math/ORSEP/VOLGENAN.ZIP
http://www.gams.com/docs/bch.htm
http://www.gams.com/modlib/libhtml/bchtsp.htm
http://www.gams.com/presentations/bussieck_cg.pdf
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://sites.google.com/site/thibautlust/research/multiobjective-tsp
http://eden.dei.uc.pt/~paquete/tsp
http://xgandibleux.free.fr/MOCOlib/MOSCP.html


29 
 

[61]   C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer programming formulations of traveling salesman problems, 
Journal of the Association for Computing Machinery 7 (1960) 326-329. 

[62]   M. Ozlen, B.A. Burton, C.A.G. MacRae, Multi-objective integer programming: An improved recursive 
algorithm, Journal of Optimization Theory and Applications 2013, inPress (DOI 10.1007/s10957-013-0364-y). 

[63] O. Özpeynirci, M. Köksalan, An exact algorithm for finding extreme supported nondominated points of 
multiobjective mixed integer programs, Management Science 56 (2010) 2302-2315. 

[64] D. Applegate, R. Bixby, V. Chvátal, W. Cook, Concorde TSP solver http://www.tsp.gatech.edu/concorde.html  
[65] J. Lemesre, C. Dhaenens, E.G. Talbi, Parallel partitioning method (PPM): A new exact method to solve bi-

objective problems, Computers & Operations Research 34 (2007) 2450-2462. 
[66] K. Dächert, J. Gorski, K. Klamroth, An augmented weighted Tchebycheff method with adaptively chosen 

parameters for discrete bicriteria optimization problems, Computers & Operations Research 39 (2012) 2929-
2943. 

  

http://www.tsp.gatech.edu/concorde.html

