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Abstract

We explore the structure of locally ordinal Bayesian incentive compatible

(LOBIC) random Bayesian rules (RBRs). We show that under lower contour

monotonicity, for almost all prior profiles (with full Lebesgue measure), a LOBIC

RBR is locally dominant strategy incentive compatible (LDSIC). We further show

that for almost all prior profiles, a unanimous and LOBIC RBR on the unrestricted

domain is random dictatorial, and thereby extend the result in Gibbard (1977)

for Bayesian rules. Next, we provide sufficient conditions on a domain so that

for almost all prior profiles, unanimous RBRs on it (i) are Pareto optimal, and

(ii) are tops-only. Finally, we provide a wide range of applications of our results

on single-peaked (on arbitrary graphs), hybrid, multiple single-peaked, single-

dipped, single-crossing, multi-dimensional separable domains, and domains under

partitioning. We additionally establish the marginal decomposability property for

both random social choice functions and RBRs (for almost all prior profiles) on

multi-dimensional domains, and thereby generalize Breton and Sen (1999). Since

OBIC implies LOBIC by definition, all our results hold for OBIC RBRs.
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1. INTRODUCTION

We consider social choice problems where a random social choice function (RSCF)

selects a probability distribution over a finite set of alternatives at every collection of

preferences of the agents in a society. It is dominant strategy incentive compatible

(DSIC) if no agent can increase the probability of any upper contour set by misreporting

her preference. A random Bayesian rule (RBR) consists of an RSCF and a prior belief

of each agent about the preferences of the others. We assume that the prior of an agent is

“partially correlated”: her belief about the preference of one agent may depend on that

about another agent, but it does not depend on her own preference. Ordinal Bayesian

incentive compatibility (OBIC) is the natural extension of the notion of IC for RBRs.

This notion is introduced in d’Aspremont and Peleg (1988) and it captures the idea of

Bayes-Nash equilibrium in the context of incomplete information game. An RBR is

OBIC if no agent can increase the expected probability (with respect to her belief) of

any upper contour set by misreporting her preference.

The importance of Bayesian rules is well-established in the literature: on one hand,

they model real life situations where agents behave according to their beliefs, on the other

hand, they are significant weakening of the seemingly too demanding requirement of

DSIC that leads to dictatorship (or random dictatorships) unless the domain is restricted.

It is worth mentioning that the RBRs are particularly important as randomization has

long been recognized as a useful device to achieve fairness in allocation problems.

Locally DSIC (LDSIC) or locally OBIC (LOBIC) are weaker versions of the corre-

sponding notions. As the name suggests, they apply to deviations/misreports to only

“local” preferences (the notion of which is fixed a priori). The importance of these local

notions is well-established in the literature. They are useful in modeling behavioral

agents (see Carroll (2012)). Furthermore, on many domains they turn out to be equivalent

to their corresponding global versions, and thereby, they are used as a simpler way to

check whether a given RSCF is DSIC (see Carroll (2012), Kumar et al. (2020), Sato

(2013), Cho (2016), etc.).

The main objective of this paper is to explore the structure of LOBIC RBRs on

different domains. The structure of DSIC RSCFs is well-explored in the literature. On
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the unrestricted domain, they turn out to be random dictatorial, and on restricted domains

such as single-peaked or single-crossing or single-dipped, they are some versions of

probabilistic fixed ballot rules. However, to the best of our knowledge, only thing

known about the structure of LOBIC (or OBIC) RBRs is that if there are exactly two

agents and at least four alternatives, then for almost all prior profiles (that is, for a set

of prior profiles having full measure), a unanimous, neutral and OBIC RBR is random

dictatorial (Majumdar and Roy (2018)).1 Even for deterministic Bayesian rules (DBRs),

not much is known. Majumdar and Sen (2004) show that for almost all prior profiles, a

unanimous and OBIC DBR on the unrestricted domain is dictatorial, and later, Mishra

(2016) shows that for almost all prior profiles, an “elementary monotonic” and OBIC

DBR on a swap-connected domain is DSIC. Recently, Hong and Kim (2020) extend

these results for weakly connected domains without restoration.2

We consider arbitrary notion of localness which we formulate by a graph over pref-

erences. It is worth mentioning that our notion of neighbors (or local preference) is

perfectly general. To the best of our knowledge, except in Kumar et al. (2020), all other

papers in this area consider the notion of localness that is derived from Kemeny distance.

According to this notion, two preferences are local if they differ by a swap of two adjacent

alternatives. This notion has limitations: it does not apply to multi-dimensional domains,

domains under partitioning, domains under categorization, sequentially dichotomous

domains, etc. On the other hand, a general notion of localness is useful for each of the

two purposes (as mentioned in Carroll (2012) and Sato (2013)) of considering local

notions of incentive compatibility.

(i) Local notions of incentive compatibility makes it simpler for the designer to check

if a given rule is DSIC. Naturally, which notion of localness will be suitable for this

purpose totally depends on the device that the designer uses, moreover, it may vary over

different domains/scenarios.

(ii) Due to social stigma or self-guilt or bounded rationality, some behavioral agents

consider manipulations only for some particular deviations. Such deviations are captured

1A set of prior profiles is said to have full measure if its complement has Lebesgue measure zero.
2We provide a detailed discussion on the connection between our results and those in Hong and Kim

(2020) in Section 10.3.
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by the notion of local preferences. Clearly, such local deviations depend on the agents,

as well as on the particular context.

We introduce the notion of lower contour monotonicity for an RBR and in Theorem

3.1 establish the equivalence between LOBIC and the much stronger (and well-studied)

notion LDSIC on any domain for RBRs satisfying this property. The deterministic

version of this result for the special case of swap-local domains is proved in Mishra

(2016).3

We show that under LOBIC, unanimity implies lower contour monotonicity on the

unrestricted domain. Therefore, it follows as a corollary of Theorem 3.1 that for almost

all prior profiles, unanimous and LOBIC (and hence OBIC) RBRs on the unrestricted

domain are random dictatorial. Next, we move to restricted domains. It turns out that

unanimity is not strong enough to ensure lower contour monotonicity for LOBIC RBRs

on most well-known restricted domains. Therefore, we proceed to explore the relation

of unanimity to two other important properties of a rule, namely Pareto optimality and

tops-onlyness, on such domains.

Pareto optimality is an efficiency requirement for a rule which ensures that the

outcome cannot be modified in a way so that every agent is weakly better off and some

agent is strictly better off. Clearly, it is much stronger than unanimity. However, it turns

out that under DSIC, unanimity and Pareto optimality are equivalent for random rules on

many restricted domains such as single-peaked, single-dipped, single-crossing, etc. (see

Ehlers et al. (2002), Peters et al. (2017) and Roy and Sadhukhan (2019)). We show in

Theorem 3.2 that similar result continues to hold for Bayesian rules for almost all prior

profiles if we replace DSIC by OBIC (or LOBIC).

Tops-onlyness is quite a strong property for a rule as it says that the designer can

ignore any information about a preference beyond the top-ranked alternative. On the

positive side, this property makes the structure of a rule quite simple, however, on the

negative side, this property is not quite desirable as it ignores most part of a preference

and thereby significantly restricts the scope for designing incentive compatible rules.

Interestingly, the negative side of the tops-only property does not play any role for

3A graph on a domain is swap-local if any two local preferences differ by a swap of consecutively

ranked alternatives.

4



some domains as unanimity alone enforces it under DSIC. Chatterji and Sen (2011)

provide a sufficient condition on a domain so that unanimity and DSIC imply tops-

onlyness for DSCFs on it. Later, Chatterji and Zeng (2018) show that the same sufficient

condition does not work for RSCFs, and consequently, they provide a stronger sufficient

condition on a domain so that unanimity and DSIC imply tops-onlyness. We provide

a sufficient condition on a domain so that for almost all prior profiles, unanimous and

graph-LOBIC RBRs imply tops-onlyness. It is worth mentioning that establishing the

tops-only property is a major (and crucial) step in characterizing unanimous and OBIC

RBRs.

Finally, we establish our main equivalence result for weak preferences and provide

a discussion explaining why none of these results can be extended for fully correlated

priors (that is, when the prior of an agent depends on her own preference). It is worth

emphasizing that all the existing results for LOBIC DBRs (Majumdar and Sen (2004)

and Mishra (2016)) follow from our results. Furthermore, since every OBIC rule is

LOBIC by definition, all our results hold for OBIC rules in particular.

Majumdar and Sen (2004) introduce the notion of generic priors, the particularity of

which is that they have full measure. It is shown in Majumdar and Roy (2018) that a

unanimous and OBIC RBR with respect to a generic prior profile need not be random

dictatorial, and therefore, it seemed that the dictatorial result does not extend (almost

surely) for OBIC RBRs. However, it follows from our results that in fact it does, only

thing is that one needs to construct the right class of priors ensuring the full measure.

We provide a wide range of applications of our results. We introduce the notion of

betweenness domains and establish the structure of RBRs that are LOBIC for almost all

prior profiles on these domains. Well-known restricted domains such as single-peaked

on arbitrary graphs, hybrid, multiple single-peaked, single-dipped, single-crossing,

and domains under partitioning are important examples of betweenness domains. We

introduce a weaker version of lower contour monotonicity and obtain a characterization

of unanimous RBRs or DBRs (depending on what is known in the literature regarding

the equivalence of LDSIC and DSIC) that are LOBIC on these domains for almost all

prior profiles . Furthermore, we explain with the help of an example how our results can
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be utilized to construct the remaining RBRs (that is, the ones that do not satisfy lower

contour monotonicity).

Our consideration of arbitrary notion of localness allows us to deal with multi-

dimensional domains. Importance of such domains is well understood in the literature;

we provide a discussion on this in Section 8. We provide the structure of LOBIC RBRs

on full separable multi-dimensional domains when the marginal domains satisfy the

betweenness property, for instance, when the marginal domains are unrestricted or single-

peaked on graphs or hybrid or multiple single-peaked or single-dipped or single-crossing.

Additionally, we establish an important property, called marginal decomposability, of

RBRs that are OBIC for almost all prior profiles on multidimensional separable domains.

The deterministic version of it, namely decomposability, is proved for DSCFs in Breton

and Sen (1999) under DSIC. To the best of our knowledge, this property is not established

for RSCFs (even under DSIC), which now follows from our general result about the

same for RBRs.

As we have discussed, the results in this paper hold for RBRs for almost all priors

profiles, that is, for each prior profile in a set of prior profiles having full measure. It is

worth mentioning the economic motivation of such results. Firstly, if the designer thinks

all prior profiles are equally likely (or she does not have any particular information about

prior profiles), then she knows that except for some “rare” cases (with Lebesgue measure

zero), an RBR is LOBIC (or OBIC) if and only if its RSCF component is LDSIC (or

DSIC). Since the structure of LDSIC (or DSIC) RSCFs is much simpler, she can use her

knowledge about the same in dealing with the RBRs for such prior profiles. Secondly, if

the objective of the designer is to maximize the expected total welfare (with respect to

any prior distribution over preference profiles and the uniform distribution over prior

profiles) of a society over LOBIC (or OBIC) RBRs, then she can restrict her attention

(that is, the feasible set) to the LDSIC (or DSIC) RSCFs. This is because a non-LDSIC

RSCF can be part of a LOBIC (or OBIC) RBR only for a (Lebesgue) measure zero set

of cases which will not contribute to the expected value.

The rest of the paper is organized as follows. Sections 2 introduces the notions of

domains, RSCFs, RBRs, and their relevant properties. Sections 3 and 4 present our
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results for graph-connected and swap-connected domains. Sections 5, 6 and 8 present the

applications of our results on unrestricted, betweenness and multi-dimensional domains.

Section 9 presents our result for weak preferences. Finally, in Section 10 we provide a

discussion on DBRs, (fully) correlated priors, and the relation of our paper with Hong

and Kim (2020).

2. PRELIMINARIES

We denote a finite set of alternatives by A and a finite set of n agents by N. A (strict)

preference over A is defined as a linear order on A.4 We deal with strict preferences

throughout the paper, except in Section 9 where we provide the definition of weak

preferences. The set of all preferences over A is denoted by P(A). A subset D of P(A)

is called a domain. Whenever it is clear from the context, we do not use brackets to

denote singleton sets.

The weak part of a preference P is denoted by R. Since P is strict, for any two

alternatives x and y, xRy implies either xPy or x = y. The kth ranked alternative in a

preference P is denoted by P(k). The topset τ(D) of a domain D is defined as the set

of alternatives ∪P∈DP(1). A domain D is regular if τ(D) = A. The upper contour set

U(x,P) of an alternative x at a preference P is defined as the set of alternatives that are

strictly preferred to x in P, that is, U(x,P) = {a ∈ A | aPx}. A set U is called an upper

contour set at P if it is an upper contour set of some alternative at P. The restriction of a

preference P to a subset B of alternatives is denoted by P|B, more formally, P|B ∈ P(B)

such that for all a,b ∈ B, aP|Bb if and only if aPb.

Each agent i ∈ N has a domain Di (of admissible preferences). We assume that each

domain Di is endowed with some graph structure Gi = 〈Di,Ei〉. The graph Gi represents

the proximity relation between the preferences: an edge between two preferences implies

that they are close in some sense. For instance, suppose A = {a,b,c} and Di is the set

of all preferences over A. Suppose that two preferences are “close” if and only if they

differ by a swap of two alternatives. The graph Gi that represents this proximity relation

is given in Figure 1. The alternatives that swap between two preferences are mentioned

4A linear order is a complete, transitive, and antisymmetric binary relation.
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on the edge between the two.

We denote by GN a collection of graphs (Gi)i∈N . Whenever we use some term

involving the word “graph”, we mean it with respect to a collection GN . Two preferences

Pi and P′
i of an agent i are graph-local if they form an edge in Gi, and a sequence of

preferences (P1
i , . . . ,Pt

i ) is a graph-local path if every two consecutive preferences in the

sequence are graph-local. A domain Di is graph-connected if there is a graph-local path

between any two preferences in it. We denote by DN the product set D1 ×·· ·×Dn of

individual domains. An element of DN is called a preference profile. All the domains

we consider in this paper are assumed to be graph-connected.

abc

{a,b}

bac

cab cba
{a,b}

acb bca

{b,c} {a,c}

{b,c}{a,c}

Figure 1

We use the following terminologies to ease the presentation: P ≡ xy · · · means

P(1) = x and P(2) = y; P ≡ ·· ·xy · · · means x and y are consecutively ranked in P with

xPy; P ≡ ·· ·x · · ·y · · · means x is ranked above y. When the set of alternatives is precisely

stated, say A = {a,b,c,d}, we write, for instance, P = abcd to mean P(1) = a, P(2) = b,

P(3) = c, and P(4) = d. We use similar notations without further explanations.

2.1 RANDOM SOCIAL CHOICE FUNCTIONS AND THEIR PROPERTIES

Let ∆A be the set of all probability distributions on A. A random social choice function

(RSCF) is a mapping ϕ : DN → ∆A. We denote the probability of an alternative x at

ϕ(PN) by ϕx(PN).

An RSCF ϕ : DN → ∆A is unanimous if for all PN ∈ DN such that for all i ∈ N,

Pi(1) = x for some x ∈ A, we have ϕx(PN) = 1. An RSCF ϕ : DN → ∆A is Pareto

optimal if for all PN ∈ DN and all x ∈ A such that there exists y ∈ A with yPix for all

i ∈ N, we have ϕx(PN) = 0. Clearly, Pareto optimality implies unanimity. An RSCF
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ϕ : DN → ∆A is tops-only if for all PN ,P′
N ∈ DN such that Pi(1) = P′

i (1) for all i ∈ N,

we have ϕ(PN) = ϕ(P′
N).

A probability distribution ν stochastically dominates another probability distribution

ν̂ at a preference P, denoted by νPsdν̂ , if νU(x,Pi) ≥ ν̂U(x,Pi) for all x ∈ A and νU(y,Pi) >

ν̂U(y,Pi) for some y ∈ A. We write νRsd ν̂ to mean either νPsd ν̂ or ν = ν̂ . An RSCF

ϕ : DN → ∆A is dominant strategy incentive compatible (DSIC) on a pair of preference

(Pi,P
′
i ) of an agent i ∈ N, if ϕ(Pi,P−i)R

sd
i ϕ(P′

i ,P−i) for all P−i ∈ D−i. An RSCF is

graph-locally dominant strategy incentive compatible (graph-LDSIC) if it is DSIC

on every pair of graph-local preferences of each agent, and it is called dominant strategy

incentive compatible (DSIC) if it is DSIC on every pair of preferences of each agent.

A set of alternatives B is a block in a pair of preferences (P,P′) if it is a minimal non-

empty set satisfying the following property: for all x ∈ B and y /∈ B, P|{x,y} = P′|{x,y}. For

instance, the blocks in the pair of preferences (abcde f g,bcadeg f ) are {a,b,c},{d},{e},

and { f ,g}. The lower contour set L(x,P) of an alternative x at a preference P is

L(x,P) = {a ∈ A | xPa}. A set L is a lower contour set at a preference P if it is a

lower contour set of some alternative at P. Lower contour monotonicity says that

whenever an agent i unilaterally deviates from Pi to a graph-local preference P′
i , the

probability of each lower contour set at Pi restricted to any non-singleton block in (Pi,P
′
i )

will weakly increase. For instance, consider our earlier example Pi = abcde f g and

P′
i = bcadeg f with non-singleton blocks {a,b,c} and { f ,g}. The lower contour sets at

Pi restricted to {a,b,c} are {c} and {b,c}, and that restricted to { f ,g} is {g}. Lower

contour monotonicity says that the probability of each of the sets {c}, {b,c}, and {g}

will weakly increase if agent i unilaterally deviates from Pi to P′
i .

Definition 2.1. An RSCF ϕ : DN → ∆A is called lower contour monotonic if for all

i ∈ N, all graph-local preferences Pi,P
′
i ∈ Di, all non-singleton blocks B in (Pi,P

′
i ), and

all P−i ∈ D−i, we have ϕL(Pi,P−i) ≤ ϕL(P
′
i ,P−i) for each lower contour set L of Pi|B.

2.2 RANDOM BAYESIAN RULES AND THEIR PROPERTIES

A prior µi of an agent i is a probability distribution over D−i which represents her belief

about the preferences of the others, and a prior profile µN := (µi)i∈N is a collection of

9



priors, one for each agent. A pair (ϕ , µN) consisting of an RSCF ϕ : DN → ∆A and a

prior profile µN is called a random Bayesian rule (RBR) on DN . When the RSCF ϕ is a

DSCF, then it is called a deterministic Bayesian rule (DBR).

The expected outcome with respect to the belief of an agent is called her interim

expected outcome. More formally, the interim expected outcome ϕ(Pi, µi) for an agent

i ∈ N at a preference Pi ∈ Di from an RBR (ϕ , µN) on DN is defined as the following

probability distribution on A: for all x ∈ A,

ϕx(Pi, µi) = ∑
P−i∈D−i

µi(P−i)ϕx(Pi,P−i).

Example 2.1. Let N = {1,2} and A = {a,b,c}. Consider the RBR (ϕ , µN) given in

Table 1. Agent 1’s belief µ1 about agent 2’s preferences is given in the top row and

agent 2’s belief µ2 about agent 1’s preferences in the leftmost column of the table. The

outcomes of ϕ at different profiles are presented in the corresponding cells. Here, for

instance, (0.7,0,0.3) denotes the outcome where a, b, and c are given probabilities 0.7,

0, and 0.3, respectively. The rest of the table is self-explanatory. Consider the preference

P1 = abc of agent 1. In what follows, we show how to compute her interim expected

outcome ϕ(P1, µ1) at this preference: ϕa(P1, µ1) = 0.2×1+0.1×1+0.05×1+0.3×

0.5+0.15×1+0.2×1 = 0.85. Similarly, one can calculate that ϕb(P1, µ1) = 0.15, and

ϕc(P1, µ1) = 0, and for agent 2’s preference P2 = bca, ϕb(P2, µ2) = 0.575, ϕc(P2, µ2) =

0.06, and ϕa(P2, µ2) = 0.365.

µ1 0.2 0.1 0.05 0.3 0.15 0.2

µ2 1 2 abc acb bac bca cba cab

0.25 abc (1,0,0) (1,0,0) (1,0,0) (0.5,0.5,0) (1,0,0) (1,0,0)

0.2 acb (1,0,0) (1,0,0) (1,0,0) (0.7,0,0.3) (1,0,0) (1,0,0)

0.15 bac (1,0,0) (1,0,0) (0,1,0) (0,1,0) (0,1,0) (1,0,0)

0.1 bca (0,1,0) (1,0,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0)

0.2 cba (1,0,0) (0,0,1) (0,0.4,0.6) (0,1,0) (0,0,1) (0,0,1)

0.1 cab (1,0,0) (0,0.4,0.6) (1,0,0) (1,0,0) (0,0,1) (0,0,1)

Table 1

The notion of ordinal Bayesian incentive compatibility (OBIC) captures the idea of

DSIC for an RBR by ensuring that no agent can improve her interim expected outcome

by misreporting her preference.
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Definition 2.2. An RBR (ϕ , µN) on DN is ordinal Bayesian incentive compatible (OBIC)

on a pair of preferences (Pi,P
′
i ) of an agent i ∈ N if ϕµi

(Pi)R
sd
i ϕµi

(P′
i ). An RBR (ϕ , µN)

is graph-locally ordinal Bayesian incentive compatible (graph-LOBIC) if it is OBIC

on every pair of graph-local preferences in the domain of each agent, and it is ordinal

Bayesian incentive compatible (OBIC) if it is OBIC on every pair of preferences in

the domain of each agent.

Note that OBIC is a weaker requirement than DSIC since if an RSCF ϕ is DSIC, then

(ϕ , µN) is OBIC for all prior profiles µN .

For ease of presentation, given a property defined for an RSCF, we say an RBR

(ϕ , µN) satisfies it, if ϕ satisfies the property.

3. RESULTS ON GRAPH-CONNECTED DOMAINS

In this section, we explore the structure of graph-LOBIC Bayesian rules on graph-

connected domains. Since OBIC implies graph-LOBIC (by definition), all these results

hold for OBIC RBRs as well.

Recall the definition of a block given in Page 9. The block preservation property says

that if an agent unilaterally changes her preference to a graph-local preference, the total

probability of any block in the two preferences will remain unchanged.

Definition 3.1. An RSCF ϕ : DN → ∆A satisfies the block preservation property if

for all i ∈ N, all graph-local preferences Pi,P
′
i ∈ Di of agent i, all blocks B in (Pi,P

′
i ),

and all P−i ∈ D−i, we have ϕB(Pi,P−i) = ϕB(P
′
i ,P−i).

For two preferences P and P′, P△P′ = {x ∈ A |U(x,P) 6=U(x,P′)} denotes the set

of alternatives that change their relative ordering with some other alternative from P to

P′. Note that the block preservation property implies ϕx(Pi,P−i) = ϕx(P
′
i ,P−i) for all

x /∈ Pi△P′
i as such an alternative forms a singleton block in (Pi,P

′
i ).

Our next proposition says that graph-LOBIC implies the block-preservation property

almost surely (with probability one). In other words, for each RSCF ϕ , there is a

set of prior profiles with full measure such that if it is graph-LOBIC with respect to

any of the prior profiles in the set, it will satisfy the block-preservation property. The
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economic interpretation of this result is that if the designer thinks that all the priors of

an agent are equally likely and wants to ensure that no agent can manipulate her RBR,

then “almost surely” she needs to make the RSCF component of the RBR satisfy the

block-preservation property.

Proposition 3.1. For every RSCF ϕ : DN → ∆A, there is a set of prior profiles M (ϕ)

with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is graph-LOBIC

implies that ϕ satisfies the block-preservation property.

The proof of this proposition is relegated to Appendix B.

3.1 EQUIVALENCE OF GRAPH-LOBIC AND GRAPH-LDSIC UNDER LOWER CON-

TOUR MONOTONICITY

The following theorem says that under lower contour monotonicity, the notion of graph-

LDSIC becomes almost surely equivalent to the much weaker notion of graph-LOBIC.

Theorem 3.1. For every lower contour monotonic RSCF ϕ : DN → ∆A, there is a set of

prior profiles M (ϕ) with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN)

is graph-LOBIC if and only if ϕ is graph-LDSIC.

The proof of this theorem is relegated to Appendix C.1.

The economic interpretation of Theorem 3.1 is that if the designer wants to construct

a graph-LOBIC RBR satisfying lower contour monotonicity, then for almost all prior

profiles (that is, with full measure) she can restrict her attention to graph-LDSIC RSCF

only.

Even though there is a measure zero set of prior profiles such that the RBR (ϕ , µN) is

graph-LOBIC but ϕ is not graph-LDSIC, it is important to know the exact structure of

that (measure zero) set. The structure of the set depends on the RSCF ϕ : it contains the

prior profiles that satisfy a particular system of linear equations involving the outcomes

of the RSCF ϕ . We present this system of equations in Appendix A.

It is worth emphasizing that Theorem 3.1 holds for any domain and for any graph

structure on it (as long as it is connected). In Sections 5, 6 and 8, we discuss its

applications on unrestricted, single-peaked on a graph (and on a tree or a line as special
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cases), multiple single-peaked, hybrid, multiple single-peaked, intermediate, single-

dipped, single-crossing and multi-dimensional separable domains. One can also apply

the theorem on domains under categorization, sequentially dichotomous domains, etc.

3.2 SUFFICIENT CONDITION FOR THE EQUIVALENCE OF UNANIMITY AND PARETO

OPTIMALITY

Pareto optimality is much stronger than unanimity. However, under DSIC, these two

notions turn out to be equivalent for RSCFs on many domains such as the unrestricted,

single-peaked, single-dipped, single-crossing, etc. In this section, we show that similar

results hold with probability one if we replace DSIC by its weaker version OBIC. We

introduce the notion of upper contour preservation property for our result.

Definition 3.2. A domain D satisfies the upper contour preservation property if for

all x,y ∈ A and all P ∈D with xPy, there exists a graph-local path from P to a preference

P̂ ∈ D with P̂(1) = x such that U(P,y) =U(P̂,y).

Our next theorem says that if a domain satisfies the upper contour preservation

property then for almost all prior profiles, a unanimous and graph-LOBIC RBRs on it

will be Pareto optimal.

Theorem 3.2. Suppose Di satisfies the upper contour preservation property for all i ∈ N.

For every unanimous RSCF ϕ : DN → ∆A, there is a set of prior profiles M (ϕ) with full

measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is graph-LOBIC implies that

ϕ is Pareto optimal.

The proof of this theorem is relegated to Appendix C.2.

3.3 RELATION BETWEEN UNANIMITY AND TOPS-ONLYNESS

We use the notion of path-richness in our result. A domain satisfies the path-richness

property if for every two preferences P and P′ having the same top-ranked alternative,

say x, the following happens: (i) if P and P′ are not graph-local then there is graph-local

path from P to P′ such that x appears as the top-ranked alternative in each preference

in the path, and (ii) if P and P′ are graph-local, then from any preference P̂ there is a
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path to some preference P̄ with x as the top-ranked alternative such that for any two alter-

natives a,b that change their relative ranking from P to P′ and for any two consecutive

preferences in the path, there is a common upper contour set of the preferences such that

exactly one of a and b belongs to it. For an illustration of Part (ii) of the path-richness

property, suppose A = {a,b,c,d}, P = abcd and P′ = adcb, and assume that P and P′

are graph-local. Consider a preference P̂ = dbca. Path-richness requires that a path

of the following type must be present in the domain: (dbca,dbac,dabc,adbc). To see

that this path satisfies (ii), consider two alternatives that change their relative ordering

from P to P′, say b and c. Note that the upper contour set {d,b} in P1 and P2 contains

b but not c, the upper contour set {d,b,a} in P2 and P3 contains b but not c, and so on.

Path-richness requires that such a path must exist for every preference P̂ in the domain.

Definition 3.3. A domain D satisfies the path-richness property if for all preferences

P,P′ ∈ D such that P(1) = P′(1),

(i) if P and P′ are not graph-local, then there is a graph-local path (P1 = P, . . . ,Pt =

P′) such that Pl(1) = P(1) for all l = 1, . . . , t, and

(ii) if P and P′ are graph-local, then for each preference P̂ ∈ D , there exists a graph-

local path (P1 = P̂, . . . ,Pt) with Pt(1) = P(1) such that for all l < t and all

distinct y,z ∈ P△P′, there is a common upper contour set U of Pl and P̄l+1 such

that exactly one of y and z is contained in U .

Example 3.1. Consider the domain in Table 2. We explain that this domain satisfies

the path-richness property. Suppose that two preferences are graph-local if and only if

they differ by a swap of two alternatives. Consider the preferences P1 and P3 having the

same top-ranked alternative. Note that they are not graph-local. The path (P1,P2,P3) is

graph-local and a appears as the top-ranked alternative in each preference in the path. So,

the path satisfies the requirement of (i). It can be verified that for other non graph-local

preferences with the same top-ranked alternative (such as P4 and P7, or P8 and P11, etc.)

such a path lies in the domain. Now, consider the preferences P1 and P2. Note that they

are graph-local and the alternatives b and c are swapped in the two preferences (that is,

P1△P2 = {a,b}). Consider any other preference, say P7. The path (P7,P6,P5,P4,P3)
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has the property that (a) it ends with a preference that has the same top-ranked alternative

a as P1 and P2, and (b) for every two consecutive preferences in the path, there is a

common upper contour set of the two preferences that contains exactly one of b and

c (for instance, the common upper contour set {a,c} of P3 and P4 contains c but not

b, and so on). It can be verified that such a path exists for every pair of graph-local

preferences P and P′ having the same top-ranked alternative and for every preference P̂.

It is worth mentioning that for the kind of graph-localness we consider in this example,

the requirement of (b) boils down to requiring that the swapping alternatives in the

graph-local preferences maintain their relative ranking throughout the path.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

a a a c c c c e e e e

b c c a b b e c c c d

c b b b a e b b b d c

d d e e e a a a d b b

e e d d d d d d a a a

Table 2

The path-richness property may seem to be somewhat involved but we show in Section

6, most restricted domains of practical importance satisfy this property.

Our next theorem says that if the designer wants construct a unanimous and graph-

LOBIC RBR on a domain satisfying the path-richness property, then for almost all

prior profiles she can restrict her attention to tops-only RSCFs. Clearly, this makes the

construction considerably simpler. As we have mentioned in case of Theorem 3.1, the

economic implication of this theorem is that if the designer thinks all the priors of an

agent are equally likely, then she can be assured that a unanimous and graph-LOBIC

RBR on a path-rich domain will be tops-only with probability one.

Theorem 3.3. Suppose D satisfies the path-richness property. For every unanimous

RSCF ϕ : DN → ∆A, there is a set of prior profiles M (ϕ) with full measure such that

for each µN ∈ M (ϕ), the RBR (ϕ , µN) is graph-LOBIC implies that ϕ is tops-only.

The proof of this theorem is relegated to Appendix C.3.

Remark 3.1. Lower contour monotonicity can be weakened in a straightforward way

under tops-onlyness. Let us say that an RSCF satisfies top lower contour monotonicity
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if it satisfies lower contour monotonicity only over (unilateral) deviations to graph-

local preferences where the top-ranked alternative is changed. Thus, top lower contour

monotonicity does not impose any restriction for graph-local preferences P and P′

with τ(P) = τ(P′). Clearly, under tops-onlyness, lower contour monotonicity will be

automatically guaranteed in all other cases, and hence, top lower contour monotonicity

will be equivalent to lower contour monotonicity. Since under graph-LOBIC, unanimity

implies tops-onlyness on a large class of domains, this simple observation is of great

help for practical applications. �

4. THE CASE OF SWAP-CONNECTED DOMAINS

In this section, we consider graphs where two preferences are local if and only if they

differ by a swap of two consecutively ranked alternatives. Formally, two preferences P

and P′ are swap-local if P△P′ = {x,y} for some x,y ∈ A. For two swap-local preferences

P and P′, we say x overtakes y from P to P′ if yPx and xP′y. A domain Di is swap-

connected if there is a swap-local path between any two preferences in it. We use terms

like swap-LOBIC, swap-LDSIC, etc. (instead of graph-LOBIC, graph-LDSIC, etc.) to

emphasize the fact that the graph is based on the swap-local structure.

When graphs are swap-connected, lower contour monotonicity boils down to the

following condition called elementary monotonicity. An RSCF ϕ : DN → ∆A is called

elementary monotonic if for every i ∈ N, all swap-local preferences Pi,P
′
i ∈Di of agent

i, and all P−i ∈ D−i, x overtakes some alternative from Pi to P′
i implies ϕx(Pi,P−i) ≤

ϕx(P
′
i ,P−i).

As we have mentioned in Example 3.1, under swap-connectedness, Condition (ii) of

the path-richness property (Definition 3.3) simplifies to the following condition: if there

are two swap-local preferences having the same top-ranked alternative, say x, where two

alternatives, say y and z, are swapped, then from every preference in the domain there

must be a swap-local path to some preference with x as the top-ranked alternative such

that the relative ranking of y and z remains the same along the path.
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4.1 EQUIVALENCE OF SWAP-LDSIC AND WEAK ELEMENTARY MONOTONICITY

UNDER TOPS-ONLYNESS

Weak elementary monotonicity (Mishra (2016)) is a restricted version of elementary

monotonicity where the latter is required to be satisfied only for a particular type of

profiles where all the agents agree on the ranking of alternatives from rank three onward.

Definition 4.1. An RSCF ϕ : Dn → ∆A satisfies weak elementary monotonicity if for

all i ∈ N, and all (Pi,P−i) and (P′
i ,P−i) such that Pi(k) = P′

i (k) = Pj(k) for all j ∈ N \ i

and all k > 2, we have ϕPi(1)(Pi,P−i) ≥ ϕPi(1)(P
′
i ,P−i).

Our next result says that under tops-onlyness, for almost all priors, weak elementary

monotonic and swap-LOBIC RBRs are swap-LDSIC.

Theorem 4.1. For every tops-only and weak elementary monotonic RSCF ϕ : DN → ∆A,

there is a set of prior profiles M (ϕ) with full measure such that for each µN ∈ M (ϕ),

the RBR (ϕ , µN) is swap-LOBIC if and only if ϕ is swap-LDSIC.

The proof of this theorem is relegated to Appendix C.4.

We obtain the following corollary from Theorem 3.3 and Theorem 4.1.

Corollary 4.1. Suppose D satisfies the path-richness property. For every unanimous and

weak elementary monotonic RSCF ϕ : DN → ∆A, there is a set of prior profiles M (ϕ)

with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC if

and only if ϕ is swap-LDSIC.

5. APPLICATION ON THE UNRESTRICTED DOMAIN

The domain P(A) containing all preferences over A is called the unrestricted domain

(over A). Since, the unrestricted domain satisfies both the upper contour preservation

property and the path-richness property, it follows from Theorem 3.2 and Theorem

3.3 that for almost all prior profiles, unanimity and swap-LOBIC imply both Pareto

optimality and tops-only. The following theorem further establishes that for almost all

prior profiles, swap-LOBIC RBRs are in fact swap-LDSIC.
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Theorem 5.1. For every unanimous RSCF ϕ : P
n → ∆A, there is a set of prior profiles

M (ϕ) with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-

LOBIC if and only if ϕ is swap-LDSIC.

Gibbard (1977) shows that every unanimous and DSIC RSCF on the unrestricted

domain is random dictatorial. An RSCF is random dictatorial if it is convex combination

of the dictatorial rules, that is, for each agent there is a fixed probability such that the

agent is the dictator with that probability.

Definition 5.1. An RSCF ϕ : DN → ∆A is random dictatorial if there exist non-

negative real numbers βi; i ∈ N, with ∑
i∈N

βi = 1, such that for all PN ∈ DN and a ∈ A,

ϕa(PN) = ∑
{i|Pi(1)=a}

βi.

Let us call a domain swap random local-global equivalent (swap-RLGE) if every

swap-LDSIC RSCF on it is DSIC. It follows from Cho (2016) that the unrestricted

domain is swap-RLGE. Since every OBIC RBR is swap-LOBIC by definition, it follows

from Theorem 5.1 that the same result as Gibbard (1977) holds for almost all prior

profiles even if we replace DSIC with the much weaker notion OBIC.

Corollary 5.1. Let |A| ≥ 3. For every unanimous RSCF ϕ : P
n → ∆A, there is a set of

prior profiles M (ϕ) with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN)

is swap-LOBIC if and only if ϕ is random dictatorial.

6. APPLICATIONS ON DOMAINS SATISFYING THE BETWEENNESS PROPERTY

A betweenness relation β maps every pair of distinct alternatives (x,y) to a subset of

alternatives β (x,y) including x and y. We only consider betweenness relations β that

are rational: for every x ∈ A, there is a preference P with P(1) = x such that for all

y,z ∈ A, y ∈ β (x,z) implies yRz. Such a preference P is said to respect the betweenness

relation β . A domain D respects a betweenness relation β if it contains all preferences

respecting β . We denote such a domain by D(β ). For a collection of betweenness

relations B = {β1, . . . ,βr}, we denote the domain ∪r
l=1D(βl) by D(B).

A pair of alternatives (x,y) is adjacent in β if β (x,y) = {x,y}. A betweenness

relation β is weakly consistent if for all x, x̄ ∈ A, there is a sequence (x1 = x, . . . ,xt = x̄)
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of adjacent alternatives in β (x, x̄) such that for all l < t, we have β (xl+1, x̄) ⊆ β (xl , x̄).

A betweenness relation β is strongly consistent if for all x, x̄ ∈ A, there is a sequence

(x1 = x, . . . ,xt = x̄) of adjacent alternatives in β (x, x̄) such that for all l < t and all w ∈

β (xl , x̄), we have β (xl+1,w)⊆ β (xl , x̄). A collection B = {β1, . . . ,βr} or a betweenness

domain D(B) is strongly/weakly consistent if βl is strongly/weakly consistent for all

l = 1, . . . ,r.

Two betweenness relations β and β ′ are swap-local if for every x ∈ A, there are

P ∈ D(β ) and P′ ∈ D(β ′) such that P(1) = P′(1) and P and P′ are swap-local. A

collection B of betweenness relations is called swap-connected if for all β ,β ′ ∈ B,

there is a sequence (β 1 = β , . . . ,β t = β ′) in B such that β l and β l+1 are swap-local for

all l < t.

We now define the local structure on a betweenness domain D(B) in a natural

way. A preference P′ is graph-local to another preference P if there is no preference

P′′ ∈ D(B) \{P,P′} that is “more similar” to P than P′ is to P, that is, there is no P′′

such that for all x,y ∈ A, P|{x,y} = P′|{x,y} implies P|{x,y} = P′′|{x,y}. Our next corollary

follows from Theorem 3.3.

Corollary 6.1. Let B be a collection of strongly consistent and swap-connected be-

tweenness relations. For every unanimous RSCF ϕ : D(B)n → ∆A, there is a set of

prior profiles M (ϕ) with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN)

is graph-LOBIC implies that ϕ is tops-only.

The proof of this corollary is relegated to Appendix C.6.

A domain is called graph deterministic local-global equivalent (graph-DLGE) if every

graph-LDSIC DSCF on it is DSIC.

Theorem 6.1. Let B be a collection of weakly consistent and swap-connected between-

ness relations. Then, D(B) is a graph-DLGE domain.

The proof of this corollary is relegated to Appendix C.7.

In what follows, we apply our results to explore the structure of LOBIC RBRs on

well-known betweenness domains.
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6.1 SINGLE-PEAKED DOMAINS ON GRAPHS

Peters et al. (2019) introduce the notion of single-peaked domains on graphs and char-

acterize all unanimous and DSIC RSCFs on these domains. We assume that the set of

alternatives is endowed with an (undirected) graph G = 〈A,E〉. For x, x̄ ∈ A with x 6= x̄, a

path (x1 = x, . . . ,xt = x̄) from x to x̄ in G is a sequence of distinct alternatives such that

{xi,xi+1} ∈ E for all i = 1, . . . , t −1. If it is clear which path is meant, we also denote

it by [x, x̄]. We assume that G is connected, that is, there is a path from x to x̄ for all

distinct x, x̄ ∈ A. If this path is unique for all x, x̄ ∈ A, then G is called a tree. A spanning

tree of G is a tree T = 〈A,ET 〉 where ET ⊆ E. In other words, spanning tree of G is a

tree that can be obtained by deleting some edges of G .

Definition 6.1. A preference P is single-peaked on G if there is a spanning tree T of G

such that for all distinct x,y ∈ A with P(1) 6= y, x ∈ [P(1),y] =⇒ xPy, where [P(1),y]

is the path from P(1) to y in T . A domain is called single-peaked on G if it contains all

single-peaked preferences on G .

In what follows, we argue that a single-peaked domain on a graph satisfies the upper

contour preservation property. Since a single-peaked domain on a graph is a union

of single-peaked domains on trees, it is enough to show that a single-peaked domain

on a tree satisfies the upper contour preservation property. Consider a single-peaked

domain DT on a tree T . Let P be a preference with xPy for some x,y ∈ A. Suppose

P(1) = a. Consider the path [a,x] in T . Since xPy, it must be that y /∈ [a,x]. Suppose

[a,x] = (x1 = a, . . . ,xk = x). By the definition of single-peaked domain on a tree, one

can go from P to a preference with x2 at the top through a swap-local path maintaining

the upper contour set of y. Continuing in this manner, one can go to a preference with x

at the top maintaining the upper contour set of y. This concludes that DT satisfies the

upper contour preservation property, and hence, we obtain the following corollary from

Theorem 3.2.

Corollary 6.2. Let D be the single-peaked domain on a graph. For every unanimous

RSCF ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ) with full measure such that

for each µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC implies that ϕ is Pareto optimal.
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It follows from the definition that a single-peaked domain DT on a tree T can be

represented as a betweenness domain D(β T ) where β T is defined as follows: β T (x,y) =

[x,y]. Single-peaked domains on graphs are well-known for the cases when the graph G

is a line or a tree.5 When the graph G is a line, then the corresponding domain is known

in the literature as the single-peaked domain.6

We now argue that the betweenness relation β T is strongly consistent. To see that β T

is strongly consistent consider two alternatives x and x̄, and consider the unique path

[x, x̄] between them in T . Let [x, x̄] = (x1 = x, . . . ,xt = x̄). By the definition of β T , the

path [x, x̄] lies in (in fact, is equal to) β T (x, x̄). Consider xl ∈ β T (x, x̄) and w ∈ β T (xl , x̄).

Since both w and xl+1 lie on the path [xl , x̄], it follows that [xl+1,w] ⊆ [xl , x̄], and hence

β T (xl+1,w)⊆ β T (xl , x̄). This proves that β T is the strongly consistent (and hence is also

weakly consistent). Since a betweenness relation that generates a single-peaked domain

on a tree is strongly consistent, it follows from the definition of a single-peaked domain

on a graph that the betweenness relation that generates such a domain also satisfies the

property. It is shown in Peters et al. (2019) (see Lemma A.1 for details) that for all x ∈ A,

the (sub)domain of DG containing all preferences with x as the top-ranked alternative is

swap-connected, which implies that the betweenness relations generated by the spanning

trees of a graph are swap-connected. Therefore, it follows from Corollary 6.1 that

for almost all prior profiles, unanimous and swap-LOBIC RBRs on the single-peaked

domain on a graph are tops-only. Consequently, we obtain the following corollary from

Corollary 4.1.

Corollary 6.3. Let D be the single-peaked domain on a graph. For every unanimous and

weak elementary monotonic RSCF ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ)

with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC if

and only if ϕ is swap-LDSIC.

Remark 6.1. It follows from Theorem 6.1 that the single-peaked domain on a graph

is swap-DLGE. It is shown in Peters et al. (2019) that a DSCF on the single-peaked

domain on a graph is unanimous and DSIC if and only if it is a monotonic collection of

5A tree is called a line if it has exactly two nodes with degree one (such nodes are called leafs).
6A line graph can be represented by a linear order ≺ over the alternatives in an obvious manner: if the

edges in a line graph are {(a1,a2), . . . , (am−1,am)}, then one can take the linear order ≺ as a1 ≺ ·· · ≺ am.
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parameters based rule (see Theorem 5.5 in Peters et al. (2019) for details). Therefore,

it follows as a corollary of Theorem 6.1 that for almost all prior profiles, unanimous

and weak elementary monotonic swap-LOBIC RBRS on the single-peaked domain on a

graph are monotonic collection of parameters based rule.7 �

Remark 6.2. Cho (2016) shows that the single-peaked domain is swap-RLGE. Moreover,

Peters et al. (2014) show that every unanimous and DSIC RSCF on the single-peaked

domain is a probabilistic fixed ballot rule (PFBR). Therefore, for almost all prior profiles,

unanimous and weak elementary monotonic swap-LOBIC RBRS on the single-peaked

domain are PFBRs. �

In what follows, we provide a discussion on the structure of unanimous and swap-

LOBIC RBRs on the single-peaked domain that do not satisfy weak elementary mono-

tonicity. The structure of such RBRs depends on the specific prior profile. In the

following example, we present an RSCF for three agents that is unanimous and OBIC

with respect to any independent prior profile (µ1, µ2, µ3) where µ2(abc) ≥
1

6
.8 By

Corollary 6.1, we know that such an RSCF will be tops-only. In Table 3, the preferences

in rows and columns belong to agents 1 and 2, respectively, and the preferences written

at the top-left corner of any table belong to agent 3. Note that agent 3 is the dictator for

this RSCF except when she has the preference abc. When she has the preference abc,

the rule violates weak elementary monotonicity over the profiles (abc,bac,abc) and

(bac,bac,abc). Note that except from such violations, the rule behaves like a PFBR.

abc abc bac bca cba

abc (1,0,0) (0.4,0.6,0) (0.4,0.6,0) (0.4,0.6,0)

bac (0.5,0.5,0) (0.5,0.5,0) (0.5,0.5,0) (0.5,0.5,0)

bca (0.5,0.5,0) (0.5,0.5,0) (0.5,0.5,0) (0.5,0.5,0)

cba (0.5,0.5,0) (0.5,0.5,0) (0.5,0.5,0) (0.5,0.5,0)

bac abc bac bca cba

abc (0,1,0) (0,1,0) (0,1,0) (0,1,0)

bac (0,1,0) (0,1,0) (0,1,0) (0,1,0)

bca (0,1,0) (0,1,0) (0,1,0) (0,1,0)

cba (0,1,0) (0,1,0) (0,1,0) (0,1,0)

7Although Peters et al. (2019) provide the said characterization (Theorem 5.5) for RSCFs, we cannot

apply it to obtain a characterization of LOBIC RSCFs as it is not known whether the single-peaked domain

on a graph is RLGE or not.
8The rule is OBIC for dependent priors if: 5µ1(abc,abc) ≥ µ1(bac,abc) + µ1(bca,abc) +

µ1(cba,abc), where the first and the second preference in µ1 denote the preferences of agents 2 and 3,

respectively.
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bca abc bac bca cba

abc (0,1,0) (0,1,0) (0,1,0) (0,1,0)

bac (0,1,0) (0,1,0) (0,1,0) (0,1,0)

bca (0,1,0) (0,1,0) (0,1,0) (0,1,0)

cba (0,1,0) (0,1,0) (0,1,0) (0,1,0)

cba abc bac bca cba

abc (0,0,1) (0,0,1) (0,0,1) (0,0,1)

bac (0,0,1) (0,0,1) (0,0,1) (0,0,1)

bca (0,0,1) (0,0,1) (0,0,1) (0,0,1)

cba (0,0,1) (0,0,1) (0,0,1) (0,0,1)

Table 3

6.2 HYBRID DOMAINS

Chatterji et al. (2020) introduce the notion of hybrid domains and discuss its importance.

These domains satisfy single-peaked property only over a subset of alternatives. Let us

assume that A = {1, . . . ,m}. Throughout this subsection, we assume that two alternatives

k and k with k < k are arbitrary but fixed.

Definition 6.2. A preference P is called (k,k)-hybrid if the following two conditions are

satisfied:

(i) For all r,s ∈ A such that either r,s ∈ [1,k] or r,s ∈ [k,m],
[

r < s < P(1) or P(1)<

s < r
]
⇒ [ sPr ].

(ii)
[

P(1) ∈ [1,k]
]
⇒

[
kPr for all r ∈ (k,k]

]
and

[
P(1) ∈ [k,m]

]
⇒

[
kPs for all s ∈ [k,k)

]
.9

A domain is (k,k)-hybrid if it contains all (k,k)-hybrid preferences. The betweenness

relation β that generates a (k,k)-hybrid domain is as follows: if x < y then β (x,y) =

{x,y} ∪
(
(x,y) \ (k,k)

)
and if y < x then β (x,y) = {x,y} ∪

(
(y,x) \ (k,k)

)
. In other

words, an alternative other than x and y lies between x and y if and only if it lies in the

interval [x,y] or [y,x] but not in the interval (k,k).

In what follows, we argue that a hybrid domain satisfies the upper contour preservation

property. Consider a preference P in a (k,k)-hybrid domain. Suppose xPy for some

x,y ∈ A. Assume without loss of generality that x < a. Let P(1) = a and let U(x,P)∩

[x,a] = {x1 = a, . . . ,xk = x} where x1Px2P · · ·Pxk. Note that by the definition of the

(k,k)-hybrid domain, from P one can go to a preference with x2 at the top though a

swap-local path by maintaining the upper contour set of y. Therefore, by repeated

9For two alternatives x and y, by (x,y] we denote the alternatives z such that x< z≤ y. The interpretation

of the notation [x,y) is similar.
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application of this fact, one can go to a preference with x at the top by maintaining the

upper contour set of y. This shows that a hybrid domain satisfies the upper contour

preservation property. Therefore, we obtain the following corollary from Theorem 3.2.

Corollary 6.4. Let D be the the (k,k)-hybrid domain. For every unanimous RSCF

ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ) with full measure such that for each

µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC implies that ϕ is Pareto optimal.

Using similar logic as we have used in the case of a single-peaked domain on a

tree, it follows that the betweenness relation that generates a hybrid domain is strongly

consistent. Therefore, Corollary 6.1 implies that for almost all prior profiles, unanimous

and swap-LOBIC RBRs on the (k,k)-hybrid domain are tops-only. Therefore, by

Corollary 4.1, we obtain the following corollary.

Corollary 6.5. Let D be the (k,k)-hybrid domain. For every unanimous and weak

elementary monotonic RSCF ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ) with

full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC if and

only if ϕ is swap-LDSIC.

Remark 6.3. Chatterji et al. (2020) show that every unanimous and DSIC RSCF on the

hybrid domain is a (k,k)-restricted probabilistic fixed ballot rule ((k,k)-RPFBR). Since

the hybrid domain is swap-RLGE (see Chatterji et al. (2020) for details), Corollary 6.5

implies that for almost all prior profiles, unanimous and weak elementary monotonic

swap-LOBIC RBRS on the (k,k)-hybrid domain are (k,k)-RPFBR. �

6.3 MULTIPLE SINGLE-PEAKED DOMAINS

The notion of multiple single-peaked domains is introduced in Reffgen (2015). As

the name suggests, these domains are union of several single-peaked domains. It is

worth mentioning that these domains are different from hybrid domains–neither of them

contains the other. For ease of presentation, we denote a single-peaked domain with

respect to a prior ordering ≺ over A by D≺.

Definition 6.3. Let Ω ⊆ P(A) be a swap-connected collection of prior orderings over

A. A domain D is called multiple single-peaked with respect to Ω if D = ∪≺∈ΩD≺.
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Since the prior orders in a multiple single-peaked domain are assumed to be swap-

connected, it follows that preferences with the same top-ranked alternative are swap-

connected. This implies that the collection B of betweenness relations that generate a

multiple single-peaked domain is swap-connected. Using similar logic as we have used

in the case of a single-peaked domain on a tree, it follows that multiple single-peaked

domains are both weakly and strongly consistent betweenness domains. Therefore,

Corollary 6.1 implies that for almost all prior profiles, unanimous and swap-LOBIC

RBRs on the multiple single-peaked domain are tops-only. Using similar argument as

we have used in the case of a single-peaked domain on a tree, it follows that multiple

single-peaked domains satisfy the upper contour preservation property. In view of these

observations, we obtain the following corollaries from Theorem 3.2 and Corollary 4.1.

Corollary 6.6. Let D be the multiple single-peaked domain. For every unanimous RSCF

ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ) with full measure such that for each

µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC implies that ϕ is Pareto optimal.

Corollary 6.7. Let D be the multiple single-peaked domain. For every unanimous and

weak elementary monotonic RSCF ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ)

with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC if

and only if ϕ is swap-LDSIC.

Let us assume without loss of generality that Ω contains the integer ordering < over

A = {1, . . . ,m}. For a class of prior ordering Ω over A, the left cut-off k is defined as

the maximum (with respect to <) alternative with the property that 1 ≺ 2 ≺ ·· · ≺ k ≺ x

for all x /∈ {1, . . . ,k} and all ≺∈ Ω. Similarly, define the right cut-off as the minimum

alternative k such that x ≺ k ≺ ·· · ≺ m−1 ≺ m for all x /∈ {k, . . . ,m} and all ≺∈ Ω.

Remark 6.4. Reffgen (2015) shows that a DSCF is unanimous and DSIC on a multiple

single-peaked domain with left cut-off k and right cut-off k if and only if it is a (k,k)-

partly dictatorial generalized median voter scheme ((k,k)-PDGMVS). Moreover, by

Theorem 6.1, a multiple single-peaked domain is a swap-DLGE domain. Combining all

these results with Corollary 6.7, we obtain that for almost all prior profiles, unanimous

and weak elementary monotonic swap-LOBIC RBRs on the multiple single-peaked

domain are (k,k)-PDGMVS. �
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6.4 DOMAINS UNDER PARTITIONING

The notion of domains under partitioning is introduced in Mishra and Roy (2012). Such

domains arise when a group of objects are to be partitioned based on the preferences of

the agents over different partitions.

Let X be a finite set of objects and let A be the set of all partitions of X .10 For instance,

if X = {x,y,z}, then elements of A are
{
{x},{y},{z}

}
,
{
{x},{y,z}

}
,
{
{y},{x,z}

}
,

{
{z},{x,y}

}
, and

{
{x,y,z}

}
. We say that two objects are together in a partition if they

are contained in a common element (subset of X) of the partition. For instance, objects

x and y are together in the partition
{
{z},{x,y}

}
. If two objects are not together in a

partition, we say they are separated. For three distinct partitions X1,X2,X3 ∈ A, we say

X2 lies between X1 and X3 if for every two objects x and y, x and y are together in both

X1 and X3 implies they are also together in X2, and x and y are separate in both X1 and X3

implies they are also separate in X2. For instance, any of the partitions
{
{x},{y,z}

}
or

{
{y},{x,z}

}
or

{
{z},{x,y}

}
lies between

{
{x},{y},{z}

}
and

{
{x,y,z}

}
. This follows

from the fact that no two objects are together (or separated) in both
{
{x},{y},{z}

}
and

{
{x,y,z}

}
, so the betweenness condition is vacuously satisfied. For another instance,

consider the partitions
{
{x,y},{z}

}
and

{
{x,z},{y}

}
. The only partition that lies

between these two partitions is
{
{x},{y},{z}

}
. To see this, note that y are z are separate

in both the partitions (and no two objects are together in both), and
{
{x},{y},{z}

}
is

the only partition (other than the two) in which y and z are separated.

Definition 6.4. A domain D is intermediate if for all P ∈ D and every two partitions

X1,X2 ∈ A, X1 lies between P(1) and X2 implies X1PX2.

By definition, intermediate domains are betweenness domains. In Table 4, we present

three preferences (having have different structures of the top-ranked partition) in an inter-

mediate domain over three objects. Note that the betweenness relation does not specify

the ordering of {{a,b},{c}}, {{a,c},{b}}, and {{a},{b,c}} when {{a},{b},{c}} is

the top-ranked partition. Therefore, there are six preferences with {{a},{b},{c}} as the

top-ranked partition, P1 is one of them. It is worth noting that an intermediate domain

10A partition of a set is a set of subsets of that set that are mutually exclusive and exhaustive.
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is not swap-connected. For instance, the preferences P2 and P3 are graph-local but not

swap-local.

P1 P2 P3

{{a},{b},{c}} {{a,b},{c}} {{a,b,c}}

{{a,b},{c}} {{a,b,c}} {{a,b},{c}}

{{a,c},{b}} {{a},{b},{c}} {{a,c},{b}}

{{a},{b,c}} {{a,c},{b}} {{a},{b,c}}

{{a,b,c}} {{a},{b,c}} {{a},{b},{c}}

Table 4

Proposition 6.1. The intermediate domain is strongly consistent.

The proof of this proposition is relegated to Appendix C.8.

By Corollary 6.1 and Proposition 6.1, it follows that for almost all prior profiles,

unanimous and DSIC RBRs on the intermediate domain are tops-only. This is a major

step towards characterizing unanimous and OBIC RBRs for almost all prior profiles

on the intermediate domain. It is worth mentioning that the structure of unanimous

and DSIC RSCFs are yet not explored on the intermediate domain and it follows from

Corollary 6.1 that every such rule is tops-only.

Remark 6.5. It is shown in Mishra and Roy (2012) that a DSCF is unanimous and DSIC

on the intermediate domain if and only if it is a meet aggregator. Moreover, by Theorem

6.1 and Proposition 6.1, every intermediate domain is graph-DLGE. Combining these

results with Remark 3.1, we obtain that for almost all prior profiles, unanimous and

weak elementary monotonic swap-LOBIC RBRS on the intermediate domain are meet

aggregators. �

7. APPLICATIONS ON NON-REGULAR DOMAINS

In this section, we consider two important non-regular domains, namely single-dipped

and single-crossing domains. Let the alternatives be A = {1, . . . ,m}.

7.1 SINGLE-DIPPED DOMAINS

A preference is single-dipped if there is a “dip” (the worst alternative) of it so that as one

moves farther away from it, preference increases. These domains arise in the context of
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locating a “public bad” (such as garbage dump, nuclear plant, wind mill, etc.).

Definition 7.1. A preference P is single-dipped if it has a unique minimal element

d(P), the dip of P, such that for all x,y ∈ A, [d(P) ≤ x < y or y < x ≤ d(P)] ⇒ yPx. A

domain is single-dipped if it contains all single-dipped preferences.

In what follows, we argue that the single-dipped domain satisfies the path-richness

property. Consider two preferences of the form a · · ·xy · · · and a · · ·yx · · · . We need to

show that from every preference of the form b · · · , we can reach a preference with a as

the top-ranked alternative through a swap-local path such that the relative ranking of x

and y does not change along the path. Since only one of the alternatives 1 and m can be

a top-ranked alternative in the single-dipped domain and the domain is symmetric with

respect to 1 and m, it is sufficient to show this for a = 1 and b = m.

First note that for any x,y ∈ {2, . . . ,m}, there are preferences of the form 1 and

1 · · ·xy · · · in the 1 · · ·yx · · · domain. Consider arbitrary x,y ∈ {2, . . . ,m} and a preference

P ≡ m · · · . Suppose xPy. We can construct a swap-local path to a preference P′ ≡ m · · ·y

such that no alternative overtakes y along the path. This can be done by shifting the dip

of the preferences to y along the path, which is always possible by the definition of the

single-dipped domain. Next, we go to a preference P′′ ≡ m1 · · ·y through a swap-local

path such that y remains as the bottom ranked alternative in each preference in the path.

Finally, we swap m and 1 to obtain a preference with 1 as the top-ranked alternative. By

the construction of the whole path, no alternative overtakes y along the path. Since x is

ranked above y in P, this, in particular, implies the relative ranking of x and y does not

change along the path. Hence we obtain the following corollaries from Theorem 3.3 and

Corollary 4.1.

Corollary 7.1. Let D be the single-dipped domain. For every unanimous RSCF ϕ :

D
n → ∆A, there is a set of prior profiles M (ϕ) with full measure such that for each

µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC implies that ϕ is tops-only.

Corollary 7.2. Let D be the single-dipped domain. For every unanimous and weak

elementary monotonic RSCF ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ) with

full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC if and

only if ϕ is swap-LDSIC.
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Remark 7.1. It is shown in Peters et al. (2017) that an RSCF on the single-dipped domain

is unanimous and DSIC if and only if it is a random committee rule.By combining this

result with Corollary 7.2 and the fact that every swap-LDSIC RSCF on the single-dipped

domain is DSIC (see Cho (2016) for details) we obtain that for almost all prior profiles,

unanimous and weak elementary monotonic swap-LOBIC RBRs on the single-dipped

domain are random committee rules. �

7.2 SINGLE-CROSSING DOMAINS

A domain is single-crossing if its preferences can be ordered in a way so that no two

alternatives change their relative ranking more than once along that ordering. Such

domains are used in models of income taxation and redistribution, local public goods

and stratification, and coalition formation (see Saporiti (2009) for details).

Definition 7.2. A domain D is single-crossing if there is an ordering ⊳ over D such

that for all x,y ∈ A and all P,P′ ∈ D , [x < y,P⊳P′, and yPx] =⇒ yP′x.

To see that a single-crossing domain satisfies the path-richness property, consider an

alternative a and suppose that there are two swap-local preferences P ≡ a · · ·xy · · · and

P′ ≡ a · · ·yx · · · . Since P and P′ are swap-local, they must be consecutive in the ordering

⊳. Assume without loss of generality that P⊳P′. This means xP̂y for all P̂ with P̂⊳P and

yP̄x for all P̄ with P′
⊳ P̂. Consider any preference P̃. If xP̃y, then P̃⊳P, and hence from

P̃ one can go to the preference P following the path given by ⊳ maintaining the relative

ordering between x and y. On the other hand, if yP̃x, then one can go from P̃ to the

preference P′ following the path given by ⊳. This shows that a single-crossing domain

satisfies the path-richness property, and hence we obtain the following corollaries from

Theorem 3.3 and Corollary 4.1.

Corollary 7.3. Let D be the single-crossing domain. For every unanimous RSCF

ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ) with full measure such that for each

µN ∈ M (ϕ), the RBR (ϕ , µN) is graph-LOBIC implies that ϕ is tops-only.

Corollary 7.4. Let D be the single-crossing domain. For every unanimous and weak

elementary monotonic RSCF ϕ : D
n → ∆A, there is a set of prior profiles M (ϕ) with
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full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is swap-LOBIC if and

only if ϕ is swap-LDSIC.

Remark 7.2. Roy and Sadhukhan (2019) show that an RSCF on the single-crossing

domain is unanimous and DSIC if and only if it is a tops-restricted probabilistic fixed

ballot rules (TPFBRs). Moreover, Cho (2016) shows that every swap-LDSIC RSCF on

the single-crossing domain is DSIC. Combining these results with Corollary 7.4, we

obtain that for almost all prior profiles, unanimous and weak elementary monotonic

swap-LOBIC RBRs on the single-crossing domain are TPFBRs. �

8. APPLICATIONS ON MULTI-DIMENSIONAL SEPARABLE DOMAINS

Multi-dimensional separable domains comprise the main application of our general

model. Multi-dimensional models are used in political economy, as well as in public good

location problems where an alternative represents the location of a political party/public

good in the multi-dimensional political spectrum/Euclidean space (see Breton and Sen

(1999) and Border and Jordan (1983) for details). Such models are also used to deal with

the problem of forming a committee by taking members from a given set of candidates

(see Barberà et al. (1991)). In a different context, this model is used in formulating the

model of externalities in the context of the debate on liberalism (see Sen (1970) and

Wriglesworth (1985)). In this setting, a social alternative has several components. Each

component represents some aspect of the alternative. There is no dependence between

the components, that is, the set of alternatives is a product set (of the alternatives available

in different components). Separability implies that there is no interaction between the

preferences of an agent (over the alternatives) in different components.

We assume that the alternative set can be decomposed as a Cartesian product, i.e.,

A = A1 ×·· ·×Ak, where 1, . . . ,k are the components/dimensions with k ≥ 2, and for

each component l ∈ K, the component set Al contains at least two elements. Thus, an

alternative x is a vector of k elements, and hence we denote it (x1, . . . ,xk). For l ∈ K, we

denote by A−l the set A1 ×·· ·×Al−1 ×Al+1 ×·· ·×Ak and by x−l an element of A−l .

A preference P ∈ P(A) is separable if there exists a (unique) marginal preference

Pl for each l ∈ K such that for all x,y ∈ A, we have [xlPlyl for some l ∈ K and x−l =
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y−l ]⇒ [xPy]. A domain is called separable if each preference in it is separable.

For a collection of marginal preferences (P1, . . . ,Pk), the collection of all separable

preferences with marginals as (P1, . . . ,Pk) is denoted by S (P1, . . . ,Pk). Similarly, for a

collection of marginal domains (D1, . . . ,Dk), the set of all separable preferences with

marginals in (D1, . . . ,Dk) is denoted by S (D1, . . . ,Dk), that is, S (D1, . . . ,Dk) =

∪(P1,...,Pk)∈(D1,...,Dk)S (P1, . . . ,Pk). A separable domain of the form S (D1, . . . ,Dk) is

called a full separable domain. Throughout this subsection, we assume that the marginal

domains are betweenness domains satisfying swap-connectedness and consistency, for

instance, they can be any domain we have discussed so far except the intermediate

domain. For PN ∈ S (D1, . . . ,Dk), we denote its restriction to a component l ∈ K by Pl
N ,

that is, Pl
N = (Pl

1, . . . ,Pl
n). We introduce the local structure in a full separable domain in

a natural way.

Definition 8.1. Let D
l be swap-connected for all l ∈ K. Two preferences P, P̄ ∈

S (D1, . . . ,Dk) are sep-local if one of the following two holds:

(i) P△P̄ = {x,y} where x,y are such that |{l | xl 6= yl}| ≥ 2.

(ii) P△P̄ = {((a−l ,xl), (a−l ,yl)) | a−l ∈ A−l}, where l ∈ K and xl ,yl ∈ Al swap from

Pl to P̄l .

Thus, (i) in Definition 8.1 says that exactly one pair of alternatives (x,y), that vary

over at least two components, swap from P to P′, and (ii) in Definition 8.1 says that

multiple pairs of alternatives of the form ((a−l ,xl), (a−l ,yl)), where a−l ∈ A−l , swaps

from P to P′. This structure makes the lower contour monotonicity property simpler:

it imposes elementary monotonicity to every pair of swapping alternatives. We call it

sep-monotonicity.

For notational convenience, we denote a domain S (D1, . . . ,Dk) by S in the follow-

ing results. The following corollary is obtained from Theorem 3.1.

Corollary 8.1. For every unanimous and weak elementary monotonic RSCF ϕ : S
n →

∆A, there is a set of prior profiles M (ϕ) with full measure such that for each µN ∈

M (ϕ), the RBR (ϕ , µN) is sep-LOBIC if and only if ϕ is sep-LDSIC.
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It is worth mentioning that Corollary 8.1 holds as long as the marginal domains are

swap-connected.

Our next two propositions are derived by using Theorem 3.3. An RSCF ϕ : S n → ∆A

satisfies component-unanimity if for each component l ∈ K and each PN ∈ S
n such

that Pl
i (1) = xl for all i ∈ N and some xl ∈ Al , we have ϕ l

xl (PN) = 1.

Proposition 8.1. For every unanimous RSCF ϕ : S
n → ∆A, there is a set of prior

profiles M (ϕ) with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is

sep-LOBIC implies that ϕ satisfies component-unanimity.

The proof of this proposition is relegated to Appendix C.9.

Proposition 8.2. For every unanimous RSCF ϕ : S
n → ∆A, there is a set of prior

profiles M (ϕ) with full measure such that for each µN ∈ M (ϕ), (ϕ , µN) is sep-LOBIC

implies that ϕ is tops-only.

The proof of this proposition is relegated to Appendix C.10.

For random rules, to the best of our knowledge, it is still not known whether sep-

LDSIC implies DSIC or not. However, the same is shown for DSCFs on domains

having unrestricted marginals (see Kumar et al. (2020) for details). Thus, it follows from

Corollary 8.1 that for almost all prior profiles, sep-monotonic DSCFs, OBIC and DSIC

are equivalent on such domains.

8.1 MARGINAL DECOMPOSABILITY OF RANDOM RULES

Breton and Sen (1999) show that every unanimous and DSIC DSCF on a multi-dimensional

(full) separable domain is decomposable: its outcome in a particular dimension depends

only on the (marginal) preferences of agents in that dimension. In our view, a suitable

version of decomposability for random rules is marginal decomposability, which we

investigate for sep-LOBIC rules in this section.

We define the notion of marginal distribution for an RSCF or a prior. The notion is the

same as the standard notion of marginal distribution of a multivariate/joint distribution in

statistics. The marginal distribution of an RSCF ϕ : S
n → ∆A over component l ∈ K at

a preference profile PN , denoted by ϕ l(PN), is defined as ϕ l
xl (PN) = ∑

x−l∈A−l

ϕ(xl ,x−l)(PN)
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for all xl ∈ Al . Similarly, marginal distribution of a prior µi over component l ∈ K,

denoted by µ l
i , is defined as µ l

i (P̂
l
−i) = ∑

P−i|P
l
−i=P̂l

−i

µi(P−i) for all P̂l
−i ∈ D

l
−i.

An OBIC RBR is marginally decomposable if it can be viewed as a collection of

OBIC RBRs, one for each component. Clearly, it is easier for the designer to work with

the problem of analyzing marginally decomposable RBR: she does not need to deal with

the multi-dimensional objects (alternatives or preferences), instead she can reduce the

whole problem to a collection of one-dimensional problems and solve it solely by using

her knowledge about the same.

Definition 8.2. An OBIC RBR (ϕ , µN) on a domain S
n is marginally decomposable

if for all l ∈ K, there is an OBIC RBR (ϕ̂ l , µ l
N) on (D l)n such that for all PN ∈ S

n, we

have ϕ l(PN) = ϕ̂ l(Pl
N).

Similarly, we define the notion of marginal decomposability for a DSIC RSCF.

Definition 8.3. A DSIC RSCF ϕ on a domain S
n is marginally decomposable if

for all l ∈ K, there is a DSIC RSCF ϕ̂ l on (D l)n such that for all PN ∈ S
n, we have

ϕ l(PN) = ϕ̂ l(Pl
N).

Remark 8.1. Note that for a DSCF f : S
n → A, marginal decomposability is equivalent

to decomposability defined in Breton and Sen (1999) as follows: a DSCF f : S
n → A

is decomposable if for all l ∈ K, there is a DSIC DSCF f̂ l on (D l)n such that for all

PN ∈ S
n, we have f l(PN) = f̂ l(Pl

N). Thus, the notion of marginal decomposability for

RSCFs indeed generalizes the same for DSCFs. �

Theorem 8.1. For every unanimous RSCF ϕ : S
n → ∆A, there is a set of prior profiles

M (ϕ) with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is OBIC

implies that (ϕ , µN) is marginally decomposable.

The proof of this theorem is relegated to Appendix C.11.

It can be noted that in the proof of Theorem 8.1, only the block preservation property

of ϕ is used in the proof, which is derived from the fact that (ϕ , µN) OBIC for all

µN ∈ M (ϕ). Consider a unanimous and DSIC RSCF ϕ : S
n → ∆A. Since ϕ is DSIC,

it is straightforward that ϕ satisfies the block preservation property. Therefore, by using

similar arguments as in the proof of Theorem 8.1, we obtain the following result.
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Theorem 8.2. Every unanimous and DSIC RSCF ϕ : S
n → ∆A is marginally decom-

posable.

9. THE CASE OF WEAK PREFERENCES

A weak preference is a complete and transitive binary relation. We denote a weak

preference by R and the set of all weak preferences by R(A). For a weak preference

R, we denote its strict part by P and indifference part by I. An indifference class of a

preference is the maximal set of alternatives that are indifferent to each other.

As in the case of strict preferences, we assume that each domain Di ⊆ Ri is endowed

with a graph structure with respect to which it is connected. We generalize the definition

of a block for weak preferences in the following way. A set of alternatives B is a block

in a pair of preferences (R,R′) if it is a minimal non-empty set satisfying the following

properties: (i) for all x ∈ B and y /∈ B, P|{x,y} = P′|{x,y}, and (ii) B is not a strict subset of

an indifference class of R and an indifference class of R′.

Note that the technical definition of lower contour monotonicity and block preserva-

tion property (Proposition 3.1 and Theorem 3.1) do not involve the assumption of strict

preferences, therefore we continue to use the same definitions for weak preferences.

Our next two results say that Proposition 3.1 and Theorem 3.1 continue to hold in this

scenario.

Proposition 9.1. For every RSCF ϕ : DN → ∆A, there is a set of prior profiles M (ϕ)

with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN) is graph-LOBIC

implies that ϕ satisfies the block-preservation property.

The proof of this proposition is relegated to Appendix B.

Theorem 9.1. For every lower contour monotonic RSCF ϕ : D
n → ∆A, there is a set of

prior profiles M (ϕ) with full measure such that for each µN ∈ M (ϕ), the RBR (ϕ , µN)

is graph-LOBIC if and only if ϕ is graph-LDSIC.

The proof of this theorem is relegated to Appendix C.1.
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10. DISCUSSION

10.1 THE CASE OF DBRS

A probability distribution ν on a finite set S is generic if for all subsets U and V of S,

ν(U) = ν(V ) implies U = V . Majumdar and Sen (2004) show that on the unrestricted

domain, every unanimous DBR that is OBIC with respect to a generic prior is dictatorial,

and Mishra (2016) shows that under elementary monotonicity, the notions DSIC and

OBIC with respect to generic priors are equivalent. It can be verified that all our results

hold for generic priors if we restrict our attention to DBRs. Additionally, our results

establish tops-onlyness and decomposability of OBIC DBRs with respect to generic

priors.

10.2 FULLY CORRELATED PRIORS

Note that the priors we consider in this paper are partially correlated: prior of an agent

is independent of her own preference, while it may be correlated over the preferences

of other agents. The natural question arises here as to what will happen if the prior of

an agent depends on her own preferences too. Firstly, our proof technique for Theorem

3.1 will fail, but more importantly, Theorem 3.1 will not even hold anymore. It can

be verified from the proof of Proposition 3.1 that if an RSCF is graph-LOBIC but not

graph-LDSIC then it must satisfy a system of equations . The proof follows from the

fact that the set of prior profiles that satisfy such a system of equations has Lebesgue

measure zero. However, if an agent has two different priors for two local preferences,

then we cannot obtain such a system of equations on a given prior (what we obtain are

equations involving different priors), and consequently, nothing can be concluded about

the Lebesgue measure of such priors. We illustrate this with the following example.

Suppose that there are two agents 1 and 2, and three alternatives a,b, and c. Consider

two swap-local preferences bac and bca of agent 1. Consider the anti-plurality rule

with the tie-breaking criteria as a ≻ b ≻ c. In Table 5, we present this rule when agent

1 has preferences bac and bca, and 2 has any preference. It is well-known (and also

can be verified from the example) that anti-plurality rule is not swap-LDSIC. However,
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it is swap-LOBIC over the mentioned preferences of agent 1 if her prior satisfies the

following conditions: µ1(bca|cab) + µ1(cba|cab)− µ1(acb|cab)− µ1(cab|cab) ≥ 0

and µ1(acb|cba)+ µ1(cab|cba)− µ1(bca|cba)− µ1(cba|cba) ≥ 0. It is clear that the

Lebesgue measure of such priors is not zero (this is because, as we have argued, the

inequalities are imposed on two different priors µ1(·|cab) and µ1(·|cba)). In a similar

way, it follows that if one considers all possible restrictions arising from all possible

swap-local preferences of each agent, the resulting priors for which the rule is LOBIC

can have Lebesgue measure strictly bigger than zero.

1 2 abc acb bac bca cba cab

cab a a a c a c

cba b c b b c b

Table 5

10.3 RELATION WITH HONG AND KIM (2020)

Hong and Kim (2020) explore the structure of LOBIC DBRs with respect to generic

priors (as defined in Majumdar and Sen (2004)) on weakly connected domains without

restoration. They show that if a unanimous DBR on a weakly connected domains without

restoration domain is LOBIC with respect to generic priors, then it will be tops-only.

Since they consider weakly connected domains, even the deterministic versions of our

results for multi-dimensional domains and intermediate domains do not follow from their

result. Coming to the unrestricted domain and single-peaked domains, which are weakly

connected without restoration (see Sato (2013) for details), Example 1 of Majumdar and

Roy (2018) already shows that their results do not extend for RBRs on the unrestricted

domain. Below, we provide an example to show that it does not extend for RBRs on

single-peaked domains either.

Example 10.1. Consider the RSCF in Table 6.11 The priors of agents 1 and 2, µ1 and

µ2 are generic. For instance, µ1(abc)(= 0.1) is different from µ1(S) for any set of

preferences S other than {abc}, µ1(abc)+ µ1(bac)(= .4) is different from µ1(S) for

11See Example 2.1 for an explanation of the table.
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any set of preferences S other than {abc,bac}, etc. Preferences of agents 1 and 2 are

depicted in the second column and the second row, and the outcome of the RSCF, say

ϕ , is given by the corresponding cells. Clearly, the rule ϕ is unanimous. To see that ϕ

is OBIC with respect to the given priors, consider, for instance, agent 1. Suppose her

sincere preference is abc. If she reports this preference, she receives interim expected

outcome ϕ(abc, µ1) = (0.514,0.3856,0.1004). If she misreports, say as the preference

bac, then she receives interim expected outcome ϕ(bac, µ1) = (0.04,0.8596,0.1004).

Since ϕ(abc, µ1) stochastically dominates ϕ(bac, µ1) at abc, agent 1 cannot manipulate

by misreporting the preference abc as bac. In a similar fashion, it can be verified that

no agent can manipulate ϕ . Now, consider the profiles (abc,bac) and (abc,bca). Each

agent has the same top-ranked alternative in these two profiles. However, ϕ(abc,bac) 6=

ϕ(abc,bca), which means ϕ is not tops-only.

µ1 0.1 0.3 0.44 0.16

µ2 1 2 abc bac bca cba

0.2 abc (1,0,0) (0.5,0.4,0.1) (0.44,0.4,0.16) (0.44,0.56,0)

0.24 bac (0.4,0.3,0.3) (0,1,0) (0,1,0) (0,0.56,0.44)

0.34 bca (0.4,0.3,0.3) (0,1,0) (0,1,0) (0,0.56,0.44)

0.22 cba (0.4,0.3,0.3) (0,0,1) (0,0,1) (0,0,1)

Table 6

APPENDIX

A. PRELIMINARIES FOR THE PROOFS

Consider an RSCF ϕ : DN → ∆A. A prior profile µN is called compatible with ϕ if for

all i ∈ N, all Ri,R
′
i ∈ Di, and all X ( A,

∑
R−i

µi(R−i)(ϕX (Ri,R−i)−ϕX (R
′
i,R−i)) = 0 (1)

=⇒ ϕX (Ri,R−i)−ϕX (R
′
i,R−i) = 0 for all R−i.

Let M (ϕ) denote the set of all prior profiles that are compatible with ϕ .
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Claim A.1. For every RSCF ϕ , the Lebesgue measure of the complement of M (ϕ) is

zero.

Proof of Claim A.1. The proof of this claim follows from elementary measure theory;

we provide a sketch of it for the sake of completeness. First note that for a given RSCF

ϕ and for all i ∈ N, all Ri,R
′
i ∈ Di, and all X ( A, (1) is equivalent to an equation of the

form:

x1α1 + · · ·+ xkαk = 0, (2)

where α’s are some constants and x’s are non-negative variables summing up to 1 (that

is, probabilities). The question is if x’s are drawn randomly (uniformly) from the space

{(x1, . . . ,xk) | xl ≥ 0 for all l and ∑
l

xl = 1}, what is the Lebesgue measure of the priors

for which (2) will be satisfied? Clearly, if α’s are all zeros, (2) will be satisfied for all

prior profiles. We argue that if α’s are not all zeros, then (2) can be satisfied only for

a set of prior profiles with Lebesgue measure zero, which will complete the proof by

means of the fact that the number of agents, preferences, and alternatives are all finite.

However, this follows from the facts that the solutions of (2) form a hyperplane and that

the Lebesgue measure of a hyperplane is zero (because of dimensional reduction, such

as the Lebesgue measure of a line in a plane is zero, that of a plane in a cube is zero,

etc.).12
�

B. PROOF OF PROPOSITION 3.1 AND PROPOSITION 9.1

Proof. Let (ϕ , µN) be a graph-LOBIC RBR. Since we prove the claim for a set of prior

profiles with full measure, in view of Claim A.1, we assume that µN is compatible with

ϕ . Consider graph-local preferences Ri,R
′
i ∈ Di and R−i ∈ D−i. Suppose that B is a

block in (Ri,R
′
i). Let UB(Ri) = {x ∈ A | xPib for all b ∈ B} be the set of alternatives that

are strictly preferred to each element of B according to Ri. By the definition of a block

in (Ri,R
′
i), it follows that both UB(Ri) and UB(Ri)∪B are upper contour sets in each of

12For a detailed argument, suppose that exactly one α , say α1 is not zero. Note that this assumption

gives maximum freedom for the values of x’s and thereby maximize the Lebesgue measure of the solution

space of (2). However, this means in any solution x1 must be zero, the measure of which in the solution

space is zero.
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the preferences Ri and R′
i. Since Ri and R′

i are graph-local, by graph-LOBIC,

∑
R−i∈D−i

µi(R−i)ϕUB(Ri)(Ri,R−i) = ∑
R−i∈D−i

µi(R−i)ϕUB(Ri)(R
′
i,R−i) (3)

and

∑
R−i∈D−i

µi(R−i)ϕUB(Ri)∪B(Ri,R−i) = ∑
R−i∈D−i

µi(R−i)ϕUB(Ri)∪B(R
′
i,R−i). (4)

Subtracting (3) from (4), we have

∑
R−i∈D−i

µi(R−i)(ϕB(Ri,R−i)−ϕB(R
′
i,R−i)) = 0. (5)

Since µN is compatible with ϕ , this means ϕB(Ri,R−i) = ϕB(R
′
i,R−i) for all R−i ∈ D−i,

which completes the proof. �

Remark B.1. It is worth noting from the proof that an RBR (ϕ , µN) must satisfy (5) in

order to be graph-LOBIC. If the RSCF ϕ is not LDSIC, then there will be at least one B

such that ϕB(Ri,R−i)−ϕB(R
′
i,R−i) 6= 0, in which case (5) can only be satisfied for set

of prior profiles with measure zero. �

C. OTHER PROOFS

In view of Proposition 3.1, whenever we prove some statement for a class of RBRs

(ϕ , µN) where µN belongs to a set with full measure, we assume that ϕ is satisfies the

block preservation property.

C.1 PROOF OF THEOREM 3.1 AND THEOREM 9.1

Proof. If part of the theorem follows from the definitions of graph-LDSIC and graph-

LOBIC. We proceed to prove the only-if part. Let ϕ : DN → ∆A be an RSCF satisfying

lower contour monotonicity and the block preservation property. We show that ϕ is

graph-LDSIC. Consider graph-local preferences Ri,R
′
i ∈ Di, R−i ∈ D−i, and x ∈ A. We

show ϕU(x,Ri)(Ri,R−i) ≥ ϕU(x,Ri)(R
′
i,R−i). Let B1, . . . ,Bt be the blocks in (Ri,R

′
i) such
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that for all l < t and all b ∈ Bl and b′ ∈ Bl+1, we have bPib
′. Suppose that x ∈ Bl for

some l ∈ {1, . . . , t}.

Let B̂l = {b ∈ Bl | bPix} be the set of alternatives (possibly empty) in Bl that are

(strictly) preferred to x. Note that the set Bl \ B̂l is lower contour set of Ri|Bl
. Therefore,

by lower contour monotonicity,

ϕBl\B̂l
(R′

i,R−i) ≥ ϕBl\B̂l
(Ri,R−i). (6)

Furthermore, by the block preservation property, we have

ϕBl
(R′

i,R−i) = ϕBl
(Ri,R−i). (7)

Subtracting (6) from (7), we have

ϕB̂l
(Ri,R−i) ≥ ϕB̂l

(R′
i,R−i). (8)

Note that U(x,Ri) =B1∪·· ·∪Bl−1∪B̂l . This means ϕU(x,Ri)(Ri,R−i) =ϕB1∪···∪Bl−1
(Ri,R−i)+

ϕB̂l
(Ri,R−i) and ϕU(x,Ri)(R

′
i,R−i) = ϕB1∪···∪Bl−1

(R′
i,R−i)+ϕB̂l

(R′
i,R−i). By the block

preservation property, ϕB1∪···∪Bl−1
(Ri,R−i) =ϕB1∪···∪Bl−1

(R′
i,R−i), and by (8) , ϕB̂l

(Ri,R−i)≥

ϕB̂l
(R′

i,R−i). Combining these observations, we have ϕU(x,Ri)(Ri,R−i)≥ϕU(x,Ri)(R
′
i,R−i),

which completes the proof. �

C.2 PROOF OF THEOREM 3.2

Proof. Let Di satisfy upper contour preservation property for all i ∈ N and suppose that

ϕ : DN → ∆A is an RSCF satisfying unanimity and the block preservation property. We

show that ϕ is Pareto optimal. Consider PN ∈ DN such that xPiy for all i ∈ N and some

x,y ∈ A. We show that ϕy(PN) = 0. Assume for contradiction ϕy(PN) > 0. Consider

i ∈ N. By the upper contour preservation property there exists a graph-local path

(P1
i = Pi, . . . ,P

t
i ) such that Pt

i (1) = x and U(Pi,y) =U(Pl
i ,y) for all l = 1, . . . , t. Since

U(y,P1
i ) =U(y,P2

i ), we have y /∈ P1
i △P2

i , which implies that {y} is a singleton block

in (P1
i ,P2

i ). By the block preservation property, this implies ϕy(P
2
i ,P−i) = ϕy(Pi,P−i).

Continuing in this manner, we reach a preference profile (Pt
i ,P−i) such that Pt

i (1) = x
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and ϕy(P
t
i ,P−i) > 0. By applying the same argument to the agents j ∈ N \{i} we can

construct a preference profile P′
N such that P′

j(1) = x for all j ∈ N and ϕy(P
′
N) > 0.

Since P′
j(1) = x for all j ∈ N, by unanimity we have ϕx(P

′
N) = 1, which contradicts that

ϕy(P
′
N) > 0. �

C.3 PROOF OF THEOREM 3.3

We use the following lemma in our proof.

Lemma C.1. Suppose an RSCF ϕ : Dn → ∆A satisfies unanimity and the block preserva-

tion property. Let Pi,P
′
i ∈D be graph-local and let P−i ∈D

n−1 be such that ϕx(Pi,P−i) 6=

ϕx(P
′
i ,P−i) for some x ∈ Pi△P′

i . Consider an agent j 6= i and suppose that there is a

graph-local path (P1
j = Pj, . . . ,P

t
j = P̄j) such that for all l < t and for every two alterna-

tives a,b ∈ Pi△P′
i , there is a common upper contour set U of both Pl

j and Pl+1
j such that

exactly one of a and b is contained in U. Then ϕx(Pi, P̄j,P−{i, j}) 6= ϕx(P
′
i , P̄j,P−{i, j}).

Proof of Lemma C.1. Suppose ϕx(Pi,P
l
j ,P−{i, j}) 6= ϕx(P

′
i ,Pl

j ,P−{i, j}) for some l < t and

some x ∈ Pi△P′
i . It is enough to show that ϕx(Pi,P

l+1
j ,P−{i, j}) 6= ϕx(P

′
i ,Pl+1

j ,P−{i, j}).

Let a and ā be the alternatives, if exist, that are ranked just above and just below x,

respectively, in Pl
j |Pi△P′

i
. More formally, let a ∈ Pi△P′

i be such that aPl
jx and no al-

ternative in Pi△P′
i is ranked between a and x, and let ā ∈ Pi△P′

i be such that xPl
j ā

and no alternative in Pi△P′
i is ranked between x and a. Let U be the common up-

per contour set of Pl
j and Pl+1

j such that U ∩{a,x} = a, and Û be the common upper

contour set of Pl
j and Pl+1

j such that Û ∩ {x, ā} = x. Here, U might be empty and

Û might be A. Consider the set of alternatives B = U \ Û . Note that B can be ex-

pressed as a union of blocks in (Pl
j ,P

l+1
j ). Therefore, by applying the block preserva-

tion property to each block in B, we obtain ϕB(Pi,P
l
j ,P−{i, j}) = ϕB(Pi,P

l+1
j ,P−{i, j})

and ϕB(P
′
i ,Pl

j ,P−{i, j}) = ϕB(P
′
i ,Pl+1

j ,P−{i, j}). Moreover, since each c ∈ B \ x is a

block in (Pi,P
′
i ), we have by the block preservation property, ϕc(Pi,P

l
j ,P−{i, j}) =

ϕc(P
′
i ,Pl

j ,P−{i, j}) and ϕc(Pi,P
l+1
j ,P−{i, j}) = ϕc(P

′
i ,Pl+1

j ,P−{i, j}) for all c ∈ B\ x. Com-

bining these observations, it follows that ϕx(Pi,P
l+1
j ,P−{i, j}) 6= ϕx(P

′
i ,Pl+1

j ,P−{i, j}). �

Proof of Theorem 3.3. Let D satisfy the path-richness property (see Definition 3.3) and

suppose that ϕ : D
n → ∆A is an RSCF satisfying unanimity and the block preservation
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property. We show that ϕ is tops-only. Assume for contradiction that ϕ(Pi,P−i) 6=

ϕ(P′
i ,P−i) for some Pi,P

′
i ∈ D with Pi(1) = P′

i (1) and some P−i ∈ D
n−1. By means of

Condition (i) of the path-richness property, it is enough to assume that Pi and P′
i are

graph-local. Therefore, by the block preservation property, it follows that ϕx(Pi,P−i) 6=

ϕx(P
′
i ,P−i) for some x ∈ Pi△P′

i .

Consider j ∈ N \ {i}. By Condition (ii) of the path-richness property, there is a

path (P1
j = Pj, . . . ,P

t
j = P′

j) with P′
j(1) = Pi(1) such that for all l < t and for every

two alternatives a,b ∈ Pi△P′
i , there is a common upper contour set U of both Pl

j and

Pl+1
j such that exactly one of a and b is contained in U . By applying Lemma C.1, it

follows that ϕx(Pi,P
′
j,P−i) 6= ϕx(P

′
i ,P′

j,P−i). By applying this logic to all agents except

i, we construct P′
−iD

n−1 such that P′
j(1) = Pi(1) for all j 6= i and ϕx(Pi,P

′
−i) 6= ϕx(P

′
N).

However, since (Pi,P
′
−i) and (P′

i ,P′
−i) are unanimous preference profiles with the top-

ranked alternative different from x, ϕx(Pi,P
′
−i) = ϕx(P

′
i ,P′

−i) = 0, a contradiction. �

C.4 PROOF OF THEOREM 4.1

Proof. Let D be swap-connected and suppose that ϕ : DN → ∆A is a tops-only RSCF

satisfying weak elementary monotonicity and the block preservation property. We show

that ϕ is swap-LDSIC.

Let Pi and P′
i be two swap-local preferences. If τ(Pi) = τ(P′

i ), then by tops-onlyness,

ϕ(Pi,P−i) = ϕ(P′
i ,P−i), and we are done. So, suppose Pi ≡ ab · · · and P′

i ≡ ba · · · .

Assume for contradiction that ϕa(Pi,P−i) < ϕa(P
′
i ,P−i). By the block preservation

property, ϕ{a,b}(Pi,P−i) = ϕ{a,b}(P
′
i ,P−i), and hence our assumption for contradiction

means ϕb(Pi,P−i) > ϕb(P
′
i ,P−i). Consider an agent j ∈ N \ i such that τ(Pj) /∈ {a,b}.

Note that since D j is swap-connected one of the following two cases must hold for Pj: (i)

there is a swap-local path from Pj to a preference P′
j ≡ a · · · such that b does not appear

as the top-ranked alternative in any preference in the path, (ii) there is a swap-local

path from Pj to a preference P′
j ≡ b · · · such that a does not appear as the top-ranked

alternative in any preference in the path.

Suppose Case (i) holds. Let B be the set of alternative that appear as the top-ranked

alternative in some preference in the mentioned path. Consider the outcomes of ϕ when
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agent j changes her preferences along the path, while all other agents keep their prefer-

ences unchanged. By tops-onlyness, the outcome can change only when the top-ranked

alternative changes along the path. Moreover, by the definition of swap-local path, the

top-ranked alternative can change along the path only through a swap between two alter-

natives in B. By block preservation, this implies that the probability of the two swapping

alternatives can only change in any such situations, and hence, the probability of the al-

ternatives outside B will remain unchanged at the end of the path. Since b /∈ B, this yields

ϕb(Pi,Pj,P−{i, j}) = ϕb(Pi,P
′
j,P−{i, j}) and ϕb(P

′
i ,Pj,P−{i, j}) = ϕb(P

′
i ,P′

j,P−{i, j}). This,

together with our assumption for contradiction that ϕb(Pi,P−i) > ϕb(P
′
i ,P−i), implies

ϕb(Pi,P
′
j,P−{i, j}) > ϕb(P

′
i ,P′

j,P−{i, j}). Now, since Pi△P′
i = {a,b}, we have by block

preservation, ϕ{a,b}(Pi,P
′
j,P−{i, j}) = ϕ{a,b}(P

′
i ,P′

j,P−{i, j}). Because ϕb(Pi,P
′
j,P−{i, j})>

ϕb(P
′
i ,P′

j,P−{i, j}), this yields ϕa(Pi,P
′
j,P−{i, j})< ϕa(P

′
i ,P′

j,P−{i, j}). Using similar logic,

we can conclude for Case (ii) that ϕa(Pi,P
′
j,P−{i, j}) < ϕa(P

′
i ,P′

j,P−{i, j}).

Note that the preceding argument holds no matter what the preferences of the agents

in N \ {i, j} are. Therefore, by repeated application of this argument for each agent

j ∈ N \ i with τ(Pj) /∈ {a,b}, we obtain P′
−i ∈ D−i of the agents in N \ i such that (i)

τ(P′
j) ∈ {a,b} for each j ∈ N \ i, and (ii) ϕa(Pi,P

′
−i) < ϕa(P

′
i ,P′

−i).

We now complete the proof by means of tops-onlyness. If P′
j ≡ a · · · then let

P′′
j = Pi, and if P′

j ≡ b · · · then let P′′
j = P′

i . By tops-onlyness, ϕ(Pi,P
′
−i) = ϕ(Pi,P

′′
−i)

and ϕ(P′
i ,P′

−i) = ϕ(P′
i ,P′′

−i), and hence, ϕa(Pi,P
′′
−i) < ϕa(P

′
i ,P′′

−i). However, since for

each j ∈ N, either P′′
j ≡ Pi or P′′

j ≡ P′
i , this violates weak elementary monotonicity, a

contradiction. �

C.5 PROOF OF THEOREM 5.1

Proof. If part of the theorem follows from the definitions of swap-LDSIC and swap-

LOBIC. We proceed to prove the only-if part. Let ϕ : P(A)n → ∆A be a unanimous

RSCF satisfying the block preservation property. We show that ϕ is swap-LDSIC. By

Theorem 3.2 and Theorem 3.3, ϕ is Pareto optimal and tops-only. To show that ϕ is swap-

LDSIC, by Theorem 4.1, it is sufficient to show that ϕ is weak elementary monotonic.

Consider swap-local preferences Pi, P̄i ∈ P(A) such that Pi ≡ ab · · · and P̄i ≡ ba · · · .
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Assume for contradiction that ϕb(Pi,P−i) > ϕb(P̄i,P−i) for some P−i ∈ P(A)n−1 such

that Pi(k) = P̄i(k) = Pj(k) for all j ∈ N \ i and all k > 2. Let c be the alternative such

that Pi ≡ abc · · · . Because Pi and P̄i are swap-local, this means P̄i ≡ bac · · · . Consider

P1
i ∈ P(A) such that P1

i = acb · · · and P1
i and Pi are swap-local, that is P1

i △Pi =

{b,c}. By tops-onlyness of ϕ , ϕ(P1
i ,P−i) = ϕ(Pi,P−i). Next, consider P2

i ∈ P(A) such

that P2
i ≡ cab · · · and P2

i and P1
i are swap-local. By the block preservation property,

ϕb(P
2
i ,P−i) = ϕb(P

1
i ,P−i). Now, consider P3

i ∈P(A) such that P3
i ≡ cba · · · and P3

i and

P2
i are swap-local. By tops-onlyness of ϕ , ϕ(P3

i ,P−i) = ϕ(P2
i ,P−i). Finally, consider

P4
i ∈ P(A) such that P4

i ≡ bca · · · and P4
i and P3

i are swap-local. Since bP4
i c and bPjc

for all j ∈ N \ i, we have by Pareto optimality, ϕc(P
4
i ,P−i) = 0. Moreover, by the

block preservation property, we have ϕb(P
4
i ,P−i) = ϕb(P

3
i ,P−i) + ϕc(P

3
i ,P−i). This,

together with the fact that ϕb(P
3
i ,P−i) = ϕb(Pi,P−i), implies ϕb(P

4
i ,P−i) ≥ ϕb(Pi,P−i).

By our assumption, this means that ϕb(P
4
i ,P−i) > ϕb(P̄i,P−i). Since P4

i (1) = P̄i(1)

which contradicts that ϕ is tops-only. �

C.6 PROOF OF COROLLARY 6.1

First, we state some important observations about betweenness domains which we will

use in the proof.

Observation C.1. Consider an alternative x ∈ A and let D
x(β ) be the set of all prefer-

ences with top-ranked alternative x and satisfying the betweenness condition β . Then,

the domain D
x(β ) is swap-connected.

Observation C.2. Let x,y∈A and let P∈D(β ) be such that P(1) = x and U(y,P)∪y=

β (x,y). Then, for all P̂ ≡ x · · · , there is a swap-local path from P̂ to P such that no

alternative overtakes y along the path.

Observation C.3. Let D(β ) be strongly consistent. Let x, x̄ ∈ A and let (x1 = x, . . . ,xt =

x̄) be a sequence of adjacent alternatives in β (x, x̄) such that for all l < t and all

w ∈ β (xl , x̄), we have β (xl+1,w) ⊆ β (xl , x̄). Then, for all l < t, there exist P ≡ xl · · ·

and P′ ≡ xl+1 · · · such that β (xl ,xt) is an upper contour set in both P and P′. To see

this, consider xl . Since D(β ) is strongly consistent, there is a preference P ∈ D(β )
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such that β (xl ,xt) is an upper contour set of P. Name the alternatives in β (xl ,xt) as

w1, . . . ,wu such that β (xl+1,wr) ( β (xl+1,ws) implies r < s. Since D(β ) is strongly

consistent, we have β (xl+1,w) ⊆ β (xl ,xt) for all w ∈ β (xl ,xt), and hence there is

a preference P′, graph-local to P, satisfying the betweenness relation β such that

P′ ≡ w1w2 · · ·wu−1wu · · · . Therefore, U(wu,P′)∪wu = β (xl ,xt).

We are now ready to start the proof. To ease the presentation, for a path π , we

denote by π−1 the path π in the reversed direction, that is, if π = (P1,P2, . . . ,Pt), then

π−1 = (Pt ,Pt−1, . . . ,P1).

Proof of Corollary 6.1. Let B be a collection of strongly consistent and swap-connected

betweenness relations. We show that D(B) satisfies the path-richness property.

First, we show D(B) satisfies Condition (i) of the path-richness property (see Defini-

tion 3.3). Consider P and P′ with P(1) = P′(1) that are not graph-local. If P,P′ ∈ D(β )

for some β ∈ B, then by Observation C.1 there is a swap-local path from P to P′ such

that the top-ranked alternative does not change along the path. Suppose P ∈ D(β ) and

P′ ∈ D(β̂ ) for some β , β̂ ∈ B. Let P(1) = P′(1) = x and let (β 1 = β , . . . ,β t = β̂ ) be

a swap-local path. By the swap-connectedness of B, there are swap-local preferences

P1 ∈ D(β 1) and P2 ∈ D(β 2) with P1(1) = P2(1) = x. By Observation C.1, there is a

swap-local path π1 from P to P1 in D(β 1) such that x remains at the top-position in all

the preferences in the path. Thus, the path (π1,P2) from P to P2 satisfies Condition (i)

of the path-richness property. Continuing in this manner, we can construct a path from P

to P′ that satisfies Condition (i) of the path-richness property.

Now, we show D(B) satisfies Condition (ii) of the path-richness property, that is, for

all P,P′ ∈D(B) with P(1) = P′(1), if P and P′ are graph-local, then for each preference

P̂ ∈ D(B), there exists a graph-local path (P1 = P̂, . . . ,Pv) with Pv(1) = P(1) such

that for all l < v and all distinct a,b ∈ P△P′, there is a common upper contour set U

of both Pl and Pl+1 such that exactly one of a and b is contained in U . Since P and

P′ are graph-local with P(1) = P′(1), by means of the fact that the collection B is

swap-connected, it follows that P and P′ are swap-local. So assume that P ≡ w · · ·yz · · ·

and P′ ≡ w · · ·zy · · · . Consider P̂ ∈ D(B). Suppose P̂(1) = x and yP̂z. Let P̂ ∈ D(β )

for some β ∈ B. We construct a path from P̂ to a preference with w as the top-ranked
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alternative maintaining Condition (ii) of the path-richness property with respect to y and

z in two steps. For ease of presentation, we denote P̂ by P1.

Step 1: Since β is strongly consistent, there is a sequence (x1 = x, . . . ,xt = y) of adjacent

alternatives in β (x1,xt) such that for all l < t and all u ∈ β (xl ,xt), β (xl ,xt)⊇ β (xl+1,u).

By Observation C.2, there is a path π1 from P1 to a preference P̄1 with P̄1(1) = x1 such

that U(xt , P̄1)∪xt = β (x1,xt) and no alternative overtakes xt along the path. Consider x2.

By Observation C.3, there is a preference P2 with P2(1) = x2 such that P2 is graph-local

to P̄1 and β (x1,xt) is an upper contour set in P2. Since z /∈ β (x1,xt) and β (x1,xt) is a

common upper contour set of P̄1 and P2, Condition (ii) of the path-richness property

is satisfied with respect to xt and z on the path (P̄1
,P2). As in the case for P1 and P̄1,

by Observation C.2, we can construct a swap-local path π2 from P2 to some preference

P̄2 with P̄2(1) = x2 such that U(xt , P̄2)∪ xt = β (x2,xt) and no alternative overtakes xt

along the path. As in the case for P̄1 and P2, by Observation C.3, there is a preference P3

with P3(1) = x3 such that P3 is graph-local to P̄2 and β (x2,xt) is an upper contour set in

P3. It follows that the path (π1,π2,P3) from P1 to the preference P3 satisfies Condition

(ii) of the path-richness property with respect to xt and z. Continuing in this manner,

we can construct a path π̂ in D(β ) from P̂ to a preference ˆ̂P with ˆ̂P(1) = y such that

Condition (ii) of the path-richness property is satisfied along the path.

Step 2: Consider the preference P ≡ w · · ·yz · · · . Let P ∈ D(β̃ ) for some β̃ ∈ B. Using

similar argument as in Step 1, we can construct a path π̃ in D(β̃ ) from P to some P̃ with

P̃(1) = y such that Condition (ii) of the path-richness property is satisfied with respect

to y and z.

Step 3: Since ˆ̂P(1) = P̃(1) = y and the collection B is swap-connected, there is a

swap-local path π̄ in D(B) from ˆ̂P to P̃ such that y stays as the top-ranked alternative

in each preference of the path. Clearly, such a path will satisfy Condition (ii) of the

path-richness property with respect to y and z.

Consider the path (π̂ , π̄ , π̃−1) from P̂ to P. By construction, this path satisfies

Condition (ii) of the path-richness property with respect to y and z, which completes the

proof. �
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C.7 PROOF OF THEOREM 6.1

Proof. Kumar et al. (2020) show that a domain D is graph-DLGE if and only if it

satisfies the following property: for all distinct P,P′ ∈ D and all a ∈ A, there exists a

path π from P to P′ with no (a,b)-restoration for all b ∈ L(a,P). Here, a path is said

to have no (a,b)-restoration if the relative ranking of a and b is reversed at most once

along π . In what follows, we show that D(B) satisfies the above-mentioned property

when B is weakly consistent and swap-connected. Consider two preferences P ∈ D(β )

and P′ ∈ D(β ′) for some β ,β ′ ∈ B and a ∈ A. We show that there is a path π from P to

P′ that has no (a,x)-restoration for all x ∈ L(a,P). By Observation C.3, from P and P′

there are graph-local paths π̂ and π̄ , respectively, to some preferences P̂ and P̄ with a as

the top-ranked alternatives such that no alternative overtakes a along each of the paths.

Let π̃ be a swap-local path joining P̂ and P̄ such that a remains the top-ranked alternative

throughout the path. Consider the path (π̂ , π̃ , π̄−1). No alternative in L(a,P) overtakes

a along the path π̂ . So, if there is an (a,x)-restoration for some x ∈ L(a,P) in the path

(π̂ , π̃ , π̄−1), then it must be that the restoration happens in the path π̄−1. However, then

a must overtake x in this path, which means x overtakes a in the reversed path π̄ , which

is not possible by the construction of the path π̄ . This completes the proof. �

C.8 PROOF OF PROPOSITION 6.1

Proof. Consider X , sX ∈ A. We show that there is a sequence (X1 = X , . . . ,X t = sX) of

adjacent alternatives in β (X , sX) such that for all l < t and all W ∈ β (X l ,X t), we have

β (X l+1,W )⊆ β (X l ,X t). Let l < t and consider W ∈ β (X l ,X t). We show β (X l+1,W )⊆

β (X l ,X t). Take Z /∈ β (X l ,X t). Because Z does not lie in β (X l ,X t), there must be a pair

(a,b) of objects such that either (i) a and b are together in both X l and X t , but separate

in Z, or (ii) a and b are separate in both X l and X t , but together in Z. Because both X l+1

and W are in β (X l ,X t), it must hold that in case (i) a and b are together in both X l+1 and

W , and in case (ii) they are separate in both X l+1 and W . In case (i), a and b are together

in both X l+1 and W but they are separate in Z. Therefore, Z cannot lie in β (X l+1,W ).

On the other hand, in case (ii) a and b are separate in both X l+1 and W , but they are

together in Z. Therefore, Z cannot lie in β (X l+1,W ). This completes the proof. �
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C.9 PROOF OF PROPOSITION 8.1

We first prove some lemmas which we later use in the proof of the proposition. We use

the following notions in the proofs. A preference P is lexicographically separable if

there exists a (unique) component order P0 ∈ P(K) and a (unique) marginal preference

P j ∈ P(A j) for each j ∈ K such that for all x,y ∈ A, we have
[
xlPlyl for some l ∈

K and x j = y j for all jP0l
]
⇒ [xPy]. A lexicographically separable preference P can be

uniquely represented by a (k+ 1)-tuple consisting of a lexicographic order P0 over the

components and marginal preferences P1, . . . ,Pk.

Lemma C.2. Let P ∈ S , l ∈ K, and x,y ∈ A be such that xlPlyl and xPy. Then, for

every component j 6= l there is a sep-local path from P to a lexicographically separable

preference P̄ ∈ S having same marginal preferences as P, and l and j as the lexico-

graphically best and worst components, respectively, such that the x and y do not swap

along the path.

Proof. Assume without loss of generality, l = 1 and j = m. First, make the component

1 lexicographically best (without changing the marginal preferences of P) by swapping

consecutively ranked alternatives multiple times in the following manner: each time

swap a pair of consecutively ranked alternatives a and b where a1P1b1 and bPa. Note

that since x1P1y1 and xPy, x and y are never swapped in this step. Having made 1

the lexicographically best component, the component 2 can be made lexicographically

second-best in the following manner: each time swap a pair of consecutively ranked

alternatives a and b in P where a1 = b1, a2P2b2, and bPa. As we have explained for the

case of component 1, alternatives x and y will not swap in this process. Continuing in

this manner, we can finally obtain a preference P̄ with lexicographic ordering over the

components as 1P̄0 · · · P̄0k through a sep-local path along which the alternatives x and y

are not swapped. �

Lemma C.3. Let P ∈S be a preference such that xPy for some alternatives x and y that

differ in at least two components. Then, there is a sep-local path (P1 = P, . . . ,Pt = P̂)

with P̂(1) = x such that xPly for all l < t.

Proof. Since xPy, there is a component l such that xlPlyl . Assume without loss of
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generality l = 1. Consider component 2 . By Lemma C.2, there is a sep-local path π1

from P to a preference P̄ having components 1 and 2 as the lexicographically best and the

worst components, respectively, such that x and y do not swap along the path. Since 2 is

the lexicographically worst component of P̄, we can construct a sep-local path from P̄ to

a preference ¯̄P such that (i) the marginal preferences in each component other than 2 and

the lexicographic ordering over the components of each preference in the path remains

the same as P̄, and (ii) x2 appears at the top-position of ¯̄P2. Since component 1 is the

lexicographically best component in all these preferences and x1 is preferred to y1 in the

marginal preference in component 1 for all these preferences, it follows that x remains

ranked above y along the path. Repeating this process for all the components 3, . . . ,k, we

can construct a path having no swap between x and y from P to a preference P̃ having (i)

the same marginal preference as P in component 1, and (ii) xt at the top-position of the

marginal preference in component t for all t > 1.

Starting from the preference P̃, make component 1 lexicographically worst through a

sep-local path without changing the marginal preferences. Since xl is weakly preferred

to yl in each component l in each preference of this path, x will remain ranked above y

throughout the path. Finally, move x1 to the top-position in the marginal preference in

component 1 thorough a(ny) swap-local path. Since x and y are different in at least two

components, there is a component j lexicographically dominating component 1 (as it is

the worst component) such that x j is preferred to y j in its marginal preference. Therefore,

x will be ranked above y throughout the path. Note that in the final preference, for each

component t, xt appears at the top-position in the marginal preference in component t,

and hence the alternative x appears at the top-position in it. �

Lemma C.4. Let ϕ : S n → ∆A be a unanimous RSCF satisfying the block preservation

property. Then ϕ(PN) = ϕ(P̄N) for all PN , P̄N such that Pl
N = P̄l

N for all l ∈ K.

Proof. It is enough to show that ϕ(Pi,P−i) = ϕ(P̄i,P−i) where Pl
i = P̄l

i for all l ∈ K.

Since preferences with the same marginals are swap-connected, we can assume without

loss of generality that Pi and P̄i are swap-local with the swap of alternatives x and y.

Assume for contradiction ϕ(Pi,P−i) 6= ϕ(P̄i,P−i). By the block preservation property,

this means ϕx(Pi,P−i) 6= ϕx(P̄i,P−i). By Lemma C.3, for all j ∈ N \ i, there is a sep-

49



local path (P1
j = Pj, . . . ,P

t
j = P̄j) with P̄j(1) = Pi(1) satisfying the property that for

all l < t there is a common upper contour set U of both Pl
j and Pl+1

j such that exactly

one of x and y is contained in U .13 By Lemma C.1, we have ϕx(Pi, P̄j,P−{i, j}) 6=

ϕx(P̄i, P̄j,P−{i, j}). Continuing in this manner, we can construct P̄−i ∈ S
n−1 such that

P̄j(1) = Pi(1) for all j 6= i and ϕx(Pi, P̄−i) 6= ϕx(P̄i, P̄−i). However, since (Pi, P̄−i) and

(P̄i, P̄−i) are unanimous preference profiles with the top-ranked alternative different from

x, ϕx(Pi, P̄−i) = ϕx(P̄i, P̄−i) = 0, a contradiction. �

Proof of Proposition 8.1. Let ϕ : S
n → ∆A be a unanimous RSCF satisfying the block

preservation property. We show that ϕ satisfies component-unanimity. Consider PN ∈

S
n such that Pl

i (1) = xl for all i ∈ N, some l ∈ K, and some xl ∈ Al . Assume for

contradiction ϕ l
xl (PN) 6= 1. Without loss of generality assume l = 1. By Lemma C.2 and

Lemma C.4, we can assume that PN is a profile of lexicographically separable preferences

with each agent i having the component ordering 1P0
i · · ·P

0
i k. Fix some alternative xk in

component k and consider some agent i. As we have argued in the proof of Lemma C.3,

there is a sep-local path from Pi to a preference P̄i such that each preference in the path

has the same lexicographic ordering over the components as Pi, P̄k
i (1) = xk, and P̄l

i = Pl
i

for all l 6= k. By construction, for all x−k ∈ A−k and yk,zk ∈ Ak, each pair of alternatives

((x−k,yk), (x−k,zk)) forms a block for any two consecutive (sep-local) preferences in

the path. This in particular implies ϕ1
x1(P̄i,P−i) = ϕ1

x1(PN). Continuing this way, we can

construct P̄N ∈ S
n such that P̄k

i (1) = xk for all i ∈ N and ϕ1
x1(P̄N) = ϕ1

x1(PN).

Let ¯̄PN be the profile of lexicographically separable preferences that has same marginal

preferences as P̄ and has lexicographic ordering over the components as 1 ¯̄P0
i . . .

¯̄P0
i k ¯̄P0

i k−

1 for all i∈N. That is, the components k−1 and k are swapped from P̄0
i to ¯̄P0

i . By Lemma

C.4, ϕ( ¯̄PN) = ϕ(P̄N). Now, by using similar logic as for component k, we can construct

P̂N ∈ S
n such that P̂k−1

i (1) = xk−1 for all i ∈ N and ϕ1
x1(P̂N) = ϕ1

x1(PN). Continuing in

this manner, we can arrive at P̃N ∈ S
n such that P̃t

i (1) = xt for all t ∈ K and all i ∈ N

and ϕ1
x1(P̃N) = ϕ1

x1(PN). However, since P̃N is unanimous with P̃i(1) = x for all i ∈ N,

we have ϕx(P̃N) = 1, which in particular implies ϕ1
x1(P̃N) = 1, a contradiction. �

13Note that the statement of Lemma C.3 is slightly different from what we mention here. Since any

two consecutive preferences in a sep-local path differ by swaps of multiple pairs of consecutively ranked

alternatives, these two statements are equivalent.

50



C.10 PROOF OF PROPOSITION 8.2

We use the following observation in the proof of Proposition 8.2.

Observation C.4. Let l ∈ K and let π l = (π l(1), . . . ,π l(t)) be a swap-local path in D
l

such that the relative ordering of two alternatives xl ,yl ∈ Al remains the same along the

path. Then, for every component ordering P0 ∈ P(K) having l as the worst component,

and for every collection of marginal preferences (P1, . . . ,Pl−1,Pl+1, . . . ,Pk) over com-

ponents other than l, the relative ordering of any two alternatives in the set {a ∈ A | al ∈

{xl ,yl}} will remain the same along the sep-local path ((P0,P1, . . . ,Pl−1,π l(1),Pl+1, . . . ,Pk), . . . ,

(P0,P1, . . . ,Pl−1,π l(t),Pl+1, . . . ,Pk)) in the domain S (D1, . . . ,Dk).

Proof. Let ϕ : S
n → ∆A be a unanimous RSCF satisfying the block preservation

property. We show that ϕ is tops-only. Consider PN , P̄N ∈ S
n with Pi(1) = P̄i(1) for all

i ∈ N. If Pl
N = P̄l

N for all l ∈ K, then we are done by Lemma C.4. It is sufficient to assume

that only one agent, say i, changes her marginal preference to a swap-local preference

in exactly one component, say t, and nothing else changes from PN to P̄N . That is, Pt
i

and P̄t
i are swap-local with the swap of some yt and zt , Pt

j = P̄t
j for all j ∈ N \ i, and

Pl
N = P̄l

N for all l 6= t. Assume without loss of generality, t = k. Furthermore, in view of

Lemma C.4, let us assume that all agents have the same component ordering Q0 in both

PN and P̄N where Q0 is given by 1Q0
. . .Q0k. We need to show ϕ(PN) = ϕ(P̄N). Assume

for contradiction ϕ(PN) 6= ϕ(P̄N). Since k is the worst component in P0
i , by block

preservation property, this implies ϕ(x−k,yk)(PN) 6= ϕ(x−k,yk)(P̄N) for some (x−k,yk).

Consider Pk
j for some j 6= i. By our assumption on the marginal domains, there

is a swap-local path πk = (πk(1) = Pk
j , . . . ,πk(t) = P̂k

j ) in D
k with P̂k

j (1) = Pk
i (1)

such that for any two consecutive preferences in the path there is a common upper

contour set U such that exactly one of yk and zk is contained in U . By Observation C.4,

the path ((P0
j ,P1

j , . . . ,Pk−1
j ,πk(1)), . . . , (P0

j ,P1
j , . . . ,Pk−1

j ,πk(t))) satisfies the property

that for all l < t and all u,v ∈ Pi△P̄i there is a common upper contour set U of both

(P0
j ,P1

j , . . . ,Pk−1
j ,πk(l)) and (P0

j ,P1
j , . . . ,Pk−1

j ,πk(l + 1)) such that exactly one of u

and v is contained in U , and hence by Lemma C.1, we have ϕ(x−k,yk)(Pi, P̂j,P−{i, j}) 6=

ϕ(x−k,yk)(P̄i, P̂j,P−{i, j}), where P̂j = (P0
j ,P1

j , . . . ,Pk−1
j , P̂k

j ). Continuing in this manner,

we can construct P̂−i ∈ S
n−1 such that for all j ∈ N \ i, P̂k

j (1) = Pk
i (1) and P̂l

j =
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Pl
j for all l 6= k, and ϕ(x−k,yk)(Pi, P̂−i) 6= ϕ(x−k,yk)(P̄i, P̂−i). Note that the preference

profiles (Pi, P̂−i) and (P̄i, P̂−i) are component-unanimous for component k, and hence by

Proposition 8.1, ϕk
Pk

i (1)
(Pi, P̂−i) = ϕk

Pk
i (1)

(P̄i, P̂−i) = 1. This implies ϕ(x−k,yk)(Pi, P̂−i) =

ϕ(x−k,yk)(P̄i, P̂−i) = 0, which contradicts ϕ(x−k,yk)(Pi, P̂−i) 6= ϕ(x−k,yk)(P̄i, P̂−i). �

C.11 PROOF OF THEOREM 8.1

Proof. We prove the theorem in two steps. In Step 1, we show that for all l ∈ K and

all PN , P̄N ∈ S
n with Pl

N = P̄l
N , ϕ l(PN) = ϕ l(P̄N), and in Step 2, we use this fact to

complete the proof.

Step 1: Since OBIC implies LOBIC, by means of Proposition 8.2, it is enough to

prove Theorem 8.1 for every RSCF satisfying tops-onlyness and block preservation. Let

ϕ : S
n → ∆A be a tops-only RSCF satisfying the block preservation property. We show

that ϕ is marginally decomposable. Let PN , P̄N ∈S
n be such that Pl

N = P̄l
N for some l ∈K.

Since ϕ is tops-only we assume without loss of generality that the l-th component is top-

ranked according to the lexicographic ordering over the components in Pi and P̄i for all i∈

N. Consider an agent j ∈ N. Since component l is the lexicographically best component

in both Pj and P̄j, for each al ∈ Al , the set of alternatives B(al) = {(x−l ,al) | x−l ∈ A−l}

can be expressed as a union of blocks in (Pj, P̄j). Therefore, by applying the block

preservation property to each block in B(al), we obtain ϕB(al)(Pj,P− j) = ϕB(al)(P̄j,P− j)

for all al ∈ Al . Continuing in this manner, it follows that ϕB(al)(PN) = ϕB(al)(P̄N) for all

al ∈ Al . By the definition of marginal distribution, this means ϕ l(PN) = ϕ l(P̄N) which

completes the proof.

Step 2: Consider an OBIC RBR (ϕ , µN). By Step 1, for each component l ∈ K, there

exists ϕ̂ l : (D l)n → ∆Al such that for all PN ∈ S
n, ϕ l(PN) = ϕ̂ l(Pl

N). It remains to

show that (ϕ̂ l , µ l
N) is unanimous and OBIC for each l ∈ K. Fix l ∈ K. Unanimity of

ϕ̂ l follows from the unanimity property of ϕ . Assume for contradiction that the RBR

(ϕ̂ l , µ l
N) is not OBIC. Then, there is an agent i ∈ N and preferences Pl

i , P̂l
i ∈ D

l such that

agent i’s interim expected outcome at (P̄l
i , P̂l

−i) is better than that at (P̂l
i , P̂l

−i) according

to the preference P̂l
i . Consider two profiles (Pi,P−i), (P̃i,P−i) ∈ S

n such that Pl
j = P̂l

j

for all j ∈ N, P̃l
i = P̄l

i and the l is the lexicographically best component in Pi. Since the
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interim expected outcome at (P̄l
i , P̂l

−i) is higher than that at (P̂l
i , P̂l

−i) according to P̂l
i and

the l is the lexicographically best component in Pi, it follows that the interim expected

outcome at (Pi,P−i) will be higher than that at (P̃i,P−i) according to the preference Pi.

However, this contradicts the fact that the RBR (ϕ , µN) is OBIC. �
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