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Abstract

This study presents a growth model with automation technology that considers two

classes (workers and capitalists) who conduct dynamic optimization in different man-

ners. In addition to two production factors, labor and traditional capital, automation

capital is included as the third production factor. Long-run dynamics of input ratios of

production factors, income distribution, and per capita output growth are investigated.

Regardless of the size of workers’ discount factor, workers’ own traditional capital has

no transitional dynamics and stays constant. When capitalists’ discount factor is large,

in the long run, the growth rate of per capita output is positive and constant: endogenous

growth is obtained. In this case, income gap between workers and capitalists continues

to increase through time. When capitalists discount factor is small, two different cases

appear. First, when the initial value of traditional capital is large, both capitalists’ own

traditional capital and automation capital converges to constant values. In this case, in-

come gap between workers and capitalists converges to a constant value. Second, when

the initial value of traditional capital is small, capitalists’ own traditional capital con-

verges to a constant value while capitalists’ own automation capital approaches zero.

In this case, income gap between workers and capitalists converges to a constant value.

When automation capital becomes zero, after then, the dynamical system switches to a

dynamical system without automation capital.
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1 Introduction

This study builds a growth model with automation capital (automation technology), and in-

vestigates the effect of accumulation of automation capital on economic growth and income

distribution. How do advances in automation technology affect our economy?

Automation technology such as artificial intelligence (AI, hereafter) and robots are now

widely utilized in our economy. Automation technology are generally thought to substi-

tute labor. Frey and Osborne (2013) point out the possibility that AI and robots drastically

substitute human labor. They investigate the effect of automation technology on the U.S.

labor markets, and find that about 47% of labor will be substituted in the future. McKin-

sey Global Institute (2017) analyzes more than 800 jobs and more than 2000 activities in

the United States, and finds that about 45% of labor activities can be potentially substituted

by AI. Boston Consulting Group (2015) predicts that about 40–50% of jobs in the United

States, the United Kingdom, Canada, and Japan will be substituted by AI and robots until

2025.

Recently, attempts to investigate the effect of automation technology on an economy

from the viewpoint of macroeconomics have proliferated.1 These attempts are roughly clas-

sified into the task base approach represented by Daron Acemoglu and the automation capi-

tal approach represented by Klaus Prettner.2

Acemoglu classifies the effects of AI and robots on macro economy into several effects

(Acemoglu and Restrepo 2018, 2020). AI and robots substitute human labor and decrease

labor demand and wage rate. At the same time, introduction of AI and robots creates new

employment in the labor market, which increases labor demand and wage rates. Accord-

ingly, introduction of AI and robots has a counterbalancing effect. Under some assumptions,

positive effects dominate negative effects. Acemoglu reaches the conclusion that introduc-

tion of AI and robots cannot produce severe unemployment and wage declines.3

Prettner (2019) introduces a new production factor, “automation capital” that perfectly

substitutes labor such as AI and robots, and differentiates it with “traditional capital” such

as machines and factories. He builds an augmented Solow growth model with automation

capital, which enters the Cobb–Douglas production function. He assumes that a represen-

tative household saves a constant fraction of income, a fraction of the saving is allocated to

accumulation of automation capital, and the rest of the saving is allocated to accumulation

of traditional capital. The results show that the wage rate and labor share of national income

1For analysis of mechanization in a growth model, see the study of Zeira (1998).
2For growth models with AI and robots, see also Aghion et. al. (2019).
3There are empirical studies that report the effects of introduction of labor substitutable technology on

employment and wage rates (Graetz and Michaels 2018; Cords and Prettner 2019; Acemoglu and Restrepo

2020).
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decrease with accumulation of automation capital. Moreover, accumulation of automation

capital produces endogenous growth of per capita output even though there is no exogenous

technological progress.

Heer and Irmen (2019) criticize the study of Prettner (2019). In the Prettner model, two

kinds of assets appear—automation capital and traditional capital. However, he does not

consider the no-arbitrage condition between the two assets. An economic agent will invest

by considering returns of the two assets, and at the equilibrium, returns of the two assets will

be equalized. Heer and Irmen introduce the no-arbitrage condition into the Prettner model,

and then, show that there is a linear relationship between automation capital and traditional

capital. With this linear relationship, the Cobb–Douglas production function leads to the

AK production function, which produces endogenous growth as long as traditional capital

is accumulated. In Prettner (2019), investment allocation between automation capital and

traditional capital is given exogenously. However, they show that due to the no-arbitrage

condition, this investment allocation is endogenously determined.

Gasteiger and Prettner (2020) build an overlapping generations model with automation

capital, and show that endogenous growth cannot be obtained and an economy becomes

stagnant in the long run. In the overlapping generations model, income of working gener-

ations is wage income, which decreases through accumulation of automation capital. The

decrease in wage income decreases saving of households, which decreases accumulation of

traditional capital, leading to the stagnation of the economy.4

The present study is an attempt to investigate how advances in automation technology

that substitutes labor affect an economy. Based on Prettner (2019), we provide a growth

model that includes automation capital as a factor of production.

The main contribution of this study is to investigate the effect of advances in automa-

tion technology on income distribution. For this issue, the existing studies with automation

capital use a representative household model. Prettner (2019) uses a Solow-type saving

function such that a representative household saves a constant fraction of income. In con-

trast, Gasteiger and Prettner (2020) assume that a representative household solves a two-

period overlapping generations model. Both studies assume that a household obtains both

labor income and capital income, and hence, they cannot examine the effect of accumulation

of automation capital on income distribution and income gap because a change in income

distribution is a change in income distribution in a household and not a change between

different households.

For this reason, to investigate the effect of accumulation of automation capital on income

4Mechanization can decrease wage rates, which consequently stagnates an economy and decreases the

social welfare of future generations. For this issue, see Benzell et al.(2015) and Sachs et al.(2015).
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distribution between households, we introduce two classes, workers and capitalists who

show different saving behaviors. To our knowledge, this study is a first attempt that considers

automation technology.

For saving behaviors of workers and capitalists, the debate between Pasinetti (1962) and

Modigliani and Samuelson (1996) is widely known. Pasinetti (1962) argues that if workers

save, workers obtain interest income by holding capital through savings. Accordingly, the

total capital of the whole economy is composed of workers’ own capital and capitalists’ own

capital. In addition, he reveals that at the steady state where workers and capitalists coexist

(i.e., the Pasinetti steady state), the profit rate (rate of return of capital) is given by the natural

growth rate divided by capitalists’ saving rate, which is called the Pasinetti theorem.

On the contrary, Samuelson and Modigliani (1966) reveal that the derivation of the

Pasinetti theorem critically hinges on the assumption that the capitalists’ propensity to save

is much higher than the workers’ propensity to save. Then, they show that unless the as-

sumption is satisfied, a Dual steady state is obtained.

Almost all previous studies assume that both the workers’ propensity to save and capi-

talists’ propensity to save are constant over time: both classes are agents that do not make

future consumption plans.

In contrast, this study assumes that workers and capitalists are rational agents that make

future consumption plans given the lifetime budget constraints. Specifically, workers solve

a two-period overlapping generations (OLG) problem while capitalists solve an infinite-

horizon Ramsey problem. Such an attempt was also made by Michl and Foley (2004).5

They build a growth model in which workers solve a two-period OLG model, and capitalists

solve an infinite-horizon dynamic optimization model. They use a fixed-coefficient Leontief

production function and the real wage rate that is exogenously given according to the Clas-

sical economics assumption: the real wage rate is not determined in order to clear the labor

market, but is institutionally determined.

From our analysis, we obtain the following results. (1) Regardless of the size of work-

ers’ discount factor, workers’ own traditional capital has no transitional dynamics and stays

constant. (2) When capitalists’ discount factor is large, in the long run, the growth rate of per

capita output is positive and constant: endogenous growth is obtained. In this case, income

gap between workers and capitalists continues to increase through time. (3) When capitalists

discount factor is small and the initial value of traditional capital is large, both capitalists’

5According to Caggetti and De Nardi (2008), the mixture of infinitely lived agents and OLG leads to a

better performance in the empirical research than the case in which all agents belong to the infinitely lived

agents type. For studies that extend Michl and Foley (2004), see Commendatore and Palmisani (2009), Sasaki

(2018), and Kurose (2020). Mankiw (2000) also presents a hybrid model such that savers (i.e., capitalist) and

spenders (i.e., workers) solve different optimization problems,

4



own traditional capital and automation capital converges to a constant value. In this case,

income gap between workers and capitalists converges to a constant value. (4) When capi-

talists discount factor is small and the initial value of traditional capital is small, capitalists’

own traditional capital converges to a constant value while capitalists’ own automation cap-

ital approaches zero. In this case, income gap between workers and capitalists converges to

a constant value. When automation capital becomes zero, after then, the dynamical system

switches to a dynamical system without automation capital.6

The remainder of the paper is organized as follows. Section 2 presents our model. Sec-

tion 3 investigates the dynamics. Section 4 compares the results with those of existing

studies. Section 5 concludes the paper.

2 Model

This section presents building brocks of our growth model. First, we provide firms’ behavior

and the no-arbitrage condition. Second, we provide a capitalists’ dynamic optimization

problem. Third, we provide a workers’ dynamic optimization problem. Fourth, we obtain

our dynamical system.

2.1 Firms and no-arbitrage condition

Firms produce a good available for both consumption and investment by using labor, tra-

ditional capital, and automation capital. According to Prettner (2019), suppose that the

production function takes the following modified Cobb–Douglas form:

Y = F(K, L, P) = Kα(L + P)1−α, 0 < α < 1, (1)

where Y denotes output, K is traditional capital, L is labor, and P is automation capital. This

production function has a remarkable characteristic that output is not zero even if L = 0

or P = 0. Labor is owned by workers and automation capital is owned by capitalists.

Traditional capital is owned by both workers and capitalists, and hence, we have

K = Kw + Kc, (2)

where Kw and Kc denote workers’ own traditional capital and capitalists’ own traditional

capital, respectively.

6For the analysis of the dynamical system without automation capital, see Sasaki (2018).
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Let w, Rk, and Rp denote the wage rate, the gross rental price of traditional capital,

and the gross rental price of automation capital, respectively. Then, workers’ income and

capitalists’ income are as follows:

Workers’ income = wL + RkKw, (3)

Capitalists’ income = RpP + RkKc. (4)

From profit maximization, factor prices are equal to their marginal products.

w = (1 − α)
Y

L + P
, (5)

Rk = α
Y

K
, (6)

Rp = (1 − α)
Y

L + P
. (7)

Labor and automation capital are perfect substitutes, and hence, w = Rp holds. An increase

in P decreases w, that is, accumulation of automation capital decreases the wage rate of

labor.

The production function does not satisfy the Inada conditions. Accordingly, the follow-

ing relations hold.

lim
P→0

Rp = (1 − α)

(

K

L

)α

, (8)

lim
K→0

Rk = ∞. (9)

When P → 0 and K → 0, Rp < Rk holds. In addition, Rk is decreasing in K while Rp

is increasing in K. From these, we find that only after traditional capital K is sufficiently

accumulated, automation capital begins to be accumulated.

Gasteiger and Prettner (2020) impose a no-arbitrage condition between two assets K and

P. They state that at the equilibrium, the relation Rk = Rp holds. From this we obtain

P =

(

1 − α

α

)

K − L. (10)

This no-arbitrage condition states that there is a linear relationship among the three produc-

tion factors, P, K, and L. As stated above, accumulation of P starts after K is sufficiently

accumulated. From this, we obtain

⇒ P = max

{

0,

(

1 − α

α

)

K − L

}

. (11)
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Let K̄ be K̄ ≡ α

1−α
L. When K > K̄, the accumulation of P starts. Therefore, when 0 < K <

K̄, we have P = 0, and when K̄ < K, we have P > 0.

Substituting the no-arbitrage condition into the production function, we obtain

Y =



















KαL1−α if 0 < K < K̄

BK if K̄ ≤ K, B ≡
(

1−α
α

)1−α (12)

The production function takes the AK form if K is sufficiently large. Accordingly, if tradi-

tional capital exceeds its threshold value, perpetual output growth is possible even without

exogenous technological progress as long as traditional capital stock is accumulated.

Substituting the no-arbitrage condition into the marginal products, we obtain

w = Rk = Rp = αα(1 − α)1−α
≡ R. (13)

Accordingly, all factor prices are equalized. The wage rate and the rental price of automation

are equalized because labor and automation capital are perfect substitutes, and the rental

price of automation capital and that of traditional capital are equalizes because of the no-

arbitrage condition. For this reason, all factor prices are equalized. The gross rate of return

R takes the minimum value 1
2

when α = 1
2

while it takes the maximum value unity when

α = 0 and α = 1.

2.2 Capitalists’ dynamic optimization

We assume that workers and capitalists are rational agents that make future consumption

plans given the life-time budget constraints. Workers solve a two-period over-lapping gen-

erations model. Capitalists solve an infinite-horizon Ramsey-Cass-Koopmans model. This

kind of hybrid specification is based on the work of Michl and Foley (2004).

Capitalists solve the following infinite horizon dynamic optimization problem:

max (1 − βc)

∞
∑

t=0

βt
c log Cc

t , 0 < βc < 1, (14)

s.t. Cc
t + Ac

t+1 ≤ (1 + rt)A
c
t , (15)

Ac
0, rt : given, (16)

lim
j→∞

Ac
t+ j

∏ j

s=0
(1 + rt+ j)

= 0, (17)

where βc denotes the discount factor of capitalist, Cc, consumption of capitalists, and equa-
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tion (17), the transversality condition. Ac
t = Kc

t + Pt denotes total assets of capitalists. The

real rate of return of Ac
t is given by rt = Rr − δ. Note that Ac is composed of two kinds

of assets but the rates of return are equalized by the no-arbitrage condition, and hence the

common rate rt is used. In addition, we assume that both capitals have the same depreciation

rate.

From the first-order condition, we obtain the Euler equation of consumption as follows:

Cc
t+1 = βc(1 + rt+1)Cc

t . (18)

From equations (15), (17), and (18), we obtain the following consumption function.

Cc
t = (1 − βc)(1 + rt)K

c
t . (19)

From equations (15) and (19), we obtain the dynamic equation of Ac
t as follows:

Ac
t+1 = βc(1 + rt)A

c
t . (20)

2.3 Workers’ dynamic optimization

Workers solve the following two-period optimization problem:

max (1 − βw) log cw
1,t + βw log cw

2,t+1, 0 < βw < 1, (21)

s.t. cw
1,t +

cw
2,t+1

1 + rt+1

≤ wt, (22)

wt, rt+1 : given, (23)

where βw denotes the discount factor of workers, cw
1
, workers’ consumption in the young

period, and cw
2
, workers’ consumption in the old period. We assume that βw < βc.

From this, we obtain the following consumption and saving functions.

cw
1,t = (1 − βw)wt, (24)

sw
t = βwwt, (25)

where sw denotes the workers’ saving. Equation (25) shows that the workers’ propensity to

save is given by βw.

Using these equations, the accumulation of workers’ aggregate asset is given by

Aw
t+1 = Kw

t+1 = sw
t Lt = βwwtLt. (26)
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3 Analysis of dynamics

We obtain the dynamical system. Let ac
t = Ac

t /Lt and aw
t = Aw

t /Lt. From equations (20) and

(26), we obtain

ac
t+1 =

βc(1 + R − δ)

1 + n
ac

t = Θac
t , (27)

aw
t+1 =

βwR

1 + n
. (28)

Note that Θ > 0 since δ ∈ [0, 1].

In what follows, we call ac as assets per capitalist. Suppose that the composition of

ratio of workers and capitalists is kept constant. Let Nt and Nc
t denote the population and

the number of capitalists at t, respectively. Then, Nt and Nc
t grow at the same rate n, and

hence, Lt/Nt, Nc
t /Nt, and Nc

t /Lt are kept constant. Capitalists’ asset is given by ac
t =

Nc
t

Lt

Ac
t

Nt
c
.

Therefore, ac
t can be regarded as assets per capitalist. In a similar way, we call kc = Kc/L and

p = P/L traditional capital per capitalist and automation capital per capitalist, respectively.

Accordingly, the dynamical equations of traditional capital per capitalist kc and tradi-

tional capital worker kw are given by

kc
t+1 +

(

1 − α

α

)

(kc
t+1 + kw

t+1) − 1 = Θ

[

kc
t +

(

1 − α

α

)

(kc
t + kw

t ) − 1

]

, (29)

kw
t+1 = kw =

βwR

1 + n
, (30)

subject to kc
t >

α

1 − α
−
βwR

1 + n
> 0. (31)

Equation (31) is a rewritten form of K > K̄.

Therefore, we obtain the first-order linear difference equation of kc
t . The dynamical

system can be rewritten as follows:

kc
t+1 = Θkc

t + (Θ − 1)[(1 − α)kw
− α], (32)

kc
t >

α

1 − α
− kw. (33)

Suppose that at t = 0, the no-arbitrage condition is satisfied.

The right-hand side of equation (32) is a straight whose slope is Θ and intercept is

(Θ − 1)[(1 − α)kw
− α]. Depending on whether the slope is more than or less than unity

and depending on whether the intercept is positive or negative, different dynamics can be

obtained.
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3.1 Restrictions on parameters according to four cases

We consider four cases according to the sizes of the parameters. The criteria in classifying

the four cases are Θ ≷ 1 and (Θ − 1)[(1 − α)kw
− α] > 0. From this, we obtain the following

relations:

Θ ≷ 1 =⇒
βc[1 + α

α(1 − α)1−α
− δ]

1 + n
≷ 1, (34)

kw
≷
α

1 − α
=⇒
βwα

α(1 − α)1−α

1 + n
≷
α

1 − α
. (35)

These conditions can be rewritten as follows:

βc ≷ (1 + n)
1

1 + αα(1 − α)1−α − δ
≡ β̄c(α), (36)

βw ≷ (1 + n)
α

1 − α

1

αα(1 − α)1−α
≡ β̄w(α). (37)

Note that β̄c and β̄w are functions of α.

The relationship between β̄c(α) and β̄w(α) is given by Figure 1，which states β̄w(α) ≷

β̄c(α).

�

O

1

¯

�

w

(�)

¯

�



(�)

�̄

Figure 1: Relation between β̄c(α) and β̄w(α)

Considering βw < βc, we can consider four cases as follows:

Case 1 : βw > β̄w, βc > β̄c, and β̄w ≶ β̄c.

Case 2 : βw > β̄w, βc < β̄c, and β̄w < β̄c.

Case 3 : βw < β̄w, βc > β̄c, and β̄w ≶ β̄c.
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Case 4 : βw < β̄w, βc < β̄c, and β̄w ≶ β̄c.

The following Figures 2–9 are parameters restrictions on the (βc, βw) plane corresponding

to Cases 1–4.
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Figure 2: Case 1-1 (β̄w < β̄c)
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Figure 3: Case 1-2 (β̄w > β̄c)
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Figure 4: Case 2-1 (β̄w < β̄c)
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Figure 5: Case 2-2 (β̄w > β̄c: empty set)

3.2 Cases 1 and 2

When kw > α

1−α
，we classify Θ > 1 and Θ < 1．
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Figure 6: Case 3-1 (β̄w < β̄c)
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Figure 7: Case 3-2 (β̄w > β̄c)
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Figure 8: Case 4-1 (β̄w < β̄c)
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Figure 9: Case 4-2 (β̄w > β̄c)
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When Θ > 1 and the initial values of kc
t and kw

t are relatively large, kw
t remains constant

while kc
t continues to increase through time, which is shown in Figure 10. In the long run, as

stated below, the growth rate of per capita output is positive and constant. The no-arbitrage

condition is satisfied through time.

When Θ < 1 and the initial values of kc
t and kw

t are relatively large, kw
t remains constant

while kc
t continues to decrease and approaches a minimum value kc, which is given by

kc =
Θ

(1 − Θ)[(1 − α)kw − α]
. (38)

This case is shown in Figure 11. In this case, in the long run, kw > 0, kc > 0, and p > 0. The

growth rate of per capita output is zero. The no-arbitrage condition is satisfied through time.
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Æ
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t+1

O
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0

Figure 10: kw > α

1−α
and Θ > 1
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O
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Figure 11: kw > α

1−α
and Θ < 1

3.3 Cases 3 and 4

When kw < α

1−α
, we classify Θ > 1 and Θ < 1.

When Θ > 1 and the initial values of kc
t and kw

t are relatively small, kw
t remains constant

while kc
t continues to increase, which is shown in Figure 12. In this case, the growth rate

of per capita output is positive and constant. The no-arbitrage condition is satisfied through

time.

When Θ < 1 and the initial values of kc
t and kw

t are relatively small, kw
t remains constant
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while kc
t continues to decrease and approaches a lower bound value k̂c, which is given by

k̂c
≡
α − (1 − α)kw

1 − α
> 0, (39)

kc∗
≡ α − (1 − α)kw > 0, (40)

=⇒ k̂c > kc∗. (41)

This case is shown on Figure 13. When kc
t reaches k̂c, the no-arbitrage condition is violated,

and the dynamical system switches to a system that does not include automation capital.
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Figure 12: kw < α

1−α
and Θ > 1
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Figure 13: kw < α

1−α
and Θ < 1

Summarizing the analysis of Cases 1–4, we obtain the following results.

Case 1 :
kc

t+1

kc
t
=

pt+1

pt
=

ac
t+1

ac
t
= Θ > 1 and kw = aw = const.

Case 2 : kc = kc = const., p = const., ac = const., and kw = aw = const.

Case 3 :
kc

t+1

kc
t
=

pt+1

pt
=

ac
t+1

ac
t
= Θ > 1 and kw = aw = const.

Case 4 : kc = k̂c = const., p = 0, ac = const., and kw = aw = const.

3.4 Ratios of variables and growth rate

To begin with, we investigate the long-run values of input ratios. Depending on kc
t and

hence ac
t continue to increase or converges to constant values, we obtain different results as
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follows:

P

Kc
=

(1 − α)(ac + aw) − α

α(1 + ac + aw) − aw
=



















1−α
α

in Cases 1 and 3

constant in Cases 2 and 4
(42)

P

L
= (1 − α)(ac + aw) − α =



















+∞ in Cases 1 and 3

constant in Cases 2 and 4
(43)

P

K
=

(1 − α)(ac + aw) − α

α(1 + ac + aw)
=



















1−α
α

in Cases 1 and 3

constant in Cases 2 and 4
(44)

K

L
= α(1 + ac + aw) =



















+∞ in Cases 1 and 3

constant in Cases 2 and 4
(45)

Therefore, the ratio of automation capital to traditional capital converges to a constant value.

Next, we investigate the long-run values of income distribution. In Cases 2 and 4, the

above variables are constant in the long run. In Cases 1 and 3, kc
t and hence ac

t continue to

increase through time, and we obtain the following results:

wL

Y
=

1

1 + ac + aw
= 0, (46)

RkK

Y
= α, (47)

RpP

Y
= 1 − α −

1

1 + ac + aw
= 1 − α, (48)

RkKc + RpP

Y
= 1 −

1 + aw

1 + ac + aw
= 1, (49)

wL + RkKw

Y
=

1 + aw

1 + ac + aw
= 0. (50)

Therefore, labor share of income approaches zero while traditional capita share and au-

tomation capital share approach constant values. In the long run, workers’ income share

approaches zero while capitalists’ income share approaches unity.

The level of per capita output is given by

yt ≡
Yt

Lt

= B(kc
t + kw). (51)

When Θ < 1，y becomes constant. On the contrary, when Θ > 1, the growth rate of per
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capita output is given by

1 + gy =
yt+1

yt

=
kc

t+1
+ kw

kc
t + kw

≈
kc

t+1

kc
t

when kc
t increases. (52)

From this we obtain

1 + gy ≈
kc

t+1

kc
t

= Θ +
(Θ − 1)[(1 − α)kw

− α]

kc
t

(53)

≈ Θ ≡
βc[1 − δ + α

α(1 − α)1−α]

1 + n
> 1 when kc

t increases. (54)

The growth rate of per capital output is endogenously determined by the capitalists’ discount

factor, the parameter of the production function, the population growth rate, and the depre-

ciation rate. Note that gy takes the minimum value when α = 1
2

while it takes the maximum

value when α = 0 and α = 1.

4 Comparisons with existing studies

This section compares our results with the results obtained from the two-class growth models

without automation capital mentioned in the Introduction.7

• Pasinetti (1962) provides the Pasinetti theorem and the Pasinetti steady state: r = n
sc

,

where sc denotes the saving rate of capitalists, Kw

K
> 0, and Kc

K
> 0.

• Samuelson and Modigliani (1966) provide the anti-Pasinetti theorem and Dual steady

state: r = α n
sw

, where sw denotes the saving rate of workers, Kw

K
= 1, and Kc

K
= 0,

where Y = KαL1−α is used.

• Zamparelli (2017) finds the Anti-Dual steady state by using the CES production func-

tion with the elasticity of substitution being sufficiently more than unity: r = α
1
ρ ,

Kw

K
= 0, Kc

K
= 1, and rK

Y
= 1, where Y = [αKρ + (1 − α)Lρ]

1
ρ and sc > n/α

1
ρ .

In Cases 1 and 3, asset share of capitalists approaches unity, which resembles the Anti-

Dual case. In Cases 1 and 3, the no-arbitrage condition is satisfied, and hence, the rate

of return of assets is determined only by the parameter of the production function. As

Zamparelli (2017) shows, in the neoclassical growth model without automation capital, the

7Furuno (1970) presents a Solow type neoclassical growth model with two classes, and shows that accord-

ing to the sizes of the saving rates of capitalists and workers, an economy converges to either the Pasinetti

steady state or the Dual steady state.
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rate of return of capital of the Anti-Dual case is determined solely by the parameters of the

CES production function.

In Case 2, the interior solutions are obtained: the asset share of capitalists and that of

workers are more than zero and less than unity. In this sense, Case 2 is similar to the Pasinetti

steady state. However, from the no-arbitrage condition, the rates of return are equalized, that

is, Rk = R, which states that R is independent of capitalists’ discount factor and the growth

rate of population. In the Pasinetti steady state, the rate of return of capital is given by the

growth rate of population divided by the saving rate of capitalists. Hence, although Case 2

and the Pasinetti steady state are interior solutions, determinants are different.

In Case 4，we obtain p = 0, and hence, the dynamical system reduces to a two-class

neoclassical growth model without automation capital. This system is investigated by Sasaki

(2018) in detail. He shows that depending on the sizes of βc and βw, the economy either

converges to the Pasinetti steady state or the Dual steady state. In Sasaki (2018), the criteria

for the Pasinetti steady state or the Dual steady state are given by

βw ≶
α

1 − α
·

βc(1 + n)

(1 + n) − (1 − δ)βc

≡ Γ. (55)

If βw < Γ, then the Pasinetti steady state exists and is locally stable. On the contrary, if

βw > Γ, then the Dual steady state exists and is locally stable. Comparing the condition

given by equation (55) with the condition that produces Case 4, we can confirm that these

conditions are compatible. Therefore, in Case 4, when an economy reaches kc
t = k̂c and p =

0, the economy switches to a dynamical system without automation capital, and converges

to either the Pasinetti steady state or the Dual steady state depending on the sizes of the

parameters.

5 Conclusions

This study has presented an economic growth model that considers automation capital that

is perfectly substitutable for labor, and investigated the effect of accumulation of automa-

tion capital on economic growth and income distribution. To conduct analysis of income

distribution, we have assumed that workers and capitalists solve the different dynamics op-

timization problems. The results are summarized as follows.

When the capitalists’ discount factor is relatively large, in the long run, per capita output

growth rate is positive, and thus, endogenous growth is obtained. Income gap between

capitalists and workers continue to increase.

When the capitalists’ discount factor is relatively small, endogenous growth is not ob-
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tained and per capita output converges to a constant value. This case is further classified into

the two cases.

On the one hand, when the initial value of traditional capital is large, both capitalists’

own traditional capital and automation capital converges to constant values. Income gap

between the two classes also converges to a constant value.

On the other hand, when the initial value of traditional capital is small, capitalists’ own

traditional capital converges to a constant value whereas capitalists’ own automation capital

converges to zero. Income gap between the classes converges to a constant value. When

automation capital becomes zero, after then, the dynamical system switches to an alternative

system that does not include automation capital, and the economy converges to either the

Pasinetti steady state or the Dual steady state depending on the sizes of the parameters.

Whether or not the advances in automation technology produces endogenous growth

depends on capitalists’ attitude toward saving. If the saving rate of capitalists is high, the

advances in automation technology produces sustainable growth but income gap between

the classes increases. On the contrary, if the saving rate of capitalists is low, the automation

technology cannot produce sustainable growth but income gap does not expand in the long

run.

Finally, to obtain clear-cut results, this study postulates that automation capital is per-

fectly substitutable for labor. In reality, however, automation capital is not necessarily per-

fectly substitutable for labor. In addition, this substitutability differs for types of labor.

Consideration of these issues will be left for future research.
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