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Abstract 

An emerging literature estimates air pollution’s effects on productivity but only for small 
groups of workers of particular occupations or firms. To provide more comprehensive 
estimates necessary for nationwide policy analysis, we estimate effects for a nationally 
representative sample of China’s manufacturing firms from 1998 to 2007 and capture all 
channels by which pollution influences productivity. We use thermal inversions as an 
instrument to estimate the causal effect of pollution on productivity. A one 𝜇𝜇g/m3 decrease 
in PM2.5 increases productivity by 0.82% with an elasticity of -0.44. Firms respond by hiring 
more workers attenuating the elasticity to -0.17. Using the differential effect of China’s 
accession into the WTO on coastal versus inner regions, we estimate the causal effect of 
output on pollution (elasticity of 1.43) to simulate the dynamic, general-equilibrium effects 
of PM2.5 yielding an elasticity of -0.28. An exogenous 1% decrease in PM2.5 nationwide 
increases annual productivity by CNY 35.9 thousand for the average firm and CNY 5.7 
billion or 0.039% of GDP nationally. 
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1 Introduction 

An emerging literature documents the effect of air pollution on short-run 

productivity, an important driver of economic growth. These papers significantly 

advance our understanding of how pollution affects productivity and convincingly 

demonstrate that air pollution can decrease productivity. However, because these 

studies utilize detailed measures of hourly or daily output per worker, they focus on 

narrow groups of workers in particular occupations such as fruit picking (Graff 

Zivin and Neidell, 2012), garment assembly (Adhvaryu et al., 2019), pear packing 

(Chang et al., 2016), call center services (Chang et al., 2019) or textile assembly (He et 

al., 2019). While these estimates are useful for evaluating narrowly-targeted 

environmental policies or evaluating the costs and benefits for certain groups, their 

external validity is of concern in evaluating broad-based pollution reduction policies. 

We provide comprehensive, nationwide causal estimates of air pollution’s effect on 

short-run productivity for manufacturing firms in China encompassing all channels 

of effects. Using satellite data to measure pollution we are able to consider all firms 

in China’s manufacturing survey. The survey includes all state-owned enterprises 

(SOEs) and all non-SOEs with more than CNY 5 million in annual sales rendering 

evaluations of nationwide environmental policies feasible. For our partial-

equilibrium estimates, we find an elasticity of productivity with respect to pollution 

of -0.44 for particulate matter less than 2.5 micrometers in diameter (PM2.5). Holding 

inputs constant, an exogenous 1% increase in PM2.5 nationwide decreases the 

average firm’s output by USD 7.4 (CNY 56.3)1 thousand and decreases output across 

all firms by USD 1.2 billion annually (0.060% of China’s average gross domestic 

product (GDP) over the sample period). Firms compensate for this productivity loss 

by hiring more workers which partially offsets it. The combined effect of the 

productivity loss and additional hiring is an elasticity of -0.17 for output with respect 

to pollution. We do not find significant differences in these effects between China’s 

major manufacturing centers and elsewhere. 

Since previous papers focus on small sets of firms or workers, general-equilibrium 

effects could be ignored. To obtain general-equilibrium effects, we combine this 

estimate with an estimate of output’s effect on pollution to simulate an integrated 

assessment model (IAM) of China’s economy that combines a standard growth 

model with a pollution-damage function. To obtain a causal estimate of output’s 

effect on pollution, we use China joining the World Trade Organization (WTO) in 

2001 as an exogenous shock to output for firms in China’s coastal regions relative to 

that in its inner regions – an approach widely used in the trade literature. This yields 

an elasticity of PM2.5 with respect to output of 1.43. This estimate is useful in and of 

itself as there are few causal estimates of output’s effect on pollution. 

                                                           

1 Throughout the paper we measure output by value added and use these terms interchangeably 
since we abstract from intermediate inputs. A 2007 exchange rate of 7.6 is used throughout the paper. 
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We combine these partial equilibrium estimates and other realistic parameters to 

calibrate the IAM to economy-wide data during our sample period. From this we 

simulate counterfactuals quantifying how pollution affects output incorporating 

both productivity and labor supply responses. A 1% increase in PM2.5 over the 

sample period decreases total output by 0.28% on average over the sample period. 

Exogenously reducing PM2.5 by 1% increases the average firm’s output by CNY 35.9 

(USD 4.7) thousand annually and increases output across all firms by CNY 5.7 (USD 

0.75) billion annually or 0.039% of China’s GDP. The dynamic effects exceed the 

static, partial-equilibrium effects because consumers favor current consumption 

relative to future and sacrifice capital investment. The diminished capital 

accumulation results in a larger percentage drop in output relative to a static setting 

in which all current output is consumed. These are significant effects and can be 

used in cost-benefit analyses of nationwide environmental policies. 

The primary obstacles in estimating pollution’s effect on output are simultaneity and 

omitted-variable biases. Simultaneity bias in ordinary least squares (OLS) estimates 

could result from the production process itself in the absence of any effect of 

pollution on productivity or from compensating actions taken by firms in the 

presence of such effects. In the absence of any effects the more output a region’s 

firms produce the worse its pollution, biasing OLS estimates upward towards or 

above zero. If pollution lowers productivity, this will lower output and pollution 

biasing OLS estimates downward. Bias may also result if firms compensate by 

substituting to other inputs: upward if these are low-polluting or downward if high-

polluting. Omitted variable bias could result from region-specific, time-varying 

correlations between pollution and output induced by production decisions, 

industrial policies, or regulations.2 These could bias OLS estimates upward or 

downward depending on whether low-productivity regions adopt cleaner or dirtier 

technologies than high-productivity regions over time in response to these actions. 

Previous papers in this literature maintain exogeneity by using a short time period 

and focusing on one or a few firms which do not materially impact overall pollution 

levels. Estimating with a national sample over a longer period no longer affords this. 

To overcome the simultaneity and omitted variables biases while achieving 

comprehensive estimates we employ the number of days with thermal inversions in 

geographic areas (roughly counties) to instrument pollution. Thermal inversions 

form due to exogenous meteorological factors yet trap pollutants such as PM2.5 near 

the ground degrading air quality. Previous papers using thermal inversions as an 

instrument include Arceo et al. (2016), Hicks et al. (2016), Jans et al. (2018), Sager 

(2019), Chen et al. (2017), and Dechezleprêtre et al. (2018). The instrument is highly 

predictive and, when applied, reveals more negative productivity effects than OLS 

estimates. 

                                                           

2 Our specification includes firm fixed effects ruling out time-invariant sources of bias. 
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A second estimation obstacle is potential spatial sorting across regions of low- versus 

high-skilled workers or low- versus high-polluting firms in response to pollution. 

Using OECD (2011)’s criteria, we classify firms by technology intensiveness and find 

that pollution is not predictive of the year-by-year fraction of employment in low- 

versus high-technology firms across locations suggesting that the migration of 

workers is limited in the short run. Few firms move during the sample period 

consistent with no significant sorting by extant firms. Excluding the few firms that 

relocate results in greater effects on productivity indicating that pollution’s effect 

may be even greater if these are representative of the full sample. Pollution is not 

predictive of firm entry or exit suggesting that endogenous entry and exit choices 

and survival bias have limited effect on our estimates. 

Estimating output’s effect on PM2.5 concentrations also raises endogeneity issues. 

Most directly, pollution deters production which will bias OLS estimates. Estimates 

are also affected by all the same simultaneity and omitted-variable biases as the 

estimates for pollution’s effect on productivity. Using China’s joining the WTO to 

instrument for regional output addresses this because WTO accession is orthogonal 

to these firm and worker decisions. 

This paper makes three primary contributions. First, we provide nearly exhaustive 

measures for the causal effect of pollution on the short-run productivity of a 

country’s manufacturing sector. Previous studies examine only small sets of workers 

in particular occupations or a small set of firms. An exception is a subsequent paper 

by Dechezleprêtre et al. (2018) that examines effects of PM2.5 on GDP and population 

across European regions (roughly counties) using aggregated data. Cost-benefit 

analyses of national environmental policies require comprehensive estimates since 

effects on particular occupations, firms, or industries may be idiosyncratic. We 

provide such a nationwide estimate for China and find larger estimates than 

previous, more focused studies. A possible reason is that we estimate annual 

cumulative effects rather than those of shorter duration; however, this may also 

relate to the scope of our estimates. They reflect all manufacturing industries, firms, 

and occupations rather than specific settings and they capture all channels by which 

productivity is affected including per-hour productivity and working hours. Our 

methodology is general and could be applied to any country experiencing sufficient 

variation in thermal inversions.  

Second, we provide general-equilibrium estimates of pollution’s effect on output 

including effects on both productivity and labor supply. Previous papers avoided 

this complication because they considered only small sets of workers or firms so that 

it was unnecessary to consider the effect of output on pollution. This also 

distinguishes our work from Dechezleprêtre et al. (2018) which examines only 

partial-equilibrium effects. We do so by simulating these effects in a dynamic, 

general-equilibrium model of China’s economy. Calibrating the model to observed 

economic values, we find the general-equilibrium exceed the partial-equilibrium 
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effects. We believe ours is the first paper to provide general-equilibrium estimates 

relating productivity and air pollution. The simulation approach is general and can 

be applied to evaluate policy counterfactuals in any setting in which partial-

equilibrium estimates of pollution’s effect on output and output’s effect on pollution 

are available. 

Third, there is relatively little evidence concerning pollution’s effect on high-skilled 

workers (exceptions are Archsmith et al. (2018) on umpires, Heyes et al. (2016a) on 

investors, Heyes et al. (2016b) on politicians, and Kahn and Li (2019) on judges). We 

estimate the effects of PM2.5 on productivity separately for firms in high- and low-

technology industries and find significant effects for both. This suggests that the 

results apply not just to older, traditional manufacturing firms but also to those 

employing newer, more advanced technologies. 

Estimates for China are important in and of themselves. China is the world’s most 

populous country and a large source of manufacturing and the resultant pollution. 

China represented 22% of the world’s manufacturing output in 2012.3 The findings 

also have implications for the global economy as China incurs a disproportionate 

fraction of the world’s pollution because of its substantial exports. Depending on the 

type of pollutant, 17 to 36% of China’s air pollution is attributable to exports (Lin et 

al., 2014). Our estimates imply that policies that reduce China’s air pollution can 

generate substantial increases in productivity in addition to health benefits and, 

given China’s extensive exports, benefit other countries via trade. Our estimates 

complement the literature that estimates the social costs of reduced health due to 

China’s air pollution (Matus et al., 2012; Chen et al., 2013; Ebenstein et al., 2015; 

Bombardini and Li, 2020; Ebenstein et al., 2016; He et al., 2016; Ito and Zhang, 2020). 

Many developing countries are hesitant to implement measures to reduce air 

pollution for fear of hindering growth (Hanna and Oliva, 2015). Figure 1 illustrates 

the environmental pollution resulting from China’s development. It plots the 

average concentration of PM2.5 across all regions of China over the sample period 

against annual value added for all firms in our sample. The rapid output increase 

has resulted in accompanying rapid air pollution increases, especially after China 

joins the WTO in 2001. Our finding of significant productivity gains from reducing 

pollution provides additional impetus to implement pollution control measures. 

Because of China’s severe pollution, the central government has designed many 

policies to reduce air pollution but these have often gone unenforced or under-

enforced because local governments lack incentives to do so or their incentives 

emphasize alternative goals such as economic growth (Li and Zhou, 2005; Chen et al., 

2016; Jia, 2017). Our findings suggest local governments may underestimate the 

benefits to local economic growth of reducing air pollution. 

[Insert Figure 1 here.] 
                                                           

3 “China has a Dominant Share of World Manufacturing,” United Nations and MAPI, January 6, 2014 
(https://www.mapi.net/blog/2014/01/china-has-dominant-share-world-manufacturing). 
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The rest of the paper is organized as follows. The next section discusses related 

literature in the context of a motivating model. Section 3 describes the data; Section 4 

specifies the econometric models and discusses identification issues and strategies. 

Section 5 presents our partial-equilibrium results and Section 6 the general-

equilibrium analysis. Section 7 concludes. 

 

2. Pollution, output, and productivity 

Air pollution affects a firm’s short-run output through its effect on health of workers 

and their families. An extensive literature documents the negative effects that a high 

concentration of air pollution can have on human health. According to the 

Environmental Protection Agency (EPA), short-run exposure can lead to decreased 

lung function, irregular heartbeat, increased respiratory problems, nonfatal heart 

attacks, and angina.4 These short-run effects can result in decreased physical stamina 

at work and missed work days. Long-run exposure may lead to cardiopulmonary 

diseases, respiratory infections, lung cancer (EPA, 2004), and asthma (Neidell, 2004). 

These long-run health problems can manifest themselves in the short run if high 

levels of pollution trigger conditions resulting from previously accumulated 

exposure. Infant and elderly morbidity resulting from air pollution (Chay and 

Greenstone, 2003; Deryugina et al., 2018) can require working adults to miss work to 

care for them (Hanna and Oliva, 2015; Aragόn et al., 2017). Long-term exposure can 

also reduce life expectancy (Chen et al., 2013; Ebenstein et al., 2017) which can result 

in experienced workers being replaced by new, inexperienced ones. 

Air pollution can also lower cognitive ability, alter emotions, increase anxiety, and 

have other negative psychological effects (Levinson, 2012; Lavy et al., 2014; Pun et al., 

2017; Chen et al., 2018) which would affect the performance of both physical and 

knowledge workers. All of these effects can be compounded by spillovers to other 

workers (Arnott et al., 2005, Chapter 4). Moreover, PM2.5 can seep into buildings 

(Thatcher and Layton, 1995; Vette et al., 2001), making avoidance behavior costly or 

impossible for workers unless their employer provides proper filtration equipment. 

While our estimates are unable to distinguish between these various channels they 

capture all of them. 

Pollution can affect output through productivity, the intensive margin, and labor 

supply, the extensive margin. The intensive and extensive margins depend on the 

context and the time unit measured. In our context, time is measured in worker-

years. Therefore, our productivity estimates capture all possible channels that affect 

per-hour productivity (intensive margin) and hours worked (one type of extensive 

margin) although we cannot distinguish them. We separately estimate the labor 

supply effects on number of worker-years (another type of extensive margin). 

Pollution can also affect capital productivity through firms investing in pollution-
                                                           

4 See the EPA websites: https://www.epa.gov/pm-pollution; https://www.epa.gov/so2-pollution; 
and https://www.epa.gov/co-pollution. 
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reduction measures, either in response to regulation or to offset decreases in 

productivity that arise from pollution. 

To illustrate this, consider a constant-returns-to-scale, Cobb-Douglas production 

function in capital (𝐾𝐾) and labor (𝐿𝐿) in which the PM2.5 pollution concentration (𝛺𝛺) 

affects capital productivity (𝐴𝐴𝐾𝐾), labor productivity (𝐴𝐴𝐿𝐿), and labor supply (we 

assume here and later confirm that pollution does not affect capital supply): 𝑄𝑄 = [𝐴𝐴𝐾𝐾(𝛺𝛺)𝐾𝐾]𝛾𝛾[𝐴𝐴𝐿𝐿(𝛺𝛺)𝐿𝐿(𝛺𝛺)]1−𝛾𝛾, (1) 

where 𝛾𝛾 is the elasticity of output with respect to capital. Logging both sides: 𝑙𝑙𝑒𝑒[𝑄𝑄] = �𝛾𝛾𝑙𝑙𝑒𝑒[𝐴𝐴𝐾𝐾(𝛺𝛺)] + (1 − 𝛾𝛾)𝑙𝑙𝑒𝑒[𝐴𝐴𝐿𝐿(𝛺𝛺)]� + 𝛾𝛾𝑙𝑙𝑒𝑒[𝐾𝐾] + (1 − 𝛾𝛾)𝑙𝑙𝑒𝑒[𝐿𝐿(𝛺𝛺)]. (2) 

The first term in brackets on the right-hand side is also total factor productivity: 𝑇𝑇𝑇𝑇𝑃𝑃 = �𝛾𝛾𝑙𝑙𝑒𝑒[𝐴𝐴𝐾𝐾(𝛺𝛺)] + (1 − 𝛾𝛾)𝑙𝑙𝑒𝑒[𝐴𝐴𝐿𝐿(𝛺𝛺)]�. The effects of pollution are given by: 𝑑𝑑𝑑𝑑𝑑𝑑[𝑄𝑄]dln[Ω]
= �𝛾𝛾 𝑑𝑑𝑑𝑑𝑑𝑑[𝐴𝐴𝐾𝐾]dln[Ω]

+ (1 − 𝛾𝛾)
𝑑𝑑𝑑𝑑𝑑𝑑[𝐴𝐴𝐿𝐿]dln[Ω]

� + (1 − 𝛾𝛾)
𝑑𝑑𝑑𝑑𝑑𝑑[𝐿𝐿]dln[Ω]

. (3) 

There are two potential effects: the effect on productivity (the first term in brackets 

on the right-hand side) and the effect on labor supply. We estimate these two 

separately. For productivity, we use two different approaches following Syverson 

(2011): the effect on output per worker and the effect on TFP. 

How do these partial-equilibrium effects (general-equilibrium effects are not 

previously considered) compare to those previously estimated in the literature? In 

our setting 𝐿𝐿 is measured in worker-years and 𝑄𝑄 annually. Suppose per-hour labor 

productivity is 𝑏𝑏 and each worker’s annual hours is 𝐻𝐻 then 𝐴𝐴𝐿𝐿 = 𝑏𝑏 ∗ 𝐻𝐻. In the data 

we observe 𝐿𝐿 but not 𝑏𝑏 or 𝐻𝐻. Our productivity estimates (both TFP and output per 

worker) hold the number of worker-years constant so that: 𝑑𝑑[𝑇𝑇𝑇𝑇𝑇𝑇]dln[Ω]
=

𝑑𝑑𝑑𝑑𝑑𝑑[𝑄𝑄 𝐿𝐿⁄ ]dln[Ω]
�𝐿𝐿 = 𝛾𝛾 𝑑𝑑𝑑𝑑𝑑𝑑[𝐴𝐴𝐾𝐾]dln[Ω]

+ (1 − 𝛾𝛾) �𝑑𝑑𝑑𝑑𝑑𝑑[𝑎𝑎]dln[Ω]
∗ 𝐻𝐻 + 𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑[𝐻𝐻]dln[Ω]

�. (4) 

Our estimates therefore capture both the intensive (per-hour productivity) and one 

type of extensive margin (hours worked) effects on productivity. We also separately 

estimate the effect on labor supply (𝐿𝐿) (another extensive margin) to determine the 

effects on total output given by Equation (3). 

Extant studies of pollution and productivity observe worker hours (𝐻𝐻) and therefore 

measure effects on per-hour productivity (𝑑𝑑𝑙𝑙𝑒𝑒(𝑏𝑏) dln(Ω)⁄ ); many also separately 

estimate effects on hours worked (𝑑𝑑𝑙𝑙𝑒𝑒(𝐻𝐻) dln(Ω)⁄ ) but find little effect. PM2.5 reduces 

per-hour productivity of pear-packing workers in California but has little effect on 

hours worked (Chang et al., 2016). PM2.5 also reduces per-hour productivity of 

garment factory workers in India with no effect on absences (Adhvaryu et al., 2019). 

PM2.5 and SO2 reduce per-hour output of textile workers at two sites in China but 

has little effect on hours worked (He et al., 2019). Ozone reduces per-hour 

productivity of outdoor fruit pickers in California but not hours worked (Graff Zivin 
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and Neidell, 2012) and pollution measured by the air pollution index (API) affects 

call center workers (Chang et al., 2019) with no effect on hours worked. 

To provide precise measures of daily output, all of these previous studies focus on a 

small group of firms or a particular type of worker. Although this helps establish a 

causal link because pollution is exogenous to the activities of a small number of 

firms, the results may not generalize. A few other papers examine pollution’s effect 

on performance in other environments. Air pollution increases students’ absences 

(Currie et al., 2009) and reduces their cognitive performances and test scores 

(Ebenstein et al., 2016). It also has negative effects on short-run performance of 

outdoor athletic participants including soccer players (Lichter et al., 2017) and 

marathon runners (Guo and Fu, 2019). 

The previous literature considers only partial-equilibrium effects of pollution on 

output consistent with their focus on a single industry or firm. To simulate 

nationwide, general-equilibrium effects we supplement the production function 

with a pollution-damage function. We assume that PM2.5 is created only by the 

manufacturing sector and specify (where 𝑡𝑡 indexes years in the simulation):5 Ω𝑐𝑐 = 𝐵𝐵[𝜆𝜆𝑐𝑐𝑄𝑄𝑐𝑐]𝜇𝜇𝑐𝑐, (5) 

where 𝜆𝜆𝑐𝑐 is the fraction of national output produced by the manufacturing sector in 

year 𝑡𝑡, 𝜇𝜇𝑐𝑐 is the elasticity of pollution with respect to manufacturing output in year 𝑡𝑡, 
and 𝐵𝐵 is the baseline PM2.5 concentration across all years. 

For our general-equilibrium simulations, in Equation (1) we set 𝐴𝐴𝐾𝐾𝑐𝑐(𝛺𝛺𝑐𝑐) = 𝛺𝛺𝑐𝑐𝜃𝜃𝐾𝐾𝐴𝐴1𝑐𝑐, 𝐴𝐴𝐿𝐿𝑐𝑐(𝛺𝛺𝑐𝑐) = 𝛺𝛺𝑐𝑐𝜃𝜃𝐿𝐿𝐴𝐴2𝑐𝑐, and 𝐿𝐿(𝛺𝛺𝑐𝑐) = 𝛺𝛺𝑐𝑐𝜅𝜅 (1−𝛾𝛾)⁄ 𝐿𝐿𝑐𝑐 (pollution determines effectiveness of each 

unit of labor): 𝑄𝑄𝑐𝑐 = 𝛺𝛺𝑐𝑐𝜃𝜃𝐴𝐴𝑐𝑐𝐾𝐾𝑐𝑐𝛾𝛾[𝐿𝐿(𝛺𝛺𝑐𝑐)]1−𝛾𝛾, (6) 

where 𝜃𝜃 = 𝛾𝛾𝜃𝜃𝐾𝐾 + (1 − 𝛾𝛾)𝜃𝜃𝐿𝐿 and 𝐴𝐴𝑐𝑐 = 𝐴𝐴1𝑐𝑐𝛾𝛾 𝐴𝐴2𝑐𝑐1−𝛾𝛾. Total-factor productivity in year 𝑡𝑡 is 𝛺𝛺𝑐𝑐𝜃𝜃𝐴𝐴𝑐𝑐. 𝜃𝜃 is the partial-equilibrium effect of pollution on output holding labor supply 

constant while 𝜅𝜅 is the partial-equilibrium effect of pollution on labor supply.  

Using estimates of the parameters 𝜃𝜃, 𝜅𝜅, and 𝜇𝜇 we simulate a dynamic IAM calibrated 

to data on China’s economy to obtain economy-wide general-equilibrium effects (see 

Section 6 for details). 

 

3. Primary data 

We estimate firm-level productivity combining comprehensive data on firm 

characteristics with air pollution data for highly-specific geographic areas across all 

of China from 1998 to 2007. While several different pollutants’ effects on 

                                                           

5 The services sector produces little PM2.5. Our manufacturing data does not include power plants so 
we implicitly assume that PM2.5 from power plants scales proportionally with manufacturing output. 
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productivity have been studied we focus on PM2.5 because of its severe effects. Our 

pollution measure is monthly concentration of PM2.5 derived from satellite-based 

Aerosol Optical Depth (AOD) retrieval techniques maintained by the National 

Aeronautics and Space Administration (NASA).6 We use the AOD data because it 

provides the most comprehensive measure of air pollution across China’s geography 

and over time. AOD measures the extinction of the solar beam by dust and haze and 

can be used to predict pollution even in areas lacking ground-based monitoring 

stations (Gupta et al., 2006; van Donkelaar et al., 2010; Kumar et al., 2011). Chen et al. 

(2017) validate the AOD data using ground-based, station data in China and find 

that the difference between them is statistically insignificant conditional on 

geographic and year fixed effects. The PM2.5 concentrations are calculated following 

Buchard et al. (2016). 

The AOD data have several advantages compared to ground-based pollution data. 

First, it predates the beginning of our firm sample in 1998 while ground-based 

pollution data are available beginning only in 2000 giving us two more years of data. 

Second, it covers the whole country while ground-based pollution data cover only 42 

cities in 2000 increasing to 113 in 2010. Third, ground-based pollution data are 

potentially subject to human manipulation (Andrews, 2008; Ghanem and Zhang, 

2014) while the satellite data are not. The AOD pollution data are reported in grids 

of 50 by 60 kilometers which we aggregate to the county level – the smallest 

administrative unit in China to which we can match firm locations.7 We then 

average by year to obtain annual mean concentrations of PM2.5 in each county-year. 

Although the AOD data is remarkably accurate in measuring ground-level PM2.5 our 

paper faces a problem present in much of the literature: different pollutants are 

highly correlated which may prevent us from isolating a single pollutant’s effects. 

We are potentially aided by the fact that we instrument using thermal inversions and 

not all pollutants are affected by them. Nonetheless, thermal inversions do affect 

other pollutants (e.g., carbon monoxide as described by Arceo et al. (2016)) and 

inversions may therefore not be specifically correlated with PM2.5 vis-à-vis other 

pollutants. Therefore, our estimates can be interpreted as air pollution impacts more 

broadly not necessarily specifically from PM2.5. 

                                                           

6 The AOD data are obtained from the Modern-Era Retrospective Analysis for Research and 
Applications version 2 (MERRA-2) and are available at 
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_V5.12.4/summary?keywords=Aerosols#. We 
utilize M2TMNXAER version 5.12.4 which reports monthly AOD data within each 0.5 degrees 
latitude by 0.625 degrees longitude (corresponding to 50 by 60 kilometers) grid. 
7 The six-digit administrative code is published by the NBS’ Administrative Division: 
http://www.stats.gov.cn/tjsj/tjbz/xzqhdm/201401/t20140116_501070.html (in Chinese). In 
constructing the pollution and thermal inversion measures based on the satellite data, we take 
spatially-weighted averages across a county of all pixels based on the proportion of the county that 
each pixel represents. Specifically, we interpolate within the original 50- by 60-kilometer grids using 
the bilinear method (Hijmans et al., 2015) to obtain 10- by 12-kilometer grids to better accommodate 
counties that are smaller than 50 by 60 kilometers. For counties that span more than one 10- by 12-
kilometer grid we use a weighted-average (by area) across all grids that it spans. 
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Since the satellite pollution measure covers the entire country we can include all 

manufacturing firms for which we have data. Our firm-level output and 

characteristics data is from annual surveys of manufacturing firms conducted by 

China’s National Bureau of Statistics (NBS). The survey includes all state-owned 

enterprises (SOEs) regardless of size and all non-SOEs whose annual sales exceed 

CNY 5 million (USD 0.8 million) and contains detailed information on firm location,8 

accounting measures, and firm characteristics. This captures 90.7% of China’s total 

manufacturing output in the later years (Brandt et al., 2012). During our sample 

period this includes 2,082,823 firm-year observations and 544,308 unique firms. 

Following Brandt et al. (2012) we match firms over time to form an unbalanced 

panel.9 This matching process is careful and avoids interpreting name changes as 

different firms (Brand et al. (2012), Section A.2 of their online appendix). The panel is 

very unbalanced due to China’s rapid growth during this period which leads to a 

large number of new firms surpassing the CNY 5 million revenue threshold year-by-

year.10 We also follow Brandt et al. (2012) in converting nominal into real values 

using industry-level price indices. We drop observations with missing or unreliable 

data following the previous literature (Cai and Liu, 2009; Brandt et al., 2012; Yu, 

2015).11 These represent 10.3% of observations and 7.9% of total manufacturing 

output. The biggest loss of data in estimation is due to firms appearing in only one 

year and dropped with the inclusion of firm fixed effects. These represent 16.1% of 

observations and 30.5% of total manufacturing output.12 

Finally, we winsorize the top and bottom 0.5% of data based on each of the values of 

output, value added, employment, and capital to be consistent with the previous 

literature (Cai and Liu, 2009) and because of the risk that these involve data entry or 

reporting errors. However, we show that the results are similar using the non-

winsorized data. The results are also robust to excluding the few multi-plant firms in 

the data which cannot be uniquely matched to a single location. The final data 

                                                           

8 Firm location is known at least up to the six-digit administrative code level used to match to the 
pollution data. Specific addresses are known only for a small share of firms and thus using these to 
match would make our data far less comprehensive. 
9 Their Stata programs are posted at: http://feb.kuleuven.be/public/N07057/CHINA/appendix. 
10 Brandt et al. (2012) confirm that these appearances are de novo and not due to firm restructuring. The 
annual rate of exit is less than 14% (Section A.2 of their online appendix). 
11 We drop observations with missing or negative values for output, value added, employment, or 
capital; firms with fewer than eight employees since they may not have reliable accounting systems; 
and firms violating accounting identities such as the components of net assets exceeding total assets 
or current depreciation exceeding cumulative depreciation. 
12 Because of China’s rapid growth during this time, 43% of these single-year firms occur in the last 
sample year. For the remaining 57% that occur earlier, 8% are SOEs and therefore must be due to 
actual entry and exit. For the remaining 92%, we do not know whether they appear in only a single 
year because they enter and then exit or they move above and then below the CNY 5 million 
threshold. However, as Online Appendix 1 shows, the characteristics of these firms are similar to the 
full sample except that they are smaller. Given the large number of single-year firms, we comment 
more below on the potential effects of censoring due to the CNY 5 million threshold. 
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include 1,593,247 firm-year observations for 356,179 unique firms. Geographically, 

the sample includes 2,755 counties with an average of 58 firms per county-year. 

One issue with obtaining broad-based measures of productivity is measuring it. 

Previous papers in the literature focused on one or a small set of firms producing a 

single well-defined product where output quantity is directly measurable. Pooling 

all manufacturing firms, as we do, requires an alternative measure. Since we abstract 

from intermediate inputs we use value added as the measure of output. Value added 

is reported directly in the data and equals total production (including both sales and 

inventory) of all goods produced in the year valued at their market prices less the 

cost of all intermediate inputs employed in producing them. Value added per 

worker is commonly used as a measure of productivity in the general-productivity 

literature (Syverson, 2011; Brandt et al., 2012) and in the temperature-productivity 

literature (Hsiang, 2010; Dell et al., 2012). However, it raises two issues. 

First, using value added requires that prices do not reflect market power in either the 

primary or downstream input markets. If they do not, monetary-based measures are 

preferred over quantity-based as they reflect quality differences (Syverson, 2011). As 

with other studies that use data sets with many firms, we cannot guarantee that 

prices are independent of market power; however, thermal inversions are 

independent of firm-level market power allowing us to consistently estimate 

pollution’s effect on productivity via instrumented values. The second issue 

concerns multi-product firms. Their product mix is not discernible from the firm’s 

value added and may be correlated with pollution levels. However, our 

instrumenting strategy addresses this: thermal inversions are uncorrelated with a 

firm’s decision of product mix thereby removing any bias. 

We obtain daily, station-level weather variables that could affect both air pollution 

and productivity including temperature, precipitation, relative humidity, wind 

speed, sunshine duration, and barometric pressure from the National Meteorological 

Information Center of China. We convert the daily station data to daily-county level 

using the inverse-distance weighting method (Deschênes and Greenstone, 2011) to 

give less weight to stations more distant from the geographic centroid. To allow for 

extreme weather events to have differential effects from more normal ones, we 

follow Deschênes et al. (2017) and calculate twenty quantiles for each weather 

variable based on the daily distribution and include the annual number of days 

within each quantile. The weather measures are then matched to the firm data by 

county-year. 

For our instrument, we obtain thermal inversion data from NASA.13 The data report 

air temperatures every six hours at 42 vertical layers from 110 meters to 36 thousand 

meters within 50- by 60-kilometer grids. We aggregate from the grid to the county 

                                                           

13 Specifically, we use product M2I6NPANA version 5.12.4 from MERRA-2 available at 
https://disc.sci.gsfc.nasa.gov/datasets/M2I6NPANA_V5.12.4/summary?keywords=%22MERRA-
2%22%20M2I6NPANA&start=1920-01-01&end=2017-01-16.  
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level within each six-hour period and for each layer. Following Arceo et al. (2016), 

we define a thermal inversion as the temperature of the second layer (320 meters) 

being higher than that of the first layer (110 meters).14 We determine this within each 

six-hour period of each day for each county. Since thermal inversions are short-lived 

(on the order of a few weeks) relative to the annual output measure, we use a 

cumulate annual measure of inversions to make them temporally consistent. For 

each county, we use the annual number of days that have at least one inversion. 

Table 1 presents summary statistics of the key variables. The firm characteristics are 

at the firm-year level and reflect a high degree of variation in productivity. The 

pollution and thermal inversion data are at the county-year level. The pollution 

levels are such that they are likely to have an effect on mental and physical health 

and therefore productivity. The World Health Organization (WHO) recommends a 

maximum annual mean of ten 𝜇𝜇g/m3 for PM2.5 and a maximum mean of twenty 𝜇𝜇g/m3 within a 24-hour period (WHO, 2006). In the sample, the mean annual PM2.5 

level is 53.5 with a high of 134.8. The annual number of days with thermal inversions 

displays significant variation ranging from zero to 333 days per year with a mean 

equal to a little under one-half year. 

[Insert Table 1 here.] 

 

4. Partial-equilibrium model specification and identification 

To estimate the general-equilibrium effects of pollution on output we proceed in 

three steps. We first estimate the partial-equilibrium effects of pollution on output by 

parameterizing the model in Section 2. Second, we parameterize the pollution-

damage function specified in Section 2 and estimate the partial-equilibrium effects of 

output on pollution. Third, we combine these two partial-equilibrium estimates in an 

IAM and simulate the general-equilibrium effects. This section discusses the 

specification and identification of the partial-equilibrium estimates. 

4.1 Partial-equilibrium effect of pollution on productivity 

To estimate the effect of pollution on productivity holding labor supply constant, we 

model total factor productivity in Equation (6) in a log-linear form to be consistent 

with the previous literature that uses this functional form to relate productivity to 

physical pollution concentrations: 𝑙𝑙𝑒𝑒[𝑃𝑃𝑏𝑏𝑃𝑃𝑑𝑑𝑃𝑃𝑐𝑐𝑡𝑡𝑒𝑒𝑃𝑃𝑒𝑒𝑡𝑡𝑒𝑒𝑖𝑖𝑐𝑐] = 𝛽𝛽0 + 𝛽𝛽1Ω𝑖𝑖𝑐𝑐 + 𝛽𝛽2𝑊𝑊𝑖𝑖𝑐𝑐 + 𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑐𝑐 + 𝜀𝜀𝑖𝑖𝑐𝑐, (7) 

where 𝑒𝑒 denotes firms and the pollution elasticity 𝜃𝜃 = 𝛽𝛽1Ω� where Ω� is mean PM2.5 

across all regions.15 𝑊𝑊 contains the vector of weather variables faced by firm 𝑒𝑒 in 

                                                           

14 The latitude used is referenced to sea level. There are missing values if layers are below the latitude 
for that grid. For example, if a grid’s latitude is 400 meters the first and second layers (110 and 320 
meters) will be missing. In these cases, we use the two closest non-missing layers. 
15 As we show, estimation is robust to using the log-log form. 
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year 𝑡𝑡. We aggregate the annual pollution and weather measures to the county level 

because the location of most firms is known only at the county level and not finer. 

Because of this, we check the robustness to clustering the standard errors at the 

county-year level. 𝜃𝜃 captures the effect of pollution on productivity holding labor 

supply constant. 

Firm fixed effects (𝛼𝛼𝑖𝑖) capture time-persistent firm attributes that affect productivity. 

Since very few firms switch counties (7%) over the sample period, these also absorb 

most county-specific time-invariant factors that affect productivity. Similarly, no 

firms switch industries so that all time-invariant, industry-specific unobservables 

affecting productivity are absorbed by the firm fixed effects. Year fixed effects (𝜌𝜌𝑐𝑐) 
capture annual national shocks to firm output such as business cycle effects. The 

error term (𝜀𝜀𝑖𝑖𝑐𝑐) captures time-varying, firm-specific unobservables that affect 

productivity. In our baseline estimation we cluster standard errors by firm to allow 

for serial correlation in productivity within firm over time but we show robustness 

to other clustering patterns. 

We use two different measures for productivity: output per worker 𝑙𝑙𝑒𝑒(𝑌𝑌𝑖𝑖𝑐𝑐 𝐿𝐿𝑖𝑖𝑐𝑐⁄ ) where 𝑌𝑌 is value added and 𝐿𝐿 is number of workers and total factor productivity 𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖𝑐𝑐 for 

firm 𝑒𝑒 in year 𝑡𝑡.16 In estimating TFP, we instrument for firms’ endogenous choices of 

inputs using two different approaches: investment as an instrument (Olley and 

Pakes, 1996) and intermediate inputs as an instrument (Levinsohn and Petrin, 2003). 

Table 1 provides the summary statistics for TFP estimated under both approaches. 

The correlation between TFP (using the OP method) and output per worker is 0.71, 

significant at better than the 0.01% level. We use output per worker for our primary 

results to be consistent with the environmental economics literature but the results 

are robust, although with somewhat smaller effects, using TFP. For TFP, we use a 

two-step approach as in Wang and Wang (2015), Yu (2015), and Brandt et al. (2017): 

in the first step we estimate TFP and in the second step relate TFP to pollution 

including controls. 

Identification requires that, conditional on the control variables, pollution is 

independent of the error in Equation (7). The causal identification issues that are 

specific to our context include simultaneity bias, omitted variable bias, and spatial 

sorting. We discuss these issues before introducing the pollution-damage function. 

4.2 Causal identification issue – simultaneity and omitted variable biases 

Simultaneity bias can lead OLS estimates of pollution’s effect on productivity to be 

biased either upward or downward. Absent any effect of pollution on productivity, 

higher productivity in a county leads to both more output and more pollution, 

biasing them upward toward or above zero. On the other hand, if pollution 

                                                           

16 Estimating output per worker has been criticized because it depends on the level of capital 
employed (Syverson, 2011). This is not a problem in our setting because our instrumented pollution 
measure is orthogonal to inputs. 
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decreases productivity this will lower output and therefore pollution biasing OLS 

estimates downward away from zero. If pollution lowers productivity, firms may 

also compensate by using more of alternative inputs. If these inputs are high-

polluting this would bias OLS estimates downward while compensation to clean 

inputs would bias them upward. 

Omitted-variable bias due to local, time-varying conditions could also lead to either 

an over- or under-statement of pollution’s effect on productivity in OLS estimates 

(firm fixed effects capture time-invariant conditions). For example, counties with 

more productive firms may implement more advanced, lower-polluting technology 

over time leading to an upward bias. Alternatively, firms that have older, higher-

polluting technology may have low productivity and insufficient funds to upgrade 

their production technology over time leading to a downward bias as technology 

degrades. Local trends in regulatory conditions may also bias OLS estimates. For 

example, counties with high-productivity workers may impose more stringent 

environmental regulations over time leading to a downward bias. On the other hand, 

an upward bias could result if counties with older, less productive and higher 

polluting technologies face environmental “crises” and initiate more stringent 

regulations. We address these identification issues using instrumental variables. 

A valid instrument is correlated with a county’s air pollution but uncorrelated with 

its resident firms’ productivity except via pollution. Our instrument is the annual 

number of days with at least one thermal inversion for each county. Normally, air 

temperature decreases with altitude above the Earth’s surface. A thermal (or 

temperature) inversion is a deviation from this. It occurs when a mass of warmer, 

less dense air moves above a cooler, denser air mass trapping dust and pollutants 

near the ground and increasing air pollution. Since thermal inversions are a 

meteorological phenomenon and, after conditioning on weather variables, unrelated 

to production except via pollution, it is a valid instrument. A few studies have 

applied this identification strategy to estimate the effects of air pollution on various 

outcomes (Arceo et al., 2016; Hicks et al., 2016; Jans et al., 2018; Sager, 2019; Chen et al., 

2017; Dechezleprêtre et al., 2018). A caveat to this approach is that inversions can 

affect the efficacy of pesticides and fertilizer in agriculture. Although our data does 

not include agriculture, there could be knock-on effects upstream or downstream in 

manufacturing that could affect the instrument’s exogeneity. 

With this as our instrument we employ two-stage least squares (2SLS) with the first-

stage equation: Ω𝑖𝑖𝑐𝑐 = 𝜏𝜏0 + 𝜏𝜏1𝐼𝐼𝑖𝑖𝑐𝑐 + 𝜏𝜏2𝑊𝑊𝑖𝑖𝑐𝑐 + 𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑐𝑐 + 𝜖𝜖𝑖𝑖𝑐𝑐, (8) 

where 𝐼𝐼𝑖𝑖𝑐𝑐 is the number of thermal inversion days in firm 𝑒𝑒’s county in year 𝑡𝑡. The 

weather controls from the second stage are included because these same variables 

affect the formation of inversions (Arceo et al., 2016) and are also needed to ensure 

the exclusion restriction is met in the second stage. 
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4.3 Causal identification issue – spatial sorting 

Spatial sorting results from either firms or workers self-selecting into particular 

counties based on their pollution levels. Firms may choose to locate in counties with 

less severe pollution because it leads to higher productivity which would bias 

estimates of pollution’s effect on productivity upward toward or above zero. 

Alternatively, firms may choose to locate in counties with more severe pollution 

because it reflects less stringent local environmental regulations and therefore lower 

costs – the “pollution haven” effect (Becker and Henderson, 2000; Greenstone, 2002; 

Brunnermeier and Levinson, 2004). In this case, the direction of the bias induced 

depends on whether firms with higher pollution output are more or less productive. 

Firm fixed effects absorb any initial endogenous sorting of firms across counties so 

that only sorting that occurs during the sample period will introduce bias.17 Only 7% 

of firms relocate counties during the sample period. Excluding these from estimation 

suggests some sorting effects and larger productivity effects absent sorting. Firm 

entry and exit during the sample period could introduce bias through endogenous 

selection. To check for this, we estimate the effect of pollution on the fraction of firms 

exiting and entering each county in each year (controlling for endogeneity) and find 

no significant effect for either. 

A second possible type of spatial sorting is workers choosing their location based on 

their willingness to pay for air quality. High-skilled workers generally have a higher 

willingness-to-pay for better air quality and are more productive than low-skilled 

workers. This would result in dirty cities having a high proportion of low-skilled 

workers and low firm productivity and clean cities having a high proportion of high-

skilled workers and high firm productivity (Lin, 2017) exacerbating pollution’s 

negative effect on firm productivity. 

Firm fixed effects absorb any initial endogenous sorting of workers so that only 

movement of workers during the sample period will create bias. This effect is not 

likely large since we estimate annual effects and such migration would likely occur 

over longer periods,18 but we check for evidence of this occurring. Based on OECD 

(2011) we categorize each firm as high, medium-high, medium-low, and low 

technology and, based on their employment, compute the fraction of workers in each 

of the four categories in each county-year. Changes in pollution (controlling for 

endogeneity) is not predictive of changes in these fractions over time except for a 

small, positive effect on the low-technology fraction. 

4.4 Partial-equilibrium effect of output on pollution 

To estimate the effect of output on pollution (𝜇𝜇), we take logs and parameterize 

Equation (5): 

                                                           

17 Sorting could occur by industry but as no firms switch industries firm fixed effects absorb this. 
18 Chen et al. (2017) find that people migrate in response to air pollution over a five-year period.  
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𝑙𝑙𝑒𝑒[Ω𝑐𝑐𝑐𝑐] = 𝜓𝜓0 + 𝜇𝜇𝑙𝑙𝑒𝑒[Q𝑐𝑐𝑐𝑐] + 𝛼𝛼𝑐𝑐 + 𝜌𝜌𝑐𝑐 + 𝜔𝜔𝑐𝑐𝑐𝑐, (9) 

where 𝑐𝑐 indexes counties, Ω𝑐𝑐𝑐𝑐 is pollution concentration in county 𝑐𝑐 in year 𝑡𝑡, and Q𝑐𝑐𝑐𝑐 
is total output in county 𝑐𝑐 in year 𝑡𝑡. County fixed effects (𝛼𝛼𝑐𝑐) capture baseline 

concentrations in each county and year fixed effects (𝜌𝜌𝑐𝑐) capture aggregate annual 

changes in concentrations. We assume 𝜇𝜇 is constant over our sample period but vary 

it outside that in our general-equilibrium simulations. 

To instrument for the endogeneity of output with respect to pollution, we take 

advantage of China joining the WTO in late 2001 as an exogenous shock to output 

for firms in China’s coastal regions relative to that in its inner regions. This approach 

of comparing high-and low-exposure regions before and after trade liberalization 

shocks has been widely used in the trade literature (e.g., Goldberg and Pavcnik, 2005; 

Verhoogen, 2008; Topalova, 2010). This provides a differences-in-differences 

estimator with counties in coastal regions as a treatment group and those in inner 

regions as a control group. With this as an instrument, we employ 2SLS with first-

stage equation: 𝑙𝑙𝑒𝑒[Q𝑐𝑐𝑐𝑐] = 𝜍𝜍0 + 𝜍𝜍1Ι𝑐𝑐>2001Ι𝑐𝑐∈𝐶𝐶𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐 + 𝛼𝛼𝑐𝑐 + 𝜌𝜌𝑐𝑐 + 𝜈𝜈𝑐𝑐𝑐𝑐, (10) 

where Ι𝑐𝑐>2001 is an indicator variable set to one in years after 2001 and zero 

otherwise and Ι𝑐𝑐∈𝐶𝐶𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐 is an indicator variable set to one if the county is on the coast 

and zero otherwise. 

 

5. Partial-equilibrium results 

5.1 Effect of pollution on productivity 

We first present estimates not accounting for any endogeneity bias between 

productivity and pollution. Table 2 presents OLS estimates of Equation (7) using 

output per worker. Without weather controls (Column (1)), PM2.5 pollution has no 

effect on productivity. Including weather controls (Column (2)), reveals a positive 

effect of pollution on productivity. 

[Insert Table 2 here.] 

In the presence of simultaneity or omitted-variable biases, OLS produces 

inconsistent estimates. We use Equation (8) to produce instrumented values of 

pollution concentrations. We first check whether thermal inversions are predictive of 

productivity in a reduced-form estimate. Columns (3) and (4) of Table 2 show the 

results without and with weather controls. Both yield statistically significant results 

and the coefficient with weather controls implies that one additional day with an 

inversion annually decreases productivity by 0.03%. 

The top panel of Columns (5) and (6) of Table 2 show that the instrument is a 

powerful predictor of PM2.5 concentrations. The coefficient on annual days with 

thermal inversions is positive and highly significant both with and without weather 
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controls and the Kleibergen-Paap Wald rk F-statistic (KP) (Kleibergen and Paap, 

2006) for weak identification is much larger than the Stock-Yogo critical value of 

16.38.19 One additional inversion day increases PM2.5 by 0.036 𝜇𝜇g/m3 controlling for 

weather. This is a big effect. Using the results with weather controls, a one standard 

deviation increase in the annual number of days with inversions increases PM2.5 by 

2.8 𝜇𝜇g/m3 (5.3%). 

The lower panel of Columns (5) and (6) show the second-stage results. Consistent 

with the instrument correcting for endogeneity, the coefficient moves to being 

significantly negative. Without weather controls, instrumented PM2.5 has a negative 

and very significant effect on output per worker. A one 𝜇𝜇g/m3 increase in PM2.5 

decreases productivity by 0.80%. Controlling for weather increases the estimate 

slightly and makes it even more significant. A one 𝜇𝜇g/m3 increase in PM2.5 decreases 

productivity by 0.82%. Evaluating this at the mean PM2.5 in the sample (53.5) yields 

an elasticity of -0.44. Dechezleprêtre et al. (2018) find a lower elasticity (-0.11) for 

European regions which could be due either to lower levels of pollution in Europe or 

due to their data including both manufacturing and services. Using TFP as our 

productivity measure yields slightly lower estimates: an elasticity of -0.26 using the 

OP estimator and -0.19 using the LP estimator (Columns (7) and (8)). Throughout the 

rest of the paper we focus on results using output per worker since previous papers 

estimating pollution’s effect have used this. However, the results are robust to, but 

somewhat lower, using TFP. Also, since controlling for weather is preferred we do 

so throughout the remainder of the paper. 

How large are these effects? Consider a nationwide exogenous decrease in PM2.5 of 

1%. This could include reducing other pollution sources like road dust, automobile 

exhaust, and power generation or by decreasing pollution per unit of manufacturing 

output via methods that do not reduce output. The resulting productivity 

improvement increases the average firm’s value added by CNY 56.3 (USD 7.4) 

thousand annually and increase total value added across all firms by CNY 9.0 (USD 

1.2) billion annually. This represents 0.060% of China’s GDP.20 Online Appendix 2 

compares estimates for counties in China’s three major economic centers (Jing-Jin-Ji, 

Yangtze River Delta, and Pearl River Delta)21 to the rest of the country. The estimates 

for the two are fairly close to each other and significant implying that air pollution 

affects productivity even outside the major manufacturing centers. 

                                                           

19 Stock and Yogo (2005) critical values apply when model errors are independent and identically 
distributed. No critical values are available for the case when the model allows for standard errors 
that are robust to heteroskedasticity and clustering. 
20 A 1% decrease in PM2.5 increases annual output by 0.44%. The mean annual output per firm in the 
sample is CNY 12.82 million implying an annual increase of CNY 56.3 thousand. There is an average 
of 159,325 firms present in each year of the sample implying an annual increase in output across all 
firms of CNY 9.0 billion annually. China’s average annual real GDP over the ten-year sample period 
is CNY 14.85 trillion. 
21 The Jing-Jin-Ji region includes Beijing, Tianjin, and Hebei; the Yangtze River Delta region includes 
Shanghai, Jiangsu, Zhejiang, and Anhui; and the Pearl River Delta region includes Guangdong. 
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Since our estimates capture pollution’s effect on both per-hour productivity and 

working hours, it is useful to disentangle the two for comparisons to previous 

estimates of per-hour productivity effects.22 We borrow estimates from Aragón et al. 

(2017) which finds an elasticity of working hours with respect to PM2.5 of -0.21 in 

Lima, Peru. Assuming PM2.5’s effect on working hours is the same in China, our 

estimated elasticity of per-hour productivity with respect to pollution is -0.23. It is 

similar to the upper end of estimates by He et al. (2019) for textile workers in two 

firms in two Chinese provinces. They find elasticities ranging from -0.035 to -0.30 

from PM2.5 exposure if effects are accumulated over 25 to 30 days. 

Our estimate exceeds that in Adhvaryu et al. (2019), which finds an elasticity of          

-0.052 for per-hour productivity with respect to PM2.5 for garment factory workers in 

India. It is also larger than the elasticity of -0.062 for PM2.5 found in Chang et al. (2016) 

for indoor pear packers in California and the elasticity of -0.023 with respect to the 

API for services workers (Chang et al. (2019)). The fact that we estimate elasticities 

that are at least as great as or greater than previous papers could be due to two 

factors. First, previous estimates apply only to particular worker types or small sets 

of firms. Second, previous studies measure daily or monthly effects while we 

capture annual cumulative effects. 

We can also compare our estimates to studies that estimate the effect of PM2.5 on 

economic outcomes besides productivity. To do so, we normalize results to the 

monetary impact of a one-percent decrease in PM2.5, which in our case increases 

productivity by USD 1.2 billion annually. Deryugina et al. (2018) estimate the short-

run effect of PM2.5 on mortality in the U.S. They find that a one-percent decrease in 

PM2.5 concentration (0.11 𝜇𝜇g/m3) leads to a gain of USD 0.45 billion annually in 

avoided mortality – about one-third of our estimate. Bishop et al. (2018) estimate the 

long-run effect of PM2.5 on dementia in the U.S. A one-percent decrease in PM2.5 

concentration (0.09 𝜇𝜇g/m3) reduces medical expenditures on dementia by USD 0.11 

billion annually, about one-tenth of our estimate. Chen et al. (2018) estimate the 

short-run effect of PM2.5 on mental illness in China. A one-percent decrease in PM2.5 

concentration (0.48 𝜇𝜇g/m3) reduces expenditure on mental illness treatment by USD 

0.60 billion annually – about one-half of our estimate. 

5.2 Robustness checks 

Online Appendix 3 shows robustness to different assumptions about the model 

compared to the baseline results replicated in Column (1). Since some of our 

explanatory variables are grouped at the county-year level and there may be time-

invariant unobserved factors affecting productivity at the county level, the standard 

errors may be biased downward (Kloek, 1981; Moulton, 1986). We check this in 

several different ways. Column (2) allows for two-way clustering of errors by firm 

and county-by-year (Cameron et al., 2011). This allows for serial correlation in 
                                                           

22 This makes use of the fact that the elasticity of productivity equals the elasticity of productivity per 
hour plus the elasticity of hours worked as shown in Equation (4). 
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productivity within firms as well as spatial correlation within each county-year. The 

results remain significant. Since there is no standard way to cluster with multi-way 

clustering (Cameron and Miller, 2015) we try two other methods. Column (3) 

clusters the standard errors by county-year, which allows unobservables to be 

spatially correlated within each county-year. The standard errors are similar to those 

under two-way clustering. Clustering at the county level, which allows for spatial 

and serial correlation within county, in Column (4), increases standard errors only 

slightly and the results remain significant. 

Our baseline results use year fixed effects to control for nationwide time trends. We 

test for robustness to regional trends in four different ways: region-by-year fixed 

effects23 in Column (5); province-by-year fixed effects in Column (6); province-

specific quadratic time trends in Column (7); and year fixed effects along with 

province-specific quadratic time trends in Column (8). All four yield very significant 

results and all yield larger point estimates than our baseline except for province-

specific quadratic time trends. We continue to use year fixed effects as the baseline 

because the province-specific time trends impose a specific functional form and the 

flexible year-by-province fixed effects results are less conservative. 

Our baseline estimates weight all observations equally. Column (2) of Online 

Appendix 4 re-estimates weighting observations by value added per firm. The 

coefficient yields a slightly higher elasticity (-0.47) than the baseline estimates shown 

in Column (1). Column (3) shows that not winsorizing the data leads to results very 

similar to the baseline estimates (elasticity of -0.47 evaluated at the mean PM2.5 of 

53.3). Column (4) uses the raw data (before eliminating the unreliable observations 

as described in footnote 11 and without winsorizing) yielding a somewhat greater 

elasticity (-0.58) using mean PM2.5 of 53.3. The survey is at the firm level and 

therefore it is possible that a firm has multiple plants in different locations leading to 

an incorrect match with the pollution data. Column (5) eliminates the firms that have 

multiple plants (5% of our sample). The estimated elasticity (-0.47) is very similar to 

the baseline based on mean PM2.5 of 53.9. Finally, Column (6) uses logarithmic rather 

than linear pollution. The elasticity (-0.52) is somewhat larger. 

As a test of whether it is inversions that are causing the shifts in pollution and 

therefore productivity, we run a placebo test in which we randomly reassign the 

pollution to the inversion and weather data across years. We repeat this one 

hundred times and re-estimate the model. Online Appendix 5 shows the estimates 

along with 95% confidence intervals. Only four of the one hundred estimates are 

significantly different than zero and all four barely so. 

5.3 Tests for firm sorting 

Firms may relocate to places with better air quality to improve productivity or to 

places with lax environmental regulation to lower costs. Table 3 shows tests for this 

                                                           

23 We divide China into eight regions following Zhang et al. (2018).  
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potential spatial sorting. Column (2) estimates excluding firms that relocated across 

counties (about 7% of firms) during the sample period. The estimated elasticity (-0.67) 

based on a mean PM2.5 of 53.7 is larger than that of the baseline estimate (-0.44) using 

all firms (replicated in Column (1)) consistent with either firms avoiding pollution to 

increase their productivity or a “pollution haven” effect and high-polluting firms 

being more productive than low-polluting. This also means that our baseline 

estimates may understate pollution’s effect on productivity to the extent that the 

non-relocating firms are representative of the full sample. 

[Insert Table 3 here.] 

Although firm fixed effects in our main results control for any initial sorting of firms, 

new firms that enter during the sample period may choose locations endogenously 

based on pollution. To see if this might affect the results, Column (3) of Table 3 tests 

whether a county’s instrumented pollution significantly affects the fraction of new 

firms entering the county in the following year. We aggregate to the county-level for 

this analysis because we do not observe firms prior to entry and therefore cannot 

create an entry variable at the firm level. In addition to the weather controls we 

include county and year fixed effects so that identification derives from within-

county variation over time. We cluster standard errors at the county level to allow 

intertemporal correlation in unobserved factors across years. Year 1998 data is 

dropped because it is the first year of our sample period and thus we cannot 

determine the level of entry. The estimated effect of entry is close to zero and 

insignificant consistent with pollution not affecting firm location choice on entry. 

If pollution’s effect on productivity is strong enough firms may exit the market. 

Estimates using the full sample are conditional on survival, potentially understating 

the productivity effect. To see if this might be a major factor, Column (4) of Table 3 

tests whether a county’s instrumented pollution significantly affects the fraction of 

firms exiting the county in the following year. This regression is analogous to the 

entry regression and includes the same control variables and uses the same 

clustering of standard errors. Year 2007 data is dropped in this estimation since we 

cannot observe whether firms present in 2007 exit in 2008. The estimate is close to 

zero and insignificant suggesting that exit bias is not a major concern.24 This also 

suggests that any actions taken by the government to shut down firms in high-

polluting areas and induced by thermal inversions are minimal. 

We also repeated the entry and exit analyses to see whether there was significant 

spatial sorting in response to the most important environmental policy that occurred 

during our sample period. This policy, the Air Pollution Prevention and Control 

Law 2000 Revision, was officially issued on April 29, 2000. It identified 47 key cities 

                                                           

24 Using a balanced panel could address selection effects due to entry or exit. However, only 7% of 
firms are present in all years due to China’s rapid growth as discussed in Section 3. For this small 
sample, the estimates are very significant and the estimated elasticities are much greater presumably 
due to pollution exposure levels that differ from those faced by the full sample. 
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and imposed stringent environmental regulations on them. We divided the sample 

into these cities versus all others. The results are shown in Online Appendix 6 and 

do not reflect any significant effect of pollution on firm entry or exit in the affected or 

non-affected cities. 

Since the sample censors non-SOE firms with less than CNY 5 million in annual 

revenues (“below-scale” firms), this may confound entry measures. To see if this is 

so, we simulate the magnitude of censoring required to substantially change the 

results. Using cross-sectional data available on the full sample of all firms in 2004 

when a full manufacturing census was conducted, we calculate each county’s 

“below-scale” and total firms as a fraction of the total number nationwide. We then 

adjust that county’s observed entry rate in each year by assuming that r% of firms 

that entered nationwide actually moved from “below-“ to “above-scale.” For each 

county we weight r by the ratio of the county’s fraction of “below-scale” firms 

relative to fraction of total firms in 2004. This allows the county-level adjustments to 

be made based on whether they have a disproportionately small or large number of 

“below-scale” firms relative to other counties in 2004. 

For example, suppose that 9% of firms nationwide appeared for the first time in a 

given year. Consider a county that had 0.04% of the nation’s below-scale firms in 

2004, 0.05% of the nation’s total firms in 2004, and that 8% of its firms appeared for 

the first time in that year. For r equal to 10% (fraction of firms that appeared 

nationwide that we assume moved from “below-” to “above-scale” rather than 

entering), we would adjust this county’s entry rate to be 8% - 9%*0.1*(0.0004/0.0005) 

= .0728. Having adjusted these rates for all years and counties, we re-run the entry 

regression varying r from 0 to 1 but bounding the entry rate to be non-negative. 

Online Appendix 7 describes the procedure in more detail and Online Appendix 8 

shows the results for increments of 0.1 for r. Instrumented pollution has no 

significant effect on entry over the entire range of r providing suggestive evidence 

that censoring does not affect the results. 

We modify the exit rate in an analogous manner to test the sensitivity of our exit 

regression to the censoring of “below-scale” firms. That is, we adjust each county’s 

exit rate in a given year by assuming that r% of firms that exited nationwide actually 

became “below-scale” rather than exiting. For each county we again weight r by the 

ratio of the county’s fraction of “below-scale” firms relative to fraction of total firms 

in 2004 bounding the exit rate to be non-negative. The results are shown in Online 

Appendix 9. The results are again insensitive to the value of r over the entire range – 

instrumented pollution has no significant effect on exit. 

5.4 Tests for worker sorting 

It is also possible that workers endogenously select their location based on local air 

quality. High-skilled workers are more productive and generally have a higher 

willingness to pay for better air quality. If this leads to significant sorting of worker 
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skill levels across counties, pollution’s effect on productivity is attenuated for firms 

with high-skilled workers. To test for worker sorting based on pollution levels, we 

see whether a county’s instrumented pollution in a year affects the fraction of the 

county’s workers employed by high- versus low technology firms in that year. We 

classify a firm’s technological intensity based on its industry following OECD (2011), 

which classifies industries as high, medium-high, medium-low, and low technology. 

We then compute the fraction of workers employed in each of these categories in 

each county-year using each firm’s employment. In addition to weather controls, we 

include county and year fixed effects so that the effects are identified by variation 

within county over time. We cluster standard errors by county to allow for 

intertemporal correlation of unobservables within each county. 

Columns (1) through (4) of Table 4 show the results of estimating how instrumented 

pollution affects the fraction of employment in each of these four categories. The 

effects are all insignificant except for the fraction in low-technology industries, 

which air pollution increases. This is consistent with low-productivity workers 

sorting to more polluted areas although the effects are small. A one 𝜇𝜇g/m3 increase 

in PM2.5 increases the fraction of employment in low-skilled industries by 0.0033 

which is only 0.86% of the average fraction of low-technology employment across 

counties. To test for the robustness of the technology classifications and make sure 

that a small number of firms within each category is not an issue, Columns (5) and (6) 

repeat the estimation combining the two high-technology categories into one 

category and similarly for the two low-technology categories. Instrumented 

pollution has no significant effect on the fraction of employment in either category. 

[Insert Table 4 here.] 

5.5 Effect by worker skill level 

We are aware of only four papers that consider the effect of pollution on 

productivity of high-skilled workers and these focus on specific worker categories: 

Archsmith et al. (2018) on umpires, Heyes et al. (2016a) on investors, Heyes et al. 

(2016b) on politicians, and Kahn and Li (2019) on judges. Air pollution is commonly 

thought to primarily affect outdoor workers because of their unfiltered exposure and 

their holding more physically-demanding occupations than high-skilled indoor 

workers. However, PM2.5 can permeate indoors making it possible for it to affect 

indoor workers. Our data allow us to offer some evidence by skill level for 

manufacturing firms in China. We categorize firms’ technological intensity based on 

the four industry categories in OECD (2011) and estimate the effect of pollution on 

productivity separately for the sub-sample in each category. 

The results are shown in Columns (2) through (5) of Table 5 alongside estimates for 

the full sample in Column (1). The effects are above those of the full sample for the 

high-technology firms (elasticity of -0.73) and below for the low-technology firms 

(elasticity of -0.33). This is consistent with higher-skilled workers employed by more 
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technologically-intensive firms having a higher marginal effect on productivity than 

lower-skilled workers so that an equivalent level of pollution diminishes 

productivity more for high-technology firms. These results also suggest that the 

previous evidence for specific high-skilled workers extends to manufacturing firms 

and is consistent with evidence that air pollution affects cognitive not just physical 

effort. Columns (6) and (7) show that this result holds if only two categories of 

worker skill levels are used. 

[Insert Table 5 here.] 

5.6 Effect on labor supply, capital, and output 

Estimates so far capture the effect on productivity conditional on the number of 

workers. Pollution may also affect the number of workers employed (the 𝜅𝜅 

parameter in Equation (6)). To assess this, we estimate Equation (7) with log number 

of workers in each firm as the dependent variable using annual number of days with 

a thermal inversion as the instrument. The survey data capture both permanent and 

contract employment thereby making it likely we can capture annual adjustments in 

response to pollution. The survey measures end-of-year employment so that 

employment changes due to pollution over the course of a year are captured. 

The results are shown in Column (2) of Table 6. A one 𝜇𝜇g/m3 increase in PM2.5 

increases employment by 0.51% implying an elasticity of 0.27. Although firms 

increase employment to compensate for some of the productivity loss, it is not 

enough to offset the negative productivity effects. Moreover, employing additional 

workers imposes costs on firms. We can use the average wage in the sample to 

produce a ballpark estimate of these costs. A one percent increase in PM2.5 increases 

employment by 0.27%, or 0.56 additional workers per firm. The average annual 

wage per worker in the sample is CNY 12,650 (USD 1,664) implying an additional 

cost per firm of CNY 7,147 (USD 940). Aggregated across all firms this equals CNY 

1.14 billion (USD 0.15 billion) annually or 12.7% of the productivity loss from the 1% 

increase in PM2.5. 

[Insert Table 6 here.] 

In Column (3) of Table 6, we show the results of estimating Equation (7) with log 

capital as the dependent variable.25 There is no significant effect. Column (4) 

estimates the effect of pollution on log value added. The effect is significant and the 

elasticity of value added with respect to pollution is -0.17. This equals the summed 

effect of pollution’s effect on productivity (𝜃𝜃 = −0.44) and its effect on labor supply 

(𝜅𝜅 = 0.27) and will also be used below in our general-equilibrium simulation. 

                                                           

25 We calculate capital stock using the perpetual inventory method in Brandt et al. (2012). 
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5.7 Mitigation of pollution-productivity effect 

As shown above, firms compensate for the reduced productivity that pollution 

causes by hiring more labor. It is useful to know whether high-polluting firms 

compensate more or less than low-polluting firms since this has ramifications for the 

resulting level of pollution and output. Columns (2) and (3) of Table 7 compare the 

effect of pollution on labor supply for “polluting” versus “clean” firms.26 The effects 

do not differ significantly between the two. Columns (5) and (6) provide one 

possible explanation for this. “Clean” firms experience a larger negative productivity 

shock than “dirty” firms. While this would imply a greater incentive for “clean” 

firms to hire more workers than “dirty” firms, “clean” firms may be more likely to 

utilize high-skilled labor which is also likely to be in less elastic supply than low-

skilled labor. 

[Insert Table 7 here.] 

Firms may respond to the lower productivity caused by inversions vis-à-vis 

pollution by adjusting their production processes. To test for this, we run reduced-

form estimates relating the number of inversions to productivity distinguishing 

counties with an above-median number of inversions versus below-median. The 

results in Online Appendix 10 show that inversions reduce productivity more in 

areas with fewer inversions consistent with firms in high-exposure regions adjusting 

their production in response to the level of inversions. This also means that our 

estimates are inclusive of the effects of this avoidance behavior. 

Environmental regulations could result in differential effects on firms in different 

industries or locations including due to different strategic responses to these 

regulations (Zou, 2018). However, we are unable to test for this. Prior to 2008, 

environmental regulation in China was minimal and the policies in place were often 

unenforced or under-enforced.27 We suspect prior to this, GDP-based promotion 

criteria for local government officials led them to emphasize GDP growth to the 

exclusion of environmental quality. Nonetheless, differential effects will only be 

reflected in our results to the extent they are correlated with thermal inversions. 

5.8 Effect of output on pollution 

Estimating output’s effect on pollution depends on obtaining instrumented values of 

output that are uncorrelated with endogenous shocks to pollution. The key 

identifying assumption for our WTO instrument (Equation (10)) is that the pre-

treatment trends are parallel for coastal and inner regions prior to China joining the 

WTO. Online Appendix 11 plots coefficients and 95% confidence intervals from 

regressing county-level output on year dummies interacted with Ι𝑐𝑐∈𝐶𝐶𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐 conditional 

                                                           

26 We define “dirty” and “clean” based on the 3-digit SIC codes in Mani and Wheeler (1998). 
27 Environmental protection measures were first added to government officials’ promotion criteria in 
December 2005. See http://www.gov.cn/zwgk/2005-12/13/content_125680.htm (in Chinese). 
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on county fixed effects. The interaction terms (normalized to zero in 2001) show no 

obvious trend prior to 2002 and display an upward trend after 2002. 

Table 8 reports the estimates of Equations (9) and (10) using data for our sample 

period. The instrument is reasonably powerful and yields an elasticity of 1.43 for 

PM2.5 with respect to output which is statistically very significant. The OLS estimate 

is about one-third of this consistent with attenuation bias due to endogeneity. 

[Insert Table 8 here.] 

 

6. General-equilibrium effects 

6.1 The model 

To simulate the dynamic, general-equilibrium effects of pollution on output we 

calibrate an IAM that integrates polluting activities into a standard growth model of 

a market economy (Xepapadeas (2005) provides an overview of such models). There 

is a broad literature using IAMs to model climate change but a few focus on 

particulate matter (e.g., Carbone and Smith, 2008; Aldeco et al., 2019). Like these 

papers, we do not model how PM2.5 is emitted and accumulates in the atmosphere 

because it hovers in the air for a much shorter time than measured by our annual 

data (Aldeco et al., 2019). The model treats pollution as a productivity-reducing 

input and undesirable output of firm production. The model dynamics capture the 

effects of capital-stock accumulation which is important given China’s rapid growth 

during our sample period. 

The model is an intertemporal, general-equilibrium model in which a representative 

agent chooses period-by-period consumption to maximize utility discounted by the 

rate of social time preference and subject to an economic constraint and a pollution-

damage function. It assumes decentralized utility-maximizing households and 

perfectly competitive profit-maximizing firms (a Ramsey model). The production 

and pollution-damage functions are those in the illustrative models that inform our 

partial-equilibrium estimation. Population and technology grow exogenously while 

capital accumulates according to the optimal rate of investment.28 

The model maximizes the sum of lifetime discounted utility for a representative 

consumer in the population 𝑃𝑃𝑐𝑐 using a logarithmic utility function of per-capita 

consumption (𝑐𝑐𝑐𝑐 = 𝐶𝐶𝑐𝑐 𝑃𝑃𝑐𝑐⁄ ) where 𝐶𝐶𝑐𝑐 is aggregate consumption. We assume that the 

fraction of the population in the work force remains the same over time (𝑃𝑃𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑐𝑐): 𝑚𝑚𝑏𝑏𝑚𝑚𝑐𝑐𝑐𝑐 ∑ 𝑀𝑀𝐿𝐿𝑐𝑐𝑙𝑙𝑒𝑒[𝑐𝑐𝑐𝑐](1 + 𝜌𝜌)−𝑐𝑐𝑇𝑇𝑐𝑐=1 , (11) 

                                                           

28 Because we assume exogenous technological change, output will not grow in the long run without 
technological progress. However, our sample period is short and the capital stock does not 
accumulate rapidly enough that it is affected by the long-run growth rate in our simulations. 
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where 𝜌𝜌 is the annual rate of social time preference. Output is given by Equation (6) 

which captures both pollution effects that we find in our partial-equilibrium analysis: 

changes in productivity and labor supply (effective units of labor). The pollution-

damage function that relates contemporaneous pollution to output is given by 

Equation (5). 

Gross output is divided between investment (𝐼𝐼𝑐𝑐) and aggregate consumption: 𝑄𝑄𝑐𝑐 = 𝐶𝐶𝑐𝑐 + 𝐼𝐼𝑐𝑐, (12) 

and the law of motion for capital is: 𝐾𝐾𝑐𝑐 = (1 − 𝛿𝛿)𝐾𝐾𝑐𝑐−1 + 𝐼𝐼𝑐𝑐, (13) 

where 𝛿𝛿 is the rate of capital depreciation. 

6.2 Simulation 

We simulate the model to fit economy-wide data for China (Zeileis, 2019; Feenstra et 

al., 2015) during our sample period using our partial-equilibrium estimates of 𝜃𝜃, 𝜅𝜅, 

and 𝜇𝜇. We simulate over a sufficient number of periods that the outcome during our 

sample period is not significantly affected by endpoint conditions. We found that 

simulating 100 years (1996 to 2095) is sufficient. We assume that pollution’s effect on 

output (𝜃𝜃 + 𝜅𝜅) is constant over the entire 100 years (i.e., firms cannot engage in 

avoidance behavior) but we allow for exogenous improvements in abatement 

technology (𝜇𝜇 decreases to 1.0 in 2095) that occur smoothly beginning after the 

sample period. Our chosen parameters result in simulated levels of output and 

pollution that are close to the actual during the sample period. Online Appendix 12 

provides evidence of the fit and more details on data sources and how the model is 

calibrated and solved. 

We set 𝜆𝜆𝑐𝑐 (the fraction of output produced by the manufacturing sector) equal to its 

actual values from 1996 to 2017 (China Statistical Yearbook, 2018) and we assume it 

remains constant at the 2017 value thereafter. While a more realistic model would 

allow for separate services and manufacturing sectors, manufacturing is a relatively 

constant fraction of GDP over the sample period (45.8% in 1998 versus 46.9% in 

2007). The labor share (1 − 𝛾𝛾) is 0.425 based on the average labor share in China 

from 1996 to 2017 and the initial capital stock in 1995 is its actual value of USD 10.18 

trillion. TFP is initialized to its actual value in 1996 and we assume it grows at 7.96% 

per annum from 1996 to 2017 based on Brandt et al. (2012) after which it declines to 

3.0% in 2033 and then remains constant. The actual capital, labor share, and TFP data 

are from Zeileis (2019) and Feenstra et al. (2015). The depreciation rate is 0.09 based 

on Brandt et al. (2012) and the consumer’s rate of time preference is 0.04 based on 

Chang et al. (2015). The pollution-damage function intercept (𝐵𝐵) is set to fit average 
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PM2.5 concentrations over the sample period.29 Population is based on actual and 

projected data from the United Nations.30 

After calibrating the model, we run counterfactuals to assess pollution’s general-

equilibrium effects. We vary 𝜇𝜇𝑐𝑐 slightly to generate a local derivative of output with 

respect to pollution. A 1% decrease in PM2.5 over all years increases manufacturing 

output by 0.28% on average over the sample period compared to the partial 

equilibrium increase of 0.17%. A one percent exogenous reduction in PM2.5 increases 

the average firm’s value added by CNY 35.9 (USD 4.7) thousand annually and 

increases total value added across all firms by CNY 5.7 (USD 0.75) billion annually 

(0.039% of China’s GDP). To assess the sensitivity of these results to the uncertainty 

in our partial-equilibrium estimates we re-simulated the model using the 95% 

confidence intervals for the effect of pollution on output (𝜃𝜃 + 𝜅𝜅) ∈ [−0.329,−0.014] 

and effect of output on pollution 𝜇𝜇 ∈ [0.713,2.15]. The elasticities ranged from -0.020 

to -0.515. 

Output is more responsive to pollution in the dynamic, general-equilibrium model 

because of the tradeoff between current and future consumption. Because future 

consumption is discounted, an exogenous pollution increase results in a smaller 

decrease in current than future consumption. This lowers current investment and 

thereby the accumulation of capital stock which lowers output more (in percentage 

terms) than is the case in a static model.31 Because China’s economy is growing 

during this time, the response to a pollution increase is lower in absolute value 

initially (-0.22 in 1998) than it is in later periods (-0.31 in 2007) when the capital stock 

has grown and the tradeoff between consumption and investment is not as stark. 

These results can be used to directly evaluate the general-equilibrium effects of 

policies. For example, China’s Air Pollution Prevention and Control Action Plan 

enacted in 2013 stipulated that by 2017 PM2.5 concentrations should fall by 25%, 20%, 

and 15% in Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta 

regions respectively32 which are China’s main industrial centers. Using the midpoint 

of these three goals (20%) and scaling our elasticity estimate linearly, the 

productivity boost from reaching this target would be 5.6% (0.77% of GDP) if 

derived from exogenous decreases in pollution. 

It is useful to place these benefits in context by quantifying the costs of reducing 

PM2.5. Unfortunately, we are unaware of direct estimates of the costs of PM2.5 

reductions. The best we can do is to rely on indirect measures for other pollutants 

                                                           

29 Xepapadeas (2005) discusses the issue of modeling concentrations rather than emissions in IAMs. 
30 Data are found at https://population.un.org/wpp/. 
31 In a static analysis with the constant-elasticity relationship between output and pollution in 
Equations (5) and (6), an exogenous increase in pollution will result in an output decrease equal to the 
partial-equilibrium estimate (-0.17). This will not be the case either with other functional forms in a 
static analysis or with dynamics. 
32 Issued by the State Council on September 10, 2013 (http://www.gov.cn/zwgk/2013-
09/12/content_2486773.htm). 
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estimated from policy interventions. The most useful estimate comes from the US. 

Pollution-intensive industries in counties subject to regulation under the Clean Air 

Act lost on average USD 7.9 billion of output annually relative to counties that were 

not (Greenstone, 2002). At the same time, air pollution declined by roughly 12% 

more in non-attainment relative to attainment counties (Chay and Greenstone, 

2005).33 Combining these two estimates, a back-of-the-envelope calculation indicates 

that a 1% reduction in pollution costs USD 0.66 billion. This is a lower bound on the 

costs because the estimate from Greenstone (2002) is a partial equilibrium estimate 

that does not consider the effect of output on pollution. This is 83% of our estimate 

of the benefits of reducing PM2.5 by one percent (USD 0.75 billion annually). 

There are other studies that provide more indirect measures of the costs of reducing 

pollution. The pollution-reduction measures taken during the 2008 Beijing Olympic 

Games decreased PM10 concentrations from 24% to 33% in the city (Chen et al., 2013; 

He et al., 2016). Restricting 1% of vehicles in Beijing one-day-per week reduces PM10 

by 1% (Viard and Fu, 2015). A one standard deviation increase in subway density in 

Beijing reduced particulate matter by 2% (Li et al., 2019) and a subway opening 

decreases particulate concentrations by 4% around a city center (Gendron-Carrier et 

al., 2018). Derivation of these costs and explanations of the pollutants are in Online 

Appendix 13. 

Our simulation has several important simplifications that could be relaxed with 

further modeling or data collection or that are better suited to other settings. First, 

we assume that China is a closed economy. Trade could be incorporated in the 

model at the expense of much greater complexity (Xepapadeas, 2005 provides 

examples) and loss of transparency. Our abstraction from this is an obvious 

simplification given that China is a large importer-exporter during our sample 

period. We implicitly assume that the consumer is representative of both domestic 

and export consumers and input prices are determined domestically rather than 

worldwide. 

Second, we do not treat pollution as a source of disutility. That is, air pollution is 

separable from consumption and leisure in utility. Awareness of air pollution was 

limited during our sample period34 and unlikely to directly affect consumer 

purchases. It would be useful to analyze this using later data (Carbone and Smith 

(2008) provides a model; Ito and Zhang (2020) provide an estimate of the marginal 

willingness to pay for air quality). This would allow for two possible effects of 

pollution externalities absent from our model: pollution could affect consumption 

and labor supply which would in turn affect output and thus pollution. Besides 

these, pollution may affect health and mortality negatively which we ignore. 

                                                           

33 This is for “total suspended particulate,” an older measure of particulate pollution but the closest 
measure available at that time to the pollutant we examine. 
34 Ito and Zhang (2020: Appendix A.4) marks increased awareness beginning in 2013: from 2006 to 
2012 annual media mentions of air pollution in China averaged 158 headlines but jumped to 1,327 
(1,549) in 2013 (2014). 
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Third, we do not allow for endogenous changes in abatement technology over time. 

Abatement efforts are not significant during our sample period.35 Allowing for 

endogenous abatement efforts would be important in analyzing later time periods 

and could be incorporated by allowing the pollution-output elasticity to depend on a 

stock of knowledge which accumulates through research and development 

expenditures (Buonanno et al., 2003; Gillingham et al., 2008). As Gillingham et al. 

(2008) argue, it is useful to endogenize technological change to allow policies to 

affect the direction of technological change toward abatement efforts over time. 

Fourth, we assume manufacturing is an exogenous fraction of total output. In other 

contexts or time periods this may significantly depart from actual conditions in 

which case multiple sectors could be accommodated as in Carbone and Smith (2008). 

Multiple sectors could also allow for endogenous choice of “dirty” versus “clean” 

intermediate inputs which would be important in contexts with significant 

abatement efforts. 

 

7. Conclusion 

Using a large micro dataset on manufacturing firms in China, we estimate the effect 

of air pollution on productivity. To deal with the reverse causality of output and 

pollution and other potential endogeneity issues we take an instrumental variable 

approach. For the effect of pollution on output we use thermal inversions, which are 

meteorologically determined. The approach attenuates the endogeneity bias and 

indicates a significant negative effect of air pollution on productivity. For the effect 

of output on pollution we use the differential effects of China’s entry into the WTO 

on coastal versus inner regions of China. Combining these in an integrated 

assessment model we quantify the general-equilibrium effects of pollution on output. 

Our study shows a significant economic loss in productivity, and therefore output, 

in China due to air pollution. This also suggests a huge social benefit of improving 

air quality via increased productivity and output. Our study contributes to the 

emerging literature on air pollution’s effect on short-run productivity by providing 

comprehensive, nationwide empirical evidence that captures all channels through 

which pollution can affect productivity and taking account of the general-

equilibrium effects of output on pollution. These estimates can be used directly for 

short-run effects in cost-benefit analyses of broad-based environmental policies. 

Our findings shed new light on the debate about whether environmental regulations 

positively or negatively affect firm competitiveness (Jaffe et al., 1995; Greenstone et 

al., 2012). Historically, this debate has focused on the extent to which decreased 

competitiveness from environmental compliance costs is offset by process 

innovations that are both cleaner and of lower cost. Our results confirm another 

                                                           

35 As discussed in footnote 27, government officials were not evaluated on environmental criteria 
until December 2005 so incentives to invest in abatement efforts was limited prior to this time. 
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channel that influences this debate. Environmental regulations that decrease air 

pollution will in turn increase productivity and at least partially offset the decreased 

productivity due to complying. 

Since our identification relies on yearly variation we are unable to estimate long-run 

effects of pollution on productivity. In the long run firms may take steps to respond 

to pollution such as protecting indoor workers or moving to lower-pollution areas to 

boost productivity. Workers also may move in the long run to avoid pollution, 

especially high-skilled workers who have a greater willingness to pay to avoid 

pollution. We find little evidence of such sorting in our short-run results but this 

may occur over longer periods and would attenuate the productivity effects. 

Although we can capture all channels by which pollution can influence productivity, 

we are unable to decompose the exact channels by which pollution lowers 

productivity. Significant effects on productivity per hour would indicate that there 

are large benefits from protecting workers from air pollution while at work. Effects 

on hours worked might indicate exposure to pollution by a worker’s family 

members in addition to workplace exposure. 

Our general-equilibrium model of pollution effects could be expanded along several 

dimensions including allowing for investments in abatement technologies, influence 

of trade, consumer disutility from pollution, and multiple sectors. These extensions 

would allow an evaluation of other avenues that environmental policies may impact. 
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Figure 1: Time trend of air pollution and value added in China (1998 to 2007) 

 

Notes: This graph displays national average of county-level PM2.5 and aggregate value added 

of China’s manufacturing sector from 1998 to 2007. Value added includes all state-owned 

enterprises (SOEs) and all non-SOEs with sales above CNY 5 million winsorized as 

described in the paper. 

  



Table 1: Summary statistics for firm-level productivity and county-level pollution data 

  

 

Variables Mean

Standard 

deviation Min Max

Firm

Value added (1,000 CNY) 12,821     23,540     74            366,426   

Employment (person) 207          299          10            3,013       

Capital (1,000 CNY) 14,531     30,872     64            350,801   

Output per worker (1,000 CNY/worker) 88            160          0.13         16,248     

Total factor productivity (OP estimates) 2.91         1.03         -3.23 8.44         

Total factor productivity (LP estimates) 5.38         0.97         0.01         10.03       

Air pollution

Particular matter (PM2.5) (µg/m3) 53.52 25.46 2.62 134.84

Thermal inversions

Annual days with thermal inversions 156.95 78.75 0.00 333.00

Notes:  Firm-year sample size: 1,593,247 including 356,179 firms. County-year sample 

size: 25,359 including 2,755 counties. Sample period: 1998-2007. Total factor 

productivity are estimates based on Olley-Pakes (1996) (OP) and Levinsohn-Petrin 

(2003) (LP) instrumenting approaches.

County-year sample

Firm-year sample



Table 2 OLS and 2SLS estimates (effect of air pollution on productivity) and reduced-form estimates (effect of thermal inversions on 

productivity) 

 

  

 

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable:

Annual days with inversions -0.0002*** -0.0003*** 0.0300*** 0.0356*** 0.0356*** 0.0356***

(0.0000) (0.0001) (0.0004) (0.0004) (0.0004) (0.0004)

KP F -statistic 5,520 8,249 8,249 8,249

Dependent variable: TFP (OP) TFP (LP)

PM2.5 0.0003 0.0004** -0.0080*** -0.0082*** -0.0049*** -0.0036***

(0.0002) (0.0002) (0.0016) (0.0014) (0.0014) (0.0014)

Firm fixed effects Y Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y Y

Weather controls N Y N Y N Y Y Y

# firms 356,179 356,179 356,179 356,179 356,179 356,179 356,179 356,179

Sample size 1,593,247 1,593,247 1,593,247 1,593,247 1,593,247 1,593,247 1,593,247 1,593,247

PM2.5

First stage

 

Notes: All models include firm and year fixed effects (in both stages for 2SLS). Sample period: 1998 - 2007. Standard errors are clustered at 

the firm level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F -statistic is the Kleibergen-Paap Wald rk F -statistic for 

weak identification in the first stage (Kleibergen and Paap, 2006). 

ln(Value added/worker) ln(Value added/worker)

Reduced form

ln(Value added/worker)

2SLSOLS

Second stage



Table 3: 2SLS estimates – tests for firm sorting based on air pollution 

 

 

 

(1) (2) (3) (4)

Fraction Fraction

of firms of firms

Dependent variable: entering exiting

Exclude

relocating

Baseline firms

PM2.5 -0.0082*** -0.0124*** 0.0033 0.0016

(0.0014) (0.0018) (0.0027) (0.0018)

KP F -statistic 8,249 12,377 218 322

Firm fixed effects Y Y N N

County fixed effects N N Y Y

Year fixed effects Y Y Y Y

Weather controls Y Y Y Y

Clustering Firm Firm County County

Sample size 1,593,247 1,432,765 23,091 22,684

Notes:  Sample period: 1998 - 2007 in Columns 1 and 2; 1998 - 2006 in Column 3 to 

measure exit in the following year; 1999 to 2007 in Column 4 to measure entry from 

the prior year. Columns 1 and 2 are firm-year data; Column 1 includes all firms and 

Column 2 all firms that did not relocate during the sample period. Columns 3 and 4 

are county-year data and aggregate all firms to the county level. All models use 

annual number of days with thermal inversions as first-stage instruments. All models 

include year fixed effects and weather controls in both stages. Models in Columns 1 

and 2 include firm fixed effects and models in Columns 3 and 4 county fixed effects. 

Standard errors are clustered at the firm level in Columns 1 and 2 and at the county 

level in Columns 3 and 4 and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

The KP F -statistic is the Kleibergen-Paap Wald rk F -statistic for weak identification in 

the first stage (Kleibergen and Paap, 2006). 

ln(value added per worker)

Firm-year sample County-year sample



Table 4: 2SLS estimates – tests for worker sorting based on pollution 

 

  

(1) (2) (3) (4) (5) (6)

Dependent variable:

Medium- Medium-

High high low Low High Low

technology technology technology technology technology technology

PM2.5 -0.0001 -0.0011 -0.0021 0.0033* -0.0012 0.0012

(0.0008) (0.0015) (0.0019) (0.0018) (0.0017) (0.0017)

KP F -statistic 207.9 207.9 207.9 207.9 207.9 207.9

County fixed effects Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y

Weather controls Y Y Y Y Y Y

Clustering County County County County County County

Sample size 25,357 25,357 25,357 25,357 25,357 25,357

Fraction of employment

Four categories Two categories

Notes:  All models use annual number of days with thermal inversions as first-stage instruments. All 

models include firm fixed effects, year fixed effects, and weather controls in both stages. The technology 

intensity definition in Columns (2) through (6) is from https://www.oecd.org/sti/ind/48350231.pdf. 

We group high technology and medium high technology into high technology into Column (5), and 

group low technology and medium low technology into low technology into Column (6). Sample period: 

1998-2007. Standard errors are clustered at the firm level and reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. The KP F -statistic is the Kleibergen-Paap Wald rk F -statistic for weak identification in 

the first stage (Kleibergen and Paap, 2006). 



Table 5: 2SLS estimates – effect of air pollution on productivity by firm technology level 

 

 

(1) (2) (3) (4) (5) (6) (7)

Dependent variable:

Medium- Medium-

Full High high low Low High Low

sample technology technology technology technology technology technology

PM2.5 -0.0082*** -0.0119** -0.0134*** -0.0061** -0.0060*** -0.0128*** -0.0061***

(0.0014) (0.0056) (0.0028) (0.0028) (0.0022) (0.0025) (0.0017)

KP F -statistic 8249 365.6 1796 2495 3902 2178 6348

Firm fixed effects Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y

Weather controls Y Y Y Y Y Y Y

# firms 356,179 24,652 102,699 97,918 130,910 127,351 228,828

Sample size 1,593,247 112,792 467,768 435,842 576,845 580,560 1,012,687

Share of sample size (%) 100.0 7.1 29.4 27.4 36.2 36.4 63.6

ln(value added per worker)

Four categories Two categories

Notes:  All models use annual number of days with thermal inversions as first-stage instruments. All models 

include firm fixed effects, year fixed effects, and weather controls in both stages. The technology intensity 

definition in Columns (2) through (7) is from https://www.oecd.org/sti/ind/48350231.pdf. We group high 

technology and medium high technology into high technology into Column (6), and group low technology 

and medium low technology into low technology into Column (7). Sample period: 1998-2007. Standard 

errors are clustered at the firm level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F -

statistic is the Kleibergen-Paap Wald rk F -statistic for weak identification in the first stage (Kleibergen and 

Paap, 2006). 



Table 6: 2SLS estimates – effects of air pollution on productivity, employment, capital, and 

value added 

 

 

  

(1) (2) (3) (4)

ln(value added ln(number ln(value

Dependent variable: per worker) workers) ln(capital) added)

PM2.5 -0.0082*** 0.0051*** -0.0003 -0.0032**

(0.0014) (0.0011) (0.0013) (0.0015)

KP F -statistic 8,249 8,249 8,249 8,249

Firm fixed effects Y Y Y Y

Year fixed effects Y Y Y Y

Weather controls Y Y Y Y

# firms 356,179 356,179 356,179 356,179

Sample size 1,593,247 1,593,247 1,593,247 1,593,247

Notes:  All models use annual number of days with thermal inversions as first-stage 

instruments. All models include firm fixed effects, year fixed effects, and weather 

controls in both stages. Sample period: 1998-2007. Standard errors are clustered at the 

firm level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F -

statistic is the Kleibergen-Paap Wald rk F -statistic for weak identification in the first 

stage (Kleibergen and Paap, 2006). 



Table 7: 2SLS estimates – effects of air pollution on employment and productivity split by “clean” 

versus “polluting” firms 

 

 

  

(1) (2) (3) (4) (5) (6)

Dependent variable:

Full "Polluting "Clean Full "Polluting "Clean

Sample firms" firms" Sample firms" firms"

PM2.5 0.0051*** 0.0056*** 0.0047*** -0.0082*** -0.0046* -0.0104***

(0.0011) (0.0019) (0.0013) (0.0014) (0.0025) (0.0017)

KP F -statistic 8,249 2,488 5,804 8,249 2,488 5,804

Firm fixed effects Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y

Weather controls Y Y Y Y Y Y

# firms 356,179 117,312 238,867 356,179 117,312 238,867

Sample size 1,593,247 530,827 1,062,420 1,593,247 530,827 1,062,420

ln(number workers) ln(value added per worker)

Notes:  All models use annual number of days with thermal inversions as first-stage instruments. All 

models include firm fixed effects, year fixed effects, and weather controls in both stages. The 

pollution intensity definition in Columns (2), (3), (5), and (6) is from 

http://www.oecd.org/industry/inv/investmentstatisticsandanalysis/2076285.pdf. Sample period: 

1998-2007. Standard errors are clustered at the firm level and reported in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1. The KP F-statistic is the Kleibergen-Paap Wald rk F-statistic for weak identification 

in the first stage (Kleibergen and Paap, 2006). 



Table 8: OLS and 2SLS estimates (effect of output on pollution) using effect of China joining 

WTO on coastal versus inner regions as an instrument   

  

 

(1) (2)

OLS 2SLS

First stage

Dependent variable: ln(Value added)

Coast*post 2001 0.0574***

(0.0147)

KP F -statistic 15.3

Second stage

Dependent variable:

ln(Value added) 0.0048*** 1.4317***

(0.0012) (0.3665)

County fixed effects Y Y

Year fixed effects Y Y

Sample size 25,357 25,357

 

ln(PM2.5)

Notes: Both models include county and year fixed effects (in 

both stages for 2SLS). Sample period: 1998-2007. Standard 

errors are clustered at the county-year level and reported in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F-

statistic is the Kleibergen-Paap Wald rk F-statistic for weak 

identification in the first stage (Kleibergen and Paap, 2006). 



Appendix 1: summary statistics for firms with a single year of data versus all firms in the 

sample 

 

 

 

  

Variables Mean

Standard 

deviation Mean

Standard 

deviation Difference

Value added (1,000 CNY) 12,407     23,203     6,967       17,316     5,440         

Employment (person) 201          295          124          226          77              

Capital (1,000 CNY) 14,091     30,574     8,314       25,660     5,777         

Labor productivity (1,000 CNY/worker) 3.89         1.02         3.77         1.10         0.12           

Particular matter (PM2.5) (µg/m3) 69.71 22.56 72.11 24.51 -2.40

Number observations

Notes:  All firms sample includes 477,496 firms and single-year sample includes 121,317 firms. Sample 

period: 1998-2007.

All firms Single-year firms

1,714,564 121,317



Appendix 2: 2SLS estimates (effect of pollution on productivity) comparing three major 

economic centers to rest of country 

  

 

(1) (2) (3)

Dependent variable:

3 economic All

Baseline centers other

PM2.5 -0.0082*** -0.0061** -0.0058**

(0.0014) (0.0026) (0.0027)

KP F-statistic 8,249 3,036 2,154

Firm fixed effects Y Y Y

Year fixed effects Y Y Y

Weather controls Y Y Y

# firms 356,179 200,933 155,249

Sample size 1,593,247 913,848 679,391

ln(value added per worker)

Notes:  All models include firm fixed effects, year fixed effects and 

weather controls in both stages. Column 1 includes all firms; Column 

2 includes all firms in Jing-Jin-Ji, Yangtze River Delta, and Pearl River 

Delta economic centers; Column 3 includes all firms not in these three 

centers. Sample period: 1998-2007. Number of observations in 

Columns 2 and 3 do not equal those in Column 1 due to the small 

number of firms that switch locations during the sample period. 

Standard errors are clustered at the firm level and reported in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is the 

Kleibergen-Paap Wald rk F-statistic for weak identification in the first 

stage (Kleibergen and Paap, 2006).



Appendix 3 2SLS estimates (effect of air pollution on productivity) – robustness to clustering of standard errors and regional time 

trends 

 

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable:

Baseline

Year FE +

By firm By Year-by Year-by- Provincial provincial 

and county- county- By region province quadratic quadratic

year year county FE FE trends trends

PM2.5 -0.0082*** -0.0082** -0.0082** -0.0082** -0.0119*** -0.0132*** -0.0056*** -0.0085***

(0.0014) (0.0038) (0.0037) (0.0040) (0.0037) (0.0037) (0.0008) (0.0015)

KP F -statistic 8,249 162 164 129 1,331 1,802 30,374 10,273

Cluster by firm Y N N N Y Y Y Y

Cluster by firm and county-year N Y N N N N N N

Cluster by county-year N N Y N N N N N

Cluster by county N N N Y N N N N

# firms 356,179 356,179 356,179 356,179 356,179 356,179 356,179 356,179

Sample size 1,593,247 1,593,247 1,593,247 1,593,247 1,593,247 1,593,247 1,593,247 1,593,247

ln(value added per worker)

Time fixed effects and trendsClustering of standard errors

Notes:  Sample period: 1998 - 2007. All models use annual number of days with thermal inversions as first-stage instruments. All 

models include firm fixed effects and weather controls in both stages. Columns 1 through 4 also include year fixed effects, Column 

5 region-by-year fixed effects, Column 6 province-by-year fixed effects, Column 7 provincial-specific quadratic time trends, and 

Column 8 year fixed effects along with provincial-specific quadratic time trends. Standard errors are clustered at the firm level in 

Columns 1 and 5 through 8, at the firm and county-by-year level in Column 2, at the county-by-year level in Column 3, at the 

county level in Column 4, and are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F -statistic is the Kleibergen-Paap 

Wald rk F -statistic for weak identification in the first stage (Kleibergen and Paap, 2006). 



  

Appendix 4 2SLS estimates (effect of air pollution on productivity) – robustness to weighting, sample composition, and functional 

form 

 

(1) (2) (3) (4) (5) (6)

Dependent variable:

Non- Single- Log

Baseline Weighted winsorized Raw data plant function

PM2.5 -0.0082*** -0.0088*** -0.0088*** -0.0108*** -0.0087***

(0.0014) (0.0023) (0.0016) (0.0017) (0.0015)

Log PM2.5 -0.5225***

(0.0902)

KP F -statistic 8,249 1,911 8,783 7,878 8,070 7,265

Cluster by firm Y Y Y Y Y Y

Weighting by value added N Y N N N N

Winsorized Y Y N N N Y

# firms 356,179 356,179 379,349 388,277 344,453 356,179

Sample size 1,593,247 1,593,247 1,746,850 1,767,917 1,499,158 1,593,247

Notes:  All models use annual number of days with thermal inversions as first-stage instruments. All 

models include firm fixed effects, year fixed effects, and weather controls in both stages. Sample period: 

1998-2007. Column 3 uses non-winsorized sample, Column 4 uses all data including the unreliable 

observations, and Column 5 uses only firms with a single plant location. Standard errors are clustered at 

the firm level and are reported in parentheses. The regression is weighted by value added  in column 2. In 

Columns 1 through 6, PM2.5 is measured in levels and in Column 7 in log form. *** p<0.01, ** p<0.05, * 

p<0.1. The KP F -statistic is the Kleibergen-Paap Wald rk F -statistic for weak identification in the first 

stage (Kleibergen and Paap, 2006). 

ln(value added per worker)



Appendix 5: coefficients and 95% confidence intervals for 100 placebo tests reassigning 

pollution data randomly to a different year’s productivity and weather data 

 

Notes: Coefficients and 95% confidence intervals from 100 placebo 2SLS estimates (effect of air 

pollution on productivity) using annual number of days with thermal inversions as an 

instrument. Placebo tests performed by randomly reassigning one year’s productivity data to a 

different year’s pollution and weather data. 

  



Appendix 6: 2SLS estimates – tests for firm sorting based on air pollution (key versus non-key 

cities under the Air Pollution and Prevention and Control Law revision) 

 

  

(1) (2) (3) (4) (5) (6)

Dependent variable:

Full Key Non-key Full Key Non-key

sample cities cities sample cities cities

PM2.5 0.0033 0.0045 0.0052 0.0016 -0.0008 0.0007

(0.0027) (0.0038) (0.0035) (0.0018) (0.0022) (0.0025)

KP F -statistic 218.4 81.5 131.8 322.2 116.1 188.4

County fixed effects Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y

Weather controls Y Y Y Y Y Y

Clustering County County County County County County

Sample size 23,091 4,582 18,509 22,684 4,495 18,189

Fraction of firms entering Fraction of firms exiting

Notes:  Sample period: 1998 - 2007 in Columns 1 and 4; 1999 to 2007 in Columns 2 and 3 to 

measure entry from the prior year; 1998 - 2006 in Columns 4 and 5 to measure exit in the 

following year. All columns are county-year data and aggregate all firms to the county level. 

All models use annual number of days with thermal inversions as first-stage instruments. 

All models include year fixed effects, county fixed effects, and weather controls in both 

stages. Standard errors are clustered at the county level and reported in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is the Kleibergen-Paap Wald rk F-statistic for 

weak identification in the first stage (Kleibergen and Paap, 2006). 



Appendix 7: Sensitivity of entry and exit regressions to censoring of “below-scale” firms 

This appendix describes how we modify the entry and exit rates to test the sensitivity of the 

entry and exit regressions to censoring on below-scale firms. 

Using the 2004 census data, determine the number of below-scale firms in county 𝑐𝑐 as a fraction 

of below-scale firms nationwide in 2004: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 =
𝑏𝑏𝑏𝑏𝑐𝑐∑ 𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 , (A1) 

where 𝑏𝑏𝑏𝑏𝑐𝑐 is the number of below-scale firms in county 𝑐𝑐 in year 2004. The unadjusted entry rate 

for county 𝑐𝑐 in year 𝑡𝑡 is: 𝑒𝑒𝑒𝑒𝑡𝑡𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐 =
𝑎𝑎𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐 , (A2) 

where 𝑏𝑏𝑐𝑐𝑐𝑐 is the number of firms that appeared in the sample in county 𝑐𝑐 in moving from year 𝑡𝑡 − 1 to year 𝑡𝑡 and 𝑏𝑏𝑐𝑐𝑐𝑐 is the number of firms in county 𝑐𝑐 in year 𝑡𝑡. 
We modify each county’s entry rate to assume that 𝑏𝑏 percent of firms that appeared nationwide 

(∑ 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐 ) moved from being “below- scale” to being “above-scale” rather than entering. We 

apply this adjustment proportionally to each county based on its fraction of “below-scale” firms 

in 2004 bounding the rate to be non-negative: 𝑒𝑒𝑒𝑒𝑡𝑡𝑏𝑏𝑒𝑒� 𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑏𝑏𝑚𝑚 �0, 𝑒𝑒𝑒𝑒𝑡𝑡𝑏𝑏𝑒𝑒𝑐𝑐𝑐𝑐 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟∗∑ 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐∑ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 �. (A3) 

We modify the exit rate in an analogous manner to test the sensitivity of the exit regressions to 

truncation for “above-scale” firms. The unadjusted exit rate for county 𝑐𝑐 in year 𝑡𝑡 is: 𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡𝑐𝑐𝑐𝑐 =
𝑑𝑑𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐 , (A4) 

where 𝑑𝑑𝑐𝑐𝑐𝑐 is the number of firms that disappeared from the sample in county 𝑐𝑐 in moving from 

year 𝑡𝑡 to year 𝑡𝑡 + 1. 

We modify each county’s exit rate to assume that 𝑏𝑏 percent of firms that disappeared 

nationwide (∑ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 ) became “below-scale” firms rather than exiting. As with the modified entry 

rate, we apply this adjustment proportionally to each county based on its fraction of the nation’s 

“below-scale” firms in 2004 bounding the rate to be non-negative: 𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡� 𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑏𝑏𝑚𝑚 �0, 𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡𝑐𝑐𝑐𝑐 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟∗∑ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐∑ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 �. (A5) 

We then re-estimate our exit regressions varying the value of 𝑏𝑏 between 0 and 1. 

 

 



Appendix 8: sensitivity of entry regression to censoring of “below-scale” firms 

 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Dependent variable:

r=0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.5 r=0.6 r=0.7 r=0.8 r=0.9 r=1

PM2.5 0.0030 0.0028 0.0027 0.0027 0.0023 0.0019 0.0017 0.0019 0.0022 0.0021 0.0019

(0.0038) (0.0036) (0.0035) (0.0033) (0.0032) (0.0031) (0.0030) (0.0028) (0.0027) (0.0026) (0.0025)

KP F -statistic 77.84 77.84 77.84 77.84 77.84 77.84 77.84 77.84 77.84 77.84 77.84

County fixed effects Y Y Y Y Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y Y Y Y Y

Weather controls Y Y Y Y Y Y Y Y Y Y Y

Clustering County County County County County County County County County County County

Sample size 22,895 22,895 22,895 22,895 22,895 22,895 22,895 22,895 22,895 22,895 22,895

Fraction of firms entering (modified)

Notes:  Sample period: 1999 to 2007 to measure entry from the prior year. Dependent variable is county entry rate modified as described in Online 

Appendix 7 for different values of r . County-year data aggregating all firms to the county level. All models use annual number of days with 

thermal inversions as first-stage instruments. All models include year fixed effects, county fixed effects, and weather controls in both stages. 

Standard errors are clustered at the county level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is the Kleibergen-

Paap Wald rk F-statistic for weak identification in the first stage (Kleibergen and Paap, 2006). 



Appendix 9: sensitivity of exit regression to censoring of “below-scale” firms 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Dependent variable:

r=0 r=0.1 r=0.2 r=0.3 r=0.4 r=0.5 r=0.6 r=0.7 r=0.8 r=0.9 r=1

PM2.5 0.0023 0.0023 0.0022 0.0022 0.0022 0.0020 0.0019 0.0017 0.0014 0.0012 0.0011

(0.0023) (0.0022) (0.0021) (0.0020) (0.0020) (0.0019) (0.0018) (0.0018) (0.0017) (0.0016) (0.0016)

KP F -statistic 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6

County fixed effects Y Y Y Y Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y Y Y Y Y Y Y Y

Weather controls Y Y Y Y Y Y Y Y Y Y Y

Clustering County County County County County County County County County County County

Sample size 22,493 22,493 22,493 22,493 22,493 22,493 22,493 22,493 22,493 22,493 22,493

Fraction of firms exiting (modified)

Notes:  Sample period: 1998 to 2006 to measure exit in the next year. Dependent variable is county exit rate modified as described in Online 

Appendix 7 for different values of r . County-year data aggregating all firms to the county level. All models use annual number of days with 

thermal inversions as first-stage instruments. All models include year fixed effects, county fixed effects, and weather controls in both stages. 

Standard errors are clustered at the county level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is the Kleibergen-

Paap Wald rk F-statistic for weak identification in the first stage (Kleibergen and Paap, 2006). 



Appendix 10: effect of inversions on productivity (reduced-form estimates distinguishing 

counties with high and low numbers of inversions) 

 

 

 

(1) (2)

Dependent variable

Inversions -0.0003*** -0.0004*

(0.0001) (0.0002)

Inversions*1(high-inversion region) 0.0002**

(0.0001)

Firm fixed effects Yes Yes

Year fixed effects Yes Yes

Weather controls Yes Yes

Observations 1,593,247 1,593,247

Number of firms 356,179 356,179

ln(Value added per worker)

Notes:  All models include firm fixed effects, year fixed effects, and 

weather controls. Sample period: 1998-2007. "High-inversion regions" 

in Column (2) are defined as counties with annual number of days 

with an inversion above the median. Standard errors are clustered at 

the firm level and reported in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1. The KP F-statistic is the Kleibergen-Paap Wald rk F-statistic for 

weak identification in the first stage (Kleibergen and Paap, 2006). 



Appendix 11: Test of parallel trends for coastal versus inner regions before China joins the 

WTO in late 2001 

 

Notes: 𝛽𝛽1𝑐𝑐 coefficients and 95% confidence intervals from estimating a regression of county-

level output on county fixed effects, year fixed effects, and interactions between year fixed 

effects and coastal counties: Q𝑐𝑐𝑐𝑐 = 𝛽𝛽0 + ∑ 𝛽𝛽1𝑐𝑐𝜌𝜌𝑐𝑐Ι𝑐𝑐∈𝐶𝐶𝐶𝐶𝑎𝑎𝑏𝑏𝑐𝑐𝑐𝑐 + 𝛼𝛼𝑐𝑐 + 𝜌𝜌𝑐𝑐 + 𝜈𝜈𝑖𝑖𝑐𝑐 normalizing 𝛽𝛽12001 to 

zero. 

 

  



Appendix 12: General-equilibrium model solution, calibration, and data 

Model solution 

Substituting Equation (5) into (6) (both from the paper) we obtain: 𝑄𝑄𝑐𝑐 = �𝐴̃𝐴𝑐𝑐𝐾𝐾𝑡𝑡𝛾𝛾𝐿𝐿𝑡𝑡1−𝛾𝛾�𝜂𝜂𝑐𝑐, (A1) 

where 𝜂𝜂𝑐𝑐 = 1 [1 − (𝜃𝜃 + 𝜅𝜅)𝜇𝜇𝑐𝑐]⁄  and 𝐴̃𝐴(𝑡𝑡) = �𝐵𝐵𝜃𝜃+𝜅𝜅𝜆𝜆(𝑡𝑡)(𝜃𝜃+𝜅𝜅)𝜇𝜇𝑐𝑐𝐴𝐴𝑐𝑐�. 
Substituting Equation (A1) into (12) from the paper and then solving for 𝐶𝐶𝑐𝑐: 𝐶𝐶𝑐𝑐 = �𝐴̃𝐴𝑐𝑐𝐾𝐾𝑡𝑡𝛾𝛾𝐿𝐿𝑡𝑡1−𝛾𝛾�𝜂𝜂𝑐𝑐 − 𝐼𝐼𝑐𝑐. (A2) 

Using Equation (13) from the paper for 𝐼𝐼𝑐𝑐 and substituting it into (A2): 𝐶𝐶𝑐𝑐 = �𝐴̃𝐴𝑐𝑐𝐾𝐾𝑐𝑐𝛾𝛾𝐿𝐿𝑡𝑡1−𝛾𝛾�𝜂𝜂𝑐𝑐 − [𝐾𝐾𝑐𝑐 − (1 − 𝛿𝛿)𝐾𝐾𝑐𝑐−1]. (A3) 

Now substituting this for 𝐶𝐶𝑐𝑐 in Equation (11) from the paper we can transform the 

optimization problem to a choice of capital stock period-by-period: 𝑚𝑚𝑏𝑏𝑚𝑚𝐾𝐾𝑐𝑐 ≥ 0
∑ 𝑀𝑀𝐿𝐿𝑡𝑡𝑙𝑙𝑒𝑒 �Γ(𝐾𝐾𝑐𝑐)𝑀𝑀𝐿𝐿𝑡𝑡 � (1 + 𝜌𝜌)−𝑐𝑐𝑇𝑇𝑐𝑐=1 , (A4) 

where Γ[𝐾𝐾𝑐𝑐] = �𝐴̃𝐴𝑐𝑐𝐾𝐾𝑐𝑐𝛾𝛾𝐿𝐿𝑡𝑡1−𝛾𝛾�𝜂𝜂𝑐𝑐 − [𝐾𝐾𝑐𝑐 − (1 − 𝛿𝛿)𝐾𝐾𝑐𝑐−1] subject to [𝐾𝐾𝑐𝑐 − (1 − 𝛿𝛿)𝐾𝐾𝑐𝑐−1] ≥ 0 and Γ[𝐾𝐾𝑐𝑐] ≥ 0. 

We use the Matlab function fmincon to solve Equation (A4) over 100 periods (1996 to 2095) 

choosing the optimal capital-stock path given the initial capital stock in 1995. We simulate 

100 years to ensure that endpoint conditions do not unduly impact the outcome over the 

sample period. The parameter values described below allow us to match actual output and 

pollution reasonably well. Figures A1 and A2 below compare actual and simulated values of 

output and pollution over the sample period. Actual output is based on the variable “real 

GDP at constant 2011 national prices” from the Penn World Tables (Zeileis (2019) and 

Feenstra et al. (2015)). Average PM2.5 concentrations are calculated from the data described in 

the text and are the same as those in Figure 1 in the paper. 

To simulate the general-equilibrium effects of an exogenous change in pollution we slightly 

adjust the value of 𝜇𝜇𝑐𝑐 multiplicatively and equally across all periods and re-optimize the 

model to obtain an elasticity of output with respect to pollution. The estimate was similar for 

a range of variations in both directions (𝜇𝜇 during the sample period ranging from 0.98 to 1.2). 

 



Figure A1: Simulated versus actual output 

 

Figure A2: Simulated versus actual pollution concentrations 

 



Parameter calibration 

We calibrate the model to China’s economy during our sample period using the following 

parameter values: 

1) The consumer’s rate of time preference (𝜌𝜌) is set to 0.04 in all years – a value commonly 

used in macroeconomic simulations (e.g., Chang et al., 2015). 

2) The labor share (1 − 𝛾𝛾) is set to 0.425 in all years based on the average labor share in 

China from 1995 to 2017 based on the variable “share of labor compensation in GDP at 

current national prices” in the Penn World Tables (Zeileis, 2019 and Feenstra et al., 2015). 

3) The elasticity of output with respect to pollution (𝜃𝜃 + 𝜅𝜅) is set to our partial-equilibrium 

estimate of -0.1710 in all years. 

4) The depreciation rate (𝛿𝛿) is set to 0.09 in all years based on Brandt et al. (2012) from 

which our firm productivity data is taken. 

5) The elasticity of pollution with respect to output (𝜇𝜇) is set to 1.4317 through the year 

2007 based on our differences-in-differences estimates as described in the paper. After 

2007 we assume that this value declines smoothly to 1.0 in the year 2095 (the last year of 

our simulation). This is to account for China’s projected improvements in emissions 

control over time. 

6) The share of total output comprised of manufacturing (𝜆𝜆) is set year-by-year based on 

the share of GDP in first, second, and tertiary industries (China Statistical Yearbook, 2018) 

from 1996 to 2017. After 2017 we assume that it remains constant at the value in 2017 

(0.405). 

7) The baseline level of PM2.5 concentrations (𝐵𝐵) is set to minimize the difference between 

the average actual and simulated values of concentrations across all years: 𝐸𝐸�Ω𝑐𝑐 �𝜆𝜆𝑐𝑐𝑄𝑄�𝑐𝑐�𝜇𝜇𝑐𝑐⁄ � = 0.0005486 where 𝑄𝑄�𝑐𝑐 are simulated values with 𝐵𝐵 = 1. 

 
Exogenous data 

Population (𝑃𝑃): actual and projected population by the United Nations from 1996 to 2095 

(https://population.un.org/wpp/). 

Augmented TFP �𝐴̃𝐴�: the 1996 value is based on the variable “residual TFP” in the Penn 

World Tables (Zeileis, 2019 and Feenstra et al., 2015). From 1997 to 2017, we assume that it 

grows at 7.96% per annum based on estimates in Brandt et al. (2012) using manufacturing 

sector data from 1998 to 2007. Beginning in 2018 we assume that the growth rate declines to 

3.0% in 2033 after which it remains at 3.0% for the remaining years. 

Initial Capital Stock (𝐾𝐾1995): 1995 value of the variable “Capital stock at constant 2011 national 

prices” in the Penn World Tables (Zeileis, 2019 and Feenstra et al., 2015). 

 

Endogenous data (for calibration) 

Output (𝑄𝑄): 1998 to 2007 data based on the variable “Real GDP at constant 2011 national 

prices” in the Penn World Tables (Zeileis, 2019 and Feenstra et al., 2015). 

Pollution (𝑃𝑃): PM2.5 concentrations in the sample period (Figure 1 in the main text). 
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Appendix 13: Derivations of estimates for pollution reduction costs 

Chay and Greenstone (2005): The first stage of the paper’s 2SLS estimation implies that total 

suspended particulates (TSPs)1 declined by 12% more in non-attainment than in attainment 

counties in response to the US Clean Air Act. The estimates use data from 1970 and 1980. 

Chen et al. (2013): Estimates that the Air Pollution Index (API) dropped 33% due to the 

regulations implemented during the 2008 Beijing Olympics.2 The API is primarily 

attributable to PM103 in 2008. 

Fu and Gu (2017): Estimates the elasticity of the API with respect to toll rates across Chinese 

cities. Using data from 2011 to 2012 they find an elasticity of -0.15. The API is primarily 

attributable to PM10 during this time. To reduce the API by 1% the toll rate needs to increase 

on average from CNY 0.400 to 0.437. 

Gendron-Carrier et al. (2017): Finds that particulate concentrations (measured by AOD) drop 

by 4% in a 10-kilometer radius around a city center following a subway system opening. The 

paper uses a sample of 171 cities across Asia, Europe, North America, South America, 

Australia, and Africa between August 2001 and July 2013.  

Li et al. (2019): Estimates the effects on the API and Air Quality Index (AQI)4 of all subway 

expansions in Beijing from 2008 to 2017. A one-standard deviation increase in subway 

density (by their measure) decreases the API/AQI by 2%. The API is primarily attributable 

to PM10 during this time period and the AQI to PM2.5. 

Greenstone (2002): From 1972 to 1987, non-attainment counties that were subject to 

regulation under the US Clean Air Act lost approximately $75 billion of output (in 1987 

dollars) in pollution-intensive industries relative to attainment counties. This is a lower 

bound on the costs since it is a partial-equilibrium estimate ignoring output’s effect on 

pollution. Adjusting this for inflation using the Consumer Price Index this is $118.8 billion in 

                                                           
1 TSP was a cruder measure of suspended particulates before the PM10 and PM2.5 measures were introduced and is the closest to 
the pollutant measure we examine during our sample period. 
2 These measures included plant closures and relocations, furnace replacements, introduction of new emission standards, and 
stringent traffic controls. 
3 This is particulate matter smaller than ten micrometers in diameter. 
4 China reported the API through 2013 after which it began reporting the more sophisticated AQI. 



2002 dollars (roughly the midpoint of our sample). This is $7.9 billion annually on average 

over the fifteen years. The pollutants include carbon monoxide (CO), O3, sulfur dioxide 

(SO2), and total suspended particulates (TSP). 

He et al. (2016): The first-stage of the paper’s 2SLS estimation estimates that the air quality 

regulations during the 2008 Beijing Olympic Games5 reduce PM10 concentrations by 24 to 

26%. 

Viard and Fu (2015): Beijing’s API, which is primarily due to PM10 during the sample period, 

falls 21% in response to restricting 20% of cars one-day-a-week in the short run. This 

suggests reducing pollution by 1% requires restricting 1% of vehicles one-day-per week. 
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