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Abstract

We study the impacts of a program that introduced a computer-assisted learning plat-

form into regular math classes using a randomized control trial in Brazilian primary

public schools. Once a week, teachers would take their students to the school’s com-

puter lab and teach using the online Khan Academy platform, instead of their standard

math classes. We find no average treatment effect on students’ math proficiency. How-

ever, we find positive effects of the program on measures of attitudes towards math.

Moreover, we find suggestive evidence that the program may have positive effects on

proficiency when there are no infrastructure problems and when the implementation

modality is based on one computer per student. These results highlight the implementa-

tion challenges associated with educational tech-interventions in developing countries.

JEL Codes: C93, I21, O15

Keywords: Computer-aided learning, Education Technology, Program Implementation
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1 Introduction

Primary school enrollment in the different regions of the developing world has substan-

tially increased over the past decades, but evidence shows that converting higher enrollment

into improved human capital is a challenge. Overall, learning levels in developing countries

remain critically low, with too many children and adolescents leaving school with insufficient

literacy and numeracy skills (Glewwe and Muralidharan, 2016; WorldBank, 2018). Among

the many different approaches for addressing educational deficiency, the use of technology-

enhanced instruction has been growing in popularity as an approach for improving the quality

of teaching and learning. Different interventions rely on a range of approaches, such as intro-

ducing computers and internet connection in public schools, distributing laptops to students,

and promoting the adoption of educational software that are able to deal with within-class

heterogeneity in students’ learning levels by delivering content adapted to each students’

needs (Bulman and Fairlie, 2016).

In this paper, we present the findings of a large-scale randomized evaluation designed to

evaluate a program that integrates a computer-assisted learning platform into regular math

classes of Brazilian public primary schools. Once a week, teachers would take their students

to the school’s computer lab and the students would use the online Khan Academy platform

for instructional content and exercises for 50 minutes, under their supervision. The main

advantage of this program is that the platform is adaptive, tailoring the exercises for each

particular student based on their performance.

Khan Academy is one of the most popular online platforms focused on delivering edu-

cational content tailored at each students’ level, offering free instructional videos and per-

sonalized exercises both in math as well as in other subject areas, ranging from kindergarten

to college levels. The platform stands out for its worldwide popularity, having reached 71

million individuals in 190 countries since its foundation in 2008. Through partnerships with

several organizations in different countries, Khan Academy has increasingly expanded its
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reach to different audiences in various languages. The evaluated program was an initiative

implemented in Brazil since 2012 as a partnership between Khan Academy and the nonprofit

Lemann Foundation.

We present results from a field experiment based on 5th and 9th grade students from

157 schools (approximately 15000 students) located across three different regions of Brazil.1

We estimate the impacts of the intervention, carried out in 2017, on math proficiency using

a standardized national exam, and also on a measure of attitudes towards math. We first

show that students in treated grades report to use the platform in math classes, and that

this increase did not crowd out the use of computer lab by other subjects. In terms of

outcomes, we find no evidence that Khan Academy in Schools enhanced math proficiency,

on average. However, using a survey designed to measure student’s attitudes towards math,

we find evidence that the interactive and playful environment of the platform translates into

more positive attitudes towards math.

In an attempt to understand these results, we perform an exercise to explore the role of

the quality of implementation, which suggests that such null effect on students’ test scores

may hide a positive effect in schools with better infrastructure to receive the program, but

counterbalanced by negative effects in schools with worse infrastructure, where students

spent significantly less time in the platform when compared with the first group of schools.

While we do not have direct experimental variation to estimate such heterogeneous effects,

we are able to carry out this comparison by leveraging the design of the experiment, which

delivered one treated grade at every participant school. We explain in detail in Section 6.3

the limitations of such exercise, and why we consider such heterogeneity results as only sug-

gestive. Taken together, these results suggest that the program is very efficient in engaging

students and changing attitudes towards math in a short time spam, but gains in proficiency

may require a more consistent use.

Other studies have previously tried to investigate the effects of the Khan Academy

1These are the grades that participate in the standardized national evaluation in Brazil.
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platform use on math achievement. However the majority of the existing evidence relies on

quasi-experimental approaches and/or small samples.2 A notable exception is an experimen-

tal study by Büchel et al. (2020), who studied a randomized control trial in El Salvador that

was implemented slightly after ours, in 2018. In their setting, Khan Academy entered as

an additional resource that increased the duration of math exposure, while in our setting it

followed the guidelines from the Khan Academy in Schools program, which integrated the

platform into regular math classes, so it did not increase the total number of hours students

were exposed to math content. They report an increase in math proficiency of 0.21σ when

comparing with control students and 0.09σ when comparing with students that were exposed

to the same additional hours of math classes without the technology.

While this paper is one of the first large-scale randomized evaluations, with more than

150 schools and almost 15,000 students, of an implementation of the Khan Academy plat-

form, there has been a series of studies investigating the effects of technology-enhanced

instruction interventions in developing countries on learning outcomes. Reviews by Glewwe

and Muralidharan (2016) and Bulman and Fairlie (2016) show the results are largely varied,

with estimates ranging from significantly negative to significantly positive magnitudes. Over-

all, the evidence suggests that simply granting hardware to students in developing countries

do not lead to gains in proficiency.3 On the other hand, interventions that provide students

with a given software/platform as a learning aid generally show positive effects on learning,

particularly if it has the ability to tailor content to the student’s needs.4

Most of the available evidence is associated with computer-aided learning (henceforth

CAL) interventions that increase the number of hours students are exposed to academic

2For example, Chu et al. (2018) use an encouragement design to show Khan Academy led to significant
improvement in students’ test performance, based on a sample of 103 middle school students in the US. Using
non-experimental methods, Adams (2016) and Kelly and Rutherford (2017) find no association between Khan
Academy use and math test scores, while Manaus (2016), Phillips and Cohen (2015) and Weeraratne and
Chin (2018) find positive results. Adams (2016) reviews other studies with qualitative evaluations.

3Barrera-Osorio and Linden (2009); Beuermann et al. (2015); Cristia et al. (2017); Malamud and Pop-
Eleches (2011); Mo et al. (2013)

4Banerjee et al. (2007); Lai et al. (2012, 2013, 2015); Linden (2008); Mo et al. (2014, 2020); Muralidharan
et al. (2019); Yang et al. (2013)
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instruction, complementing traditional teaching. Less is known on the effects of CAL in-

terventions during school time, as an integrated resource into regular teaching, and the few

existing studies show mixed results. Linden (2008), for instance, finds negative effects of a

CAL program implemented as a substitute for regular teaching in India, while Carrillo et al.

(2011) find promising results in Ecuador, where a government-implemented large-scale CAL

program in primary schools had a positive impact on mathematics test scores. While Büchel

et al. (2020) implement an intervention that increased the number of hours, they also have

a control arm that received the additional hours without the platform, allowing for a com-

parison between the technology and regular teaching, yielding substantially smaller effects.

Bettinger et al. (2020) also examine the effects of different dosages of a CAL platform as a di-

rect substitute for traditional teaching in Russia, finding positive effects on test scores. Their

treatment was administrated as a substitute to homework, which differs from the treatment

we analyze, where it was implemented during class hours. Finally, Mo et al. (2020) find that

when schools (disrespecting the intervention protocol) used CAL as substitute to traditional

learning, there were no effects, while on those schools that used as complements there were

positive effects.

The modality of CAL implementation is rarely a choice for developing countries. Capac-

ity restrictions may limit the ability of implementing CAL as a complement to traditional

teaching. Indeed, in 2017, 90% of Brazilian public schools had classes in more than one

period (morning, afternoon or evening).5 Therefore, we contribute to the literature by im-

plementing a large-scale randomized control trial to investigate the effects of a CAL adaptive

intervention integrated into regular teaching in Brazil. In addition, our results may explain

the mixed results found to date in this strain of the literature. When such programs are

implemented during class hours, their effects will depend on their efficacy relative to a stan-

dard math class. We provide evidence that, in such cases, the net effect might range from

5We use the Brazilian educational census from 2017 and analyzed all schools with students from the
1st-9th grades. If at least 15% of the students had classes in more than one period we classified the school
as having classes in more than one period.
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negative to positive, depending on whether there are implementation challenges. Therefore,

assessing the adequacy of the implementation conditions and the technology infrastructure

is crucial before scaling up such programs in a developing country context.

This paper is organized as follows. Section 2 describes the background and the program.

Section 3 presents the experimental design. Section 4 describes our data and empirical

strategy. Section 5 presents details on the implementation of the program and compliance

with the experimental design. Section 6 discusses the results and section 7 concludes.

2 Background and Context: Khan Academy in Schools

Program

Khan Academy is an online interactive platform offering free instruction and practice in

mathematics as well as other subjects, such as science, computer programming, history, eco-

nomics, among others. The platform offers contents in a personalized environment, adapting

the user’s experience to identify strengths and tackle learning gaps. The level of math con-

tents available ranges from basic addition and subtraction to more advanced topics, such as

differential equations and multivariable calculus.

The initiative has greatly expanded over the years and currently reaches millions of stu-

dents in over 190 countries with resources available in 36 languages. The Brazilian version of

the platform was a joint effort between Khan Academy and Lemann Foundation, a Brazil-

ian nonprofit focused at enhancing the quality of public schools in Brazil, which are mostly

attended by children coming from lower income families. Focused on math education, the

partnership translated the contents into Portuguese and reached 2.6 million students, which

registered in the platform in the period of 2012 to 2017.6

The platform may enhance students’ math performance through three main channels.

6According to information reported o the Lemann Foundation’s website
https://fundacaolemann.org.br/materiais/khan-academy-in-brazil
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First, it may increase the quality of math content accessed by students by offering quality

material developed by specialists. The second potential channel is by increasing students’

learning through offering content and exercises tailored to each students’ level, addressing

students’ heterogeneity within class. A third channel through which the platform may have

an impact on a students’ performance is by shifting the students’ perceptions regarding

math, turning the studying experience more attractive. By presenting the math content in

an interactive and friendly way, designed to promote a fun and exciting learning experience,

the platform may change the students’ attitudes towards math, which may be ultimately

translated into an increased math performance. Our experiment is not designed to tease

apart the effects from each of these channels and it should then be seen as the composite

effect of the platform. Teasing them apart would require a much larger sample, and a design

in which access to each component of the treatment is independently randomized, which

would not be feasible given our implementation constraints.

Elementary education in Brazil is mandatory and goes from 1st to 9th grades, with

students ranging from 6 to 14 years old. There are three main groups of schools in terms of

the grades they offered: (a) schools that offer only the first 5 grades (Cycle I), (b) schools

that offer only the final 4 grades, from 6th to 9th (Cycle II) and (c) the entire elementary

level, from 1st to 9th grade (Cycles I and II). Elementary education is in its majority publicly

provided. In 2017, among the 183,743 schools offering elementary education, 78.8% of them

were public, covering 83.2% of the 27 million enrolled students.7 Public education in Brazil

is completely tuition free but, similarly to other developing countries, Brazil struggles to

offer good quality of education. In the 2018 Pisa exam, Brazilian students had an average

score of 384 in math, compared to an average of 489 for the OECD countries, placing the

country in the 72th position among the 80 participant countries.

Our implementing partner, the Lemann Foundation, is a non-profit organization that

runs several programs with the purpose of enhancing the quality of public education in Brazil.

7According to the 2017 Schooling Census.
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One of their initiatives is to promote the use of Khan Academy in public schools through

the program Khan Academy in Schools.8 The program engages Government’s Secretaries

of Education which, after signing a participation agreement, receive the support from the

Lemann Foundation to implement Khan Academy in schools. The program had three main

pillars: i) delivering a one day training for Math teachers to present the platform and their

functionalities; ii) advising teachers to carry out one of their weekly math classes (50 minutes

per week) at the school’s computer lab using Khan Academy and iii) close monitoring of

intervention’s implementation by Lemann Foundation staff, which acted as promoters of

Khan Academy, providing assistance for solving any potential difficulties schools/teachers

were facing. The program also allows teachers to have access to a detailed feedback report

on students’ performance, indicating their strengths and weaknesses.

The implementation of Khan Academy requires a good technology infrastructure, includ-

ing a sufficiently high-speed internet connection. To guarantee an adequate implementation

of the program, schools that had less than 0.5 computer per student were granted additional

computers from the Lemann Foundation. There was also information technology support

for schools in the city of Manaus, which had weaker baseline infrastructure, to guarantee

that the computers and internet were functioning. Importantly, since we are not interested

in the effects of such improvements in the computer lab per se, all schools, irrespective of

treatment status, received these benefits. Therefore, differences between treated and control

grades should reflect solely the use of the platform. For the evaluation sample, we can ob-

serve two different modalities of program implementation: i) individual use of the computer

and ii) rotational usage of the computer between two students. In the rotational mode, each

student used the computer during half of the class, and was assigned by the teacher other

math activities during the remainder of the class.

If this program is scaled, we should expect variation in the implementation across

schools. For example, schools with a higher rate of computers per students should be more

8“Khan Academy nas Escolas”, later renamed to “Innovation in Schools” or “Inovação nas escolas”
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likely to implement the program with one students per computer, while other schools may be

more likely to implement the program based on a rotation mode. Given that some schools

in the experiment received additional computers, we should expect a larger proportion of

schools implementing the program in the rotation mode in case the program were scaled

without this aid. Likewise, given that some schools received support for internet connec-

tivity, we should expect that the schools in our experiment experienced less connectivity

problems than if the program were scaled without this support. Therefore, we see our av-

erage treatment effects as an upper bound on the effects we should expect if the program

were scaled up, given that we should expect a better implementation in our experiment.

We emphasize again that schools received the hardware and IT support regardless of the

treatment status. Therefore, our estimates capture the effects of the program, and are not

confounded with the effects of these additional support.

3 Study Design

3.1 Sample Selection

This experiment was conducted in primary public schools of five cities in three different

regions of Brazil in the 2017 school calendar year. The cities of Barueri, Mogi das Cruzes and

Sao Bernardo do Campo were selected from the Southeast region; Pelotas from the South;

and Manaus from the North region. Cities were selected based on previous relationship

between the city government and the implementing partner (Lemann Foundation), and con-

ditional on the existence of a satisfactory level of municipal school infrastructure (existence

of a computer lab and internet connection).

In the five cities selected, all primary education schools were invited to voluntarily ap-

ply to the program. Among all applicants, the Lemann Foundation determined a final list

composed of 166 schools that were initially eligible to participate in the treatment random-
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ization. Out of these, before the treatment was assigned, nine schools left the evaluation

sample due to lack of the necessary infrastructure or because they did not have a matching

pair to compose a stratum. This resulted in 157 schools in the final evaluation sample.9

3.2 Experimental design

Schools may be of three different types, based on the grades they offer: (a) Cycle I

schools, which offer grades 1-5 (students between 6-10 years old); (b) Cycle II schools, which

correspond to 6th-9th grades (students between 11-14 years old); and (c) Both cycles schools,

which have students from 1st to 9th grades (students aged 6-14 years old).

In addition to the municipality and the grades offered (cycle I, II or both), schools

were stratified based on two additional criteria: whether they had ever received the Khan

Academy program in the years preceding the experiment;10 and whether Math proficiency

data for the 2015 national standardized exam was available. For the cases in which the

resulting strata were composed of more than 5 schools, further stratification was carried out

based on the math scores for the standardized national exam.

With the purpose of increasing engagement and reducing attrition, every school in our

sample received the program in some grade, which was assigned randomly. Only 5th and

9th grade students participate in our study, since for these grades we have math proficiency

data from a national standardized exam. Therefore, we consider as treated schools those

that received the program in the 5th or 9th grade and as control schools those that received

it in a different grade. Figure 1 illustrates the randomization for the three groups of schools:

those that only have (i) 1st-5th, (ii) 1st-9th, and (iii) 6th-9th grade students. It is worth

noticing that all Cycle I and II schools serve as treatment for one grade and control for the

9There were 29 schools in Pelotas, 63 schools in Manaus, 21 schools in Barueri, 27 schools in Mogi das
Cruzes and 17 in Sao Bernardo do Campo.

10In our evaluation sample, only 14 schools in the city of Pelotas had Khan Academy implementation in
the previous years. Students in our experiment sample, however, were never exposed to the Khan Academy
platform in school. In Section 5 we check whether control students were ever exposed to the platform.
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other.11

Even though spillovers within schools could raise a concern, schools were instructed

to use Khan Academy only in treated grades and to explicitly prevent the usage in control

grades. In section 5, we show that we do not detect any sign of spillovers for control students.

Moreover, using the administrative data from the Ministry of Education, we verified that

there are 240 teachers lecturing math in control grades, among which only 12 (5%) also teach

in a grade receiving Khan Academy. Therefore, we do not see spillovers as major concerns.

The 157 schools in our study were divided into 35 strata (which had from 2 to 11 schools

each). Since schools with both cycles had 5th and 9th grades participating in the study, our

sample is composed of a total of 217 school × grades in 47 strata-grade pairs.

4 Data and Empirical Strategy

4.1 Data

Data for this study stems from two main sources. First, we use administrative data from

the 2017 Ministry of Education’s Basic Education’s Evaluation System (Sistema de Avaliacao

da Educacao Basica - SAEB). Every two years, at the end of the school calendar year, the

government implements standardized exams to measure students’ academic proficiency in

the 5th and 9th grades, compulsory for all Brazilian public schools with 10 or more students.

The SAEB exam also collects data on students’ characteristics, including demographics,

household characteristics, leisure and studying habits, parents’ education, employment status

and school retention record. Although this exam is implemented in all public schools in Brazil

with more than 10 enrolled students, the Ministry of Education only releases proficiency data

for those school grades that had at least 80 percent of enrolled students taking the test. We

11Some Cycle I control schools received the program in the 4th instead of the 3rd grade. This is not a
problem for our experimental design, because the only relevant point here is that 5th grade students in these
schools did not participate in the program, so they serve as a control group.
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have administrative data for all schools in our sample (including those that left the study

after treatment assignment), with the exception of those school grades that did not meet the

minimum attendance requirement. The exam is high stakes for the schools’ principals and

local politicians, since it corresponds to the major part of a school-quality index (IDEB)

released bi-annually by the Ministry of Education.12

We also collected survey data over two rounds: a baseline carried out in March 2017,

before the beginning of the program, and a follow-up in November 2017, right before the

end of the school calendar year. Baseline data was not collected for one municipality (Sao

Bernardo do Campo), because this municipality joined the evaluation late.13 We collected

data for an instrument that measured students’ attitudes towards mathematics Brito (1998),

who translated to Portuguese and validated in Brazil the instrument originally developed

by Aiken Jr and Dreger (1961). This instrument was composed of a questionnaire with 20

questions that presented different statements about an individuals’ feelings regarding Math,

with Agree/Disagree four point Likert Scale answer options. The different statements express

either a positive or a negative connection with Math (such as “Mathematics is enjoyable and

stimulating to me” or “Mathematics makes me feel uneasy and confused”).14 An index for

attitudes towards math was created by summing up all scores for positive statements, and

adding the reverse score for negative statements, and then standardized to have zero mean

and standard deviation one within the control group, by grade level.15

We also collected data on students’ demographic characteristics, students’ self reported

access and usage of computer and internet both at home and at school as well as their

preference in relation to school subjects. On the follow-up survey, information on the knowl-

edge and usage of Khan Academy was also collected to assess program compliance and

12There is a literature documenting the effects of this index, viewed as one instrument for increasing school
accountability. For example, see Firpo et al. (2017).

13No data was collected for the 7 schools that dropped the program right after treatment assignment.
14See the original papers for the full list of questions. Aiken Jr and Dreger (1961) have the original

questions in English and Brito (1998) the translated sentences to Portuguese.
15An answer of 4 in a negative statement was recoded into 1 to reflect the reaction to an opposite positive

statement, and so on. For details on the construction of the index consult the original papers.
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contamination in the control group. Unfortunately, we are not able to link individual level

administrative data with survey data because the SAEB dataset is de-identified.

We complement the two main data sets with reports from the Lemann foundation on

the status of implementation in each school. Since every school had one treated grade, we

have this information for all schools in our sample. We also use information extracted from

the Khan Academy platform on the usage by treated students. This information is useful for

a descriptive view of the implementation of the program, and it is not available for students

in the control group.

4.2 Balance and Attrition

4.2.1 SAEB data

Table 1 presents the baseline balance for the 14 covariates reported in the SAEB data

set. The first column shows the mean for the control control group for each variable and the

standard deviation in square brackets. The second column shows that regression adjusted

differences between control and treatment groups, displaying the estimates from a regression

for each covariate on an indicator variable for the treatment and strata-grade fixed effects,

with standard errors (in squared brackets) clustered at the strata level. In the third column

we display the number of valid observations. We present these results for the pooled sample

and separately for the 5th and 9th grade. We also plot the p-value for joint significance of

all variables and we do not have evidence of significant differences between treatment arms

in any of the samples considered.

There are two potential sources of attrition in the SAEB dataset: i) school-grade-level

attrition, since proficiency data is only released by the Ministry of Education for those

school-grades that had at least 80% of student attendance in the exam and ii) student-level

attrition for those students that did not take the SAEB exam. In Panel A of Table 2, we

show school-grade level attrition results for the SAEB exam. For this dimension, we define
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attrition as the absence of math proficiency data in the SAEB exam, at the school-grade level.

We report the control group mean, regression adjusted differences between treatment and

control groups, the number of observations and number of clusters, for the pooled sample,

and for the 5th and 9th grades subsample respectively.16 There are no significant differences

in attrition rates between treatment and control groups, showing that the intervention is

not correlated with the likelihood of the schools having SAEB data reported. In Panel B,

we use student-level data in the SAEB exam to show that there are no differences between

treatment and control groups on the proportion of students not taking the SAEB test (for

those grades that had the results reported). In both cases, the attrition rate is low and not

correlated with the treatment status.

4.2.2 Survey

Table 3 presents survey student level baseline characteristics and the balance tests, fol-

lowing the same structure as Table 1. The results demonstrate randomization was successful

as characteristics are balanced across treatment arms (the p-value of a joint test that there

is no difference between treatment and control for all baseline covariates is equal to 0.696,

0.275 and 0.790 respectively for the three samples considered).

There are two potential sources of attrition in the survey, school-level and student-level

attrition. Our first source of attrition is associated with schools that left the program after

treatment assignment. Seven schools out of our sample of 157 schools - both in treatment

and control groups - left the study after randomization took place for various reasons, mostly

unrelated with treatment assignment. The small number of school dropouts and the differ-

ent reasons associated with the withdraw minimize our concerns with differential selective

16The dependent variable is an indicator whether there is no outcome data available.
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attrition.17 The second source is student-level attrition which is related to students either

not being present in class during the survey application or failing to complete the answers for

the attitudes towards math instrument. In Panel C of Table 2, we show that survey attrition

rate is around 29% when we consider as attrited students those that did not answer all of

the 20 questions on attitudes towards math. This is mostly driven by students not being in

school on the day the survey was administered. In Panel D, we consider a stricter measure of

attrition when students failed to complete any of the 20 questions and therefore we cannot

construct the index measure of attitudes towards math as defined by Brito (1998).

In both cases, attrition in treatment group is 2.5-2.8 percentage points lower than that

in the control group (p-values 0.058 and 0.083). Even though the differential attrition is

small and just marginally significant, we conduct several robustness and validation checks

to assess if there is any evidence that it might threaten the results using the survey data

(attitudes towards math). In Appendix Table A.1, we show covariates remain balanced be-

tween treatment and control groups even after conditioning on the sample of non attritors

in the follow-up survey round. We also show that treatment effects estimates in subsam-

ples defined by grade-municipality is not correlated with neither the attrition level nor the

differential attrition. In appendix Table A.5 we also show that, as expected, attritors have

worse baseline outcomes than non-attritors which will be useful when interpreting the results

using the bounds procedure proposed by Lee (2009). Finally, while we focus on an attitudes

measure that requires a non-missing answer for all 20 questions, we also consider a different

form of aggregation that generates non-missing values if the student answered at least one

of the questions.

17Two out of seven schools left the program after randomization but before communication of treatment
assignment. Out of the other 5 schools that dropped out, only 2 dropped out due to problems with the
treatment assignment (one school assigned treatment in the 5th grade and one school assigned control in the
5th grade), and one school due to lack of teachers’ engagement. The remaining 2 schools left the program
due to unavailability of the computer lab and absence of computer lab instructor.
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4.3 Empirical Strategy

The experimental design generated random variation on which school × grades had

their teachers assigned to receive a Khan Academy training from the Lemann Foundation,

and to use the Khan Academy platform integrated to one math class every week (around

50 minutes per week). The assignment to the treated group also involved frequent visits

from Lemann foundation staff, which followed up on treated grades’ usage of the platform,

solved any potential difficulties and acted as promoters of Khan Academy usage. We define

the “treatment” as the teacher being assigned to receive this training and follow up from

the Lemann Foundation, and the class being assigned to use the Khan Academy platform as

recommended in the intervention, which was expected to last for approximately 24 weeks.18

It is not possible to guarantee, however, that all teachers followed the exact plan of

the intervention (that is, substituting one traditional math class per week for the Khan

Academy for the treated grades). Moreover, while every school in the sample had at least

one treatment and one control grades, and every school declared they were committed to

avoid control grades’ usage of the platform, the Khan Academy platform is free and openly

available. It is, therefore, possible, although improbable, that control students and teachers

were using it. For these reasons, our estimates should be considered as an intention to

treat effect (ITT) of the intervention. In Section 5, we show that contamination to the

control students was minimal, and that the intervention significantly increased the exposure

of treated school students to the Khan Academy platform.

Our ITT estimates are based on the following regression:

yigs = α + βITTZigs + ΓXigs + ǫigs, (1)

where yigs is an outcome of interest for individual i, who belongs to grade g in a school s,

18There was some variation on the start date of the intervention in the different cities. Pelotas, Barueri
and Mogi had 24 weeks of exposure, while Manaus had 20 weeks and Sao Bernardo had 16 weeks. Results
are similar if we drop observations from Sao Bernardo.
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Zigs is an indicator variable that takes value 1 if individual i belongs to a treated school-

grade, Xigs is a set of baseline controls, which includes strata fixed effects, and ǫigs is an

error term. βITT is the average treatment effect of the program. We report both results

pooling 5th and 9th grades (in which case we interact the strata fixed effects with grade),

and separately for each grade. Standard errors are clustered at the strata level, following

a recent recommendation by de Chaisemartin and Ramirez-Cuellar (2019). Note that, this

way, we allow for the error of different students within the same school to be correlated.

We assess the reliability of such standard errors using the assessment proposed by Ferman

(2019).

We consider two main outcomes: math proficiency and attitudes towards math.19 Our

math proficiency results are based on the SAEB data, which covers all schools of our sample,

including the 7 schools that left the study after treatment assignment (although excluding

the school-grades for which data was not released). For attitudes towards math, we rely

on survey data, for which we only have information for the subsample of compliers (150

schools). All scores were standardized to have zero mean and standard deviation one within

the control group, by grade level.

5 Program Implementation and Compliance with Ex-

perimental Design

5.1 Evidence from students’ survey

Before presenting the treatment effects on the main outcomes of interest, we present in

this section evidence that the students allocated into treatment group were exposed to Khan

Academy, and that we find no evidence of contamination in the control group. Table 4 shows

19Math proficiency and attitudes towards math were the main outcomes registered in the paper’s pre-
analysis plan. AEA RCT Resgistry: AEARCTR-0002456.
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results for the follow-up survey which, in addition to collecting data on attitudes towards

math, gathered information on other variables, such as student’s familiarity with Khan

Academy, reported use during school, use of computer and preferences regarding subjects.

The table displays, for the pooled sample and 5th and 9th grades separately, the control

group mean, the regression adjusted differences between treatment arms and the number of

observations for different variables collected on the follow up survey round.

Our results show that around 97% of the students in treated grades report using Khan

Academy (around 82% report using it in school). In the control group, only 6.3% of the

students report using the platform (4.4% report using in school), so contamination does not

raise major concerns. The intervention increased the probability that students report using

the computer lab at schools, both during and outside class. The coefficient for using the

computer lab during math classes is very large and significant, as expected. Students in

treated grades were 44.5pp more likely to report that they use computer lab during math

classes. There is evidence that the intervention has not substantially crowded out other

school activities happening in the computer lab, as the results suggest the probability of

using the computer lab in other classes decreased by a very small magnitude (-5.5pp) relative

to the increased use during math class. The intervention also increased the probability that

students report using the school computer lab not during classes, which is consistent with

treated students using Khan Academy even after school hours. While we do not find an

increase in the proportion of students who use computer at home, this does not imply that

treated students are not using Khan Academy at home, as the program may have increased

the probability of using Khan Academy at home for those who report frequently using

computer at home regardless of the treatment status.

17



5.2 Evidence from implementation and usage monitoring

Lemann Foundation’s staff visited all schools five times throughout the school year, and

during these visits they collected information on the usage of the Khan Academy platform.

We use this information to assess the quality of implementation and how it affects students

usage. While virtually all treated students were exposed to platform, many schools experi-

enced some implementation problems during the program. In about 31% of those visits, they

reported that the implementation was inadequate. In 71% of those cases, inadequate imple-

mentation was due to infrastructure problems. Of those cases with infrastructure problem,

around 78% was due to internet connectivity problems, while around 15% was due to prob-

lems with the computers. Overall, 51% of the schools reported inadequate implementation

due to infrastructure problems in at least one month.20

Another important information collected by Lemann Foundation’s staff was about the

modality of implementation in terms of number of students per computer. In around 37% of

the schools, there was one computer for each student, so that students could spend the whole

math class in the platform. For the other schools, there was a rotation system, in which

students would use Khan Academy for half of the class, and work on other math-related

activities for the remainder of the class.21

Such implementation issues had important consequences for the total time of exposure

to the platform. Based on the recommended implementation of one class per week, we would

expect to see in the rotational modality approximately 600 minutes of use for the duration of

the study, roughly 25 minutes per week, while in the modality of one computer per student

the expectation was for students to have twice this exposure.22

In columns 1 to 3 of Table 5, we show how the total number of minutes logged in the

20Around 7% of the cases with inadequate usage were because there were no math teachers during that
period, and around 5% of the cases were because teachers were not motivated with the project.

21There is no information on the type of implementation for 9 out of 150 schools. For these schools, the
staff from the Lemann Foundation did not collect this information during the visits.

22greenThe communication with schools principal and teachers emphasized the usage for one weekly math
class. Expectations for total usage in the academy year were not communicated.
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platform correlates with infrastructure problems and with the type of implementation. In

schools that implemented the program with rotation and had infrastructure problems, 5th

graders spent 540 minutes logged in the platform from April to October.23 When a school

did not present internet problems, 5th graders spent approximately 30% more minutes in

the platform, while in schools with one computer per student 5th graders spent 42% more

minutes. 9th graders spent substantially fewer minutes in the platform relative to 5th graders,

spending a total of 386 minutes in schools with infrastructure problems and with rotation.

This number was 48% higher in schools with one computer per student, but no higher in

schools with no infrastructure problems.

We also present in columns 4 to 6 of Table 5 the number of weeks students logged in the

platform. We also find that 5th grade students logged in more weeks than 9th graders, and

that 5th graders in schools with no infrastructure problems logged in more times. However,

there is no significant difference in the number of weeks logged in for schools with one

computer per student, suggesting that the larger number of minutes in such schools come

mainly from the intensive margin of usage. Interestingly, Appendix Figure A.1 shows that the

infrastructure problems were concentrated in the beginning of the intervention around April-

June. In the last months of intervention most of the schools did not present infrastructure

problems.

6 Results

6.1 Treatment Effects on Math Proficiency

Columns 1 and 2 of Table 6 shows intent to treat estimates of the program on math

proficiency for the pooled sample (Panel A), and for the 5th and 9th grades separately

(Panels B and C), using the administrative data from the national exam. The first column

23We consider usage from the beginning of the implementation until the SAEB exam. If we considered
until the end of the school year, then these students would have a total of 687 minutes in the platform.
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shows the results for the regression on the treatement indicator and strata fixed effect while

the second columns includes, additionally, the covariates specified in equation 1.

On average, we find no differences in math proficiency between students attending grades

assigned to treatment and control groups. In this dimension, there is no effect of the program

on average for the pooled sample or for the 5th and 9th grades individually. The estimates

are precise enough to rule out large positive treatment effects on math proficiency. The

pooled sample standard error implies that the study was well powered to detect effects of

0.09 standard deviations. The 95% confidence interval is given by [-0.063,0.031]. The infer-

ence assessment based on Ferman (2019) does not detect large problems with the inference

procedure.24

6.2 Treatment Effects on Attitudes Towards Math

In columns 3 and 4 of Table 6 we present the results for the attitudes towards math

index. Our results indicate that students attending treatment grades had slightly higher, and

significant, scores in the attitudes towards math index (0.060σ for the pooled sample, 0.062σ

for the 5th grade and 0.057σ for the 9th grade, for the specification including covariates).

While differential attrition is marginally significant for this outcome, we show evidence

that such differential attrition does not explain these results. In Appendix Figure A.2, we

contrast the point estimates of the effects for each each region × grade with the differential

attrition in this cell (plot on the left). If our results were driven by differential attrition, then

we should expect larger effects in cells such that the differential attrition is higher. We do

not find such evidence. In the panel on the right, we also show that point estimates are not

24The assessment proposed by Ferman (2019) calculates the size of the inference method if we consider
that the null is true and errors are iid normal, ranges from 6% to 7% when we consider the full sample or the
sample of 5th graders. This suggests that the number of strata is reasonably large enough to justify inference
based on standard errors clustered at the strata level. The assessment, however, is higher for regressions
using the sample of 9th graders, reaching up to 8.9% in the specification including covariates using math
proficiency as outcome variable. This suggests that inference based on this sample should be considered with
caution.
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systematically related with attrition rates in the control group. In particular, the effect is

highest exactly for the cell with lowest attrition and with close to zero differential attrition.

Combined with the information from Appendix Table A.1 that treated and control students

are well balanced even when we condition on being a non-attritor, we believe our positive

effects on attitudes are not driven by attrition. Additionally, we present in Appendix Table

A.3 the bounds proposed by Lee (2009), which yields a lower bound of 0.03 and an upper

bound of 0.13. While we cannot reject that the lower bound is different from zero, given the

evidence above, we believe the true effect is far from such lower bound.

As we discussed in Section 4.2.2, the attrition is relatively larger when we consider only

students that answered all the 20 questions. Approximately 10% of the students responded

some questions, but not all of them. We consider an alternative measure of the index that

only takes into account valid questions for each student and re-weight them to have the same

support as the original index. We present this measure in the appendix table A.4, showing

that we obtain similar results.

6.3 Potential explanations for the results

The above results point in the direction of modest effects on attitudes towards math

that were not translated in average proficiency gains. As we discussed in section 5, there

were implementation challenges in several schools. In particular, infrastructure problems

such as non-reliable internet connection and schools that implemented the program on the

modality based on rotation of students prevented a more consistent use of the platform in

some schools. Therefore, it might be that those with worse implementation may be driving

the null result on math proficiency.

While we do not have experimental variation on whether schools experienced infrastruc-

ture problems, or on whether they implemented the program with one student per computer,

we take advantage of the fact that all schools implemented Khan Academy in at least one
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grade and use school-level implementation information that covers our entire sample to per-

form a heterogeneity exercise. Following our instructions, Lemann Foundation staff visited

all schools in our sample, collecting data on implementation in all schools in exactly the same

way, irrespective of the grade that received the program. Given that, within each school,

we extrapolate the information on infrastructure problems and type of implementation from

the treated to the control grade so that we can use these variables to estimate whether the

treatment effect was different depending on these implementation variables. Such empirical

strategy relies on the assumption that, within each school, grades that were not assigned

to receive treatment would have had the same quality and modality of implementation as

grades that were treated. This assumption could be invalid if, for example, school principals

put more effort in guaranteeing that the infrastructure is working well when the program is

assigned to one of the grades that will be evaluated in the SAEB exam.

Alternatively, the type of implementation may depend on the grade if grades have

substantially different number of students. In Table 7, we provide evidence that this is not the

case. In Panel A, we show the results of a school-grade-level regression of a dummy variable

that takes value one if the there are no infrastructure problems on the treatment indicator

and strata fixed effects. In columns 1-2, we display the results for 5th and 9th grades for all

schools. For example, the results presented in column 1 compare the proportion of schools

with no infrastructure problem in the 5th grade control schools (so this information comes

from implementation in the other grades in these schools) to this information for 5th grade

treated schools. Columns 3-4 and 5-6 show estimates for 5th and 9th grades in two cycle and

one cycle schools respectively. In Panel B, we perform the same exercise using an indicator

of one computer per student as a dependent variable. None of the estimated coefficients are

significant, providing support to the validity of the assumption our extrapolation exercise

relies on.25 In Appendix Table A.2, we also show that, controlling for school fixed effects, the

number of students per classroom does not significantly vary by grade. This provides further

25Standard errors are not reported for the 9th grade in the subsample of one cycle schools, as the dependent
variable reflecting good infrastructure was equal to zero for all 14 schools in this group.
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evidence that we should expect that the computer lab of a given school would comport the

same modality of treatment (rotation versus one computer per student) regardless of the

treated grade. Finally, in Appendix Tables A.6, A.7, A.8 and A.9, we compare our baseline

variables for treated and control schools conditioning on the quality of the implementation.

While the p-values for the joint tests are always large, there are some significant differences

in baseline test scores. Therefore, we always control for these variables when we consider

this exercise.

Table 8 presents the results for this heterogeneity exercise. Columns 1-2 show the het-

erogeneity results for math proficiency, while columns 3-4 display the results for attitudes

towards math. Our results provides suggestive evidence that integration with Khan Academy

may be an effective alternative to traditional curriculum if adequately implemented. Stu-

dents assigned to treated grades that did not face infrastructure problems had marginally

higher math scores (0.058σ, p-value=0.220), and gains were registered when the modality of

implementation was one computer per student (0.081σ, p-value=0.121). On the other hand,

treated students in schools with infrastructure problems and students assigned to grades that

implemented the rotational modality of the program performed worse in the SAEB exam.

The p-values for the test that the coefficients on the good and bad implementation is the

same is 0.09 for infrastructure problems and 0.02 for implementation modality.

The positive estimates for the samples with better implementation are mostly driven by

the 5th grade subsample, which experienced larger than the average gains both for students

assigned to treated grades that faced no infrastructure problems (0.093σ, p-value=0.110) and

for students assigned to the individual use of the computer modality (0.127σ, p-value=0.016).

In the 5th grade, negative effects on math scores were registered for students in the poorer

implementation group, with statistically significant effects for the group that implemented

with rotational use (-0.082σ, p-value = 0.044). For the 9th graders, no significant differences

are found, and all estimated coefficients are negative. These findings are consistent with

results from Table 5, where we show 9th grades did not have a large exposure to the platform,
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even in schools with good implementation.

Columns 3-4 of Table 8 present the heterogeneous effects on students’ attitudes towards

math. In all three panels, standard errors are relatively large, and we cannot reject the null

hypothesis that the effects are the same for schools with better and worse implementation

(for the pooled sample, p-values equal to 0.948 for the heterogeneity with respect to no

infrastructure problems and 0.726 for type of implementation).

Overall, we see such heterogeneous results as only suggestive evidence that the program,

if well implemented, can have positive effects on students’ test scores. First, as explained

above, the heterogeneous effects are not estimated based on experimental variation, and such

analysis was not pre-registered at the AEA registry. We present these results even though

they were not pre-registered because they are important to provide a better understanding

of the results presented in Sections 6.1 and 6.2 (see Duflo et al. (2020) for a discussion

on the potential benefits of presenting analyses there were not pre-registered). Second,

even if the assumptions for extrapolation of the information on infrastructure problems

and implementation modality are valid, the heterogeneous effects would only identify the

treatment effects for different types of schools. Therefore, it is not possible to guarantee

that a school that experienced infrastructure problems would have had the same expected

effect of a school with better infrastructure if it had not have infrastructure problems. For

example, it may be that there are other variables, such as motivation of the school principal,

that explains both the infrastructure problems and the lower treatment effects. In this case,

even if we improve the infrastructure of these schools, we should not necessarily expect

better results. Finally, estimating effects for sub-samples essentially means a lower effective

number of observations, so inference based on asymptotic approximations become less reliable

(see, for example, Young (2018)). Consistent with that, the inference assessment proposed

by Ferman (2019) detects that the inference methods considered in the estimation of the

heterogeneous effects (Table 8) are less reliable than the ones considered in the estimation

of the main effects (Table 6). Inference is particularly unreliable when we consider the
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heterogeneous effects for the sample of 9th graders.

6.4 Discussion

Our experimental results point in the direction of a zero overall treatment effect of the

platform on math proficiency and a positive effect on students’ attitudes towards math.

Taking advantage of the fact that control schools also implemented the program in non-

evaluated grades, we extrapolate the infrastructure measure and implementation modality

to the control grades in those schools and we find suggestive evidence that schools with better

implementation had gains in math proficiency, while attitudes towards math was similar in

both groups.

It is possible to rationalize these results if we take into account that virtually all treated

students were exposed to the platform, regardless of the quality and type of implementation.

Figure A.1 shows that infrastructure problems were concentrated in the first months of

the experiment. In the last months of the experiment, even the schools labeled as with

infrastructure problems reported good use of the platform. Also, students in the rotation

implementation, despite having to split one of their weekly classes between studying in the

platform and doing other math activities, were also significantly exposed to the platform.

Therefore, even students in schools with worse implementation used the platform and were

exposed to math in a potentially more exciting and interactive manner. This may explain

why we find similar positive effects on both groups (with good and worse implementation) on

attitudes towards math. The Khan Academy platform can therefore be seen as an effective

way to change attitudes towards math, even in the short-run and with short exposition.

However, even though virtually all students experimented the platform, those schools

with inadequate infrastructure or with rotation modality had on average fewer hours of usage.

As we showed in Table 7, infrastructure problems can represent a reduction of 30-40% of

average usage, and for the rotation modality, a reduction of 40-60%. If there are returns
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to scale in spending more time in one activity, these math activities are not as effective

as standard math classes, and/or there is relevant time wasted in the transition from one

activity to the other, then the implementation of the program in these schools may have

actually reduced the total amount of math content that these students were exposed to,

relative to a setting with no intervention. Moreover, it is conceivable that some classes were

wasted trying to connect to the internet without success, which again could have reduced

the total amount of math content that these students were exposed to.

Overall, these heterogeneous patterns can be rationalized in a model in which percep-

tions about math can be affected by exposing students to a more attractive way to present

math content, regardless of whether such exposure comes at the expense of a reduction in

standard math classes. However, to achieve proficiency gains, the platform may require

consistent and longer usages.

These results indicate that further research on the use of Khan Academy is warranted,

and provide guidance on how such studies should be implemented. To the extent that

improvements in attitudes may eventually lead to improvements in proficiency, a longer-

term exposition could lead to improvements in proficiency. Moreover, our results indicate

that the type and quality of implementation matter substantially.

Combining our results with the available evidence on CAL programs suggest that the

effectiveness of such programs depend crucially on a series of implementation details. A first

important implementation issue regards whether the CAL program increases or maintains

constant the total number of hours students are exposed to math content. In the second

case, the effect of a CAL program depends crucially on the net effectiveness of the CAL

program relative to a standard math class. This helps explain why the literature converged

in pointing out the benefits of CAL programs in supplementing traditional teaching, while

there is mixed evidence on the potential for CAL as effective substitutes (for a review of the

literature see, for instance, Glewwe and Muralidharan (2016) or Bulman and Fairlie (2016)).
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Overall, these results point out that the external validity of experimental results on CAL

programs should be considered with caution, particularly for policies aiming at scaling these

interventions in developing countries. Our evidence shows that implementation challenges

may lead to null effects even in a context in which there were substantial efforts aiming at

implementation support (see discussion in Section 2). In this sense, we see our heterogeneity

results as an important contribution to the literature in that it provides evidence on some

key determinants that are relevant in the extrapolation of experimental results on CAL

programs.

Given this discussion, we stress that the results we present on the effects of the Khan

Academy platform should be viewed as the effects of this platform integrated to math classes,

with a specific type and a given quality of implementation. Given the available evidence,

we should expect different results if we considered different types of implementation of the

Khan Academy platform, or if we considered a setting with better infrastructure. Still, our

results help clarify the conditions in which we should expect to find positive effects from

these kind of programs, and provide guidance for further research.

7 Conclusion

In this paper, we present novel experimental evidence on the impacts of the Khan

Academy platform, through the program Khan Academy in Schools, implemented across

five cities in three different regions of Brazil. The program aimed at integrating one weekly

math class (50 minutes) with a Khan Academy session in the computer lab. We find that,

on average, the program does not have an impact on students’ math scores, although we

find significant effects on attitudes towards math. We also explore differences by quality

of implementation, providing suggestive evidence that the program may have positive ef-

fects when there are no infrastructure problems and when the implementation modality is

based on one computer per student. However, it may have negative effects in settings with
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implementation problems, or in which the implementation modality is based on rotation.

The available evidence points out that CAL programs are very beneficial when they are

delivered supplementing the traditional school curriculum. As highlighted by Muralidharan

et al. (2019) and Mo et al. (2020), mode of delivery is important, and effectiveness of CAL

programs may vary depending on whether these are implemented in substitute or supple-

mentary manners, in-school or out-of-school. Evidence on the effectiveness of CAL programs

as substitutes for teacher delivered curriculum is limited, and the available evidence is not

conclusive. Our results contribute to the debate on this issue. We show that implementation

challenges may prevent positive treatment effects from arising and that, when adequately

implemented, CAL programs may be effective even when it does not increase the total num-

ber of hours of exposure to math content. We stress that we see our results depending

on program implementation as suggestive, and that they should induce further research for

more conclusive answers. Our conclusion is that details of program implementation matter,

and these must be taken into account when considering scaling up CAL programs as an

alternative for traditional teaching pedagogy in developing countries.
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Tables

Table 1: Baseline Covariates Balance - SAEB

Pooled Sample 5th grade 9th grade

Mean (control) Diff N Mean (control) Diff N Mean (control) Diff N

Male 0.504 -0.008 14411 0.512 -0.010 10072 0.485 -0.001 4339
[0.500] [0.010] [0.500] [0.012] [0.500] [0.016]

White 0.283 -0.009 14423 0.293 -0.013 10047 0.255 0.002 4376
[0.450] [0.012] [0.455] [0.016] [0.436] [0.013]

Black 0.073 -0.005 14423 0.070 -0.007 10047 0.082 0.000 4376
[0.261] [0.005] [0.255] [0.008] [0.274] [0.008]

Mixed 0.527 0.007 14423 0.517 0.015 10047 0.551 -0.014 4376
[0.499] [0.011] [0.500] [0.014] [0.497] [0.025]

Asian 0.028 0.004 14423 0.023 0.002 10047 0.041 0.007 4376
[0.166] [0.002] [0.151] [0.003] [0.198] [0.005]

Native 0.025 -0.001 14423 0.025 0.000 10047 0.026 -0.001 4376
[0.157] [0.003] [0.157] [0.004] [0.158] [0.005]

Race not declared 0.064 0.004 14423 0.071 0.004 10047 0.045 0.006 4376
[0.244] [0.005] [0.257] [0.007] [0.207] [0.009]

Age 12.007 -0.005 14625 10.821 0.018 10220 15.099 -0.063 4405
[2.087] [0.020] [0.795] [0.025] [0.916] [0.034]

Mother has completed at least 0.625 0.025 9606 0.636 0.019 6034 0.606 0.037 3572
high school [0.484] [0.013] [0.481] [0.022] [0.489] [0.022]

Mother literate 0.985 -0.002 14564 0.989 -0.005 10173 0.976 0.006 4391
[0.120] [0.002] [0.106] [0.003] [0.152] [0.005]

Father has completed at least 0.571 0.017 8006 0.565 0.007 4990 0.582 0.034 3016
high school [0.495] [0.015] [0.496] [0.021] [0.493] [0.024]

Father literate 0.958 0.001 14373 0.962 0.001 10007 0.948 0.001 4366
[0.201] [0.004] [0.192] [0.004] [0.222] [0.007]

Teacher younger than 50 years old 0.760 0.008 12805 0.761 0.012 10530 0.752 -0.017 2275
[0.427] [0.049] [0.426] [0.057] [0.432] [0.171]

2015 Prova Brasil math grade 0.095 0.029 16820 0.090 -0.066 11654 0.107 0.266 5166
[1.023] [0.089] [0.934] [0.084] [1.216] [0.132]

P value joint 0.799 0.420 0.892

Notes: This table reports, for the pooled, 5h grade and 9th grades samples separately: i) the control group mean, ii) the results of
student-level regressions of covariates available in the SAEB dataset on a dummy variable indicating whether student belongs to a
grade-level that was randomly assigned to receive treatment and strata fixed effects and iii) Number of observations. Standard errors
clustered at the strata level are in brackets. P-values for a test that all covariates are balanced are reported at the bottom of the table
for each of the three samples considered.
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Table 2: Attrition

Pooled sample 5th grade 9th grade

Mean N N N Mean N N N Mean N N N
(control) Diff Obs. Schools Strata (control) Diff Obs. Schools Strata (control) Diff Obs. Schools Strata

Panel A: School-grade-level Attrition in the SAEB exam

0.142 -0.008 217 157 35 0.099 -0.002 143 143 32 0.229 -0.020 74 74 15
[0.038] [0.050] [0.085]
(0.829) (0.968) (0.813)

Panel B: Student-level Attrition in the SAEB exam

0.132 0.005 17151 143 34 0.123 0.006 11906 129 31 0.156 0.002 5245 58 14
[0.008] [0.009] [0.011]
(0.558) (0.532) (0.852)

Panel C: Student-level Attrition in the in the Survey (Answered no question)

0.298 -0.028 18065 150 35 0.275 -0.031 12220 136 32 0.356 -0.020 5845 136 15
[0.015] [0.020] [0.030]
(0.058) (0.112) (0.503)

Panel D: Student-level Attrition in the Survey (Did not answered the 20 questions)

0.393 -0.025 18065 150 35 0.377 -0.030 12220 136 32 0.433 -0.015 5845 136 15
[0.015] [0.020] [0.028]
(0.083) (0.133) (0.589)

Notes: This table reports differences in attrition between treatment and control groups in the SAEB exam (school-grade-level in Panel B
and student-level in Panel C) and in the survey (Panels C and D). We report for the pooled sample and for the 5h grade and 9th grades
samples separately: i) the control group mean, ii) the results of regressions of our indicator of attrition (which takes value one if there is
no follow-up data available) on a dummy variable indicating treatment assignment and strata fixed effects, iii) Number of observations and
iv) Number of clusters. Standard errors, in brackets, are clustered at the strata level. P-values are in parenthesis. In Panel C attrition is
defined as the students that did not answered any of the 20 questions while in Panel D if they missed any question.
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Table 3: Baseline Covariates Balance - Survey

Pooled Sample 5th grade 9th grade

Mean (control) Diff N Mean (control) Diff N Mean (control) Diff N

Attitudes towards 0.000 0.004 11422 0.000 -0.007 7203 0.000 0.024 4219
math [1.000] [0.029] [1.000] [0.030] [1.000] [0.063]

Male 0.505 -0.005 12369 0.513 -0.015 7871 0.488 0.012 4498
[0.500] [0.009] [0.500] [0.010] [0.500] [0.015]

Year of Birth 2,004.6 -0.010 12381 2,005.9 -0.053 7872 2,001.8 0.066 4509
[2.298] [0.035] [1.396] [0.053] [1.013] [0.038]

White 0.327 -0.014 10703 0.364 -0.028 6540 0.256 0.008 4163
[0.469] [0.009] [0.481] [0.014] [0.437] [0.011]

Black 0.107 -0.013 10703 0.111 -0.010 6540 0.100 -0.017 4163
[0.309] [0.006] [0.314] [0.010] [0.300] [0.012]

Native 0.038 0.002 10703 0.041 0.004 6540 0.033 0.000 4163
[0.192] [0.004] [0.198] [0.006] [0.180] [0.005]

Mixed 0.488 0.026 10703 0.450 0.034 6540 0.563 0.012 4163
[0.500] [0.011] [0.498] [0.018] [0.496] [0.013]

Asian 0.039 -0.001 10703 0.034 0.001 6540 0.048 -0.004 4163
[0.194] [0.006] [0.182] [0.006] [0.214] [0.008]

Has computer at home 0.580 -0.007 12396 0.572 -0.014 7892 0.596 0.005 4504
[0.494] [0.012] [0.495] [0.016] [0.491] [0.026]

Frequently uses 0.455 -0.003 12380 0.454 -0.007 7884 0.457 0.006 4496
computer at home [0.498] [0.010] [0.498] [0.013] [0.498] [0.019]

Has internet at home 0.736 -0.008 12360 0.741 -0.022 7867 0.726 0.017 4493
[0.441] [0.014] [0.438] [0.020] [0.446] [0.019]

Uses computer at home 0.520 -0.006 12365 0.518 -0.018 7872 0.526 0.016 4493
for school activities [0.500] [0.012] [0.500] [0.015] [0.499] [0.024]

Uses computer lab 0.367 -0.011 12374 0.419 -0.013 7879 0.255 -0.008 4495
at school [0.482] [0.044] [0.493] [0.056] [0.436] [0.048]

Uses computer lab at school 0.237 0.023 12403 0.290 0.019 7896 0.123 0.031 4507
during portuguese classes [0.426] [0.039] [0.454] [0.052] [0.329] [0.040]

Uses computer lab at school 0.255 0.048 12368 0.318 0.035 7873 0.119 0.071 4495
during math classes [0.436] [0.055] [0.466] [0.054] [0.323] [0.084]

Uses computer lab at school 0.332 -0.052 12334 0.335 -0.018 7852 0.327 -0.112 4482
during other classes [0.471] [0.031] [0.472] [0.038] [0.469] [0.056]

Uses computer lab at school 0.144 -0.013 12377 0.148 -0.018 7878 0.135 -0.005 4499
not during class [0.351] [0.010] [0.355] [0.012] [0.342] [0.025]

(cont)
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Table 3 Cont. - Baseline Covariates Balance - Survey

Pooled Sample 5th grade 9th grade

Mean (control) Diff N Mean (control) Diff N Mean (control) Diff N

(cont)

Has mobile phone 0.715 -0.001 12265 0.683 0.000 7808 0.783 -0.001 4457
[0.452] [0.012] [0.466] [0.018] [0.412] [0.013]

Has internet on mobile phone 0.706 -0.003 11286 0.680 -0.004 6925 0.759 -0.003 4361
[0.455] [0.010] [0.467] [0.014] [0.428] [0.014]

Lives with mother 0.893 0.005 12362 0.902 0.007 7864 0.874 0.001 4498
[0.309] [0.007] [0.298] [0.008] [0.332] [0.014]

Lives with father 0.617 0.003 12360 0.640 -0.002 7861 0.569 0.013 4499
[0.486] [0.010] [0.480] [0.014] [0.495] [0.017]

Has books at home 0.767 -0.009 12394 0.740 -0.021 7890 0.826 0.013 4504
[0.422] [0.011] [0.439] [0.015] [0.379] [0.014]

Parents talk about school 0.844 -0.001 12394 0.867 -0.012 7891 0.795 0.019 4503
[0.363] [0.006] [0.339] [0.008] [0.404] [0.007]

Works outside home 0.082 0.000 12388 0.080 -0.004 7882 0.084 0.008 4506
[0.274] [0.007] [0.272] [0.008] [0.278] [0.012]

Has ever repeated a grade 0.238 -0.006 12304 0.186 0.011 7830 0.349 -0.036 4474
[0.426] [0.013] [0.389] [0.017] [0.477] [0.011]

Math is the preferred subject 0.428 0.008 12389 0.506 0.007 7894 0.260 0.009 4495
[0.495] [0.015] [0.500] [0.017] [0.439] [0.027]

Portuguese is the preferred subject 0.249 0.008 12389 0.267 0.007 7894 0.208 0.010 4495
[0.432] [0.012] [0.443] [0.013] [0.406] [0.021]

Other subject is preferred 0.323 -0.016 12389 0.226 -0.014 7894 0.532 -0.018 4495
[0.468] [0.013] [0.418] [0.012] [0.499] [0.030]

Participated in Math Olympics 0.192 0.000 11340 0.074 0.005 7192 0.444 -0.009 4148
[0.394] [0.010] [0.262] [0.012] [0.497] [0.022]

P value joint 0.696 0.275 0.790

Notes: This table reports, for the pooled, 5h grade and 9th grades samples separately, three columns respectively with the control
group mean, the regression adjusted differences between treatment and control groups, and number of observations for 27 covariates.
We report estimates from a regression for each covariate on an indicator variable for the treatment and strata-grade fixed effects.
Standard errors clustered at the strata level are in brackets. P-values for a test that all covariates are balanced are reported at the
bottom of the table for each of the three samples considered.
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Table 4: Follow-up Survey

Pooled Sample 5th grade 9th grade

Mean (control) Diff N Mean (control) Diff N Mean (control) Diff N

Has computer at home 0.622 -0.012 12816 0.631 -0.013 9004 0.595 -0.008 3812
[0.485] [0.014] [0.483] [0.015] [0.491] [0.034]

(0.398) (0.381) (0.809)
Frequently uses computer 0.472 0.015 12808 0.484 0.020 9004 0.438 0.004 3804
at home [0.499] [0.013] [0.500] [0.016] [0.496] [0.025]

(0.237) (0.209) (0.884)
Has internet at home 0.795 -0.002 12745 0.804 -0.002 8953 0.770 -0.002 3792

[0.404] [0.011] [0.397] [0.014] [0.421] [0.025]
(0.875) (0.910) (0.923)

Uses computer at home for 0.519 0.004 12764 0.526 0.001 8962 0.502 0.011 3802
school activities [0.500] [0.014] [0.499] [0.018] [0.500] [0.030]

(0.775) (0.953) (0.699)
Uses computer lab at school 0.488 0.285 12820 0.555 0.192 9010 0.300 0.513 3810

[0.500] [0.057] [0.497] [0.059] [0.458] [0.062]
(0.000) (0.001) (0.000)

Uses computer lab at school 0.317 -0.039 12801 0.370 -0.057 8994 0.167 0.003 3807
during portuguese classes [0.465] [0.046] [0.483] [0.057] [0.373] [0.038]

(0.388) (0.325) (0.939)
Uses computer lab at school 0.340 0.445 12743 0.398 0.330 8951 0.175 0.728 3792
during math classes [0.474] [0.057] [0.490] [0.057] [0.380] [0.055]

(0.000) (0.000) (0.000)
Uses computer lab at school 0.368 -0.055 12703 0.386 -0.066 8923 0.316 -0.027 3780
during other classes [0.482] [0.038] [0.487] [0.047] [0.465] [0.057]

(0.145) (0.158) (0.632)
Uses computer lab at school 0.151 0.051 12791 0.140 0.037 8985 0.181 0.084 3806
not during class [0.358] [0.017] [0.347] [0.016] [0.385] [0.047]

(0.004) (0.024) (0.069)
Uses Khan Academy 0.063 0.903 12673 0.078 0.882 8924 0.022 0.956 3749

[0.244] [0.021] [0.268] [0.030] [0.145] [0.006]
(0.000) (0.000) (0.000)

Uses Khan Academy during 0.044 0.782 12549 0.055 0.707 8833 0.010 0.967 3716
school [0.204] [0.031] [0.228] [0.036] [0.100] [0.004]

(0.000) (0.000) (0.000)

Notes: This table reports, for the pooled, 5h grade and 9th grades samples separately: i) the control group mean, ii) the results
of a student-level regression of different measures collected in the follow-up survey on a dummy variable indicating whether
student belongs to a grade-level that was randomly assigned to receive treatment and strata fixed effects and iii) Number of
observations. Standard errors are in brackets and p-values in parenthesis. Standard errors are clustered at the strata level.
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Table 5: Descriptive Statistics - Usage of Khan Academy

Total number of minutes Total number of weeks logged in

Pooled Grade 5 Grade 9 Pooled Grade 5 Grade 9

(1) (2) (3) (4) (5) (6)

No infrastructure problem 147.3 169.3 -18.3 2.888 3.979 -2.357
s.e. [60.2] [75.9] [65.3] [1.726] [1.775] [1.723]
p-value (0.014) (0.026) (0.779) (0.094) (0.025) (0.171)

One computer per student 195.0 224.2 183.9 1.669 2.082 1.741
s.e. [77.6] [100.5] [45.7] [1.560] [1.586] [1.676]
p-value (0.012) (0.026) (0.000) (0.284) (0.189) (0.299)

9th grade -178.3 - - -3.206 - -
[46.9] [0.947]
(0.000) (0.001)

Municipality fixed effects Y Y Y Y Y Y

Mean (with infrastructure problem and rotation)

5th grade 540.0 13.407
[64.8] [1.221]

9th grade 386.3 11.359
[34.4] [0.771]

Number of Students 8302 5325 2977 8302 5325 2977

Number of Schools 103 65 38 103 65 38

Number of Strata 33 30 15 33 33 33

Notes: This table reports, in columns 1-3, results from a student-level regression of the
total number of minutes spent in the platform on an indicator of no infrastructure prob-
lems, an indicator of modality of implementation based on one computer per student, and
municipality fixed effects, for the pooled sample, and 5th and 9th grades subsamples re-
spectively. In column 1 we also include an indicator of the 9th grade. Standard errors are
clustered at the strata level. In columns 4-6, we report results for the same specifications
using the total number of weeks logged in as the dependent variable.
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Table 6: Results on Math Proficiency and Attitudes towards math

Math test scores Attitudes towards math

(1) (2) (3) (4)

Panel A: Full sample

Treatment -0.023 -0.016 0.056 0.060
s.e. [0.035] [0.024] [0.033] [0.022]
p-value (0.513) (0.515) (0.090) (0.008)
Inference assessment 0.068 0.078 0.068 0.068

N obs 14846 14846 11157 11157
N schools 143 143 151 151
N strata 34 34 35 35

Panel B: 5th grade

Treatment -0.036 -0.002 0.044 0.062
s.e. [0.046] [0.033] [0.033] [0.027]
p-value (0.427) (0.948) (0.176) (0.021)
Inference assessment 0.061 0.069 0.066 0.069

N obs 10388 10388 7806 7806
N schools 129 129 137 137
N strata 31 31 32 32

Panel C: 9th grade

Treatment 0.011 -0.051 0.086 0.057
s.e. [0.060] [0.044] [0.058] [0.030]
p-value (0.853) (0.248) (0.137) (0.057)
Inference assessment 0.084 0.087 0.071 0.092

N obs 4458 4458 3351 3351
N schools 58 58 72 72
N strata 14 14 15 15

Includes covariates No Yes No Yes

Notes: This table reports the results of a student-level regression of math
proficiency (columns 1-2) and attitudes towards math (columns 3-4) on
an dummy variable indicating whether student belongs to a grade-level
that was randomly assigned to receive treatment and strata fixed effects.
Panels A, B and C refer to the pooled sample, and 5th and 9th grades
subsamples separately. For the pooled regressions, we interact the strata
fixed effects with grade. The specifications reported in column 2 include
the covariates presented in Table 1, while the specifications reported in
column 2 include the covariates presented in Table 3. Standard errors
are clustered at the strata level. The inference assessment is based on the
assessment proposed by Ferman (2019) using 1000 draws of iid normal
random variables.
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Table 7: Validity of Measures for Heterogeneity Exercises

All schools Two cycle schools One cycle schools

5th grade 9th grade 5th grade 9th grade 5th grade 9th grade

(1) (2) (3) (4) (5) (6)

Panel A: No Infrastructure Problem

T -0.024 0.019 -0.023 0.023 -0.025 0.000
s.e [0.065] [0.082] [0.101] [0.101] [0.085] -
p-value (0.705) (0.815) (0.816) (0.816) (0.765) -

Mean (omitted group) 0.551 0.471 0.567 0.571 0.538 0.000
[0.060] [0.087] [0.092] [0.095] [0.081] -

Number of schools 136 72 58 58 78 14

Panel B: One Computer per Student

T 0.034 -0.022 0.027 -0.027 0.040 0.000
s.e [0.057] [0.071] [0.087] [0.087] [0.076] -
p-value (0.555) (0.755) (0.757) (0.757) (0.595) -

Mean (omitted group) 0.403 0.529 0.567 0.643 0.250 0.000
[0.063] [0.087] [0.092] [0.092] [0.078] -

Number of schools 127 72 58 58 69 14

Notes: This table reports, in Panel A, results of a school-grade-level regression of a dummy
variable that takes value one if the there are no infrastructure problems on the treatment
indicator and strata fixed effects. In columns 1-2, we display the results for 5th and 9th grades
for all schools, while columns 3-4 and 5-6 show estimates for 5th and 9th grades in two cycle
and one cycle schools respectively. Panel B shows results for the indicator of one computer
per student as the dependent variable. The means for the omitted groups in columns 1 and 2
of Panel B (40% for 5th grade and 53% for 9th grade) are not inconsistent with the number
reported in the text, that 37% of schools are based on one computer per student modality. In
the table, two cycle schools are accounted twice, since our estimates are at the school-grade
level.
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Table 8: ITT Heterogeneity

Math test score Attitudes towards math

No infrastructure One computer No infrastructure One computer
problem per student problem per student

(1) (2) (3) (4)

Panel A: Full sample

T ×X (β1) 0.058 0.081 0.052 0.036
s.e. [0.048] [0.052] [0.049] [0.047]
p-value (0.220) (0.121) (0.290) (0.438)
Inference assessment 0.098 0.110 0.089 0.101

T × (1−X) (β2) -0.056 -0.076 0.056 0.053
s.e. [0.040] [0.032] [0.035] [0.020]
p-value (0.166) (0.017) (0.105) (0.009)
Inference assessment 0.082 0.073 0.096 0.067

p-value (β1 = β2) (0.092) (0.021) (0.948) (0.726)
Inference assessment 0.072 0.078 0.083 0.066

N 13825 13231 11135 10710

Panel B: 5th grade

T ×X (β1) 0.093 0.127 0.066 0.070
s.e. [0.058] [0.053] [0.048] [0.052]
p-value (0.110) (0.016) (0.167) (0.179)
Inference assessment 0.091 0.097 0.084 0.077

T × (1−X) (β2) -0.062 -0.082 0.039 0.035
s.e. [0.058] [0.041] [0.045] [0.028]
p-value (0.287) (0.044) (0.385) (0.207)
Inference assessment 0.095 0.065 0.087 0.074

p-value (β1 = β2) (0.085) (0.005) (0.717) (0.531)
Inference assessment 0.072 0.066 0.068 0.059

N 9682 9088 7784 7359

Panel C: 9th grade

T ×X (β1) -0.064 -0.102 -0.023 -0.031
s.e. [0.068] [0.052] [0.109] [0.072]
p-value (0.350) (0.048) (0.830) (0.661)
Inference assessment 0.136 0.200 0.134 0.146

T × (1−X) (β2) -0.009 -0.075 0.076 0.108
s.e. [0.096] [0.068] [0.028] [0.018]
p-value (0.926) (0.271) (0.007) (0.000)
Inference assessment 0.122 0.143 0.111 0.102

p-value (β1 = β2) (0.693) (0.781) (0.437) (0.085)
Inference assessment 0.091 0.111 0.085 0.091

N 4143 4143 3351 3351

Notes: This table reports results for student-level regressions of math proficiency (columns
1-2) and attitudes towards math (columns 3-4) on interaction terms between the treatment
dummy and the heterogeneity variable. In columns (1) and (3), X is an indicator variable
which takes value one if there were no infrastructure problems; in columns (2) and (4), X
is an indicator variable which takes value one if the implementation modality was based on
one computer per student. Specifications in columns 1 and 2 include strata fixed effects, the
X variable in level, and the covariates reported in Table 1. Specifications in columns 3 and
4 include strata fixed effects, the X variable in level, and the covariates reported in Table 3.
Standard errors are clustered at the strata level. The inference assessment is based on the
assessment proposed by Ferman (2019) using 1000 draws of iid normal random variables.
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Figures

Figure 1: Randomization Procedure by type of school
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Notes: Blue squares represent grades that receive the program. The red rectangles indicate the grades that
are in the evaluation (5th and 9th grades).
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Appendix A Appendix Tables

Table A.1: Balance conditional on non-attritors

Pooled Sample 5th grade 9th grade

Mean (control) Diff N Mean (control) Diff N Mean (control) Diff N

Attitudes towards 0.030 0.010 7243 0.049 -0.023 4688 -0.012 0.071 2555
math [1.004] [0.037] [1.006] [0.039] [0.998] [0.070]

Male 0.502 0.004 7761 0.501 -0.001 5056 0.504 0.014 2705
[0.500] [0.012] [0.500] [0.013] [0.500] [0.023]

Year of Birth 2,004.7 -0.022 7764 2,006.0 -0.083 5054 2,001.9 0.093 2710
[2.232] [0.040] [1.266] [0.056] [0.949] [0.050]

White 0.336 -0.015 6692 0.369 -0.017 4194 0.269 -0.011 2498
[0.472] [0.010] [0.483] [0.013] [0.444] [0.014]

Black 0.099 -0.005 6692 0.104 -0.009 4194 0.090 0.001 2498
[0.299] [0.007] [0.305] [0.011] [0.286] [0.012]

Native 0.040 0.003 6692 0.043 0.004 4194 0.034 0.002 2498
[0.196] [0.006] [0.203] [0.008] [0.181] [0.009]

Mixed 0.486 0.019 6692 0.447 0.021 4194 0.563 0.014 2498
[0.500] [0.014] [0.497] [0.020] [0.496] [0.014]

Asian 0.039 -0.002 6692 0.037 0.001 4194 0.044 -0.007 2498
[0.194] [0.007] [0.188] [0.007] [0.205] [0.009]

Has computer at home 0.602 -0.016 7772 0.597 -0.020 5065 0.613 -0.009 2707
[0.490] [0.016] [0.491] [0.016] [0.487] [0.034]

Frequently uses 0.468 -0.004 7765 0.465 -0.003 5062 0.476 -0.008 2703
computer at home [0.499] [0.013] [0.499] [0.015] [0.500] [0.026]

Has internet at home 0.740 -0.005 7749 0.751 -0.024 5049 0.716 0.030 2700
[0.439] [0.015] [0.433] [0.019] [0.451] [0.025]

Uses computer at home 0.531 -0.010 7750 0.528 -0.018 5050 0.539 0.005 2700
for school activities [0.499] [0.014] [0.499] [0.017] [0.499] [0.035]

Uses computer lab 0.372 -0.016 7751 0.419 -0.005 5051 0.266 -0.035 2700
at school [0.483] [0.041] [0.494] [0.057] [0.442] [0.045]

Uses computer lab at school 0.245 0.010 7773 0.301 0.002 5065 0.122 0.024 2708
during portuguese classes [0.430] [0.040] [0.459] [0.054] [0.328] [0.038]

Uses computer lab at school 0.263 0.047 7758 0.333 0.035 5055 0.108 0.070 2703
during math classes [0.440] [0.055] [0.471] [0.056] [0.311] [0.081]

Uses computer lab at school 0.337 -0.055 7732 0.337 -0.020 5039 0.337 -0.123 2693
during other classes [0.473] [0.029] [0.473] [0.037] [0.473] [0.059]

Uses computer lab at school 0.138 -0.014 7760 0.142 -0.021 5057 0.130 -0.002 2703
not during class [0.345] [0.010] [0.349] [0.011] [0.337] [0.027]

(cont)

42



Table A.1 Cont : Balance conditional on non-attritors

Pooled Sample 5th grade 9th grade

Mean (control) Diff N Mean (control) Diff N Mean (control) Diff N

(cont)

Has mobile phone 0.711 0.010 7699 0.680 0.008 5018 0.779 0.013 2681
[0.454] [0.014] [0.467] [0.021] [0.415] [0.015]

Has internet on mobile phone 0.710 0.007 7026 0.689 0.004 4401 0.752 0.013 2625
[0.454] [0.013] [0.463] [0.018] [0.432] [0.014]

Lives with mother 0.902 0.001 7752 0.908 0.007 5048 0.888 -0.010 2704
[0.297] [0.007] [0.289] [0.009] [0.315] [0.013]

Lives with father 0.639 0.001 7748 0.658 -0.010 5047 0.595 0.021 2701
[0.480] [0.015] [0.474] [0.019] [0.491] [0.028]

Has books at home 0.777 -0.009 7771 0.748 -0.013 5064 0.841 0.000 2707
[0.416] [0.012] [0.434] [0.015] [0.366] [0.017]

Parents talk about school 0.837 0.009 7772 0.859 -0.002 5066 0.787 0.030 2706
[0.370] [0.009] [0.348] [0.010] [0.410] [0.014]

Works outside home 0.067 0.004 7772 0.064 0.006 5063 0.075 0.000 2709
[0.251] [0.006] [0.245] [0.008] [0.263] [0.012]

Has ever repeated a grade 0.211 -0.001 7724 0.163 0.011 5033 0.319 -0.025 2691
[0.408] [0.014] [0.369] [0.020] [0.466] [0.019]

Math is the preferred subject 0.440 0.007 7769 0.521 0.003 5064 0.260 0.015 2705
[0.496] [0.020] [0.500] [0.022] [0.439] [0.031]

Portuguese is the preferred subject 0.238 -0.001 7769 0.250 0.002 5064 0.212 -0.007 2705
[0.426] [0.014] [0.433] [0.017] [0.409] [0.022]

Other subject is preferred 0.321 -0.006 7769 0.229 -0.005 5064 0.528 -0.008 2705
[0.467] [0.015] [0.420] [0.017] [0.499] [0.030]

Participated in Math Olympics 0.182 -0.001 7086 0.063 0.007 4606 0.446 -0.018 2480
[0.386] [0.012] [0.243] [0.013] [0.497] [0.027]

P value joint 0.820 0.854 0.327

Notes: This table reports, for the pooled, 5h grade and 9th grades samples separately: i) the control group mean, ii) the results of
student-level regressions of covariates collected in the baseline survey on a dummy variable indicating whether student belongs to a
grade-level that was randomly assigned to receive treatment and strata fixed effects and iii) Number of observations. The sample is
composed of non-attritors, individuals for which there is follow-up data available. Standard errors clustered at the strata level are
presented in brackets. P-values are presented in parenthesis. P-values for a test that all variables are balanced are reported at the
bottom of the table for each of the three samples considered.
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Table A.2: Number of Students Enrolled per Classroom

Cycle I schools Cycle II schools Two cycle schools

(1) (2) (3)

3rd grade 0.526
[0.429]
(0.220)

4th grade -0.588
[0.450]
(0.192)

6th grade 2.357
[1.474]
(0.110)

9th grade 0.190
[0.743]
(0.799)

Mean (omitted group) 28.936 28.936 27.328
[0.649] [0.649] [0.949]

Omitted group 5th grade 9th grade 5th grade

Number of schools 78 14 58

Notes: This table reports results of a regression of maximum number of stu-
dents enrolled per class in each grade on i) indicator variables of 3rd and 4th
grades (in column 1 - Cycle I schools); ii) 6th grade (in column 2 - Cycle II
schools) and iii) 9th grade (in column 3 - Two cycle schools) and school fixed
effects.
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Table A.3: Lee bounds - Attitudes towards math

Full Sample 5th grade 9th grade

Lower bound 0.029 -0.010 0.045
SE (0.040) (0.050) (0.071)

Upper bound 0.128 0.153 0.115
SE (0.063) (0.080) (0.083)

Nobs 18109 12262 5847

Notes: This tables shows the results for the Lee bounds
procedure (Lee, 2009) for the outcome attitudes towards
math. The standard errors were estimated using cluster-
bootstrap with 1,000 replications at the strata level. In
the first column we show the result for the full sample
and in the second and third columns, respectively, for
the 5th and 9th grade students separately.

45



Table A.4: Results on Math Proficiency and Attitudes towards math (re-normalized index)

(1) (2)

Panel A: Full sample

Treatment 0.046 0.053
s.e. [0.033] [0.022]
p-value (0.161) (0.016)

N obs 12849 12849
N schools 150 150
N strata 35 35

Panel B: 5th grade

Treatment 0.032 0.052
s.e. [0.033] [0.026]
p-value (0.332) (0.045)

N obs 9031 9031
N schools 136 136
N strata 32 32

Panel C: 9th grade

Treatment 0.081 0.058
s.e. [0.055] [0.029]
p-value (0.138) (0.042)

N obs 3818 3818
N schools 72 72
N strata 15 15

Includes covariates No Yes

Notes: This table reports the results of a
student-level regression on the re-normalized at-
titudes towards math index on an dummy vari-
able indicating whether student belongs to a
grade-level that was randomly assigned to re-
ceive treatment and strata fixed effects. Panels
A, B and C refer to the pooled sample, and 5th
and 9th grades subsamples separately. For the
pooled regressions, we interact the strata fixed
effects with grade. The specifications reported
in column 2 include the covariates presented in
Table 1. Standard errors are clustered at the
strata level. The renormalized index consider
all questions with non-missing responses and re-
normalizes to have the same support as the orig-
inal index.
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Table A.5: Characteristics of Survey Attritors x Non-Attritors

Variable Non-Attritors Diff N Variable Non-Attritors Diff N

Attitudes towards 0.035 -0.089 11422 Uses computer lab at school 0.312 0.003 12334
math [1.001] [0.025] during other classes [0.464] [0.008]

Male 0.504 -0.003 12369 Uses computer lab at school 0.132 0.012 12377
[0.500] [0.009] not during class [0.338] [0.005]

Year of Birth 2,004.5 -0.184 12381 Has mobile phone 0.713 0.004 12265
[2.292] [0.026] [0.452] [0.009]

White 0.314 -0.009 10703 Has internet on mobile phone 0.710 -0.010 11286
[0.464] [0.008] [0.454] [0.009]

Black 0.095 0.013 10703 Lives with mother 0.901 -0.016 12362
[0.294] [0.006] [0.299] [0.007]

Native 0.040 -0.002 10703 Lives with father 0.636 -0.050 12360
[0.196] [0.003] [0.481] [0.009]

Mixed 0.513 -0.005 10703 Has books at home 0.774 -0.029 12394
[0.500] [0.009] [0.419] [0.010]

Asian 0.037 0.003 10703 Parents talk about school 0.840 0.007 12394
[0.190] [0.004] [0.366] [0.008]

Has computer at home 0.586 -0.042 12396 Works outside home 0.071 0.031 12388
[0.493] [0.010] [0.257] [0.005]

Frequently uses 0.459 -0.030 12380 Has ever repeated a grade 0.216 0.060 12304
computer at home [0.498] [0.009] [0.411] [0.009]

Has internet at home 0.731 -0.013 12360 Math is the preferred subject 0.433 -0.023 12389
[0.443] [0.011] [0.495] [0.007]

Uses computer at home 0.520 -0.028 12365 Portuguese is the preferred subject 0.243 0.034 12389
for school activities [0.500] [0.010] [0.429] [0.011]

Uses computer lab 0.365 -0.003 12374 Other subject is preferred 0.325 -0.011 12389
at school [0.481] [0.009] [0.468] [0.008]

Uses computer lab at school 0.251 0.004 12403 Participated in Math Olympics 0.199 0.009 11340
during portuguese classes [0.434] [0.012] [0.399] [0.008]

Uses computer lab at school 0.285 -0.009 12368
during math classes [0.451] [0.010]

Notes: This table reports, for the pooled sample the mean and standard deviation (in brackets) for individuals that appeared in
the baseline survey and in the survey follow-up (non-attritors). The second and seventh columns present the estimated differences
for attritors, coming from the regression of the outcome on a dummy for attrition and strata fixed effects. The standard error,
in brackets, are clustered at the strata level. The third and eigth columns show the number of observations with valid responses
for each variable.
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Table A.6: Balance Heterogeneity: Survey - Infrastructure

Pooled Sample 5th grade 9th grade

X (1−X) X (1−X) X (1−X)

(β1) (β2) (β1) (β2) (β1) (β2)

Attitudes towards -0.069 0.061 -0.085 0.069 -0.038 0.048
math [0.038] [0.039] [0.048] [0.036] [0.052] [0.081]

Male -0.028 0.006 -0.028 -0.005 -0.023 0.025
[0.013] [0.013] [0.015] [0.015] [0.017] [0.020]

Year of Birth 0.0 0.030 0.0 -0.063 0.0 0.163
[0.045] [0.050] [0.073] [0.061] [0.077] [0.054]

White -0.002 -0.011 -0.009 -0.023 0.023 0.006
[0.018] [0.012] [0.025] [0.016] [0.019] [0.012]

Black 0.003 -0.006 0.013 -0.009 -0.026 0.000
[0.010] [0.007] [0.015] [0.011] [0.016] [0.009]

Native 0.011 -0.006 0.014 -0.008 -0.001 -0.004
[0.006] [0.005] [0.008] [0.007] [0.011] [0.007]

Mixed -0.015 0.023 -0.021 0.036 0.004 0.001
[0.019] [0.015] [0.024] [0.023] [0.022] [0.018]

Asian 0.002 0.001 0.003 0.003 0.001 -0.004
[0.008] [0.005] [0.008] [0.007] [0.016] [0.008]

Has computer at home -0.007 -0.006 -0.007 -0.016 -0.005 0.009
[0.020] [0.019] [0.031] [0.025] [0.024] [0.036]

Frequently uses 0.001 -0.003 0.001 -0.007 0.008 0.005
computer at home [0.018] [0.014] [0.022] [0.019] [0.027] [0.025]

Has internet at home 0.004 -0.014 -0.006 -0.031 0.033 0.011
[0.018] [0.022] [0.029] [0.032] [0.028] [0.026]

Uses computer at home -0.004 -0.006 -0.015 -0.016 0.026 0.011
for school activities [0.021] [0.015] [0.030] [0.018] [0.032] [0.032]

Uses computer lab -0.024 -0.004 0.011 -0.031 -0.095 0.037
at school [0.100] [0.041] [0.097] [0.070] [0.139] [0.042]

Uses computer lab at school -0.012 0.046 0.011 0.031 -0.053 0.074
during portuguese classes [0.092] [0.030] [0.104] [0.046] [0.112] [0.047]

Uses computer lab at school 0.069 0.034 0.075 0.009 0.074 0.076
during math classes [0.121] [0.037] [0.092] [0.053] [0.245] [0.046]

Uses computer lab at school -0.113 -0.012 0.004 -0.032 -0.386 0.018
during other classes [0.063] [0.031] [0.067] [0.050] [0.108] [0.066]

Uses computer lab at school -0.031 -0.001 -0.038 -0.001 -0.013 -0.001
not during class [0.013] [0.015] [0.022] [0.013] [0.020] [0.037]

(cont)
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Table A.5 Cont : Balance Heterogeneity: Survey — Infrastructure

Pooled Sample 5th grade 9th grade

X (1−X) X (1−X) X (1−X)

(β1) (β2) (β1) (β2) (β1) (β2)

Has mobile phone 0.006 -0.003 0.002 0.002 0.016 -0.010
[0.015] [0.016] [0.025] [0.026] [0.016] [0.018]

Has internet on mobile phone -0.002 -0.004 0.003 -0.007 -0.012 0.000
[0.013] [0.014] [0.021] [0.022] [0.029] [0.015]

Lives with mother 0.002 0.008 0.017 0.002 -0.032 0.017
[0.012] [0.009] [0.018] [0.009] [0.015] [0.013]

Lives with father 0.003 0.004 0.015 -0.015 -0.025 0.029
[0.018] [0.014] [0.026] [0.019] [0.012] [0.023]

Has books at home 0.001 -0.015 0.004 -0.037 0.003 0.020
[0.014] [0.017] [0.019] [0.023] [0.032] [0.015]

Parents talk about school 0.004 -0.003 -0.011 -0.009 0.043 0.008
[0.007] [0.008] [0.010] [0.011] [0.019] [0.009]

Works outside home -0.023 0.015 -0.022 0.010 -0.025 0.023
[0.008] [0.009] [0.012] [0.012] [0.009] [0.014]

Has ever repeated a grade -0.013 -0.002 0.001 0.018 -0.048 -0.029
[0.020] [0.018] [0.026] [0.027] [0.017] [0.016]

Math is the preferred subject -0.015 0.024 -0.016 0.029 -0.015 0.018
[0.023] [0.022] [0.030] [0.022] [0.035] [0.037]

Portuguese is the preferred subject 0.004 0.011 -0.009 0.019 0.034 -0.002
[0.019] [0.017] [0.026] [0.018] [0.018] [0.031]

Other subject is preferred 0.011 -0.035 0.026 -0.048 -0.019 -0.016
[0.020] [0.019] [0.019] [0.015] [0.042] [0.041]

Participated in Math Olympics 0.016 -0.010 0.014 -0.001 0.017 -0.023
[0.017] [0.014] [0.018] [0.018] [0.038] [0.022]

joint p-value (β1 = 0) 0.736 0.738 0.534
joint p-value (β2 = 0) 0.697 0.729 0.108
joint p-value (β1 = β2 = 0) 0.692 0.672 0.551

Notes: This table reports, for the pooled, 5h grade and 9th grades samples separately: i) the
results of student-level regressions of covariates collected in the baseline survey on a dummy
variable indicating whether student belongs to a grade-level that was randomly assigned to
receive treatment interacted with a heterogeneity variable. X is an indicator variable which
takes value one if there were no infrastructure problems. Standard errors are clustered at
the strata level.
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Table A.7: Balance Heterogeneity: Survey - One computer per student

Pooled Sample 5th grade 9th grade

X (1−X) X (1−X) X (1−X)

(β1) (β2) (β1) (β2) (β1) (β2)

Attitudes towards -0.015 0.028 -0.025 0.030 -0.001 0.026
math [0.074] [0.034] [0.072] [0.033] [0.094] [0.079]

Male -0.017 -0.008 -0.020 -0.023 -0.012 0.016
[0.015] [0.011] [0.014] [0.013] [0.031] [0.018]

Year of Birth 0.1 0.014 0.1 -0.087 0.0 0.180
[0.046] [0.045] [0.105] [0.047] [0.080] [0.054]

White 0.006 -0.009 0.019 -0.027 -0.017 0.026
[0.023] [0.011] [0.038] [0.016] [0.025] [0.012]

Black 0.000 -0.004 0.007 -0.004 -0.016 -0.005
[0.011] [0.007] [0.028] [0.010] [0.028] [0.012]

Native 0.004 -0.001 0.005 0.002 0.002 -0.006
[0.005] [0.005] [0.008] [0.006] [0.010] [0.007]

Mixed -0.018 0.014 -0.042 0.029 0.033 -0.011
[0.023] [0.015] [0.030] [0.022] [0.020] [0.016]

Asian 0.007 0.000 0.011 0.001 -0.003 -0.004
[0.010] [0.005] [0.011] [0.006] [0.012] [0.009]

Has computer at home -0.019 -0.006 -0.030 -0.019 -0.008 0.012
[0.019] [0.016] [0.033] [0.020] [0.024] [0.037]

Frequently uses -0.005 -0.001 -0.014 -0.005 0.005 0.005
computer at home [0.017] [0.012] [0.021] [0.016] [0.032] [0.025]

Has internet at home -0.008 -0.008 -0.023 -0.025 0.011 0.022
[0.009] [0.020] [0.027] [0.026] [0.022] [0.027]

Uses computer at home -0.009 -0.003 -0.035 -0.015 0.021 0.014
for school activities [0.014] [0.014] [0.024] [0.017] [0.026] [0.034]

Uses computer lab -0.068 0.010 -0.130 0.034 0.054 0.000
at school [0.099] [0.043] [0.178] [0.065] [0.081] [0.047]

Uses computer lab at school -0.001 0.018 -0.044 0.031 0.101 0.030
during portuguese classes [0.086] [0.031] [0.135] [0.041] [0.073] [0.036]

Uses computer lab at school 0.097 0.026 0.088 0.023 0.144 0.059
during math classes [0.136] [0.037] [0.107] [0.045] [0.180] [0.057]

Uses computer lab at school -0.187 -0.008 -0.176 0.036 -0.175 -0.061
during other classes [0.051] [0.029] [0.125] [0.036] [0.175] [0.043]

Uses computer lab at school -0.039 -0.002 -0.063 0.000 -0.004 -0.004
not during class [0.015] [0.014] [0.032] [0.014] [0.023] [0.037]

(cont)
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Table A.6 Cont: Balance Heterogeneity: Survey - One computer per student

Pooled Sample 5th grade 9th grade

X (1−X) X (1−X) X (1−X)

(β1) (β2) (β1) (β2) (β1) (β2)

Has mobile phone 0.000 0.000 -0.013 0.006 0.020 -0.008
[0.018] [0.016] [0.036] [0.024] [0.023] [0.018]

Has internet on mobile phone -0.002 -0.003 -0.005 0.000 0.004 -0.007
[0.013] [0.013] [0.011] [0.020] [0.032] [0.014]

Lives with mother -0.008 0.009 0.015 0.003 -0.039 0.020
[0.013] [0.008] [0.019] [0.008] [0.019] [0.012]

Lives with father 0.012 -0.004 0.039 -0.029 -0.037 0.029
[0.025] [0.013] [0.036] [0.016] [0.030] [0.023]

Has books at home 0.011 -0.014 0.003 -0.028 0.021 0.011
[0.015] [0.016] [0.021] [0.022] [0.028] [0.018]

Parents talk about school 0.003 0.001 -0.019 -0.009 0.031 0.016
[0.011] [0.007] [0.014] [0.010] [0.012] [0.007]

Works outside home -0.018 0.009 -0.013 0.000 -0.028 0.023
[0.007] [0.008] [0.010] [0.010] [0.009] [0.014]

Has ever repeated a grade -0.052 0.006 -0.059 0.030 -0.039 -0.032
[0.024] [0.016] [0.036] [0.022] [0.018] [0.016]

Math is the preferred subject -0.023 0.019 -0.029 0.022 -0.013 0.016
[0.027] [0.021] [0.033] [0.020] [0.037] [0.038]

Portuguese is the preferred subject 0.000 0.013 0.001 0.010 -0.003 0.016
[0.025] [0.015] [0.044] [0.016] [0.018] [0.032]

Other subject is preferred 0.023 -0.032 0.029 -0.032 0.016 -0.031
[0.030] [0.018] [0.035] [0.011] [0.052] [0.042]

Participated in Math Olympics 0.018 -0.008 0.019 -0.002 0.016 -0.020
[0.022] [0.013] [0.028] [0.015] [0.029] [0.022]

joint p-value (β1 = 0) 0.135 0.377 0.502
joint p-value (β2 = 0) 0.963 0.234 0.138
joint p-value (β1 = β2 = 0) 0.647 0.312 0.495

Notes: This table reports, for the pooled, 5h grade and 9th grades samples separately: i) the
results of student-level regressions of covariates collected in the baseline survey on a dummy
variable indicating whether student belongs to a grade-level that was randomly assigned to
receive treatment interacted with a heterogeneity variable. X is an indicator variable which
takes value one if the school had one computer per student. Standard errors are clustered
at the strata level.
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Table A.8: Balance Heterogeneity: Prova Brasil — Infrastructure

Pooled Sample 5th grade 9th grade

X (1−X) X (1−X) X (1−X)

(β1) (β2) (β1) (β2) (β1) (β2)

Male -0.025 -0.004 -0.028 -0.008 -0.009 0.003
[0.018] [0.014] [0.021] [0.016] [0.016] [0.024]

White -0.006 -0.011 -0.008 -0.023 0.005 0.011
[0.024] [0.015] [0.029] [0.018] [0.012] [0.020]

Black 0.0 -0.014 0.0 -0.016 0.0 -0.011
[0.009] [0.007] [0.012] [0.010] [0.015] [0.008]

Mixed -0.017 0.026 -0.019 0.050 -0.011 -0.017
[0.017] [0.019] [0.021] [0.026] [0.011] [0.039]

Asian 0.006 0.005 0.005 0.001 0.011 0.012
[0.004] [0.004] [0.005] [0.005] [0.005] [0.007]

Native 0.003 -0.002 0.005 -0.002 -0.004 0.000
[0.003] [0.004] [0.004] [0.005] [0.011] [0.006]

Race not declared 0.010 -0.004 0.012 -0.010 -0.003 0.006
[0.009] [0.007] [0.013] [0.009] [0.008] [0.013]

Age 0.036 -0.034 0.033 0.011 0.046 -0.115
[0.023] [0.033] [0.033] [0.044] [0.053] [0.041]

Mother has completed at least 0.010 0.049 0.002 0.044 0.030 0.057
high school [0.022] [0.020] [0.037] [0.031] [0.068] [0.024]

Mother literate -0.003 0.000 -0.007 -0.002 0.011 0.005
[0.004] [0.003] [0.005] [0.004] [0.014] [0.006]

Father has completed at least -0.023 0.059 -0.043 0.062 0.026 0.056
high school [0.021] [0.020] [0.033] [0.026] [0.053] [0.030]

Father literate -0.003 0.004 -0.003 0.005 0.001 0.002
[0.006] [0.006] [0.007] [0.006] [0.010] [0.010]

Teacher younger than 50 years old 0.072 -0.047 0.099 -0.065 -0.192 0.010
[0.075] [0.077] [0.079] [0.102] [0.185] [0.239]

2015 Prova Brasil math grade -0.224 0.146 -0.237 0.015 -0.155 0.366
[0.087] [0.086] [0.099] [0.081] [0.200] [0.136]

joint p-value (β1 = 0) 0.501 0.278 0.943
joint p-value (β2 = 0 0.206 0.597 0.776
joint p-value (β1 = β2 = 0) 0.293 0.305 0.937

Notes: This table reports, for the pooled, 5h grade and 9th grades samples separately: i) the
results of student-level regressions of covariates collected in the baseline survey on a dummy
variable indicating whether student belongs to a grade-level that was randomly assigned to
receive treatment interacted with a heterogeneity variable. X is an indicator variable which
takes value one if there were no infrastructure problems. Standard errors are clustered at
the strata level.
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Table A.9: Balance Heterogeneity: Prova Brasil — One computer per student

Pooled Sample 5th grade 9th grade

X (1−X) X (1−X) X (1−X)

(β1) (β2) (β1) (β2) (β1) (β2)

Male -0.014 -0.012 -0.021 -0.019 -0.011 -0.005
[0.021] [0.013] [0.025] [0.016] [0.035] [0.022]

White -0.010 -0.010 -0.008 -0.025 -0.040 0.012
[0.034] [0.014] [0.045] [0.018] [0.022] [0.021]

Black 0.0 -0.012 0.0 -0.015 0.0 -0.006
[0.014] [0.006] [0.021] [0.009] [0.018] [0.008]

Mixed -0.005 0.024 -0.008 0.052 0.031 -0.025
[0.017] [0.017] [0.026] [0.022] [0.017] [0.041]

Asian 0.003 0.006 0.001 0.003 0.006 0.011
[0.004] [0.004] [0.005] [0.005] [0.007] [0.007]

Native 0.009 -0.003 0.013 -0.005 -0.004 0.001
[0.004] [0.004] [0.005] [0.005] [0.010] [0.006]

Race not declared 0.006 -0.005 0.005 -0.011 0.006 0.007
[0.010] [0.007] [0.014] [0.008] [0.012] [0.013]

Age -0.013 -0.005 -0.034 0.043 0.055 -0.106
[0.030] [0.030] [0.048] [0.035] [0.065] [0.046]

Mother has completed at least -0.002 0.041 -0.010 0.031 0.030 0.067
high school [0.029] [0.019] [0.051] [0.028] [0.054] [0.025]

Mother literate -0.002 -0.001 -0.006 -0.004 0.008 0.004
[0.004] [0.003] [0.006] [0.003] [0.014] [0.006]

Father has completed at least -0.026 0.045 -0.043 0.038 0.032 0.067
high school [0.025] [0.020] [0.041] [0.027] [0.053] [0.031]

Father literate 0.005 0.000 0.005 -0.001 -0.004 -0.001
[0.008] [0.005] [0.010] [0.006] [0.017] [0.010]

Teacher younger than 50 years old 0.030 -0.066 0.046 -0.072 0.019 -0.015
[0.080] [0.070] [0.080] [0.090] [0.268] [0.239]

2015 Prova Brasil math grade -0.211 0.071 -0.231 -0.065 -0.039 0.383
[0.151] [0.085] [0.138] [0.077] [0.261] [0.137]

joint p-value (β1 = 0) 0.872 0.564 0.720
joint p-value (β2 = 0) 0.090 0.213 0.399
joint p-value (β1 = β2 = 0) 0.342 0.349 0.622

Notes: This table reports, for the pooled, 5h grade and 9th grades samples separately: i) the
results of student-level regressions of covariates collected in the baseline survey on a dummy
variable indicating whether student belongs to a grade-level that was randomly assigned to
receive treatment interacted with a heterogeneity variable. X is an indicator variable which
takes value one if there were no infrastructure problems. Standard errors are clustered at
the strata level.
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Figure A.1: Proportion of Schools with Adequate Infrastructure

Notes: Each bar represents the proportion of school with adequate infrastructure for each month. There is
no data for July because it is the month of winter recess.
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Figure A.2: Differential Attrition and Treatment Effects on Attitudes towards math

Notes: Each dot represents a municipality-grade sub-sample. On the left panel, we computed for each sub-
sample the differential attrition and treatment effect of attitudes towards math, controlling for strata fixed
effects. The numbers in brackets are the number of non-missing observations for each sub-sample. The panel
on the right is a similar exercise but using the attrition level in the control group instead of the differential
attrition.
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