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Abstract: This paper discusses the bi-objective multi-dimensional knapsack problem. We propose the 

refinement of the core concept that has already effectively been used in the single objective multi- 

dimensional knapsack. The core concept is based on the divide and conquer principle. Instead of solving 

the whole problem with n variables, several sub-problems with less than n variables are solved, in several 

variables which comprise the cores. The quality of the obtained solution can be adjusted according to the 

core size and there is always a balance between the solution time and quality. First, the core variables are 

defined, and subsequently the bi-objective integer program is solved, that comprises only the core 

variables using the Multicriteria Branch and Bound algorithm that generates the complete Pareto set. 

Small and medium sized examples are solved. Also, a very small example is used to illustrate the method 

while computational issues are also discussed. 

1. Introduction 

Over the last years, much work has been done in the single objective Multi-Dimensional Knapsack 

Problem (MDKP, see Freville, 2004 for a recent overview). In their recent textbook Kellerer et al., (2004, 

chapter 9) devote a whole chapter to multidimensional knapsack problem. A recent breakthrough in 

multidimensional knapsack problems is the concept of core as described by Puchinger et al. (2006). The 

concept of core for the conventional (single constraint) knapsack was introduced by Balas and Zemel 

(1980) and further exploited by Martello and Toth (1988) and Pisinger (1995) among others. Puchinger et 

al. (2006) expanded the concept of core to the multidimensional case. More recently, the concept of core 

was addressed by Gomes da Silva et al. (2008) in bi-criteria, single dimensional knapsack problems.  

The aim of our work is to synthesize the ideas of Puchinger et al. (2006) and Gomes da Silva et al. (2008) 

in order to define and apply the core issue in Multi-Objective Multi-Dimensional Knapsack Problem 

(MOMDKP). Specifically, in this paper we deal with the simplest case the Bi-Objective Multi-

Dimensional Knapsack Problem (BOMDKP) and we present some first results. 

The idea is to decompose the BOMDKP to a series of single objective MDKP sub-problems following the 

ideas of Gomes da Silva et al. (2008). Then, exploiting the ideas of Puchinger et al. (2006), we define a 



core for each one of the MDKP sub-problems. Using only the core variables, we appropriately modify the 

BOMDKP problem and solve it, generating the complete Pareto set of each subproblem, using the Multi-

Criteria Branch & Bound (MCBB) method (Mavrotas and Diakoulaki, 1998, 2005). MCBB is a general 

purpose method for solving Mixed Integer Multi Objective Linear Programming (MOMILP) problems of 

small and medium size. In the specific application MCBB is adjusted to problems with only integer (more 

specifically, binary) variables. It must be clarified that the obtained Pareto set corresponds to the specific 

core variables and not to the original BOMDKP. We repeat this procedure for all the MDKP subproblems 

and at the end we merge the obtained Pareto sets to obtain a representation of the Pareto set of the original 

problem. The size of the core problems is manageable with the MCBB method.  

The basic idea behind the proposed method is the well known “divide and conquer” principle that is often 

used in OR techniques. The “divide and conquer” principle is especially beneficial in the case of the 

knapsack problem which is combinatorial explosive as an NP-hard problem. Instead of solving a problem 

with n variables we solve several problems with a fraction of n variables (e.g. it is much faster to solve 50 

BOMDKP problems with 20 variables than 1 BOMDKP with 40 variables). As it will be shown in the 

results the computational economy for medium and big problems is significant, while the quality of the 

Pareto set representation is controllable: increasing the core size the quality of representation also 

increases. However there is always a trade-off between the computational time and the quality of 

representation.  

Although the proposed method is originally designed as an approximate method (producing a 

representation of the Pareto set) it can be used as a good first step for the exhaustive production of the 

complete Pareto set as it is discussed in the last section of the paper. The exact solution of MOMDKP 

problems (complete Pareto set), is very useful as they can be used as reliable benchmarks for the widely 

used multiobjective metaheuristics. Moreover, the method with just small modifications can be extended 

to solve multi-objective knapsack problems with more than two objectives.     

The structure of the paper is as follows. Following the introduction we define in Section 2 the core 

problem for the MOMDKP. In section 3 we present the algorithm for the BOMDKP and in section 4 we 

describe the application of the algorithm in detail using an educational example. In section 5 we introduce 

the concept of the adjusted core while in section 6 we present some computational results. Finally in 

section 7 we present the basic concluding remarks and some discussion about future research. 

2. The core concept for the Multi-Objective Multi-Dimensional Knapsack 

Problem 

In conventional knapsack problems with one objective function and one constraint, the core is a subset of 

items-variables with efficiencies (ratio of price to weight) that are similar to the efficiency of the break 

item. The core concept was the basic idea in the development of the most efficient algorithms for the 

knapsack problem. Recently, there has been defined the concept of core for (i) multidimensional knapsack 

problems (see Puchinger et al., 2006) and (ii) for bi-objective single dimension knapsack problems (see 

Gomes da Silva et al., 2008). Our proposal is the definition and effective implementation of the core 

concept for the bi-ojective multidimensional knapsack problem. This extension is not trivial. We 

synthesize the two previous works and define the appropriate core concept on the bi-objective 

multidimensional knapsack problem.  



The main idea is to exploit the “divide and conquer” principle which is so effective in operational research 
and more specifically in combinatorial problems (see e.g the decomposition algorithms or branch and 

bound). Instead of solving one big problem we solve a series of smaller problems synthesizing the results 

at the end, obtaining so the desired solution. As we will show, the intermediate results can be used to 

accelerate the whole process.  

The main idea is briefly the following: According to Gomes da Silva et al. (2008) we initially solve the 

relaxed problem producing the set of Efficient Extreme Solutions (EES). Then we assign to every EES the 

corresponding weight interval according to Multi-Objective Linear Programming (MOLP) theory. For 

each one of the EES and using the proper weight coefficients to merge the two objective functions to one 

we transform the problem to single objective. Then we take advantage of the Puchinger et al. 2006, 

findings regarding the efficiencies and the core concept of the multidimensional knapsack problem. 

Namely, for each one of the EES we assign the appropriate core (according to Puchinger et al. (2006) dual 

efficiencies). We adjust the initial BOMDKP to the specific core variables and solve it with MCBB in 

order to generate the local (specific to this particular EES) Pareto set. We repeat this process for all the 

EES and at the end we merge the local Pareto sets to obtain a representation of the complete Pareto set of 

the initial problem.  

The whole idea can be better expressed with an illustrative graph. In Figure 1 the Pareto front of the 

relaxed problem is represented by the line A,B,C,D. For each one of the four EES we compute the core 

(see next section). The variables that are outside the core are fixed either to 0 or 1 (“frozen” variables). 
The fixed part corresponds to points A’, B’, C’ D’. The four BOMDKP that are solved with MCBB and 
involve only the core variables produce the relevant (locally) Pareto optimal solutions. For example from 

the core variables of the A-core, the locally Pareto optimal solutions A1, A2, A3 are produced. After all 

the EES are visited, the locally Pareto optimal solutions are merged to derive the representation of the 

Pareto set of the original BOMDKP. The whole process and the specific computational details are 

described thoroughly in the next sections with an educational example. 

 



A
B

D

C

z1

z2

A’
B’

C’

D’

A1
A2

A3

 

Figure 1: Graphical representation of the core concept in BOMDKP   

3. The proposed algorithm 

Assume the following BOMDKP problem: 
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The proposed algorithm for applying the core concept in bi-objective multidimensional knapsack 

problems has the following steps: 

• Step 1: Relax the binary variables (xj [0,1]) and solve the resulted Multiple Objective Linear 

Programming (MOLP) problem which is the relaxation of the BOMDKP problem and is defined as 

RBOMDKP. Derive the Efficient Extreme Solutions (EES) of RBOMDKP using an appropriate 

method. Methods like ADBASE (Steuer, 1995) or EFFTREE (Mavrotas, 2000) can be used for the 

exhaustive enumeration of the efficient extreme solutions or a weighted sum algorithm for an 

approximation. The number of EES is R.  

• Step 2: As it is well known from MOLP theory, every EES can be obtained as an optimal solution of 

an LP problem, where the objective function is a weighted sum of the MOLP objective functions. 

Therefore, at every EES corresponds a weight interval that can be easily calculated (see e.g. Steuer, 

1989 page 124-125). Calculate the weight intervals that correspond to every EES (in the bi-objective 

case k=2 and λ2=1-λ1)  



• Step 3: For every EES, which means for r=1…R, repeat Steps 3a-3h 

• Step 3a: Use the appropriate weights as computed in Step 2, create the LP with the weighted sum 

objective function and solve it. 

• Step 3b: Use the shadow prices (di, i=1…m) of the constraints in order to compute the dual 

efficiencies ej(duals) of the decision variables, following the Puchinger et al. (2006) terminology 

for single objective multidimensional knapsack (SOMDKP) problems. Specifically we have: 

1
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• Step 3c: Sort the variables in decreasing order according to their efficiencies ej and find the split 

interval (the variables with ej=1) and the center of the split interval (c) as described in Puchinger 

et al. (2006).  

• Step 3d: A core Cr is defined as the set of variables that are around c. It usually consists of δ×n 

items to the left and right of the center of the split interval. The parameter δ determines the size of 

the core and is usually defined as a fraction of total number of variables, n (e.g. δ=0.1 means that 

0.1×n variables to the left and to the right of the split interval center are included in the core). The 

size of the core is 2×δ×n+1 variables. In this step, by defining δ we directly determine the size of 

the core.  

• Step 3e: Check if the core Cr is included in previous cores Ck (k=1…r-1). If yes, go back to the 

beginning of step 3 and proceed to next r (i.e. it is redundant to calculate the corresponding Pareto 

optimal solutions as they are already found). Otherwise, continue 

• Step 3f: Create the model BOMDKP(r) which contains only the core variables. This means that 

the variables that are left to the core are fixed to “1” and the variables that are on the right of the 

core are fixed to “0”. Adjust the objective functions by incorporating the appropriate fixed terms 

(lcore is the set of variables on the left of the core) :  
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Adjust also the right hand side (ci) of the constraints as follows: 
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The model BOMDKP(r) is called the core subproblem and has the following form: 
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• Step 3g: Solve the core subproblem using the MCBB algorithm (Mavrotas and Diakoulaki, 1998; 

2005) and generate all the corresponding Pareto optimal solutions (POS). These POS are defined 

as locally POS (LPOS) as they refer to the specific core subproblem (BOMDKP(r)) and not to the 

original BOMDKP problem (1).  

• Step 3h: Store the LPOS solutions to the Incumbent List (IL) which is the list with the LPOS 

found so far (from previous core subproblems for r>1). Update the IL by deleting the LPOS that 

are found to be dominated.  

• Step 4: End of the algorithm. The IL contains the globally Pareto optimal solutions for problem 

BOMDKP. 

The flowchart of the algorithm is shown in Figure 2 while in Figure 3 the flowchart for the core definition 

is presented. As it was mentioned, the advantage of the proposed method relies on the improvement of 

solving R times problem (5) instead of solving once the problem (1).  

In the remainder of the section some computational issues regarding the implementation of the algorithm 

are discussed. In step 1, the number of EES depends heavily on the number of variables n and constraints 

m. If the size of the problem is relatively large (e.g. several hundreds of variables and 10-30 constraints), 

the number of the EES may be in the order of thousands, which makes almost prohibitive the 

implementation of the next steps of the algorithm. In these cases an adequate and controllable 

approximation of the set of EES is recommended, which means that R’ (R’<R) EES can be produced. This 

subset can be easily derived using multiple LP runs with diverse weighted sums of the objective functions. 

The inclusion check of every new core (step 3e) prevents us from redundant solutions of essentially the 

same problems. This computational economy due to this check is proved significant.  

The algorithm is using MCBB for the generation of the complete set of the LPOS in the core subproblems 

in step 3f. In every iteration r with r>1, the already found LPOS vectors that exist in the incumbent list are 

used in the fathoming conditions of the MCBB algorithm. These vectors are used to check the fathoming 

condition in every intermediate node by comparing them with the ideal (non-feasible) vector of the node 

(in the same sense as it is done in the single objective case with the incumbent solution and the optimal 

solution of the relaxed problem of the intermediate nodes of the branch and bound tree). In this way we 

have an acceleration of the process as several intermediate nodes can be fathomed from LPOS of previous 

cores’ subproblems. However, in large problems with many LPOS, it is advisable to keep the size of the 

incumbent list in reasonable limits in order to reduce the number of comparisons at every node. This is 

accomplished with a filtering procedure of the incumbent list in order to keep only a fixed number of them 

independently of the total number of potential POS. The filtering procedure is actually the forward 

filtering technique as proposed by Steuer (1989, p. 314) that from a set of vectors provides a subset of the 

f more representative ones. The operation of the algorithm will be illustrated with the educational example 

of the next section. 
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Figure 2: Flowchart of the mcbb-core algorithm 
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Figure 3: The flowchart for the definition of core 

4. Illustrative example 

We will use an example and a step by step procedure to illustrate the method. Assume that we have the 

following BOMDKP problem with m=4 and n=10 (taken from Gomes da Silva et al., 2004, pp. 190). 



Problem P410 
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The first step is to solve the relaxed MOLP problem with xj[0,1], which is denoted as R(P410). The 

problem is solved with the algorithm EFFTREE which provides 11 Efficient Extreme Solutions (EES), the 

criteria values of which are shown in Table 1 while the corresponding Pareto front is depicted in Figure 4. 

Then, according to step 2, we calculate the weight intervals that correspond to every EES. The intervals of 

these weight coefficients can be obtained from the corresponding simplex tableau (see Steuer, 1989 page 

125). The results regarding λ2 (λ1=1-λ2 in the bi-objective case) are shown in Table 1. 

Table 1: Efficient extreme solutions of R(P410) and the associated λ2 intervals. 

  Efficient extreme solutions 

  1 2 3 4 5 6 7 8 9 10 11 

z1 323.0 320.1 317.8 303.5 300.3 264.6 215.1 213.8 192.9 191.5 171.2 

z2 151.4 162.9 166.8 184.0 187.3 214.0 245.6 246.3 255.5 255.6 255.7 

right edge of 

λ2 interval 0.202 0.371 0.453 0.498 0.572 0.610 0.662 0.694 0.913 0.998 1.000 

 

Subsequently we start the loop according to Step 3 that will be repeated 11 times one for each EES. 

According to step 3a we formulate the single objective LP problems with objective function the 

appropriate linear combination of the objective functions. For example the objective function of the first 

problem is: 

max z  = 0.798 z1 + 0.202 z2   

= 1.6 x1 +73.7 x2 + 36.1 x3 + 29 x4 + 39 x5 + 16.9 x6 + 23.6 x7 + 10.8 x8 + 80.9 x9 + 68.9 x10 

Solving the LP relaxation (which means xj[0,1]) of the above problem we obtain the shadow prices (dual 

values) of the 4 constraints denoted as di. In the present case we have d1=0.376, d2=0, d3=0.535 and d4=0. 

Subsequently we form the efficiencies of all the decision variables according to Puchinger’s (2006) 

terminology as expressed in equation (2). For example in the case of x2 we have:  

2
2 4

21
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(0.376 85 0 15 0.535 15 0 21)
i ii

p
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d w
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= = =
 +  +  + 

1.84 



Similarly we calculate the efficiencies of all the decision variables and then we rank them in decreasing 

order taking the results of Table 2.  

Table 2: Sorting of variables according to their dual efficiencies in subproblem 1 

Rank 1 2 3 4 5 6 7 8 9 10 

variable x4 x2 x10 x9 x5 x6 x3 x7 x8 x1 

ej 2.30 1.84 1.51 1.19 1 1 0.59 0.26 0.19 0.04 

 

The split interval consists of variables (items in knapsack terminology) x5 and x6 that have efficiency equal 

to 1. As it is an even number of items, we take as the center of the split interval the variable x6.  The core is 

then defined as a set of variables around x6 . Assuming δ=0.2 we consider δ×n variables on the left of the 

center (which means variables x5 and x9) and δ×n variables on the right of the center (which means 

variables x3 and x7. Consequently the core contains 5 variables, namely x9, x5, x6, x3, x7.  

After the calculation of the core variables for the first subproblem we formulate the new model P410(c1) 

that contains only the 5 core variables. Namely, we calculate the fixed part of the objective function that 

corresponds to the non-core variables and then we calculate the updated RHS of the 4 constraints. The 

fixed part of the objective functions is calculated according to equation (3) and they are: Z1F 

=p1,4+p1,2+p1,10 =32+87+78=197 and similarly Z2F =17+21+33=71.  

kF kj

j lcore

z p


=         (6) 

The RHS of the 4 constraints are updated according to equation (4). For example, for the first constraint 

we have: c’1= 246-31-85-28 = 102. 

After the adaptation of the model to the core variables, we solve P410(c1) with MCBB and we obtain 3 

Locally Pareto Optimal Solutions (LPOS) that are stored in the incumbent list, which is accordingly 

updated. Then, we repeat the above steps for the remaining 10 EES of the relaxed problem RBOMDKP. 

The results are depicted graphically in Figure 4. The complete solution is calculated applying the MCBB 

method directly to the initial problem with the 10 variables. The approximation with δ=0.2 is reveal that 6 

out of the 7 Pareto optimal solutions are discovered. 
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Figure 4: The Pareto front of the relaxed, complete and the approximation with δ=0.2 

The sorting results of the variables according to their efficiencies are shown in Table 3 for every EES. The 

shaded cells are the cores of each subproblem (each core contains 5 variables).  

Table 3: Sorting of variables and cores for the 11 efficient extreme solutions 

 

Rank 

1 2 3 4 5 6 7 8 9 10 

# 1 x4 x2 x10 x9 x5 x6 x3 x7 x8 x1 

# 2 x10 x4 x5 x2 x9 x6 x3 x7 x8 x1 

# 3 x10 x5 x4 x9 x2 x6 x7 x3 x8 x1 

# 4 x10 x5 x6 x9 x2 x4 x7 x3 x8 x1 

# 5 x10 x5 x6 x2 x9 x7 x4 x3 x8 x1 

# 6 x10 x2 x6 x5 x9 x7 x3 x4 x8 x1 

# 7 x10 x6 x2 x7 x3 x5 x9 x4 x8 x1 

# 8 x6 x10 x2 x7 x3 x5 x4 x9 x8 x1 

# 9 x6 x7 x3 x10 x5 x2 x4 x9 x8 x1 

# 10 x6 x3 x7 x5 x10 x2 x4 x8 x9 x1 

# 11 x6 x3 x7 x5 x10 x8 x2 x4 x9 x1 

 

The way of calculation of the Pareto optimal solutions using the core concept is better illustrated in Figure 

5. In this graph we show from which core all the Pareto optimal solutions are generated.  
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Figure 5: Schematic representation of the generation of the Pareto optimal solutions of the approximation 

with δ=2.  

Note that for the efficient extreme points 4, 8 and 11 we avoid the calculation of the LPOS as their core is 

identical to previously computed 3, 6 and 9. The Pareto optimal solutions from each one of the core 

subproblems are considered to have a fixed part and a variable part. The fixed part is the (z1F, z2F) vector 

and the variable part represents the different Pareto optimal solutions obtained from each core. Observe 

that there are cores that have the same fixed part (3and 4, 6 and 8, 9 and 11). There are core problems that 

produce no Pareto optimal solutions due to the fathoming condition (2 and 10) and there are LPOS that are 

dominated by the LPOS of another’s core subproblem (they are indicated with a diamond in Figure 5). 

Specifically, these are the 3rd LPOS from core 1 (dominated by the LPOS generated by core 5) and the 

LPOS from core 3 (dominated also by the core’s 5  LPOS). It must be noted that if we increase the core 

size parameter δ to 0.35 then all the 7 Pareto optimal solutions are generated.  

5. Adjusted core 

In the great majority of MOLP problems the dispersion of the EES in the Pareto front is not uniform (see 

e.g. Figure 4). In several examples we observed that the approximation of the Pareto set was poor in the 

areas where the EES were away one from the other. On the contrary, where the EES were close one to the 

other the approximation was very rich. In Figure 6 the Pareto sets of a BOMDKP with n=40 and m=3 are 

depicted. The example was taken from Laumanns et al. 2006 (the original example had 3 objective 

functions and for our purposes we delete the third). The relaxed MOLP has 26 efficient extreme solutions 

and the MOMDKP has 34 Pareto optimal solutions. The complete Pareto set  was computed with the 

conventional MCBB (running for 40 variables) in 1’36” (in a Intel Core 2 Duo 2.66 GHz machine).Using 

the core issue with δ=0.1 we obtain the 21 solutions shown in Figure 3 in less than 1 second. If we expand 



the core setting δ = 0.2 (which is translated to 17 variables in the core) we obtain all the 34 Pareto optimal 

solutions in 12” which is a significant reduction in solution time. 
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Figure 6: Results from a problem with 40 variables and 3 constraints (n=40, m=3) 

Observing the results it can be seen that in the sparse areas of the relaxed Pareto front the approximation is 

poor (see e.g. between points 9-10, 17-18 and 20-21). This is rational as we solve one subproblem for 

every EES, performing so a more thorough search in the dense areas. So we conclude that in the sparse 

areas we need to enhance the representation by using a greater core in the relevant subproblems. On the 

contrary, in the dense areas a smaller core would suffice as many subproblems are going to be solved, 

decreasing the probability of losing some Pareto optimal solutions.  

A rational idea is to adjust the size of the core according to the Euclidean distance between one EES and 

its next (normalized to the total length of the Pareto front which is actually the sum of the R-1 inter-point 

distances). The size of the core is adjusted by properly adjusting the δ parameter. The formula for the 

adjusted δ that we assumed is the following:   

0 1
i

i

avg

l

l
  = +   for i = 1…R      (7) 

Where li is the Euclidean distance between EESi and EESi+1, lavg is the average length (=total length of 

Pareto front/(R-1)), δ0 is the intercept that express the minimum value for δ and δ1 is the slope that 

indicates how fast δi is increasing with (li/lavg). In order to avoid undesired large cores, we also bound the 

value of δi by a parameter δmax so that the complete formula becomes: 

max 0 1min( , )i
i

avg

l

l
   = +    for i = 1…R     (8) 



It must be noted that with the adjusted delta, the solution time dropped from 12” to 2.47” and produce all 
the 34 Pareto solutions providing the complete solution. The number of core variables for each one of the 

26 EES is shown in Table 4: 

Table 4: Core elements for the 26 efficient extreme solutions   

EES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Core # 5 9 9 7 7 13 7 7 19 7 7 5 13 7 11 9 15 9 9 21 5 11 5 5 9 9 

By examining Figure 6 one can observe that in the areas where we have accumulation of efficient extreme 

points the δ parameter is low and increases for those EES that are away from their next (e.g. see EES 6, 9, 

13, 17, 20 with cores 13, 19, 13, 15 and 21 variables respectively).  

The main conclusion is that using an adaptive core we can achieve computational economy without losing 

goodness of fit, with the latter measured as the degree of approximation to the complete Pareto set.  

6. Computational experiments 

In the computational experiments we used available benchmarks where the complete set of the Pareto 

optimal solutions is known or can be computed with the MCBB method. Initially, we use small 

benchmarks that are taken from Chu and Beasley’s benchmark library that are properly modified. 

Subsequently, we design a computational experiment with instances derived also from Chu and Beasley in 

order to examine the effect of the core size on the algorithm effectiveness. The size of the examined 

problems was chosen so that MCBB can produce the complete Pareto set in reasonable time. Finally, we 

test the algorithm in larger problems with known complete Pareto set as provided by Laumanns et al. The 

complete Pareto sets have been computed with the adaptive ε-constraint method (Laumanns, et al. 2006). 

All the runs were performed in an Intel Core 2 Duo T7250 at 2 Ghz.  

6.1 Comparison with conventional MCBB in small problems 

The first set of models are derived from the Chu and Beasley knapsack problems library found in 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html. The only required intervention is that a 

second objective function is added. The coefficients of the 2nd objective function are taken randomly from 

an appropriate uniform distribution. The number of variables (n) varies from 6 to 50 and the number of 

constraints (m) is 5 and 10. Specifically, the sizes of the 7 problems, in n×m format, are 6×10, 10×10, 

15×10, 20×10, 28×10, 39×5 and 50×5.  

First, we solve the 7 problems with the original MCBB method generating the complete set of the Pareto 

optimal solutions (POS). Then we solve the 7 problems with the proposed method (COREMCBB) using 

the core size parameter δ=0.25, which means that half of the original variables are actually used in each 

core sub-problem. The required efficient extreme solutions of the corresponding relaxed problems are also 

computed. The relevant Pareto sets for the last six models are depicted in Figure 7 and the results are 

shown in Table 5.  

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
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Figure 7: Pareto sets of the 6 benchmarks from Chu&Beasley  



Table 5: Results for the 7 benchmarks 

 number of Pareto optimal solutions time (sec) 
time fraction % 

 relaxed* complete δ=0.25 coverage complete δ=0.25 

6×10 7 2 2 100% 0.1 0.1 - 

10×10 8 5 4 60% 0.1 0.1 - 

15×10 9 11 7 64% 0.4 0.1 25.0% 

20×10 21 23 19 78% 5.0 1.0 20.0% 

28×10 17 27 26 93% 5.3 3.2 60.4% 

39×5 24 29 26 59% 30.1 6.2 20.6% 

50×5 28 45 38 73% 24264 64.5 0.3% 

* For the relaxed problem, the figures refer to the efficient extreme solutions 

The coverage in Table 5 is defined as the percentage of the POS from the complete Pareto set (generated 

with the MCBB) that are found also with the approximate method, COREMCBB. The time fraction 

expresses the computational economy and refers to the quotient with nominator the COREMCBB solution 

time and denominator the MCBB solution time. We can observe that the beneficial effect of COREMCBB 

is more apparent in the instances with many decision variables, where the computational time explodes. In 

the case with n=50 the computational economy is huge, while the coverage is substantial (73%). We will 

take a closer look to this case (problems with n=50 and m=5) in the next paragraph.  

6.2 Effect of the core size on the effectiveness of the algorithm 

Ten benchmark problems with n=50 and m=5 were generated by sub-sampling from a problem with 

n=100 and m=5. In the sub-sampling process we randomly choose 50 out of the 100 columns (variables) 

of the model. By doing this 10 times we create 10 problems with n=50 and m=5. The right hand side 

(RHS) of the constraints was defined appropriately, so that the tightness ratio in all constraints is 0.5.  

The core size parameter δ was taken constant in four cases (δ=0.1, 0.15, 0.2, 0.25) and adjusted in two 

cases (δ0=0.1, δ1=0.1 and δmax=0.2 in the first case and δ0=0.1, δ1=0.1 and δmax=0.25 in the second case). 

The results are shown in Table 6. It is observed in the results that although the number of POS of the 

complete Pareto set doesn’t vary too much, the computation time may differ dramatically (from 2443 to 
84193 seconds which is more than 35 times more!). As it was expected, the increase in core size 

(expressed by the δ parameter) results in better representation of the Pareto set (reflected in “coverage”), 

but with higher computation times. There is always a trade-off between coverage and computation time. It 

was also observed that the two cases with adjusted core do not clearly outrank the cases with the fixed 

core and more computational experiments are needed to draw more meaningful conclusions. The average 

values for coverage and time fraction are graphically depicted in Figure 8. 

 



Table 6: Results from 10 instances of the n=50, m=5 case  

  relaxed* complete δ=0.1 δ=0.15 δ=0.2 δ=0.25 
δ-adj 

(0.1,0.1,0.2) 
δ-adj 

(0.1,0.1,0.25) 

number of 
Pareto optimal 
solutions 

Min 27 25 9 21 23 25 22 23 

Max 52 41 27 38 39 40 39 40 

Avg 41.3 34.3 19.4 29.9 31.8 33.2 31.0 32.4 

Sd 8.2 5.8 5.0 5.7 5.2 5.7 5.2 5.5 

coverage 

Min - - 12.0% 48.0% 69.0% 83.0% 61.0% 72.0% 

Max - - 45.0% 82.0% 96.0% 100.0% 96.0% 100.0% 

Avg - - 30.1% 66.2% 85.2% 94.5% 81.4% 89.3% 

Sd - - 10.9% 13.2% 9.5% 5.5% 11.9% 8.3% 

time (sec) 

Min 0.4 2443 1.0 10.0 45 132 24 41 

Max 0.9 84193 2.0 19.0 109 563 77 318 

Avg 0.6 17238 1.8 14.4 65 247 38 120 

Sd 0.18 23949 0.4 3.0 23 143 17 85 

time fraction 

Min - - - 0.02% 0.11% 0.51% 0.06% 0.21% 

Max - - - 0.78% 4.46% 23.05% 3.15% 13.02% 

Avg - - - 0.19% 0.94% 3.99% 0.60% 2.09% 

Sd - - - 0.21% 1.28% 6.78% 0.92% 3.88% 

* For the relaxed problem, the figures refer to the efficient extreme solutions 
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Figure 8: Average values for coverage vs time fraction for different core sizes from 10 examples with 

n=50, m=5 (δadj(1) is the case of  δmax=0.2 and δadj(2) the case of δmax=0.25)  



From Figure 8 it is observed that exploiting the core issue, we can achieve in less than 1% of the 

computational time more than 80% coverage. However the trade-off curve between time fraction and 

coverage becomes more horizontal as we move to greater coverage values. Specifically, we can achieve a 

substantial increase in coverage from δ=0.1 to δ=0.2 with a low sacrifice in computational time. However, 

a further increase in coverage costs much more in computational time.  

6.3 Larger problems 

We also test COREMCBB in larger problems with known complete Pareto sets that were found in 

http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite. The complete Pareto sets were 

probably generated using the adaptive ε-constraint method (Laumanns et al., 2006). The first problem has 

n=100 and m=2. We test four fixed core sizes, namely δ=0.05, 0.075, 0.1, 0.125 which means 11, 16, 21, 

26 core items respectively and one adjusted core size. The results are shown in Table 7.  

Table 7: Results for the n=100, m=2 case  

 

The second 

problem has 

n=250 and 

m=2. We 

test four 

fixed core sizes, namely δ=0.02, 0.03, 0.4, 0.5 which means 11, 16, 21, 26 core items respectively and one 

adjusted core size. The results are shown in Table 8.   

Table 8: Results for the n=250, m=2 case  

 relaxed* complete δ=0.02 δ=0.03 δ=0.04 δ=0.05 
δ-adj 

(0.02,0.01,0.05) 

Number of POS 154 567 243 457 517 555 485 

Coverage - - 26% 63% 81% 93% 71% 

Time (sec) - - 13 183 1798 77626 4325 

 

7. Conclusions and discussion 

In the current work we define the core concept for the multi-objective multidimensional knapsack problem 

and we develop a method based on the core concept for the bi-objective case. A cornerstone of the method 

is the MCBB algorithm properly adjusted to the pure integer case. The results from the “divide and 
conquer” strategy are very promising regarding the quality of the approximation and the solution time.  

The points for future work are the following:  

• Expand the application of the method to more than two objectives with the corresponding 

computational results.   

• Upgrade the approximate method of this document to be an exact method on its own right. A first 

approach is to exploit the obtained POS and search exhaustively for other POS not found by the 

COREMCBB method using multiple IP models. The obtained results can be used to effectively 

 relaxed* complete δ=0.05 δ=0.075 δ=0.1 δ=0.125 
Δ-adj 

(0.05, 0.025, 0.125) 

number of POS 53 121 87 114 118 120 118 

coverage - - 57% 88% 92% 94% 89% 

time (sec) - - 4 39 231 1246 246 

http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite


expand the already found cores and repeat the COREMCBB approach. This iterative process 

eventually discovers all the POS of the BOMDKP. The generation of the complete Pareto set in 

such problems will be very useful for benchmarking the widely used nowadays multiobjective 

metaheuristics. 

• The algorithm is very suitable for parallelization as the core subproblems Cr can be assigned to 

different CPUs of the same machine.  
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