
Munich Personal RePEc Archive

Solving the bi-objective multidimensional

knapsack problem exploiting the concept

of core

Mavrotas, George and Figueira, José Rui and Florios, Kostas

National Technical University of Athens, Technical University of

Lisbon

1 December 2009

Online at https://mpra.ub.uni-muenchen.de/105087/

MPRA Paper No. 105087, posted 05 Jan 2021 22:20 UTC

Solving the bi-objective multidimensional knapsack problem

exploiting the concept of core

George Mavrotasa, José Rui Figueirab, Kostas Floriosc

aNational Technical University of Athens, Zographou Campus, 15780, Athens, Greece,

e-mail: mavrotas@chemeng.ntua.gr

bCEG-IST, Center for Management Studies, Instituto Superior Técnico, Technical University of Lisbon, Tagus Park,

Av. Cavaco Silva, 2780 - 990 Porto Salvo, Portugal, e-mail: figueira@ist.utl.pt

cNational Technical University of Athens, Zographou Campus, 15780, Athens, Greece,

e-mail: cflorios@central.ntua.gr

Abstract: This paper discusses the bi-objective multi-dimensional knapsack problem. We propose the

refinement of the core concept that has already effectively been used in the single objective multi-

dimensional knapsack. The core concept is based on the divide and conquer principle. Instead of solving

the whole problem with n variables, several sub-problems with less than n variables are solved, in several

variables which comprise the cores. The quality of the obtained solution can be adjusted according to the

core size and there is always a balance between the solution time and quality. First, the core variables are

defined, and subsequently the bi-objective integer program is solved, that comprises only the core

variables using the Multicriteria Branch and Bound algorithm that generates the complete Pareto set.

Small and medium sized examples are solved. Also, a very small example is used to illustrate the method

while computational issues are also discussed.

1. Introduction

Over the last years, much work has been done in the single objective Multi-Dimensional Knapsack

Problem (MDKP, see Freville, 2004 for a recent overview). In their recent textbook Kellerer et al., (2004,

chapter 9) devote a whole chapter to multidimensional knapsack problem. A recent breakthrough in

multidimensional knapsack problems is the concept of core as described by Puchinger et al. (2006). The

concept of core for the conventional (single constraint) knapsack was introduced by Balas and Zemel

(1980) and further exploited by Martello and Toth (1988) and Pisinger (1995) among others. Puchinger et

al. (2006) expanded the concept of core to the multidimensional case. More recently, the concept of core

was addressed by Gomes da Silva et al. (2008) in bi-criteria, single dimensional knapsack problems.

The aim of our work is to synthesize the ideas of Puchinger et al. (2006) and Gomes da Silva et al. (2008)

in order to define and apply the core issue in Multi-Objective Multi-Dimensional Knapsack Problem

(MOMDKP). Specifically, in this paper we deal with the simplest case the Bi-Objective Multi-

Dimensional Knapsack Problem (BOMDKP) and we present some first results.

The idea is to decompose the BOMDKP to a series of single objective MDKP sub-problems following the

ideas of Gomes da Silva et al. (2008). Then, exploiting the ideas of Puchinger et al. (2006), we define a

core for each one of the MDKP sub-problems. Using only the core variables, we appropriately modify the

BOMDKP problem and solve it, generating the complete Pareto set of each subproblem, using the Multi-

Criteria Branch & Bound (MCBB) method (Mavrotas and Diakoulaki, 1998, 2005). MCBB is a general

purpose method for solving Mixed Integer Multi Objective Linear Programming (MOMILP) problems of

small and medium size. In the specific application MCBB is adjusted to problems with only integer (more

specifically, binary) variables. It must be clarified that the obtained Pareto set corresponds to the specific

core variables and not to the original BOMDKP. We repeat this procedure for all the MDKP subproblems

and at the end we merge the obtained Pareto sets to obtain a representation of the Pareto set of the original

problem. The size of the core problems is manageable with the MCBB method.

The basic idea behind the proposed method is the well known “divide and conquer” principle that is often

used in OR techniques. The “divide and conquer” principle is especially beneficial in the case of the

knapsack problem which is combinatorial explosive as an NP-hard problem. Instead of solving a problem

with n variables we solve several problems with a fraction of n variables (e.g. it is much faster to solve 50

BOMDKP problems with 20 variables than 1 BOMDKP with 40 variables). As it will be shown in the

results the computational economy for medium and big problems is significant, while the quality of the

Pareto set representation is controllable: increasing the core size the quality of representation also

increases. However there is always a trade-off between the computational time and the quality of

representation.

Although the proposed method is originally designed as an approximate method (producing a

representation of the Pareto set) it can be used as a good first step for the exhaustive production of the

complete Pareto set as it is discussed in the last section of the paper. The exact solution of MOMDKP

problems (complete Pareto set), is very useful as they can be used as reliable benchmarks for the widely

used multiobjective metaheuristics. Moreover, the method with just small modifications can be extended

to solve multi-objective knapsack problems with more than two objectives.

The structure of the paper is as follows. Following the introduction we define in Section 2 the core

problem for the MOMDKP. In section 3 we present the algorithm for the BOMDKP and in section 4 we

describe the application of the algorithm in detail using an educational example. In section 5 we introduce

the concept of the adjusted core while in section 6 we present some computational results. Finally in

section 7 we present the basic concluding remarks and some discussion about future research.

2. The core concept for the Multi-Objective Multi-Dimensional Knapsack

Problem

In conventional knapsack problems with one objective function and one constraint, the core is a subset of

items-variables with efficiencies (ratio of price to weight) that are similar to the efficiency of the break

item. The core concept was the basic idea in the development of the most efficient algorithms for the

knapsack problem. Recently, there has been defined the concept of core for (i) multidimensional knapsack

problems (see Puchinger et al., 2006) and (ii) for bi-objective single dimension knapsack problems (see

Gomes da Silva et al., 2008). Our proposal is the definition and effective implementation of the core

concept for the bi-ojective multidimensional knapsack problem. This extension is not trivial. We

synthesize the two previous works and define the appropriate core concept on the bi-objective

multidimensional knapsack problem.

The main idea is to exploit the “divide and conquer” principle which is so effective in operational research
and more specifically in combinatorial problems (see e.g the decomposition algorithms or branch and

bound). Instead of solving one big problem we solve a series of smaller problems synthesizing the results

at the end, obtaining so the desired solution. As we will show, the intermediate results can be used to

accelerate the whole process.

The main idea is briefly the following: According to Gomes da Silva et al. (2008) we initially solve the

relaxed problem producing the set of Efficient Extreme Solutions (EES). Then we assign to every EES the

corresponding weight interval according to Multi-Objective Linear Programming (MOLP) theory. For

each one of the EES and using the proper weight coefficients to merge the two objective functions to one

we transform the problem to single objective. Then we take advantage of the Puchinger et al. 2006,

findings regarding the efficiencies and the core concept of the multidimensional knapsack problem.

Namely, for each one of the EES we assign the appropriate core (according to Puchinger et al. (2006) dual

efficiencies). We adjust the initial BOMDKP to the specific core variables and solve it with MCBB in

order to generate the local (specific to this particular EES) Pareto set. We repeat this process for all the

EES and at the end we merge the local Pareto sets to obtain a representation of the complete Pareto set of

the initial problem.

The whole idea can be better expressed with an illustrative graph. In Figure 1 the Pareto front of the

relaxed problem is represented by the line A,B,C,D. For each one of the four EES we compute the core

(see next section). The variables that are outside the core are fixed either to 0 or 1 (“frozen” variables).
The fixed part corresponds to points A’, B’, C’ D’. The four BOMDKP that are solved with MCBB and
involve only the core variables produce the relevant (locally) Pareto optimal solutions. For example from

the core variables of the A-core, the locally Pareto optimal solutions A1, A2, A3 are produced. After all

the EES are visited, the locally Pareto optimal solutions are merged to derive the representation of the

Pareto set of the original BOMDKP. The whole process and the specific computational details are

described thoroughly in the next sections with an educational example.

A
B

D

C

z1

z2

A’
B’

C’

D’

A1
A2

A3

Figure 1: Graphical representation of the core concept in BOMDKP

3. The proposed algorithm

Assume the following BOMDKP problem:

1

1

max =1,2

1...

{0,1} 1,...,

n

j kj j

n

j ij j i

j

p x k

st

w x c i m

x j n

=

=  =

 =





 (1)

The proposed algorithm for applying the core concept in bi-objective multidimensional knapsack

problems has the following steps:

• Step 1: Relax the binary variables (xj [0,1]) and solve the resulted Multiple Objective Linear

Programming (MOLP) problem which is the relaxation of the BOMDKP problem and is defined as

RBOMDKP. Derive the Efficient Extreme Solutions (EES) of RBOMDKP using an appropriate

method. Methods like ADBASE (Steuer, 1995) or EFFTREE (Mavrotas, 2000) can be used for the

exhaustive enumeration of the efficient extreme solutions or a weighted sum algorithm for an

approximation. The number of EES is R.

• Step 2: As it is well known from MOLP theory, every EES can be obtained as an optimal solution of

an LP problem, where the objective function is a weighted sum of the MOLP objective functions.

Therefore, at every EES corresponds a weight interval that can be easily calculated (see e.g. Steuer,

1989 page 124-125). Calculate the weight intervals that correspond to every EES (in the bi-objective

case k=2 and λ2=1-λ1)

• Step 3: For every EES, which means for r=1…R, repeat Steps 3a-3h

• Step 3a: Use the appropriate weights as computed in Step 2, create the LP with the weighted sum

objective function and solve it.

• Step 3b: Use the shadow prices (di, i=1…m) of the constraints in order to compute the dual

efficiencies ej(duals) of the decision variables, following the Puchinger et al. (2006) terminology

for single objective multidimensional knapsack (SOMDKP) problems. Specifically we have:

1

() j

j m

i i ij

p
e duals

d w=

=


 (2)

• Step 3c: Sort the variables in decreasing order according to their efficiencies ej and find the split

interval (the variables with ej=1) and the center of the split interval (c) as described in Puchinger

et al. (2006).

• Step 3d: A core Cr is defined as the set of variables that are around c. It usually consists of δ×n

items to the left and right of the center of the split interval. The parameter δ determines the size of

the core and is usually defined as a fraction of total number of variables, n (e.g. δ=0.1 means that

0.1×n variables to the left and to the right of the split interval center are included in the core). The

size of the core is 2×δ×n+1 variables. In this step, by defining δ we directly determine the size of

the core.

• Step 3e: Check if the core Cr is included in previous cores Ck (k=1…r-1). If yes, go back to the

beginning of step 3 and proceed to next r (i.e. it is redundant to calculate the corresponding Pareto

optimal solutions as they are already found). Otherwise, continue

• Step 3f: Create the model BOMDKP(r) which contains only the core variables. This means that

the variables that are left to the core are fixed to “1” and the variables that are on the right of the

core are fixed to “0”. Adjust the objective functions by incorporating the appropriate fixed terms

(lcore is the set of variables on the left of the core) :

kF kj

j lcore

z p


=  (3)

Adjust also the right hand side (ci) of the constraints as follows:

'i i ij

j lcore

c c w


= −  (4)

The model BOMDKP(r) is called the core subproblem and has the following form:

kF
max z =1,2

' 1...

{0,1}

kj j
j core

ij j i
j core

j

p x k

st

w x c i m

x j core





+

 =

 





 (5)

• Step 3g: Solve the core subproblem using the MCBB algorithm (Mavrotas and Diakoulaki, 1998;

2005) and generate all the corresponding Pareto optimal solutions (POS). These POS are defined

as locally POS (LPOS) as they refer to the specific core subproblem (BOMDKP(r)) and not to the

original BOMDKP problem (1).

• Step 3h: Store the LPOS solutions to the Incumbent List (IL) which is the list with the LPOS

found so far (from previous core subproblems for r>1). Update the IL by deleting the LPOS that

are found to be dominated.

• Step 4: End of the algorithm. The IL contains the globally Pareto optimal solutions for problem

BOMDKP.

The flowchart of the algorithm is shown in Figure 2 while in Figure 3 the flowchart for the core definition

is presented. As it was mentioned, the advantage of the proposed method relies on the improvement of

solving R times problem (5) instead of solving once the problem (1).

In the remainder of the section some computational issues regarding the implementation of the algorithm

are discussed. In step 1, the number of EES depends heavily on the number of variables n and constraints

m. If the size of the problem is relatively large (e.g. several hundreds of variables and 10-30 constraints),

the number of the EES may be in the order of thousands, which makes almost prohibitive the

implementation of the next steps of the algorithm. In these cases an adequate and controllable

approximation of the set of EES is recommended, which means that R’ (R’<R) EES can be produced. This

subset can be easily derived using multiple LP runs with diverse weighted sums of the objective functions.

The inclusion check of every new core (step 3e) prevents us from redundant solutions of essentially the

same problems. This computational economy due to this check is proved significant.

The algorithm is using MCBB for the generation of the complete set of the LPOS in the core subproblems

in step 3f. In every iteration r with r>1, the already found LPOS vectors that exist in the incumbent list are

used in the fathoming conditions of the MCBB algorithm. These vectors are used to check the fathoming

condition in every intermediate node by comparing them with the ideal (non-feasible) vector of the node

(in the same sense as it is done in the single objective case with the incumbent solution and the optimal

solution of the relaxed problem of the intermediate nodes of the branch and bound tree). In this way we

have an acceleration of the process as several intermediate nodes can be fathomed from LPOS of previous

cores’ subproblems. However, in large problems with many LPOS, it is advisable to keep the size of the

incumbent list in reasonable limits in order to reduce the number of comparisons at every node. This is

accomplished with a filtering procedure of the incumbent list in order to keep only a fixed number of them

independently of the total number of potential POS. The filtering procedure is actually the forward

filtering technique as proposed by Steuer (1989, p. 314) that from a set of vectors provides a subset of the

f more representative ones. The operation of the algorithm will be illustrated with the educational example

of the next section.

START

Create the relaxed model RBOMDKP, (X
j
[0,1])

Compute the sr Efficient Extreme Solutions of RBOMDKP (r=1…R)

r =1

Compute the weight vectors λ
r
that correspond to solution sr

Define core Cr according to ej (see Figure 3)

Solve BOMDKP(Cr) with MCBB generating
all the Pareto optimal solutions

Update incumbent list with the locally
Pareto optimal solutions of BOMDKP(Cr)

Adjust the problem BOMDKP to the core
variables creating the subproblem BOMDKP(Cr)

Model BOMDKP:

1

1

max 1,2

1... , {0,1}

n

k kj j

j

n

ij j i j

j

z p X k

st

w X c i m X

=

=

= =

 = 





Model BOMDKP:

1

1

max 1,2

1... , {0,1}

n

k kj j

j

n

ij j i j

j

z p X k

st

w X c i m X

=

=

= =

 = 





Create the single-objective problem RSOMDKP(r):
2

1 1

1

max ()

1... , [0,1]

n

rk kj j

j k

n

ij j i j

j

z p X

st

w X c i m X


= =

=

=

 = 

 



Create the single-objective problem RSOMDKP(r):
2

1 1

1

max ()

1... , [0,1]

n

rk kj j

j k

n

ij j i j

j

z p X

st

w X c i m X


= =

=

=

 = 

 



r = R?

r = r+1

END

YES

NO

The incumbent list contains the Pareto
optimal solutions of BOMDKP

Cr Ck ?
(k=1…r-1)

NO

YES

Figure 2: Flowchart of the mcbb-core algorithm

Solve RSOMDKP(r) and obtain the

shadow prices of the constraints di (i=1…m)

Start from the single-objective problem RSOMDKP(r):
2

1 1

1

max ()

1... , [0,1]

n

rk kj j

j k

n

ij j i j

j

z p X

st

w X c i m X


= =

=

=

 = 

 



Start from the single-objective problem RSOMDKP(r):
2

1 1

1

max ()

1... , [0,1]

n

rk kj j

j k

n

ij j i j

j

z p X

st

w X c i m X


= =

=

=

 = 

 



1

 define efficiency () j

j j m

i i ij

p
X e duals

d w=

 =


Sort Xj according to ej in decreasing order

Find the split interval (Xj | ej=1) and the center of split interval c

Define core Cr as the variables in the interval [c-δn, c+δn]

(total variables in core are 2δn+1)

Set core size parameter δ, usually as a percentage of n (e.g. δ=10%)

Figure 3: The flowchart for the definition of core

4. Illustrative example

We will use an example and a step by step procedure to illustrate the method. Assume that we have the

following BOMDKP problem with m=4 and n=10 (taken from Gomes da Silva et al., 2004, pp. 190).

Problem P410

1 1 2 3 4 5 6 7 8 9 10

2 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7

max 1 87 28 32 38 9 8 6 92 78

max 4 21 68 17 43 48 85 30 37 33

70 85 72 31 17 33 47 25 83 28 246

49 15 88 29 78 98 50

z x x x x x x x x x x

z x x x x x x x x x x

st

x x x x x x x x x x

x x x x x x x

= + + + + + + + + +
= + + + + + + + + +

+ + + + + + + + + 
+ + + + + + +

8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

89 83 3 291

15 15 51 3 60 1 78 66 78 71 219

56 21 69 60 96 65 100 25 68 30 295

{0,1}, 1,...,10
j

x x x

x x x x x x x x x x

x x x x x x x x x x

x j

+ + 
+ + + + + + + + + 
+ + + + + + + + + 

 =

The first step is to solve the relaxed MOLP problem with xj[0,1], which is denoted as R(P410). The

problem is solved with the algorithm EFFTREE which provides 11 Efficient Extreme Solutions (EES), the

criteria values of which are shown in Table 1 while the corresponding Pareto front is depicted in Figure 4.

Then, according to step 2, we calculate the weight intervals that correspond to every EES. The intervals of

these weight coefficients can be obtained from the corresponding simplex tableau (see Steuer, 1989 page

125). The results regarding λ2 (λ1=1-λ2 in the bi-objective case) are shown in Table 1.

Table 1: Efficient extreme solutions of R(P410) and the associated λ2 intervals.

 Efficient extreme solutions

 1 2 3 4 5 6 7 8 9 10 11

z1 323.0 320.1 317.8 303.5 300.3 264.6 215.1 213.8 192.9 191.5 171.2

z2 151.4 162.9 166.8 184.0 187.3 214.0 245.6 246.3 255.5 255.6 255.7

right edge of

λ2 interval 0.202 0.371 0.453 0.498 0.572 0.610 0.662 0.694 0.913 0.998 1.000

Subsequently we start the loop according to Step 3 that will be repeated 11 times one for each EES.

According to step 3a we formulate the single objective LP problems with objective function the

appropriate linear combination of the objective functions. For example the objective function of the first

problem is:

max z = 0.798 z1 + 0.202 z2

= 1.6 x1 +73.7 x2 + 36.1 x3 + 29 x4 + 39 x5 + 16.9 x6 + 23.6 x7 + 10.8 x8 + 80.9 x9 + 68.9 x10

Solving the LP relaxation (which means xj[0,1]) of the above problem we obtain the shadow prices (dual

values) of the 4 constraints denoted as di. In the present case we have d1=0.376, d2=0, d3=0.535 and d4=0.

Subsequently we form the efficiencies of all the decision variables according to Puchinger’s (2006)

terminology as expressed in equation (2). For example in the case of x2 we have:

2
2 4

21

73.7

(0.376 85 0 15 0.535 15 0 21)
i ii

p
e

d w
=

= = =
 +  +  + 

1.84

Similarly we calculate the efficiencies of all the decision variables and then we rank them in decreasing

order taking the results of Table 2.

Table 2: Sorting of variables according to their dual efficiencies in subproblem 1

Rank 1 2 3 4 5 6 7 8 9 10

variable x4 x2 x10 x9 x5 x6 x3 x7 x8 x1

ej 2.30 1.84 1.51 1.19 1 1 0.59 0.26 0.19 0.04

The split interval consists of variables (items in knapsack terminology) x5 and x6 that have efficiency equal

to 1. As it is an even number of items, we take as the center of the split interval the variable x6. The core is

then defined as a set of variables around x6 . Assuming δ=0.2 we consider δ×n variables on the left of the

center (which means variables x5 and x9) and δ×n variables on the right of the center (which means

variables x3 and x7. Consequently the core contains 5 variables, namely x9, x5, x6, x3, x7.

After the calculation of the core variables for the first subproblem we formulate the new model P410(c1)

that contains only the 5 core variables. Namely, we calculate the fixed part of the objective function that

corresponds to the non-core variables and then we calculate the updated RHS of the 4 constraints. The

fixed part of the objective functions is calculated according to equation (3) and they are: Z1F

=p1,4+p1,2+p1,10 =32+87+78=197 and similarly Z2F =17+21+33=71.

kF kj

j lcore

z p


=  (6)

The RHS of the 4 constraints are updated according to equation (4). For example, for the first constraint

we have: c’1= 246-31-85-28 = 102.

After the adaptation of the model to the core variables, we solve P410(c1) with MCBB and we obtain 3

Locally Pareto Optimal Solutions (LPOS) that are stored in the incumbent list, which is accordingly

updated. Then, we repeat the above steps for the remaining 10 EES of the relaxed problem RBOMDKP.

The results are depicted graphically in Figure 4. The complete solution is calculated applying the MCBB

method directly to the initial problem with the 10 variables. The approximation with δ=0.2 is reveal that 6

out of the 7 Pareto optimal solutions are discovered.

11 10 9 87

6

54

32
1

100

150

200

250

300

350

100 150 200 250 300 350

z1

z2

relaxed complete delta=0.2

Figure 4: The Pareto front of the relaxed, complete and the approximation with δ=0.2

The sorting results of the variables according to their efficiencies are shown in Table 3 for every EES. The

shaded cells are the cores of each subproblem (each core contains 5 variables).

Table 3: Sorting of variables and cores for the 11 efficient extreme solutions

Rank

1 2 3 4 5 6 7 8 9 10

1 x4 x2 x10 x9 x5 x6 x3 x7 x8 x1

2 x10 x4 x5 x2 x9 x6 x3 x7 x8 x1

3 x10 x5 x4 x9 x2 x6 x7 x3 x8 x1

4 x10 x5 x6 x9 x2 x4 x7 x3 x8 x1

5 x10 x5 x6 x2 x9 x7 x4 x3 x8 x1

6 x10 x2 x6 x5 x9 x7 x3 x4 x8 x1

7 x10 x6 x2 x7 x3 x5 x9 x4 x8 x1

8 x6 x10 x2 x7 x3 x5 x4 x9 x8 x1

9 x6 x7 x3 x10 x5 x2 x4 x9 x8 x1

10 x6 x3 x7 x5 x10 x2 x4 x8 x9 x1

11 x6 x3 x7 x5 x10 x8 x2 x4 x9 x1

The way of calculation of the Pareto optimal solutions using the core concept is better illustrated in Figure

5. In this graph we show from which core all the Pareto optimal solutions are generated.

11 10 9
87

6

54

32
1

11

10

9

8

7
6

5

4
3

2

1

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

relaxed fixed part Generated solutions

dominated

Figure 5: Schematic representation of the generation of the Pareto optimal solutions of the approximation

with δ=2.

Note that for the efficient extreme points 4, 8 and 11 we avoid the calculation of the LPOS as their core is

identical to previously computed 3, 6 and 9. The Pareto optimal solutions from each one of the core

subproblems are considered to have a fixed part and a variable part. The fixed part is the (z1F, z2F) vector

and the variable part represents the different Pareto optimal solutions obtained from each core. Observe

that there are cores that have the same fixed part (3and 4, 6 and 8, 9 and 11). There are core problems that

produce no Pareto optimal solutions due to the fathoming condition (2 and 10) and there are LPOS that are

dominated by the LPOS of another’s core subproblem (they are indicated with a diamond in Figure 5).

Specifically, these are the 3rd LPOS from core 1 (dominated by the LPOS generated by core 5) and the

LPOS from core 3 (dominated also by the core’s 5 LPOS). It must be noted that if we increase the core

size parameter δ to 0.35 then all the 7 Pareto optimal solutions are generated.

5. Adjusted core

In the great majority of MOLP problems the dispersion of the EES in the Pareto front is not uniform (see

e.g. Figure 4). In several examples we observed that the approximation of the Pareto set was poor in the

areas where the EES were away one from the other. On the contrary, where the EES were close one to the

other the approximation was very rich. In Figure 6 the Pareto sets of a BOMDKP with n=40 and m=3 are

depicted. The example was taken from Laumanns et al. 2006 (the original example had 3 objective

functions and for our purposes we delete the third). The relaxed MOLP has 26 efficient extreme solutions

and the MOMDKP has 34 Pareto optimal solutions. The complete Pareto set was computed with the

conventional MCBB (running for 40 variables) in 1’36” (in a Intel Core 2 Duo 2.66 GHz machine).Using

the core issue with δ=0.1 we obtain the 21 solutions shown in Figure 3 in less than 1 second. If we expand

the core setting δ = 0.2 (which is translated to 17 variables in the core) we obtain all the 34 Pareto optimal

solutions in 12” which is a significant reduction in solution time.

1100

1200

1300

1400

1500

1600

1700

1200 1250 1300 1350 1400 1450 1500 1550 1600

aprox d=0.1 complete relaxed

1
2

26 25
24

23 2221

20
19

18

17
16

15
14

1312
11

10

9
8

7

6
5
4
3

Figure 6: Results from a problem with 40 variables and 3 constraints (n=40, m=3)

Observing the results it can be seen that in the sparse areas of the relaxed Pareto front the approximation is

poor (see e.g. between points 9-10, 17-18 and 20-21). This is rational as we solve one subproblem for

every EES, performing so a more thorough search in the dense areas. So we conclude that in the sparse

areas we need to enhance the representation by using a greater core in the relevant subproblems. On the

contrary, in the dense areas a smaller core would suffice as many subproblems are going to be solved,

decreasing the probability of losing some Pareto optimal solutions.

A rational idea is to adjust the size of the core according to the Euclidean distance between one EES and

its next (normalized to the total length of the Pareto front which is actually the sum of the R-1 inter-point

distances). The size of the core is adjusted by properly adjusting the δ parameter. The formula for the

adjusted δ that we assumed is the following:

0 1
i

i

avg

l

l
  = +  for i = 1…R (7)

Where li is the Euclidean distance between EESi and EESi+1, lavg is the average length (=total length of

Pareto front/(R-1)), δ0 is the intercept that express the minimum value for δ and δ1 is the slope that

indicates how fast δi is increasing with (li/lavg). In order to avoid undesired large cores, we also bound the

value of δi by a parameter δmax so that the complete formula becomes:

max 0 1min(,)i
i

avg

l

l
   = +  for i = 1…R (8)

It must be noted that with the adjusted delta, the solution time dropped from 12” to 2.47” and produce all
the 34 Pareto solutions providing the complete solution. The number of core variables for each one of the

26 EES is shown in Table 4:

Table 4: Core elements for the 26 efficient extreme solutions

EES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Core # 5 9 9 7 7 13 7 7 19 7 7 5 13 7 11 9 15 9 9 21 5 11 5 5 9 9

By examining Figure 6 one can observe that in the areas where we have accumulation of efficient extreme

points the δ parameter is low and increases for those EES that are away from their next (e.g. see EES 6, 9,

13, 17, 20 with cores 13, 19, 13, 15 and 21 variables respectively).

The main conclusion is that using an adaptive core we can achieve computational economy without losing

goodness of fit, with the latter measured as the degree of approximation to the complete Pareto set.

6. Computational experiments

In the computational experiments we used available benchmarks where the complete set of the Pareto

optimal solutions is known or can be computed with the MCBB method. Initially, we use small

benchmarks that are taken from Chu and Beasley’s benchmark library that are properly modified.

Subsequently, we design a computational experiment with instances derived also from Chu and Beasley in

order to examine the effect of the core size on the algorithm effectiveness. The size of the examined

problems was chosen so that MCBB can produce the complete Pareto set in reasonable time. Finally, we

test the algorithm in larger problems with known complete Pareto set as provided by Laumanns et al. The

complete Pareto sets have been computed with the adaptive ε-constraint method (Laumanns, et al. 2006).

All the runs were performed in an Intel Core 2 Duo T7250 at 2 Ghz.

6.1 Comparison with conventional MCBB in small problems

The first set of models are derived from the Chu and Beasley knapsack problems library found in

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html. The only required intervention is that a

second objective function is added. The coefficients of the 2nd objective function are taken randomly from

an appropriate uniform distribution. The number of variables (n) varies from 6 to 50 and the number of

constraints (m) is 5 and 10. Specifically, the sizes of the 7 problems, in n×m format, are 6×10, 10×10,

15×10, 20×10, 28×10, 39×5 and 50×5.

First, we solve the 7 problems with the original MCBB method generating the complete set of the Pareto

optimal solutions (POS). Then we solve the 7 problems with the proposed method (COREMCBB) using

the core size parameter δ=0.25, which means that half of the original variables are actually used in each

core sub-problem. The required efficient extreme solutions of the corresponding relaxed problems are also

computed. The relevant Pareto sets for the last six models are depicted in Figure 7 and the results are

shown in Table 5.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

n=10, m=10

2500

2700

2900

3100

3300

3500

3700

3900

4100

4300

4500

6500 7000 7500 8000 8500 9000 9500

z1

z2

relaxed complete core δ=0.25

n=15, m=10

7500

8000

8500

9000

9500

10000

10500

3000 3500 4000

z1

z2

relaxed complete core δ=0.25

n=20, m=10

3000

4000

5000

6000

7000

8000

3200 3600 4000 4400 4800 5200 5600 6000 6400

z1

z2

relaxed complete core δ=0.25

n=28, m=10

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

8000 9000 10000 11000 12000 13000

z1

z2

relaxed complete core δ=0.25

n=39, m=5

10000

11000

12000

13000

14000

15000

16000

17000

18000

8000 8500 9000 9500 10000 10500 11000

z1

z2

relaxed complete core δ=0.25

n=50, m=5

20000

21000

22000

23000

24000

25000

26000

27000

14500 15000 15500 16000 16500 17000

z1

z2

relaxed complete core δ=0.25

Figure 7: Pareto sets of the 6 benchmarks from Chu&Beasley

Table 5: Results for the 7 benchmarks

 number of Pareto optimal solutions time (sec)
time fraction %

 relaxed* complete δ=0.25 coverage complete δ=0.25

6×10 7 2 2 100% 0.1 0.1 -

10×10 8 5 4 60% 0.1 0.1 -

15×10 9 11 7 64% 0.4 0.1 25.0%

20×10 21 23 19 78% 5.0 1.0 20.0%

28×10 17 27 26 93% 5.3 3.2 60.4%

39×5 24 29 26 59% 30.1 6.2 20.6%

50×5 28 45 38 73% 24264 64.5 0.3%

* For the relaxed problem, the figures refer to the efficient extreme solutions

The coverage in Table 5 is defined as the percentage of the POS from the complete Pareto set (generated

with the MCBB) that are found also with the approximate method, COREMCBB. The time fraction

expresses the computational economy and refers to the quotient with nominator the COREMCBB solution

time and denominator the MCBB solution time. We can observe that the beneficial effect of COREMCBB

is more apparent in the instances with many decision variables, where the computational time explodes. In

the case with n=50 the computational economy is huge, while the coverage is substantial (73%). We will

take a closer look to this case (problems with n=50 and m=5) in the next paragraph.

6.2 Effect of the core size on the effectiveness of the algorithm

Ten benchmark problems with n=50 and m=5 were generated by sub-sampling from a problem with

n=100 and m=5. In the sub-sampling process we randomly choose 50 out of the 100 columns (variables)

of the model. By doing this 10 times we create 10 problems with n=50 and m=5. The right hand side

(RHS) of the constraints was defined appropriately, so that the tightness ratio in all constraints is 0.5.

The core size parameter δ was taken constant in four cases (δ=0.1, 0.15, 0.2, 0.25) and adjusted in two

cases (δ0=0.1, δ1=0.1 and δmax=0.2 in the first case and δ0=0.1, δ1=0.1 and δmax=0.25 in the second case).

The results are shown in Table 6. It is observed in the results that although the number of POS of the

complete Pareto set doesn’t vary too much, the computation time may differ dramatically (from 2443 to
84193 seconds which is more than 35 times more!). As it was expected, the increase in core size

(expressed by the δ parameter) results in better representation of the Pareto set (reflected in “coverage”),

but with higher computation times. There is always a trade-off between coverage and computation time. It

was also observed that the two cases with adjusted core do not clearly outrank the cases with the fixed

core and more computational experiments are needed to draw more meaningful conclusions. The average

values for coverage and time fraction are graphically depicted in Figure 8.

Table 6: Results from 10 instances of the n=50, m=5 case

 relaxed* complete δ=0.1 δ=0.15 δ=0.2 δ=0.25
δ-adj

(0.1,0.1,0.2)
δ-adj

(0.1,0.1,0.25)

number of
Pareto optimal
solutions

Min 27 25 9 21 23 25 22 23

Max 52 41 27 38 39 40 39 40

Avg 41.3 34.3 19.4 29.9 31.8 33.2 31.0 32.4

Sd 8.2 5.8 5.0 5.7 5.2 5.7 5.2 5.5

coverage

Min - - 12.0% 48.0% 69.0% 83.0% 61.0% 72.0%

Max - - 45.0% 82.0% 96.0% 100.0% 96.0% 100.0%

Avg - - 30.1% 66.2% 85.2% 94.5% 81.4% 89.3%

Sd - - 10.9% 13.2% 9.5% 5.5% 11.9% 8.3%

time (sec)

Min 0.4 2443 1.0 10.0 45 132 24 41

Max 0.9 84193 2.0 19.0 109 563 77 318

Avg 0.6 17238 1.8 14.4 65 247 38 120

Sd 0.18 23949 0.4 3.0 23 143 17 85

time fraction

Min - - - 0.02% 0.11% 0.51% 0.06% 0.21%

Max - - - 0.78% 4.46% 23.05% 3.15% 13.02%

Avg - - - 0.19% 0.94% 3.99% 0.60% 2.09%

Sd - - - 0.21% 1.28% 6.78% 0.92% 3.88%

* For the relaxed problem, the figures refer to the efficient extreme solutions

δ=0.1

δ=0.15

δ=0.2
δadj(1)

δadj(2) δ=0.25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 1% 2% 3% 4% 5%

time fraction (%)

c
o

v
e

ra
g

e
 (

%
)

Figure 8: Average values for coverage vs time fraction for different core sizes from 10 examples with

n=50, m=5 (δadj(1) is the case of δmax=0.2 and δadj(2) the case of δmax=0.25)

From Figure 8 it is observed that exploiting the core issue, we can achieve in less than 1% of the

computational time more than 80% coverage. However the trade-off curve between time fraction and

coverage becomes more horizontal as we move to greater coverage values. Specifically, we can achieve a

substantial increase in coverage from δ=0.1 to δ=0.2 with a low sacrifice in computational time. However,

a further increase in coverage costs much more in computational time.

6.3 Larger problems

We also test COREMCBB in larger problems with known complete Pareto sets that were found in

http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite. The complete Pareto sets were

probably generated using the adaptive ε-constraint method (Laumanns et al., 2006). The first problem has

n=100 and m=2. We test four fixed core sizes, namely δ=0.05, 0.075, 0.1, 0.125 which means 11, 16, 21,

26 core items respectively and one adjusted core size. The results are shown in Table 7.

Table 7: Results for the n=100, m=2 case

The second

problem has

n=250 and

m=2. We

test four

fixed core sizes, namely δ=0.02, 0.03, 0.4, 0.5 which means 11, 16, 21, 26 core items respectively and one

adjusted core size. The results are shown in Table 8.

Table 8: Results for the n=250, m=2 case

 relaxed* complete δ=0.02 δ=0.03 δ=0.04 δ=0.05
δ-adj

(0.02,0.01,0.05)

Number of POS 154 567 243 457 517 555 485

Coverage - - 26% 63% 81% 93% 71%

Time (sec) - - 13 183 1798 77626 4325

7. Conclusions and discussion

In the current work we define the core concept for the multi-objective multidimensional knapsack problem

and we develop a method based on the core concept for the bi-objective case. A cornerstone of the method

is the MCBB algorithm properly adjusted to the pure integer case. The results from the “divide and
conquer” strategy are very promising regarding the quality of the approximation and the solution time.

The points for future work are the following:

• Expand the application of the method to more than two objectives with the corresponding

computational results.

• Upgrade the approximate method of this document to be an exact method on its own right. A first

approach is to exploit the obtained POS and search exhaustively for other POS not found by the

COREMCBB method using multiple IP models. The obtained results can be used to effectively

 relaxed* complete δ=0.05 δ=0.075 δ=0.1 δ=0.125
Δ-adj

(0.05, 0.025, 0.125)

number of POS 53 121 87 114 118 120 118

coverage - - 57% 88% 92% 94% 89%

time (sec) - - 4 39 231 1246 246

http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite

expand the already found cores and repeat the COREMCBB approach. This iterative process

eventually discovers all the POS of the BOMDKP. The generation of the complete Pareto set in

such problems will be very useful for benchmarking the widely used nowadays multiobjective

metaheuristics.

• The algorithm is very suitable for parallelization as the core subproblems Cr can be assigned to

different CPUs of the same machine.

References

E. Balas, E., Zemel, E., 1980. An algorithm for large zero-one knapsack problems. Operations Research

28, 1130-1154.

Gomes da Silva, C., Climaco, J., Figueira, J., 2004. A scatter search method for the bi-criteria multi-

dimensional {0,1}-knapsack problem using surrogate relaxation, Journal of Mathematical Modelling

and Algorithms 3, 183-208.

Gomes da Silva, C., Climaco, J., Figueira, J., 2008. Core problems in bi-criteria {0, 1}-knapsack

problems, Computers & Operations Research 35, 2292-2306.

Fréville A., 2004. The multidimensional 0-1 knapsack problem: An overview. European Journal of

Operational Research 155, 1-21.

Kellerer, H., Pferschy U., Pisinger, D., 2004. Knapsack Problems. Springer. Berlin

Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation scheme for

Metaheuristics based on the epsilon-constraint method. European Journal of Operational Research

169, 932-942.

Martello, S., Toth, P. A new algorithm for the 0-1 knapsack problem. Management Science 34, 633-644,

1988.

Martello, S., Toth., P., 1990. Knapsack problems - algorithms and computer implementations, Wiley, New

York.

Mavrotas, G., 2000, Multiple Objective Programming under Uncertainty: Development of a Decision

Support System and Implementation in Energy Planning. Ph.D. Thesis, National Technical University

of Athens, Athens.

Mavrotas, G., Diakoulaki, D., 1998. A Branch and Bound Algorithm for Mixed Zero-One Multiple

Objective Linear Programming. European Journal of Operational Research 107, 530-541.

Mavrotas, G., Diakoulaki, D., 2005. Multi-criteria branch & bound: a vector maximization algorithm for

mixed 0-1 multiple objective linear programming. Applied Mathematics & Computation 171, 53-71.

Pisinger, D., 1995. Algorithms for Knapsack problems. Ph.D. Thesis.Dept. of Computer Science,

University of Copenhagen.

Puchinger, J., Raidl, G.R., Pferschy, U., 2006. The core concept for the multidimensional knapsack

problem, in: Gottileb, J. and Raidl, G.R. (eds.), LNCS 3906, pp.195-208.

Steuer, R.E. 1989. Multiple Criteria Optimization-Theory, Computation and Application (2nd ed). Krieger,

Malabar FL.

Steuer, R.E., 1995. The ADBASE Multiple Objective Linear Programming Package. In: Gu J, Chen G,

Wei Q, Wang S (ed) Multiple Criteria Decision Making. Windsor,England, pp. 1-6

