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Abstract

Residential solar panels in the United States (U.S.) are inefficiently distributed in
terms of optimizing solar-electrical production. Controlling for local solar electricity
generation potential (insolation), the residential solar share of electrical consumption
is relatively higher in cloudier locales like the Pacific Northwest and Northeast than
it is in sunnier areas like the Western U.S. and Florida. Rebates designed to increase
residential solar adoption in places like Florida and Texas with relatively low solar-
electrical shares are ineffective and may lead to net decreases in the residential so-
lar share if housing and electrical consumption are complementary. This is because
electrical consumption increases faster in response to a decline in effective residential
solar prices than actual demand for panels themselves, thus driving down the solar
share despite additional installations. Through the lens of a county-level structural
model of demand for housing, electricity, and solar panels, we find that this phe-
nomenon is especially prevalent in locales with high demand for cooling services (e.g.,
air conditioning, refrigeration, etc.) due to high numbers of cooling degree days. In-
ability to effectively store solar-produced electricity may be to blame. Our results thus
suggest that future policies should subsidize nascent battery technologies in place of
direct solar-panel installation rebates if the goal is to increase the residential solar
share of electrical consumption.
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1 Introduction

Uptake of solar photovoltaic (SPV) electricity generation technology among United States

(U.S.) households has been strong over the past 20 years. The combination of favorable

policy environments at the local, state, and federal levels and a 75 percent decline in the

average cost (per Watt) of SPV systems since 2000 has driven the installation of almost

2 million residential solar systems through 2019 (Barbose et al. 2019). Distributed SPV, a

broader measure capturing all non-utility scale installations, comprised 4.5 percent of U.S.

electric generating capacity in 2018, while its share of total generation will likely surpass

1 percent in 2020 (EIA 2020).1

However, new residential installations are distributed unevenly and inefficiently around

the country. Cloudy, cool places receive lower influx of solar radiation that is convertible

to electricity, yet many of these places, like the Pacific Northwest and Northeast, have

seen relatively high levels of residential solar adoption compared to sunnier and warmer

environments like those in Texas and Florida. Further, we observe such disparities in

residential solar adoption despite the fact that rebates and grants to recover the cost of in-

stallation are highest in both Texas and Florida. This fact leads to several questions which

we explore in this paper. Do political-party preferences play a role in residential solar

adoption, above and beyond local fiscal incentives? Are climatological factors, beyond

relative solar insolation from high rates of sunny days, at play which lead to conditionally

higher adoption rates in colder environments? Are rebates inefficiently deployed given

local political preferences or climatological factors weighing on the residential solar share

of electrical consumption? If so, can we construct incentives that lead to both aggregate

increases in the solar share, and a more geo-spatially efficient solar panel distribution

which takes advantage of the implicit un-tapped energy in sunnier locales?

We explore these questions by combining several different datasets that record lo-

cal costs and incentives associated with solar panel adoption, as well as various demo-

graphic, cultural, and climatological characteristics of U.S. counties. Compared to what

we would expect given the potential for electricity generation from solar panels, demand

for residential solar in sunnier places is relatively lower than in generally cloudier envi-

ronments when we account for differentials in the potential for solar-energy production

(insolation). This is true even for sunny areas with high levels of rebates and incentives to

encourage adoption. We also find that the number of cooling degree days (days for which

air conditioning is required to maintain a specific building temperature) negatively and

1We use the terms distributed and small-scale interchangeably to denote all non-utility scale SPV gener-
ation.
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significantly depresses the local residential solar share of electrical consumption, helping

explain the relative inefficiency of the aggregated geo-spatial distribution of residential

solar across the U.S.

Given these empirical facts, we use a structural approach to show that subsidies and

rebates alone likely cannot offset the negative impact of demand for cooling services,

namely from air conditioning, on the solar share of electrical consumption. Absent the

availability of storage technology, households in sunnier, warmer areas with residential

solar may place a strain on existing grid infrastructure when they experience lapses in

insolation. During periods of low insolation, lack of storage precludes households from

using the excess electricity they produce in periods of high insolation. This could lead to

a net decline in the solar share of total consumption if households that install residential

solar also increase total electrical consumption on the margin, which our findings suggest.

It is likely that storage technology could ameliorate the downward pressure that demand

for cooling services places on the solar share. Thus, policies that subsidize and incentivize

both residential solar adoption and the installation of batteries for storage could be one

mechanism to help achieve permanent increases in the solar share and possibly lead to a

more efficient aggregate, geo-spatial distribution of panels.

This paper proceeds as follows. In Section 2 we provide context for the questions we

explore here. In Section 3 we present model-free evidence that the aggregate, nation-wide

geo-spatial distribution of solar panels fails to efficiently take advantage of insolation in

sunny locales, and that panel-installation rebates likely are not positively contributing

to geo-spatial efficiency. Section 4 describes a structural model of household demand for

housing and electrical consumption that accounts for heterogeneity in local, solar amenity

preferences. Section 5 discusses the structural estimation procedure and corresponding

parameter estimates. Section 6 contains counterfactual experiments designed to under-

stand which factors most significantly affect the residential solar share of electrical con-

sumption and the geo-spatial distribution of solar panels. Finally, Section 7 concludes.

2 Background

Optimal adaptation and allocation of distributed solar generation is given substantial

attention in the academic literature. The natural sciences have covered a myriad of tech-

nical aspects ranging from developing user tools for optimal panel placement to forecast-

ing regional production and storage potential (Freeman et al. 2018; Sengupta et al. 2018).

Economists have investigated the direct impacts of policies intended to encourage renew-

able energy adoption. Public research and development (R&D) expenditure (Wiser and
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Millstein 2020), state and local incentives (Hughes and Podolefsky 2015), and Federal tax

expenditure (Borenstein and Davis 2016) have been scrutinized due to the contentious

nature of public discourse on energy policy.

Other strands of the economic literature pose important questions about how to in-

corporate new renewable capacity into the electrical grid. Empirical linkages between

utilities’ transmission price schedules and adoption of distributed solar capacity have

been established at the local level (Borenstein 2017; Wolak 2018). The price effects of

zero marginal cost generation and the large fixed costs associated with solar installation

have raised concerns about optimal rate setting for both a future fully-renewable grid and

along transition paths toward such a future (Imelda, Fripp, and Roberts 2018; Heal 2020).

Further studies have examined the welfare effects of solar adoption through the chan-

nel of pollution mitigation. Researchers have used time series data on power sector pol-

lution to quantify the degree to which social costs stemming from emissions displaced by

increased renewable generation have been avoided. The localized environmental bene-

fits are highly dependent on where new renewable capacity is installed and what form

of non-renewable electricity generation is displaced (Callaway, Fowlie, and McCormick

2018; Sexton et al. 2018). Carbon emissions’ abatement costs associated with subsidizing

the diffusion of small and utility-scale solar distribution have been studied by both aca-

demic and government bodies, but findings are wildly mixed in terms of abatement cost

estimates (see Gillingham and Stock 2018 for a recent survey).

Additional research has gone towards better-understanding renewable energy uptake

due to differences in regional preferences over electricity generation. Nomura and Akai

(2004) and Yoo and Kwak (2009) find heterogeneity in preferences for renewable elec-

tricity in general, as well as heterogeneity in preferences for different types of renewable

sources. Heng et al. (2020) and Bakkensen and Schuler (2020) present survey evidence of

premia in individuals’ willingness-to-pay for renewables and its sensitivity to variations

in energy policy. Bollinger and Gillingham (2012) find that peer effects are significant in

determining residential solar installation patterns: a consumer is more likely to install

residential solar panels if his neighbors have also installed them.

Building on the evidence presented in the literature, we construct a micro-founded

equilibrium model of residential solar panel demand that directly incorporates hetero-

geneous amenity preferences for local green energy generation. We combine datasets

from Stanford’s DeepSolar project and the Lawrence Berkeley National Lab (LBNL) to

form county-level estimates of residential solar generation, insolation (the amount of so-

lar radiation reaching a given area), and the lifecycle costs of residential solar electric

generation. We use these data to structurally estimate aggregate preference parameters
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associated with housing, electrical, and the demand for residential solar panels at the U.S.

county level. This choice of model specification allows us to analyze how heterogeneity in

climatic factors and solar subsidization policies across localities affects the aggregate geo-

spatial distribution of residential solar electrical consumption across the U.S. Through the

lens of the model, we can then explore whether certain subsidization policies could lead

to a more efficient geo-spatial distribution of residential solar panels, so that the solar

share of electrical consumption is highest in sunny places where solar electricity can be

most feasibly generated.

3 A Snapshot of U.S. Residential Solar

3.1 Geographical Panel Coverage

The most granular spatial data on solar panel coverage come from Stanford University’s

DeepSolar Project measuring solar panel deployment across the United States (Yu et

al. 2018). The project utilizes machine learning techniques to analyze satellite imagery and

infer the location and surface area of small-scale solar panel installations across the lower-

48 U.S. states. The data is currently available as a static snapshot that was last updated

in December 2018. This dataset links solar panel location and surface area with average

daily solar insolation, measured in kilowatt-hours per square meter per day (kWh/m2/d),

at the Census-tract level. Our goal here is to utilize this unique dataset to first get a general

picture of how solar panels are distributed across the U.S. We would like to understand

the degree to which the current deployment of solar panels is geo-spatially efficient, and

to understand how different policies, like rebates and grants, affect the efficient distribu-

tion.

For a cursory understanding of how solar panels could be most-efficiently deployed,

Figure 1 shows a choropleth map of county-level average daily solar insolation in units

of kWh/m2/d. This measure captures the maximum amount of energy a square meter of

SPV cells could produce over the course of the average day in a given location.23 If elec-

tricity were both storable, in say large batteries, and could freely flow across a national

network, then optimal solar panel deployment would follow the gradient featured in the

2The median and mean for the 3,097 U.S. counties in the lower-48 states with available data are 4.12
kWh/m2/d and 4.18 kWh/m2/d respectively. Note that 19 of the 3,116 counties and county-equivalents in
the lower-48 states lacked insolation data at the census-tract level.

3Mason County in the state of Washington has the lowest average daily solar insolation at 3.35
kWh/m2/d, while Santa Cruz County in the state of New Mexico features 5.55 kWh/m2/d.

4



choropleth map in Figure 1.4 Under optimal allocation we would have high concentra-

tions of panels on land in the highly-irradiated Southwest and low concentrations in the

Pacific Northwest and Northeast. The electrical grid would then be structured so as to

transport this electricity from high-insolation to high-consumption locations. However,

physical restrictions (among other issues) cap cross-country transmission capacity, which

is one contributor to rich variation in the distribution of residential installations.

Figure 1: In this figure we present county-level average daily solar insolation (kWh/m2/d)
where the colors represent octiles, with the brighter reds corresponding to places on the
map with high solar insolation. Note that the Western U.S. and Florida have climatolog-
ical conditions which contain the most relative solar-energy potential, while the Pacific
Northwest and Northeast feature the least relative solar-energy potential.

Figure 2 displays the rich dispersion in penetration of residential solar installations.5

The color gradient in this figure is divided into octiles of percentages of households at the

county level that have installed solar capacity (as of December 2018). While solar panel

uptake is highly concentrated in the Southwest wherein some counties have uptake rates

of over 10 percent, household installations are prevalent along the Eastern seaboard as

well. Despite the diffuse nature of panel uptake, daily-insolation and aggregate residen-

tial solar capacity are significantly correlated at the county level.

4Note that optimal allocation refers only to efficiency in generation per area of SPV cells, abstracting (for
the moment) from variation in installation costs.

5We should note that due to lack of data on installation dates or costs in the DeepSolar dataset, for
more detailed analyses we must turn to the LBNL data which features installation data for only a subset of
American counties. Our structural model will thus ultimately operate on a smaller geographic sample than
what is presented in Figure 2.

5



Figure 2: In this figure we present the percentage of households in a given county that
feature residential solar installations. Again, the colors represent binned octiles, with
brighter reds corresponding to places with greater residential-solar uptake.

3.2 Estimating Residential Solar Generation

Unfortunately, DeepSolar, LBNL data, and administrative sources all lack direct measure-

ments of residential solar electricity generation and consumption at the county level. The

Energy Information Administration (EIA) estimates small-scale solar generating capacity

and generation at the state level using respondents’ annual estimates in form EIA-861.6

The EIA approach relies on utilities’ reporting of net-metered capacity along with dis-

tributed and dispersed resources that are not net metered. We reconcile the county-level

estimates for generation that can be inferred from the LBNL and DeepSolar data with the

state-level estimates from the EIA and construct an adjusted series at the county level.

While DeepSolar provides estimates of panel area by household, the LBNL dataset

contains actual records of residential solar installations. Specifically, LBNL catalogs 1,456,836

observations of residential solar installations between 1998 and 2018. Among the resi-

dential observations, 1,021,967 are complete observations containing all information nec-

essary to calculate the value of residential solar electricity. Observations from the states

of Utah, Maryland, Rhode Island, and Colorado are dropped, as none contain zip code

level location data. The share of residential observations missing zip codes is negligible

in other states covered in the dataset.7 Dropping other incomplete observations removes

6For more details visit: https://www.eia.gov/electricity/monthly/pdf/technotes.pdf
7Entries missing zip codes comprise less than 1% of total residential system capacity in all other states.
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an additional 83,799 data points from the dataset.8

To calculate average household solar generation at the county level, we use the LBNL

data, which contains records of both panel size and efficiency rating. Let i denote individ-

ual observations in a given county. Let χics denote system-level efficiency and φ̄cs denote

average daily insolation in county c. We must now convert the LBNL data, measured in

kilowatts (kW) of capacity, to panel area. As solar insolation data are recorded in kWh

per square meter per day, we must take a stand on a conversion between panel area and

power rating. Following the dimensional analysis procedure outlined in the National Re-

newable Energy Laboratory (NREL)9 solar module, we calculate effective panel area as

follows:

PanelAreaics︸            ︷︷            ︸
m2

= Ratingics︸       ︷︷       ︸
kW

×
1m2

1kW
×

1

χics

With area in hand we can calculate the annual solar generation by each system in kilowatt-

hours per year.

solarics = PanelAreaics × χics × φ̄cs ≡ Ratingics × φ̄cs

For panels missing an efficiency listing (approximately 25 percent of observations), we

use the median efficiency rating for all panels installed that year, in that state10. Obser-

vations that are almost certainly coded incorrectly (negative efficiency values) are also

dropped at this point. Average household solar generation at the county level, solarcs

is then taken as the total generation of solar energy from residential systems across all

households, divided by the total number of households in county c, HHcs.

solarcs =
1

HHcs

HHcs

∑
i=1

solarics

Since consumers have no control over the weather, they have no control over φ̄cs, so we

8After dropping observations due to incomplete observations from either missing geo-spatial indices or
missing pricing variables as described in Section 3.4, we have enough data to compute empirical aggregates
of residential solar panel electrical generation for 372 U.S. counties. The counties that remain after selection
are the non-gray counties in Figure 3.

9https://pvwatts.nrel.gov/pvwatts.php
10Refining the replacement efficiency to state level or using a broader national median does little to affect

the interpolation here.
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ultimately care about the average panel rating, which is just:

Ratingcs =
solarcs

φ̄cs
≡

1

HHcs

HHcs

∑
i=1

PanelAreaics × χics

3.3 Costs and Incentives at the County Level

Both gross cost and incentive programs for residential SPV installation display substan-

tial variation at the county level. North Carolina State University’s DSIRE program indi-

cates there have been 565 regulatory policies or financial incentives put in place since the

year 2000 at the state and local level.11 Regulatory actions that incentivize SPV uptake

include easements for household installations, right-to-install laws, net metering, build-

ing requirements, and expediting permits. Financial incentives typically take the form of

production-based incentives (subsidies that are determined based on households’ gener-

ation level) or one-time transfers, such as rebates, grants, or tax credits.

Observations in the LBNL Tracking the Sun dataset record three fiscal incentives: 1)

rebate or grant programs (R); 2) Performance-Based Incentives (PBI); 3) Feed-In Tariffs

(FIT). We observe the magnitude and duration of these fiscal instruments for over 1 mil-

lion residential SPV installations since 2000. Additional consideration is given to the In-

vestment Tax Credit (ITC): households that installed panels between 2006 and 2020 may

claim 30% of costs as a tax credit against federal income taxes.12

While PBI and FIT subsidies are very limited (only 0.0002% of our sample are observed

to have received positive FIT and only 0.2% positive PBI), one-time installation rebates

have been widely deployed to incentivize residential solar uptake. Figure 3 shows the

geo-spatial distribution of average rebates R̂cs less local taxes T̂cs associated with panel

purchase and installation by county from the LBNL data selected after cleaning.13 Coun-

ties in Florida and Texas feature the greatest level of rebates. Given this, we would ex-

pect excess residential panel uptake conditional on production potential relative to what

would otherwise be predicted, but that is not what we observe. In Section 3.5 we con-

struct an index that characterizes the geo-spatial efficiency of residential solar installa-

tions across the U.S. Relative to counties in the west and northeast, we will show that

despite large rebates, counties in Texas and Florida have an excess supply of un-tapped

solar potential given conditionally lower rates of panel installation.

11See https://programs.dsireusa.org/system/program.
12See https://www.energy.gov/eere/solar/downloads/residential-and-commercial-itc-factsheets.
13The grey counties in Figure 3 do not contain enough installation observations to accurately estimate the

local value of residential solar panels.
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Figure 3: Here, we present average rebates less local sales taxes, R̂cs − T̂cs, by county
in nominal dollars. Net rebates are highest in Texas and Florida, though King County
Washington (home of Seattle) also has offered relatively high net rebates over the past
couple of decades.

Data from LBNL are also robust on the cost side. All observations contain incentive

structure data, installation prices and system size along with either reported or estimated

sales taxes collected by local governmental authorities. This gives us a direct measure of

the tax-inclusive cost of installation, allowing for a measure of total cost for each observa-

tion. Assuming a maximal uptake of ITC claims by households contributes an additional

$9.5 billion to subsidies over this period. Under the maximal ITC claims assumption, the

combination of rebates and tax expenditures amount to greater than 64 percent of total

residential SPV installation costs, tax inclusive, during the first decade of the 2000s. In the

next section we will use the rebate, tax, and cost information featured in the LBNL data

to estimate a price index that describes the local, county-level value of residential solar

electrical consumption.

3.4 Constructing the Price of Solar Energy

To construct the implicit price of one kWh of energy derived from residential solar, we

must account for local subsidization policies, as well as the rate of long-run depreciation
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for SPVs.14 The LBNL dataset allows us to account for these factors under a couple of

assumptions. Specifically, we calculate psolar
cs at the county level using a levelized cost

of energy (LCOE) approach, following a simplified version of Flowers et al. (2016). The

LCOE is the ratio of the present value of lifetime net expenditures (costs minus subsidies)

to the present value of electricity generation (the sum of lifetime discounted generation).

The LBNL dataset provides data on installation costs, sales taxes, lump-sum rebates or

grants, and levels and durations of FIT/PBI programs. The remaining parameters re-

quired to calculate LCOEs are assigned according to established values in the literature.

We assume a 30-year lifespan for panels, a 1% annual depreciation rate (DR), an annual

cost of maintenance equal to 1% of fixed costs (Cics), and a discount rate of 3% (r), in line

with Jordan and Kurtz (2013) and Flowers et al. (2016). Further, lacking data on whether

or not individual households used ITC tax credits, we construct two separate solar price

variables. In the first, which we use in our primary structural estimation and counterfac-

tual exercises, we construct psolar
cs under the assumption that ITC uptake is zero. In the

second, we allow for maximal uptake of ITC. Estimates of our structural model under the

two different price indices are similar, so we do not perform counterfactual analyses with

the price indices where ITC uptake is assumed maximal.

Price construction induces further sample selection that, after aggregation, gets us to

the final count of 372 counties containing usable aggregate solar demand observations.

Many panel installation observations from the LBNL data are missing entries for either

the installation price, whether a grant/rebate for the installation was received, or the

amount of FITs and PBIs. The incidence of missing price variables varies greatly among

states, and comprises about 25% of all observations. The states of Ohio, New Mexico,

Montana, Kansas, and the District of Columbia feature all observations that are missing

at least some of the required pricing variables, so we drop these states from our sample.

To allow us to keep a larger share of the remaining observations missing price data, we

assign average LCOEs at the county-year level to observations in that same county that

are missing prices. Finally, we also drop counties for which psolar
cs is implied to be negative.

This can happen as a result of observing very few installations, all of which are highly

subsidized, thus forcing LCOEics < 0.

In addition to fixed costs Cics, let Tics represent local sales taxes, and let Rics be the

one-time local rebate received upon installation. LCOEs must be calculated to account

for the fact that FITs and PBIs expire after so many periods. The rates and dates of expiry

depend on local policies as well as when the panel system was acquired by the consumer

14This price encodes the net present value of one unit of residential solar energy consumed, accounting
for all possible costs associated with purchasing, installing, and maintaining the panels.
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and, sometimes, whether or not the consumer filed the necessary paperwork to receive

FIT and/or PBI credits. Let τFIT
ics be the number of periods after which FITs expire and

τPBI
ics be the number of periods after which PBIs expire. Given a 30-year lifespan, the

LCOE is:

LCOEics =

Cics + Tics − Rics + ∑
29
t=0

0.01×Cics
(1+r)t − ∑

τFIT
ics

t=0
FITt(1−DR)tsolarics

(1+r)t − ∑
τPBI

ics
t=0

PBIt(1−DR)tsolarics

(1+r)t

∑
29
t=0

(1−DR)tsolarics

(1+r)t

(1)

Figure 4: In this figure, we present a choropleth map of estimated local solar prices, as-
suming 0% ITC uptake. High φcs and Rics weigh negatively on LCOEics, thus driving
down solar prices. Despite high rebates, King County Washington also is associated with
the highest price of solar due to very low solar insolation.

Let H̃Hcs be the total number of household-level panel installation observations for

county-state unit c, s. Note that H̃Hcs ≤ HHcs always, since we cannot observe more

households with installed solar capacity than the total number of households that exist in

the county. In fact, it is always true in our data that H̃Hcs < HHcs, strictly. Let τ̃ics be the

year in which agent i who lives in county-state c, s purchased and installed solar panels.

We calculate county-level average solar prices as the average of LCOE values across all
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installed units (converted to $2018) and over time, weighted by system size Sics:

psolar
cs =

∑
2018
t=2000 ∑

H̃Hcs
i=1 1(τ̃ics = t)SicsLCOEics

p2018
pt

∑
2018
t=2000 ∑

H̃Hcs
i=1 Sics

(2)

Sums start at t = 2000 since that is the first year in our sample. pt is the Consumer

Price Index for All Urban Consumers (CPI-U) from the Bureau of Labor Statistics. In

our baseline estimation, where we assume ITC uptake is zero, Rics contains only local

rebates. When we assume ITC uptake is maximal, we adjust Rics to include 30% of costs

— 0.3 × Cics.

Figure 4 presents the geo-spatial distribution of solar prices. Given the LCOE calcu-

lations in (1), rebates weigh negatively on the price. Notice that despite issuing average

net rebates of over $10,000, King County, Washington (home to Seattle) is also associated

with one of the highest effective solar prices, due to the combination of both high instal-

lation costs and low average daily insolation, φcs. Since solarics = Ratingics ×φcs, low

φcs puts upward pressure on LCOE, and high φcs puts downward pressure on LCOE.

We see similar trends with respect to Oregon, which offers few rebates but also has low

φcs driving prices up. Pennsylvania, also, offers relatively high subsidies (around $10,000

on average), and yet features relatively above-average solar prices due to relatively low

daily insolation.

Examining variation between the geo-spatial net rebate and price distributions leads

to a couple of questions. Rebates in cloudy places like Seattle seem poorly targeted from a

national perspective, even though local policymakers may prefer them. Can we construct

a measure of geo-spatial efficiency in order to understand where there may be surpluses

or shortages of installed panels, relative to other localities? In the next section, we pro-

pose such an index. Second, given such potential aggregate, national inefficiencies, do

local rebates contribute to a more efficient geo-spatial distribution of residential panels,

relative to a no-rebate environment? We explore this second question with our structural

counterfactuals in Section 6.

3.5 Geo-spatial Efficiency of Residential Coverage

As previously mentioned, the most efficient distribution of solar panels would see great

concentrations of residential solar generation in the Southwest and West with sparser

concentration in cloudier places like the Pacific Northwest and Northeast. However, vari-

ation in local subsidization of solar electricity and solar installation costs may incentivize

consumers in places with relatively low average solar insolation to engage in relatively
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high rates of solar adoption. For this reason, we seek a measure of the degree to which the

current distribution of residential panels across the U.S. deviates from the efficient distri-

bution, which would follow the geo-spatial gradient in Figure 1, absent consideration for

transmission frictions across a fractured electrical grid.

The share of average residential electrical consumption in county-state unit c, s that is

attributed to residential solar is given by:

µcs =
Ratingcsφcs

ecs
≡

solarcs

ecs

where ecs is per-household total electrical consumption and µcs ∈ [0, 1), allowing for no

residential solar consumption but requiring that some fraction of electrical consumption

always comes from other sources. Let C be the number of county-state pairs in our sam-

ple. We can compare the residential solar market share of electrical consumption across

these counties using the empirical distribution function:

Pµ(m) =
1

C ∑
s

∑
c

1µcs≤m

We can also rank counties in terms of their average daily solar insolation:

Pφ(ϕ) =
1

C ∑
s

∑
c

1φcs≤ϕ

Using both of these statistics, we construct a unit-less index on the log-scale that char-

acterizes the degree to which the geo-spatial distribution of residential solar panels devi-

ates from the efficient distribution:

λcs = ln

(
Pµ(µcs = m)

Pφ(φcs =ϕ)

)
(3)

If λcs > 0 then county-state c, s has excess installed residential solar capacity relative to

the other counties in our sample. If λcs < 0 then county-state c, s has an excess supply of

un-tapped solar potential relative to the other counties in our sample.

Note that the moments of the distribution of λcs provide rich summary statistics char-

acterizing how the geo-spatial distribution deviates from the efficient distribution. As

E(λcs) → 0 and Var(λcs) → 0 simultaneously, the distribution of λcs converges to the

efficient distribution. If E(λcs) = 0 and Var(λcs) > 0 then the distribution is ineffi-

cient yet unbiased. That is, geo-spatial inefficiency is equally attributable to excess sup-

ply in cloudier places and relative shortages in sunnier places. If E(λcs) , 0 but finite,
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Figure 5: The geo-spatial distribution of the log efficiency index, λcs, shows that relative
excess residential-solar supply is concentrated in the Northeast, while relative residential-
solar shortages are concentrated primarily in Texas and Florida. The mean efficient
county in our sample is Tuolumne County near Yosemite National Park in Central Cali-
fornia.

then necessarily Var(λcs) > 0, and the distribution is both inefficient and biased. If

E(λcs) < 0 then, generally speaking, residential solar capacity is inefficient due more

to under-installation in sunnier states relative to the efficient distribution. If E(λcs) > 0

then, generally speaking, residential solar capacity is inefficient due more to excess solar

capacity in cloudier states relative to the efficient distribution.

After the sample selection procedures discussed in the previous sections, we can com-

pute the geo-spatial distribution of λcs for the counties that survive our selection proce-

dure. This geo-spatial distribution is presented in Figure 5, where redder counties fea-

ture a relative over supply of panels, while bluer counties feature relative under sup-

ply. Notice that over supply appears concentrated in the Northeast and Pacific North-

west, while counties in Texas are associated with a notable under supply considering the

above average solar insolation levels these counties experience. With respect to the dis-

tribution of λcs, we find that the mean is not significantly different from zero, though

Var(λcs) = 2.164 > 0, suggesting an unbiased but inefficient distribution of solar panels.
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4 Model of Household Demand

The model we propose operates at the U.S. county level. Index county units by c ∈ C.

Each county belongs to a state s ∈ S. A consumer-unit i in county c and state s has

basic consumption preferences over housing hics (in units of square feet), total household

electrical consumption eics which includes solar (in units of kWh), an additional amenity

preference for consumption characterized by the panel rating variable Ratingics (in units

of kW, not kWh), and an outside commodity cics which captures all other consumption.

All choices are assumed to be strictly positive and continuous, and all consumers are

assumed to be price takers, meaning that their atomic decisions have negligible influence

on general-equilibrium outcomes. In our preference formulation consumers have control

over the overall kilowatt-rating of the panels they purchase but not their total output,

which also depends on local insolation. The household decision environment is a static

one: we do not consider savings or investment decisions but rather account for the long-

run effects of solar-panel investment by constructing prices accordingly, as previously

described. The goal of our modeling exercise is to find reasonable estimates of structural

demand parameters in order to explore how both local and national subsidization policies

may contribute to the inefficient geographic distribution of solar capacity.

We do not distinguish between electricity consumed from solar versus other sources.

Instead, consumers prefer to consume solar electricity only because they have preferences

for the solar amenity. That is, they like solar perhaps because they are environmentally

conscious or enjoy the feeling of self-reliance derived from consuming electricity pro-

duced with equipment they own. However, a consumer, when in the act of consuming

electricity to power appliances or lights, for example, does not care about the source of

electricity. In this sense we assume that the solar amenity preference and preferences for

consumption are somehow separable in utility.

The preference structure we impose is of the nested constant elasticity of substitution

(CES) variety. Our nesting structure features a three-tiered hierarchy. To allow for the fact

that housing consumption and electrical consumption may be complementary, we allow

them to be contained within their own nest. The next layer accounts for complementari-

ties between the composite of housing and electrical consumption and the solar amenity.

Finally, the outer-most layer accounts for the relationship between housing/electrical
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consumption plus the solar-amenity composite and all other consumption:

ucs(hics, eics, Ratingics, cics) =
[((

γhαics + (1 − γ)eαics

) ρ
α
+ ηcs(Ratingicsφcs)

ρ

)κ
ρ

+ cκics

] 1
κ

,

α,ρ,κ , 0 and α,ρ,κ < 1

(4)

α governs the degree to which housing and electricity are complementary. ρ governs the

substitutability between the housing/electricity composite good and the solar amenity. κ

governs the rate at which consumers substitute between all other consumption and the

housing/electricity plus solar-amenity composite. γ governs the relative importance con-

sumers place on housing versus electrical consumption. ηcs characterizes the degree to

which local demographic, political, cultural, and climatic factors impact solar consump-

tion preferences. Note that all consumers in the same county-state unit face the same

amenity-preference weight ηcs. We assume that consumers value electricity indepen-

dently of where it comes from but care about solar-panel-generated electricity only as an

amenity. That is, they do not separately choose non-solar and solar electrical consump-

tion. This assumption reflects the difficulty in decomposing electrical consumption from

solar versus non-solar due to grid-based electricity comprising flows from both sources.

All households in the same county-state unit face the same market prices. Let ph
cs be

the average price per square foot of owner-occupied housing, as reported in the 2014-

2018 American Community Survey (ACS) 5-year estimates. Let pe
cs be the market price

per kilowatt hour of electricity in county c and state s. Let psolar
cs be the net-present-value

of solar electricity consumption, accounting for wear-and-tear and depreciation of panel

efficiency.15 pc
cs is a price index describing the value of all other consumption. Let yics en-

code total income net of savings for household i in county c and state s. The household’s

budget must satisfy

ph
cshics + pe

cseics + psolar
cs Ratingicsφcs + pc

cscics

≤ yics + max{pe
cs(Ratingicsφcs − eics), 0}

(5)

Within a county-state unit, the exogenous source of household heterogeneity is thus lim-

ited to yics. Note that in most localities, excess electricity generated from residential so-

lar panels is sent back to the grid, and the household is offered a credit at par with the

market-value of excess production, hence the final term on the right-hand-side.

15This is the solar price constructed in Section 3.4.
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Since all household heterogeneity within a particular county-state unit is governed by

exogenous variation in income, we can exploit the homotheticity of ucs to focus solely on

the problem of a representative consumer, given ucs is associated with an indirect utility

function that satisfies the polar form of Gorman (1959). Further, since we observe that

∑i(Ratingicsφcs − eics) < 0 in all county-state combinations in our sample, it follows that

no county produces more residential solar electricity than the total amount of electricity

it consumes. Thus, we can safely ignore the argument max{pe
cs(Ratingicsφcs − eics), 0} on

the right-hand side of the representative consumer’s budget constraint when characteriz-

ing aggregate demand properties in the next section. From here on, we drop i subscripts.

Moving forward, we will let choice variables that are missing their i subscripts correspond

to aggregate demands for county c in state s.

4.1 Equilibrium Aggregate Demand

The representative consumer in county c and state s solves:

max
hcs ,ecs ,Ratingcs ,ccs

ucs(hcs, ecs, Ratingcs, ccs)

subject to ph
cshcs + pe

csecs + psolar
cs Ratingcsφcs + pc

csccs ≤ ycs

In equilibrium, the marginal rate of substitution between housing and total electrical con-

sumption is:

γ

1 − γ

(
hcs

ecs

)α−1

=
ph

cs

pe
cs

(6)

The marginal rate of substitution between consuming the solar amenity and total electric-

ity is:

ηcsφ
ρ

csRatingρ−1
cs

(
γhαcs + (1 − γ)eαcs

) ρ−α
α (1 − γ)eα−1

cs

=
psolar

cs φcs

pe
cs

(7)

Given the separability between the nest which includes hcs, ecs, and Ratingcs and ccs, we

can fully characterize the demand for housing, electricity, and solar panels without a need

to specify equilibrium first-order conditions for ccs. Indeed, separability between Ratingcs

and the housing/electricity nest allows us to substitute out hcs from (7) using (6) in order

to arrive at an expression that roughly characterizes the fraction of electrical consumption
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devoted to solar:

(
Ratingcs

ecs

)ρ−1
ηcsφ

ρ

cs

1 − γ

(
γ

[
ph

cs(1 − γ)

pe
csγ

] α
α−1

+ 1 − γ

)α−ρ
α

=
psolar

cs φcs

pe
cs

(8)

(8) can be used in order to arrive at consistent estimates of the structural parameters,

given data for prices, demand, and average daily insolation by county. (8) is thus our

primary structural estimating equation around which we will form a likelihood function

and arrive at estimates of α, ρ, γ and a residual expression for the amenity weight ηcs.

Given κ does not factor into our primary estimating equation, which characterizes the

marginal rate of substitution between housing/electricity and the solar amenity, we need

not estimate this parameter, so it remains free. In the following section, we provide the

details of our structural estimation approach, while also addressing the orthogonality

assumptions required for consistent recovery of the parameters.

5 Structural Estimation Procedure

Our estimation procedure operates on county-level data for 372 counties, distributed

mostly in the western U.S., northern Midwest, Texas, Florida, and the northeastern U.S.

We select a sample of counties for which we have sufficient data on residential solar panel

installations, including cost of installation and any rebates, feed-in tariffs, or performance-

based incentives received by the household, where county selection is as described in

Section 3.

The primary equation we target is a logged version of (8), controlling for local demo-

graphic, economic, and environmental factors that may be correlated with the amenity

weight, ηcs. Our approach is to form a likelihood function around (8) while placing prior

distributions (flat, where possible) on the structural parameters, ρ,α, and γ, as well as the

likelihood variance σ2, in order to estimate the posterior distribution of model parame-

ters given data. We thus take a Bayesian approach to estimation and use Monte Carlo

integration techniques to estimate the posterior distribution. Specifically, we estimate

the posterior distribution using a Hamiltonian Monte Carlo (HMC) method as described

in Neal (2011). We run four different versions of the estimation procedure, separately

restricting ρ and α to either be in (0, 1) or (−∞, 0). We then employ model selection

techniques to compare the log-posterior predictive density functions of the separately-

estimated models, where sampling from the predictive distribution is undertaken using

the leave-one-out methods described in Vehtari, Gelman, and Gabry (2017).
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The estimation results presented in the main text involve estimates of the solar price

index where, lacking data, we assume that uptake of federal ITC is zero. In Appendix

A we present estimation results under the alternative assumption that ITC uptake is the

maximum 30% for all observed installations. There is no significant discernible difference

between the posterior distribution results under either price-construction assumption,

so we dispense with performing counterfactual analyses on the model where psolar
cs is

constructed allowing for 30% ITC uptake.

Our parameter estimates and model selection procedures suggest that ρ ∈ (0, 1), so

that the solar amenity and the housing/electricity composite are substitutes. We also pre-

fer the model where α < 0, which we believe to be consistent with theory: we expect

housing and electricity to be complementary since larger houses are to be associated with

more appliances, more lights, and more space to heat and cool, and thus greater electrical

consumption. Controlling for local demographic, political, cultural, and climatic factors,

we find no significant relationship between solar demand and either population den-

sity, median household income, or rates of home ownership. We find that counties with

higher shares of Republican voters (GOP voting share) are somewhat surprisingly asso-

ciated with greater preferences for the solar amenity. Meanwhile, the number of cooling

degree days is the most significant local factor weighing down on solar amenity prefer-

ences. We discuss all of these findings and present robustness tests to check for regressor

endogeneity in the sections that follow.

5.1 Likelihood and Prior Distributional Assumptions

Taking logs of (8) and isolating the log of the amenity weight as a residual, ln ηcs, we get:

ln

(
psolar

cs

pe
cs

)
+ (1 − ρ) ln

(
Ratingcs

ecs

)
+ (1 − ρ) lnφcs + ln(1 − γ)

+

(
ρ−α

α

)
ln

(
γ

[
ph

cs(1 − γ)

pe
csγ

] α
α−1

+ 1 − γ

)
= ln ηcs

(9)

We expect the amenity weight ηcs to be correlated with local demographic, economic,

and environmental factors, such as population density, median household income, polit-

ical preferences, and the number of hot versus cold days during the year. We thus write
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ln ηcs as a linear function of the following set of controls:

ln ηcs = β1 ln pop densitycs +β2 ln GOP voting sharecs

+β3 ln median incomecs +β4 ln heating dayscs

+β5 ln cooling dayscs +β6 ln homeownership ratecs +ǫcs

Population density is from the 2011-2015 ACS 5-year estimates. The GOP voting share

variable measures the share of the vote the Republican candidate, Donald Trump, re-

ceived in the 2016 presidential election. Median income is the median income of a home-

owning household, not a person, from the 2014-2018 ACS 5-year estimates. Heating and

cooling degree days are measures which quantify a given locale’s demand for energy

to heat and cool buildings, depending on the region’s daily outdoor air temperature.16

These variables are found in the DeepSolar data along with φcs. The homeownership rate

describes the fraction of all households that are owner-occupied, as found in the 2011-

2015 ACS 5-year estimates. ǫcs is the idiosyncratic residual that is assumed iid across

county-state observations. We form the likelihood function around this error term, which

is assumed normally distributed, and the variance of which is given a conjugate inverse

gamma prior:

ǫcs ∼iid N (0,σ2)

σ2 ∼ InvGamma(5, 5)

The structural preference parameters ρ andα are given priors that depend on whether

we ex-ante (prior to running the integration procedure) restrict ρ and/or α to be in the

unit interval or negative:

ρ,α ∼ U [0, 1], if either ρ and/or α ∈ (0, 1)

− ρ,−α ∼ LN

(
−

1

2
, 1

)
, if either ρ and/or α < 0

U is the uniform distribution and LN is the log-normal distribution. Note that we run

four separate estimations accounting for the fact that both ρ and α may be positive, one

is negative and the other is positive, or both are negative.

16To compute heating degree days, for example, take a region’s average temperature on any given day
and subtract it from a pre-set base temperature, which is effectively the constant building temperature that
is desired. This constant temperature is attributed to local building standards and is typically taken to be
18.3◦C (65◦F) in the United States. If this value is positive, then the value gives the number of heating
degree days. If it is negative, the absolute value yields the number of cooling degree days.
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The contribution of housing consumption to the housing/electricity preference nest is

given by γ. Having found in simulations that this parameter often piles up at its upper

bound of 1, we impose an informative beta prior on γ:

γ ∼ Beta(1,ω)

ω is a hyper-parameter which we estimate by taking logs of the infra-marginal rate of sub-

stitution between solar and electrical consumption in (6) and running an OLS regression

to get a prior estimate for γ which we call γ̂. We allow this prior estimate to correspond to

the mean of the beta distribution, which gives us ω̂ = 1/γ̂ − 1. This value is ω̂ = 0.289.

Finally, the contribution of control variables to the amenity weight is governed by the

vector β with components β j. We give these parameters flat, improper priors, allowing

them to take any real value with equal quasi-probability:

β j ∼ U (−∞, ∞), ∀ j ∈ {1, 2, 3, 4, 5, 6}

While improper priors can sometimes create computational issues when sampling, con-

vergence criteria for our integration schemes are all satisfied and no such issues arise.

5.2 Posterior Distribution Estimates and Model Selection

Table 1: Model Selection Assessments

Model elppd Differencea S.E. Differenceb

ρ,α ∈ (0, 1) — —

ρ ∈ (0, 1),α < 0 -11.2 3.3

ρ < 0,α ∈ (0, 1) -797.5 21.8

ρ,α < 0 -799.0 21.7

a This is the difference in the expected log-posterior predictive
density relative to the model with the highest elppd value —
ρ,α ∈ (0, 1). As long as the absolute value of the elppd
difference is several times the standard error of the differences,
we can be confident that the baseline model provides a better
fit than its alternatives (Vehtari, Gelman, and Gabry 2017).
b This is the standard error of the posterior differences across
HMC sample draws.
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The structural models, conditional on prior assumptions regarding how the solar

amenity, housing, and electricity are related (substitutes versus complements), are es-

timated using an HMC integration routine parallelized over four independent chains.

Each chain generates 8000 samples from the posterior distribution of parameters condi-

tional upon prior assumptions and data. We allow the first 4000 samples to be considered

warm-up/burn-in samples and drop them from our posterior analyses, leaving us with

4000 × 4 = 16000 sample parameter vectors for each model. The operations required to

perform the HMC take approximately 20 minutes on a standard multi-threaded, multi-

core laptop. All four models converge according to the R̂ convergence criterion for HMC

estimation procedures, as outlined in Vehtari et al. (2019).17

Tables 2 and 3 present the posterior distribution estimates of the model’s structural

parameters, under the respective assumptions that ρ ∈ (0, 1) and ρ < 0. The top half of

each table contains estimates under the assumption α ∈ (0, 1), while the bottom half of

each table contains estimates assuming α < 0. We perform model selection by assessing

the expected log posterior predictive density (elppd) using the leave-one-out sampling

method as described in Vehtari, Gelman, and Gabry (2017). elppd is largest for the model

with ρ,α ∈ (0, 1), though for theoretical reasons we prefer the model where ρ ∈ (0, 1)

and α < 0, allowing housing size and electrical consumption to be complements. As can

be seen in Table 1 the model with ρ,α ∈ (0, 1) is only weakly preferred, in terms of elppd

to that with ρ ∈ (0, 1) and α < 0, relative to the two models where ρ < 0. Since both

models where ρ ∈ (0, 1) are strongly preferred, in terms of elppd to those where ρ < 0,

solar demand and demand for housing/electrical consumption are substitutes. Further

evidence that the ρ ∈ (0, 1) models provide better fitness can be seen by comparing the

likelihood variances σ2 in Table 2 to those in Table 3. The likelihood spreads are substan-

tially larger in the complements models with ρ < 0. The log-posterior densities V(P) are

also larger in models with ρ ∈ (0, 1), so that the posterior is tighter and more concen-

trated than the estimated distributions in models with ρ < 0. For all of these reasons, we

focus our analyses on the estimates in Table 2.

17The criterion states that if the R̂ statistics for all model parameters as well as the same statistic associated
with estimates of the log posterior density V(P) are approximately unity, then the numerical integration

routine has converged to the true posterior distribution. The R̂ statistic used to assess HMC integration con-
vergence should not be confused with (and is unrelated to) the R2 statistic used by frequentists in ANOVA
tables.
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Table 2: Posterior Distribution Estimates, ρ ∈ (0, 1)

α ∈ (0, 1)

Parameter R̂ Mean S.D. 2.5% 25% 50% 75% 97.5%

ρ 1.000 0.951 0.007 0.937 0.946 0.951 0.955 0.965

α 1.001 0.748 0.106 0.473 0.701 0.772 0.822 0.883

γ 1.000 0.967 0.027 0.900 0.963 0.974 0.980 0.987

σ2 1.000 0.104 0.008 0.090 0.099 0.104 0.109 0.121

β1 1.000 0.010 0.024 -0.037 -0.006 0.010 0.026 0.058

β2 1.000 0.181 0.063 0.056 0.138 0.181 0.224 0.304

β3 1.000 -0.034 0.073 -0.176 -0.082 -0.034 0.014 0.110

β4 1.000 -0.104 0.038 -0.177 -0.129 -0.104 -0.078 -0.029

β5 1.000 -0.419 0.074 -0.565 -0.469 -0.419 -0.370 -0.271

β6 1.000 -0.171 0.146 -0.455 -0.269 -0.173 -0.073 0.118

V(P)a 1.001 235.024 2.363 229.397 233.735 235.397 236.736 238.531

α < 0

Parameter R̂ Mean S.D. 2.5% 25% 50% 75% 97.5%

ρ 1.000 0.946 0.007 0.933 0.941 0.946 0.951 0.960

α 1.000 -0.171 0.116 -0.463 -0.219 -0.144 -0.091 -0.035

γ 1.000 0.364 0.124 0.111 0.280 0.370 0.451 0.595

σ2 1.000 0.110 0.008 0.095 0.104 0.109 0.115 0.126

β1 1.000 0.000 0.024 -0.048 -0.017 -0.000 0.016 0.047

β2 1.000 0.189 0.066 0.060 0.145 0.189 0.234 0.318

β3 1.000 0.058 0.084 -0.106 0.003 0.059 0.114 0.223

β4 1.000 -0.085 0.038 -0.159 -0.111 -0.085 -0.060 -0.009

β5 1.000 -0.361 0.075 -0.509 -0.412 -0.363 -0.311 -0.214

β6 1.000 -0.157 0.149 -0.450 -0.256 -0.160 -0.056 0.135

V(P)a 1.000 226.328 2.283 221.039 225.016 226.663 228.009 229.769

a V(P) is the log posterior density of parameters, P .
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Table 3: Posterior Distribution Estimates, ρ < 0

α ∈ (0, 1)

Parameter R̂ Mean S.D. 2.5% 25% 50% 75% 97.5%

ρ 1.000 -0.011 0.005 -0.022 -0.013 -0.010 -0.007 -0.004

α 1.000 0.570 0.264 0.049 0.361 0.618 0.799 0.952

γ 1.000 0.784 0.257 0.095 0.688 0.915 0.963 0.994

σ2 1.001 5.872 0.442 5.071 5.561 5.849 6.159 6.805

β1 1.000 -0.186 0.174 -0.528 -0.304 -0.185 -0.065 0.153

β2 1.000 -1.361 0.469 -2.280 -1.676 -1.356 -1.049 -0.435

β3 1.000 0.722 0.518 -0.296 0.371 0.718 1.070 1.746

β4 1.000 -0.324 0.278 -0.873 -0.512 -0.319 -0.137 0.221

β5 1.000 -2.196 0.529 -3.234 -2.552 -2.192 -1.837 -1.173

β6 1.000 3.202 1.121 1.009 2.459 3.209 3.957 5.405

V(P)a 1.000 -540.145 2.632 -545.942 -541.733 -539.940 -538.316 -535.571

α < 0

Parameter R̂ Mean S.D. 2.5% 25% 50% 75% 97.5%

ρ 1.000 -0.011 0.005 -0.022 -0.013 -0.010 -0.007 -0.004

α 1.000 -0.483 0.558 -1.804 -0.587 -0.332 -0.185 -0.060

γ 1.000 0.645 0.316 0.033 0.385 0.727 0.942 1.000

σ2 1.000 5.938 0.436 5.142 5.638 5.917 6.213 6.866

β1 1.000 -0.237 0.175 -0.582 -0.355 -0.237 -0.118 0.099

β2 1.000 -1.324 0.477 -2.264 -1.647 -1.323 -1.002 -0.395

β3 1.000 0.461 0.526 -0.579 0.112 0.466 0.813 1.475

β4 1.000 -0.198 0.261 -0.709 -0.371 -0.200 -0.022 0.317

β5 1.000 -2.086 0.521 -3.117 -2.433 -2.085 -1.738 -1.062

β6 1.000 3.125 1.078 1.030 2.399 3.116 3.857 5.248

V(P)a 1.000 -541.208 2.319 -546.558 -542.526 -540.882 -539.530 -537.712

a V(P) is the log posterior density of parameters, P .

To better understand why we prefer the model with ρ ∈ (0, 1) and α < 0, despite the

model selection mechanism preferring ρ,α ∈ (0, 1), let us compare estimates between the

top and bottom half of Table 2. Note first that changing the prior distributional assump-

tion on α does not substantially impact the posterior distribution of ρ. Rather, chang-
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ing the prior on α appears to most significantly impact inference regarding the housing

weight γ and the contribution of the control variables to amenity preferences β. One rea-

son we prefer the model where α < 0 is that in that model γ << 1, compared to the

model where α ∈ (0, 1) and γ is close to 1. γ near 1 suggests that consumers do not care

much about consuming electricity but really care about living in a big house. Further,

α ∈ (0, 1) suggests that house size and electrical consumption are themselves substi-

tutes, so that, on the margin, consumers may increase their housing size but decrease

their electrical consumption in response to an increase in electrical prices. This seems

counter-intuitive: we would not normally expect consumers to demand larger houses in

the middle of, for example, an energy crisis. Larger houses have more lights, more room

for electronic devices and appliances, and require more energy for heating and cooling.

Thus, while elppd is weakly better for ρ,α ∈ (0, 1), common sense suggestsα < 0 and so

we prefer the specification in the bottom half of Table 2.

We will now focus on the values of β in the bottom half of Table 2. Population density

(β1) and median household income (β3) appear to have no significant effect on local solar

preferences. Meanwhile, GOP voting share (β2) weighs positively on local preferences.

Heating degree days (β4), cooling degree days (β5), and the homeownership share (β6)

all weigh negatively on local preferences, with the largest most significant effect coming

from cooling degree days. At first glance we would expect the homeownership share to be

positively correlated with solar amenity preferences, since county-aggregate residential

solar market penetration relies on a high level of homeowners in the county. However,

homeownership shares are highest in rural areas, and residential solar appears to have its

greatest local market penetration on the urban coasts, especially the northeast and west

coast. Further, we are somewhat surprised that Republican Party (GOP) voting shares

are positively correlated with solar amenity preferences, given conservative hostility to

climate change mitigation policies. We note, however, that the effect, while positive, is

not strong: on average a 1% increase in the share of GOP voters in a county leads to an

expected increase of 0.19% to ηcs.

Focussing still on the bottom half of Table 2 we turn our attention to coefficients de-

scribing the effects of heating degree days (β4) and cooling degree days (β5) on amenity

preferences. Colder climates are associated with more heating degree days. Notice that

the marginal posterior distribution of β4 is centered closer to zero than that of β5, demon-

strating that the negative effect of more cooling degree days is stronger than that of higher

heating degree days. What might be driving these relationships and differentials? First, as

we see in Figure 5, excess residential solar supply relative to the efficient geo-distribution

is mostly concentrated in colder parts of the country — the Pacific Northwest, New York
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state, and New England. Naturally, these areas have higher annual heating degree days.

Since energy for heating buildings is often supplied by natural gas or heating oil, elec-

tricity demand in these regions will not be as adversely subjected to wild swings in grid-

supply due to an over-reliance on solar energy. Second, we observe a relative under-

supply of solar in hot and dry climates of the Southwest and Texas, as well as some more

humid areas on the Gulf Coast of Florida. These areas are associated with high num-

bers of cooling degree days per year. Since air conditioning is almost always powered

by electricity, in such places that require lots of electricity if grid supply relies on a large

distribution of residential solar panels, then the grid could be stressed by over-demand

on cloudier days.

5.3 Amenity Preferences and Idiosyncratic Errors

In this section we examine the structure of the error and amenity weight distributions.

First, we examine the geo-spatial distributions of the posterior mean of the idiosyncratic

errors ǫ̂cs and the posterior mean of the log amenity weight ̂ln(ηcs) and compare them

to the log efficiency index λcs. Second, we consider whether the error distribution itself

may be systematically correlated with any of the regression variables, suggesting possible

endogeneity bias. Third and finally, we test whether the error structure is correlated with

local average subsidization policies to understand if price endogeneity due to systematic

variation in subsidies could be affecting estimation results.

5.3.1 Correlation Between Errors, Amenity Preferences, and λcs

Are the geo-spatial distributions of the idiosyncratic errors and amenity weights corre-

lated with the log-efficiency index? Figures 6, 7, 8a, and 8b help visually characterize

these relationships for the model where α < 0 and ρ ∈ (0, 1). The geo-spatial distribu-

tions are presented in Figures 6 and 7, while scatterplots showing the relation between

λcs and both ǫ̂cs and l̂n ηcs are presented in Figures 8a and 8b. We find very little corre-

lation (Pearson’s coefficient is 0.10) between ǫ̂cs and λcs and only slight linear correlation

between l̂n ηcs and λcs (Pearson’s coefficient is 0.27). These relationships can be seen in

Figure 8. Meanwhile, Figure 7 shows that cooler, cloudier locales in the Pacific Northwest

appear to have the largest solar-amenity preference weight. This is not surprising given

the excess uptake of solar panels in that region with relatively little local subsidization,

suggesting that the local demand for solar is not simply driven by low prices.
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Figure 6: In this figure we show the geo-spatial distribution of the posterior means of
structural idiosyncratic errors, ǫ̂cs, for all counties in our sample.

Figure 7: Here, we show the geo-spatial distribution of posterior means of log amenity

preferences, ̂ln(ηcs), for all counties in our sample. Notice that all values of ηcs ∈ (0, 1).
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(a) (b)

Figure 8: In panel (a) we present a scatterplot of λcs along with the posterior means of
the idiosyncratic errors ǫ̂cs, and in panel (b) we present a scatterplot of λcs along with

the posterior means of log amenity preferences, ̂ln(ηcs). The log efficiency index appears

uncorrelated with both ǫ̂cs and ̂ln(ηcs).

5.3.2 Checking for Regressor Endogeneity

A standard regression model contains a response (dependent) variable (often written on

the left-hand side of an equation) and a vector of other, assumed independent variables

that the response depends upon in some manner (model). Here, the variable
Ratingcs

ecs
de-

pends non-linearly on relative prices, local solar insolation, local demographic factors,

and a non-additive residual ǫcs, which in a standard regression would be assumed to be

orthogonal to all but the dependent variable. We take no stance on what the model’s de-

pendent variable is, given general equilibrium linkages likely make both relative demand

and relative prices endogenous. In this section we explore the covariance of the model

variables with the error term to understand the degree to which endogeneity-bias may

be present. If only one of the regression variables exhibits significant correlation with the

error term, then we can conclude that no endogeneity bias is present. This is because, as

in a canonical regression model, the covariance between the dependent variable and the

error term is typically (but need not be) non-zero.
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Table 4: p-Values From Boot-strapping Tests for Covariance Between ǫ̂cs and Regression Variables

Panel (a): p-Values for Model with ρ,α ∈ (0, 1) and Estimated Likelihood Variance σ̂2 = 0.104

υ ln
(

psolar
cs
pe

cs

)
ph

cs
pe

cs
ln
(

Ratingcs
ecs

)
lnφcs ln pop densitycs ln GOP voting sharecs ln median incomecs ln heating dayscs ln cooling dayscs ln homeownership ratecs

0.05 0.687 0.009 0.100 0.992 0.271 0.661 0.914 0.305 0.585 0.989

0.1 0.959 0.018 0.197 1.000 0.512 0.946 1.000 0.573 0.895 1.000

0.25 1.000 0.047 0.473 1.000 0.921 1.000 1.000 0.953 1.000 1.000

0.5 1.000 0.090 0.798 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 1.000 0.182 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel (b): p-Values for Model with ρ ∈ (0, 1),α < 0 and Estimated Likelihood Variance σ̂2 = 0.110

υ ln
(

psolar
cs
pe

cs

)
ph

cs
pe

cs
ln
(

Ratingcs
ecs

)
lnφcs ln pop densitycs ln GOP voting sharecs ln median incomecs ln heating dayscs ln cooling dayscs ln homeownership ratecs

0.05 0.697 0.010 0.103 0.993 0.274 0.673 0.915 0.314 0.586 0.992

0.1 0.962 0.021 0.203 1.000 0.519 0.950 0.999 0.585 0.900 1.000

0.25 1.000 0.047 0.484 1.000 0.931 1.000 1.000 0.957 1.000 1.000

0.5 1.000 0.093 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 1.000 0.182 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel (c): p-Values for Model with ρ < 0,α ∈ (0, 1) and Estimated Likelihood Variance σ̂2 = 5.872

υ ln
(

psolar
cs
pe

cs

)
ph

cs
pe

cs
ln
(

Ratingcs
ecs

)
lnφcs ln pop densitycs ln GOP voting sharecs ln median incomecs ln heating dayscs ln cooling dayscs ln homeownership ratecs

0.05 1.000 0.055 0.586 1.000 0.976 1.000 1.000 0.990 1.000 1.000

0.1 1.000 0.110 0.899 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 1.000 0.272 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 1.000 0.522 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 1.000 0.846 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel (d): p-Values for Model with ρ,α < 0 and Estimated Likelihood Variance σ̂2 = 5.938

υ ln
(

psolar
cs
pe

cs

)
ph

cs
pe

cs
ln
(

Ratingcs
ecs

)
lnφcs ln pop densitycs ln GOP voting sharecs ln median incomecs ln heating dayscs ln cooling dayscs ln homeownership ratecs

0.05 1.000 0.056 0.596 1.000 0.976 1.000 1.000 0.989 1.000 1.000

0.1 1.000 0.117 0.904 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 1.000 0.288 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 1.000 0.534 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 1.000 0.854 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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To assess the degree to which our estimates may be biased by possible endogeneity

of the regressors, we use a boot-strapping procedure to separately examine the covari-

ance of ǫ̂cs with each of the regression variables. Specifically, if X represents one of the

regression variables, including one of the control variables, we construct M = 10000

random perturbations (re-orderings) of the vector X and compute the covariance of each

random perturbation Xm with the actual vector of point estimates ǫ̂cs. This gives us a

set of M test statistics for each regression variable X. In order to compute a p-value to

test the null hypothesis that Cov(X, ǫ̂cs) , 0, we must specify a necessary threshold δ

such that |Cov(X, ǫ̂cs)| < δ implies that the covariance is effectively zero. This is be-

cause our test statistic is not necessarily distributed according to a standard Student’s-t

or Normal distribution. We thus choose several values for δ, each of which is some frac-

tion υ of the estimated posterior mean likelihood variance σ̂2. Specifically, we consider

υ ∈ {0.05, 0.1, 0.25, 0.5, 1}, so that δ is 5%, 10%, 25%, 50%, and 100% of the estimated

likelihood variance. We can then use the δ thresholds to compute an associated p-value,

which for variable X is just:

pX =
1

M ∑
m

1
{
|Cov(Xm, ǫ̂cs)| < δ

}
(10)

The null hypothesis that the covariances are non-zero is rejected if 1 − pX is less than

some pre-defined significance level.

The estimated p-values from the preferred models with ρ ∈ (0, 1) are featured in

panels (a) and (b) of Table 4. Note that the test we perform involves counting the amount

of boot-strapped samples where |Cov(Xm, ǫ̂cs)| < υ σ̂2 ≡ δ. The results show that when

we assume υ = 1, thus assessing whether the covariances are greater than the estimated

likelihood variance, we reject the null hypotheses that all but
ph

cs
pe

cs
are endogenous at the

1% significance level (focussing specifically on Panels (a) and (b) of Table 4, which also

feature relatively low likelihood variance σ̂2 compared to the models where ρ < 0). Thus,

covariances between regression variables and the likelihood error term are only a fraction

of the marginal likelihood variance itself, suggesting endogeneity bias, if it exists, is not

large in magnitude.

5.3.3 Correlation Between Errors, Amenity Preferences, and Local Subsidies

Figures 9a and 9b present scatterplots describing the relationship between net rebates,

R̂cs − T̂cs, and both ǫ̂cs and l̂n ηcs, respectively. Not surprisingly, given the covariance

tests undertaken in the previous section, we do not find significant correlations between

rebate policies and either the idiosyncratic error or amenity preferences. Pearson’s corre-
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lation coefficient describing the relationship between R̂cs − T̂cs and ǫ̂cs is -0.030 while the

correlation coefficient describing the relationship between R̂cs − T̂cs and l̂n ηcs is -0.001.

These results suggest that there is no systematic bias being caused by rebate policies di-

rectly affecting solar price construction.

(a) (b)

Figure 9: Average county-level net rebates, R̂cs − T̂cs, also appear to be uncorrelated with
idiosyncratic errors and log amenity preferences.

6 Counterfactual Thought Experiments

The main goal of this paper is to understand how the market share of electricity pro-

vided by residential solar is impacted by both local amenity preferences, including local

environmental factors, and local subsidization policies. We thus engage in several coun-

terfactual thought experiments, varying local characteristics, prices, and subsidies and

then examining both how the geographic distribution of the efficiency index described

in Section 3.5 changes and whether or not the share of electrical consumption that comes

from residential solar increases.

We find that local climatic factors which cannot be altered by governmental policies

have the biggest impact on residential solar uptake. Since many of the demographic

control variables enter the log amenity weight negatively, varying them does not have a

noticeable impact on solar panel uptake or the geo-spatial efficiency distribution. On the

price side, targeted rebates are only effective at increasing the solar share of electrical con-

sumption in high-insolation locales if housing and electricity are substitutes (0 < α < 1).

However, in this case the share also rises in low-insolation locales, biasing the geo-spatial
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efficiency distribution. When it is assumed that housing and electricity are complements

(α < 0), reducing the solar price through rebates actually has a negative impact on the

solar share of electrical consumption in high-insolation regions. While solar installations

increase as the price falls, electrical consumption increases faster. Thus, the rebate itself

could have a net-negative impact in terms of environmental-policy goals to reduce carbon

emissions if increases in ecs are supplied by new construction of other, non-renewable en-

ergy sources. Thus, the effectiveness of net-rebates for solar installation costs in terms of

actually increasing the renewable share of electrical consumption depends very impor-

tantly on consumer preferences. Our preferred model (0 < ρ < 1; α < 0) thus predicts

that one-size-fits-all rebate policies could actually backfire on policymakers whose aim is

to increase the renewable share of electrical consumption.

6.1 Counterfactual Variation in Efficiency and the Solar Share Around

Local Demographic Characteristics

How does variation in local demographics and climate impact solar demand? To answer

this question, we simulate the solar share of electrical consumption
Ratingcsφcs

ecs
, counterfac-

tually holding the separate demographic and climatological factors that influence ηcs and

φcs fixed. We then compute posterior counterfactual mean log efficiency indices λ̃cs and

use these indices to understand how the geo-spatial distribution is affected by different

demographic and climatological forces.18

Our simulation strategy is to compute summary statistics for the various factors that

comprise ln ηcs and replace the local data observation for the variable of interest with

those summary statistics. We perform similar analyses for lnφcs as well. The left-most

columns in Tables 5 and 6 feature the specific counterfactuals we consider.19

Tables 5 and 6 show summary statistics for the simulated posterior distribution of λ̃cs

under the various counterfactual assumptions. Note that the means of these posteriors

are not significantly different than zero, so that perturbing how demographics and cli-

matological factors affect demand does not seem to introduce bias to the efficiency index.

Focussing on the preferred models in Table 5 with emphasis on the bottom half of the

table, notice that the standard deviation of the geo-spatial distribution of log efficiency,

relative to data, is most reduced by fixing the log number of cooling days.20 This is not

18Tildes are used to denote counterfactually-simulated variables.
19For example, in row 2 of Table 5, we show the summary statistics for the simulated posterior distribu-

tion of λ̃cs under the assumption that every county is identical to the average county in terms of log GOP
voting share. Thus, under this counterfactual, there is no nationwide heterogeneity in terms of log GOP
voting share, yet all other variables are allowed to take on the county-specific values we observe in data.

20Compare the standard deviations (S.D.) in the last three rows of each sub-table to that in the first row.
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Table 5: Counterfactual Distribution of Efficiency Index, λ̃cs, ρ ∈ (0, 1)

α ∈ (0, 1)

Counterfactual Mean S.D. 2.5% 25% 50% 75% 97.5%

Data λcs 0.000 1.471 -2.954 -1.059 0.107 0.659 3.062

Mean Log GOP Voting Share 0.001 1.503 -2.850 -0.969 0.098 0.648 3.181

Mean Log φcs 0.001 1.492 -2.869 -0.970 0.069 0.657 3.262

10th Percentile Log φcs 0.001 1.493 -2.869 -0.970 0.067 0.657 3.265

90th Percentile Log φcs 0.001 1.492 -2.869 -0.970 0.071 0.657 3.252

Mean Log Homeownership 0.001 1.508 -3.205 -0.973 0.081 0.700 3.169

Mean Log Median Income 0.001 1.510 -3.015 -1.011 0.060 0.688 3.275

Mean Log Heating Days 0.001 1.601 -3.408 -1.026 0.050 0.780 3.363

Mean Log Cooling Days 0.001 1.050 -2.209 -0.354 0.007 0.338 2.628

10th Percentile Log Cooling Days 0.001 1.073 -2.209 -0.415 -0.002 0.357 2.725

90th Percentile Log Cooling Days 0.001 1.049 -2.209 -0.354 0.004 0.342 2.628

α < 0

Counterfactual Mean S.D. 2.5% 25% 50% 75% 97.5%

Data λcs 0.000 1.471 -2.954 -1.059 0.107 0.659 3.062

Mean Log GOP Voting Share 0.001 1.523 -3.059 -0.851 -0.068 0.737 3.371

Mean Log φcs 0.001 1.508 -2.878 -0.783 -0.097 0.760 3.377

10th Percentile Log φcs 0.001 1.508 -2.878 -0.783 -0.097 0.760 3.377

90th Percentile Log φcs 0.001 1.508 -2.878 -0.783 -0.097 0.760 3.377

Mean Log Homeownership 0.001 1.522 -2.976 -0.836 -0.078 0.786 3.360

Mean Log Median Income 0.001 1.515 -2.866 -0.795 -0.110 0.769 3.381

Mean Log Heating Days 0.001 1.579 -3.104 -0.916 -0.033 0.859 3.387

Mean Log Cooling Days 0.001 1.294 -2.701 -0.552 -0.066 0.406 3.282

10th Percentile Log Cooling Days 0.001 1.294 -2.701 -0.552 -0.066 0.406 3.282

90th Percentile Log Cooling Days 0.001 1.294 -2.701 -0.552 -0.066 0.406 3.282

too surprising given that the log cooling days variable appears to have the strongest, most

negative effect on preferences.

In Table 7 we compute the variance of the difference between the data log efficiency

index and the counterfactual ones, Var(λcs − λ̃cs). The larger this statistic is, the greater

the effect that the counterfactual perturbation has on altering the geo-spatial efficiency
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Table 6: Counterfactual Distribution of Efficiency Index, λ̃cs, ρ < 0

α ∈ (0, 1)

Counterfactual Mean S.D. 2.5% 25% 50% 75% 97.5%

Data λcs 0.000 1.471 -2.954 -1.059 0.107 0.659 3.062

Mean Log GOP Voting Share 0.001 1.391 -3.051 -0.730 0.159 0.749 2.651

Mean Log φcs 0.001 1.392 -3.181 -0.734 0.133 0.747 2.708

10th Percentile Log φcs 0.001 1.389 -3.181 -0.725 0.134 0.753 2.712

90th Percentile Log φcs 0.001 1.397 -3.181 -0.733 0.136 0.747 2.695

Mean Log Homeownership 0.001 1.397 -3.072 -0.677 0.128 0.761 2.691

Mean Log Median Income 0.001 1.408 -3.022 -0.790 0.149 0.761 2.718

Mean Log Heating Days 0.001 1.441 -3.125 -0.885 0.207 0.780 2.727

Mean Log Cooling Days 0.001 1.224 -2.909 -0.502 -0.005 0.661 2.263

10th Percentile Log Cooling Days 0.001 1.193 -2.909 -0.461 0.0001 0.666 2.142

90th Percentile Log Cooling Days 0.001 1.249 -2.909 -0.518 -0.004 0.666 2.305

α < 0

Counterfactual Mean S.D. 2.5% 25% 50% 75% 97.5%

Data λcs 0.000 1.471 -2.954 -1.059 0.107 0.659 3.062

Mean Log GOP Voting Share 0.001 1.361 -3.121 -0.597 0.138 0.748 2.636

Mean Log φcs 0.001 1.363 -3.250 -0.645 0.135 0.737 2.658

10th Percentile Log φcs 0.001 1.358 -3.250 -0.636 0.142 0.736 2.648

90th Percentile Log φcs 0.001 1.368 -3.250 -0.657 0.134 0.748 2.646

Mean Log Homeownership 0.001 1.369 -3.227 -0.587 0.126 0.748 2.662

Mean Log Median Income 0.001 1.380 -3.272 -0.673 0.148 0.739 2.690

Mean Log Heating Days 0.001 1.406 -3.182 -0.732 0.195 0.761 2.707

Mean Log Cooling Days 0.001 1.206 -3.087 -0.500 0.012 0.646 2.268

10th Percentile Log Cooling Days 0.001 1.181 -2.994 -0.477 0.035 0.629 2.183

90th Percentile Log Cooling Days 0.001 1.232 -3.063 -0.524 0.008 0.635 2.284

distribution. Again, changing log cooling days appears to most change the geo-spatial

efficiency distribution, relative to what we estimate from data. The largest effect comes

from fixing the log cooling days at the 90th percentile, which is approximately equivalent

to making every county have climatological conditions, and thus the need for air condi-

tioning, like that of Yuma, Arizona. Further, we find that if the entire country were both
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Table 7: Variance of Re-distribution of Efficiency Index, Var(λcs − λ̃cs)

Model

λ̃cs ρ,α ∈ (0, 1) ρ ∈ (0, 1),α < 0 ρ < 0,α ∈ (0, 1) ρ,α < 0

Mean Log GOP Voting Share 0.194 0.688 0.305 0.467

Mean Log φcs 0.049 0.761 0.343 0.521

10th Percentile Log φcs 0.050 0.761 0.351 0.536

90th Percentile Log φcs 0.049 0.761 0.330 0.506

Mean Log Homeownership 0.112 0.732 0.319 0.483

Mean Log Median Income 0.047 0.797 0.321 0.502

Mean Log Heating Days 0.475 0.759 0.312 0.478

Mean Log Cooling Days 1.268 1.247 0.582 0.725

10th Percentile Log Cooling Days 1.222 1.247 0.661 0.824

90th Percentile Log Cooling Days 1.274 1.247 0.524 0.632

as sunny and as hot as Yuma, the solar share would actually fall across the board.

Qualitatively, the effect of demand for air conditioning (for which cooling days is a

proxy) is to enhance the inefficiency of the geo-spatial distribution of panels by essentially

applying downward pressure on relative demand in sunny but hot places. The results

here thus suggest that while political preferences and other local demographic factors are

mildly important in affecting demand for residential solar, basic climatological factors

seem to play the most significant role.

6.2 How Does Solar Price Variation Affect Adoption and Efficiency?

In this section we examine how the share of electrical consumption devoted to residen-

tial solar changes as solar prices vary and how such changes impact the geo-spatial ef-

ficiency distribution. Varying psolar
cs acts as a proxy for varying underlying rebates and

taxes. If prices fall, we can think of this as the local government offering more rebates or

lower sales taxes, while if prices rise, rebates fall and taxes rise. Our findings suggest that

whether rebates will increase the solar share of electrical consumption in high-insolation

places depends on if housing and electricity are substitutes (0 < α < 1) or comple-

ments (α < 0). Reducing prices substantially across the country (either through federal

rebates or other subsidies) will only have a positive impact on the solar share of electri-

cal consumption if housing and electricity are substitutes. If they are complements (our
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theoretically preferred model), solar installations rise, since solar demand is a normal

good, but electrical consumption rises faster in response to a solar price decline, so that in

almost all localities across the country, the residential solar share of electrical consump-

tion falls. In terms of geo-spatial efficiency, if α ∈ (0, 1), decreasing solar prices leads to

the distribution of λ̃cs becoming biased towards counties with relative excess supply. If

α < 0, decreasing solar prices may encourage more efficient solar adoption, despite the

solar share of electrical consumption falling. The effect, in the latter case however, is very

slight.

To illustrate how the residential solar share of electrical consumption responds to price

variation, we simulate demand assuming that all counties face the minimum observed

price, psolar
cs , in our data.21 In Figures 10 and 11 we plot the posterior median change

in solar share by county, relative to that observed in the data, under the counterfactual

pricing assumption. For these plots, we present the posterior median change due to sig-

nificant left-skewness in the counterfactual posterior distributions of s̃olarcs
ecs

. The value

shown in the heat map is thus the posterior median of the difference s̃olarcs
ecs

− solarcs
ecs

.

When the price of solar in all counties is equivalent to the minimum price observed in

our data, over 99% of counties see a rise in solar share ifα ∈ (0, 1), but less than 1% see a

rise if α < 0. Recall, though, since solar is a normal good, solar installations do increase,

even if the share does not. This then implies that overall electrical consumption must be

increasing faster. Focussing on Figure 11, notice that when α < 0 the smallest declines in

solar share are geographically concentrated in cooler environs with lower average daily

insolation, such as the Pacific Northwest and Northeast. Notice that solar shares rise

across the board whenα ∈ (0, 1) as shown in Figure 10. Thus, depending on whether we

believe housing and electrical consumption are substitutes or complements, rebates that

reduce the price of solar may be wildly effective at increasing the solar share across the

board (substitutes) or very ineffective except in cooler environments (complements).

Since prices are decreasing in rebates, this analysis provides a proxy for how increas-

ing rebates in various counties would affect residential solar uptake. Under our preferred

model (α < 0), little is changed by rebates in regions that are both sunnier with higher

average insolation, and have comparatively high shares of households with installed ca-

pacity (Figure 2). In such regions, which are also associated with high cooling degree

days weighing negatively on solar amenity preferences, solar share price responsiveness

appears to be very inelastic, while it is slightly less so in regions with lower cooling degree

days. This counterfactual thus helps underscore our conclusion that cooling degree days

21The minimum price is that for Jefferson County, Arkansas.
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Figure 10: ρ,α ∈ (0, 1); This is the median change in the residential solar share of electric-
ity by county if all counties faced the minimum observed price. Note that the solar share
increases in most counties when housing and electricity are substitutes.

Figure 11: ρ ∈ (0, 1),α < 0; Here, again, we present the median change in residential
solar share. However, when housing and electricity are complements, as they are here, the
solar share falls in most counties except a handful of counties in cloudier, more Northern
regions.
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Figure 12: ρ,α ∈ (0, 1); Here, we show the median change in relative efficiency under the
minimum-pricing counterfactual when housing and electricity are substitutes.

Figure 13: ρ ∈ (0, 1),α < 0; This is the same plot as above, except we now show the
median change in relative efficiency when housing and electricity are assumed to be com-
plements.

38



that proxy as demand for air conditioning have a strong impact on the rate of local solar

adoption. Thus, panel installation rebates appear to be relatively ineffective at increasing

the solar share in environments featuring high-insolation (but also high cooling-degree

days).

Figures 12 and 13 demonstrate how the efficiency distributions change in response to

price reductions under our different parameterizations of α. If housing and electricity

are substitutes, then despite the solar share rising across the board it appears to rise rela-

tively faster in low-insolation environments, causing the efficiency distribution to be both

biased —E(λ̃cs) = 0.462 — and less efficient — Var(λ̃cs) = 2.713 versus Var(λcs) = 2.164

in the data. In this case, rebates may be effective at increasing share and reducing over-

all reliance on non-solar electrical consumption, but hotter places will still have rela-

tive under-capacity compared to cooler places which already start with relative excess

capacity. When housing and electricity are complements, as is theoretically preferred,

E(λ̃cs) = 0.001 and Var(λ̃cs) = 2.647, so the distribution of panels still becomes less

geo-spatially efficient but also remains unbiased. Despite the distribution being slightly

unchanged, notice that some locales in Texas and Florida with relative under-supply do

receive a slight boost to their efficiency ranking under the minimum-pricing counterfac-

tual. The areas that appear to gain relative supply (brighter yellow, orange, and red)

already have excess supply (Pacific Northwest and Northeast), though the Dallas Fort-

Worth Metroplex in Texas and most of Florida are notable exceptions. Many sunnier

locales in California and Arizona, meanwhile, fall on the efficiency index so that there is

increasing relative under-utilization of solar potential in the Western U.S., even as solar in-

stallations rise. This is a direct consequence of wealth effects, governed byα < 0, driving

up electrical consumption faster than solar adoption, thus pushing down solar’s share.

Depending on assumptions regarding α, using rebates to encourage adoption may have

mixed results and actually exacerbate the geo-spatial efficiency of the aggregate panel

distribution.

7 Conclusion

We have shown, using model-free empirical evidence, that the aggregate geo-spatial dis-

tribution of residential solar panels in the U.S. is inefficient, absent considering transmis-

sion constraints between different regions of the country. Through the lens of a structural

model, we demonstrate that if housing and electricity are indeed complements, local re-

bates encouraging households to install residential solar panels may backfire and have a

net-negative impact on the residential solar share of electrical consumption. This is be-
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cause we estimate that the local demand for air conditioning, as proxied by cooling degree

days, weighs negatively on the solar share. Given these considerations, if policymakers

seek to enact subsides and rebates that increase the residential solar share of electrical

consumption, policies which help consumers pay for still nascent but expensive battery-

storage technologies may be more effective at increasing the residential solar share in the

future.
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A Posterior Estimates Assuming Maximum ITC Uptake

In this appendix we assume that all consumers take advantage of the federal govern-

ment’s 30% tax credit against the cost of panel purchase and installation. Thus, the price

of solar panels psolar
cs is constructed to account for this tax credit. Broadly speaking, chang-

ing our pricing assumptions yields no significant changes to posterior distribution esti-

mation results.

Table A.1: Model Selection Assessments, 30% ITC Uptake

Model elppd Differencea S.E. Differenceb

ρ,α ∈ (0, 1) — —

ρ ∈ (0, 1),α < 0 -15.7 3.8

ρ < 0,α ∈ (0, 1) -815.8 19.7

ρ,α < 0 -817.4 19.6

a This is the difference in the expected log-posterior predictive
density relative to the model with the highest elppd value —
ρ,α ∈ (0, 1). As long as the absolute value of the elppd
difference is several times the standard error of the differences,
we can be confident that the baseline model provides a better
fit than its alternatives (Vehtari, Gelman, and Gabry 2017).
b This is the standard error of the posterior differences across
HMC sample draws.

In Table A.1 we see that model selection, under this alternative pricing assumption,

proceeds in the same manner as in the main text. Models where ρ ∈ (0, 1) are strongly

preferred to those where ρ < 0 based on the elppd criterion of Vehtari, Gelman, and Gabry

(2017). Further, the magnitudes of differences in elppd relative to the highest ranking

model are very similar to those featured in Table 1 in the main text. As in the main text,

under this alternative pricing assumption we still prefer the model where ρ ∈ (0, 1) and

α < 0 for theoretical reasons despite it ranking second in terms of elppd differentials. As

can be seen in the top half of Table A.2, values for γ are very close to 1, just as in the

main text, and α skews toward 1, so that housing and electrical consumption are strong

substitutes and consumers do not put much weight on their electricity choices. This seems

counterintuitive for the same reasons we previously argued.

To see that posterior estimates are similar to those in the main text, compare the means

of the structural parameters in both Tables A.2 and A.3 to those in Tables 2 and 3. ρ is little
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changed compared to estimates featured in the main text, and in fact has an identical

mean under both estimation procedures when ρ < 0. Variations in α, γ, and σ2 between

the different specifications are also similar to those in the main text, as are the signs of the

components of β. We conclude that accounting for the possibility of consumer uptake of

federal tax credits has no significant impact on model inference and estimation outcomes.

Table A.2: Posterior Distribution Estimates, ρ ∈ (0, 1), 30% ITC Uptake

α ∈ (0, 1)

Parameter R̂ Mean S.D. 2.5% 25% 50% 75% 97.5%

ρ 1.000 0.969 0.007 0.956 0.964 0.969 0.973 0.982

α 1.000 0.809 0.081 0.607 0.770 0.823 0.867 0.921

γ 1.001 0.973 0.015 0.937 0.970 0.977 0.981 0.987

σ2 1.000 0.098 0.007 0.084 0.093 0.097 0.102 0.113

β1 1.000 0.020 0.023 -0.026 0.005 0.020 0.036 0.065

β2 1.000 0.078 0.063 -0.046 0.036 0.078 0.121 0.202

β3 1.000 -0.098 0.070 -0.235 -0.145 -0.097 -0.050 0.041

β4 1.000 -0.055 0.037 -0.127 -0.080 -0.056 -0.030 0.016

β5 1.000 -0.437 0.072 -0.578 -0.485 -0.437 -0.387 -0.295

β6 1.000 -0.269 0.144 -0.553 -0.365 -0.267 -0.173 0.013

V(P) 1.000 245.927 2.350 240.439 244.573 246.264 247.661 249.476

α < 0

Parameter R̂ Mean S.D. 2.5% 25% 50% 75% 97.5%

ρ 1.000 0.963 0.007 0.950 0.958 0.963 0.967 0.976

α 1.001 -0.147 0.098 -0.397 -0.189 -0.125 -0.080 -0.031

γ 1.001 0.324 0.110 0.104 0.249 0.327 0.400 0.532

σ2 1.000 0.104 0.008 0.090 0.099 0.104 0.109 0.120

β1 1.000 0.009 0.024 -0.039 -0.007 0.009 0.025 0.056

β2 1.000 0.090 0.065 -0.037 0.047 0.091 0.134 0.218

β3 1.001 0.011 0.082 -0.149 -0.045 0.011 0.066 0.175

β4 1.001 -0.037 0.037 -0.111 -0.063 -0.037 -0.012 0.035

β5 1.001 -0.369 0.073 -0.513 -0.419 -0.369 -0.320 -0.227

β6 1.000 -0.229 0.146 -0.515 -0.327 -0.229 -0.131 0.056

V(P) 1.000 233.725 2.289 228.423 232.438 234.048 235.381 237.192
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Table A.3: Posterior Distribution Estimates, ρ < 0, 30% ITC Uptake

α ∈ (0, 1)

Parameter R̂ Mean S.D. 2.5% 25% 50% 75% 97.5%

ρ 1.000 -0.011 0.005 -0.023 -0.014 -0.010 -0.008 -0.004

α 1.000 0.568 0.266 0.047 0.357 0.614 0.800 0.957

γ 1.001 0.790 0.253 0.104 0.697 0.919 0.964 0.995

σ2 1.000 6.064 0.452 5.245 5.745 6.040 6.356 7.019

V(P) 1.001 -543.339 2.660 -549.175 -544.971 -543.137 -541.483 -538.684

β1 1.000 -0.203 0.180 -0.559 -0.324 -0.204 -0.081 0.152

β2 1.000 -1.591 0.481 -2.530 -1.919 -1.591 -1.263 -0.655

β3 1.000 0.492 0.541 -0.593 0.131 0.493 0.860 1.547

β4 1.000 -0.194 0.290 -0.776 -0.386 -0.192 0.002 0.367

β5 1.000 -2.055 0.554 -3.154 -2.421 -2.058 -1.690 -0.957

β6 1.000 3.213 1.123 1.014 2.460 3.219 3.963 5.407

α < 0

Parameter R̂ Mean S.D. 2.5% 25% 50% 75% 97.5%

ρ 1.000 -0.011 0.005 -0.022 -0.014 -0.010 -0.007 -0.004

α 1.001 -0.498 0.562 -1.897 -0.597 -0.341 -0.190 -0.062

γ 1.000 0.660 0.314 0.034 0.405 0.752 0.951 1.000

σ2 1.000 6.125 0.459 5.282 5.803 6.102 6.420 7.102

V(P) 1.001 -544.424 2.376 -550.101 -545.740 -544.075 -542.689 -540.831

β1 1.000 -0.249 0.179 -0.597 -0.370 -0.249 -0.127 0.097

β2 1.000 -1.553 0.484 -2.503 -1.880 -1.550 -1.230 -0.609

β3 1.000 0.231 0.545 -0.850 -0.128 0.230 0.589 1.305

β4 1.000 -0.071 0.272 -0.616 -0.252 -0.071 0.109 0.461

β5 1.000 -1.952 0.546 -3.037 -2.312 -1.955 -1.588 -0.870

β6 1.000 3.101 1.109 0.935 2.349 3.095 3.853 5.281
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