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Abstract

There are multiple situations in which bilateral interaction between agents results in con-

siderable cost reductions. Such interaction can occur in settings where agents are interested in

sharing resources, knowledge or infrastructures. Their common purpose is to obtain individual

advantages, e.g. by reducing their respective individual costs. Achieving this pairwise cooperation

often requires the agents involved to make some level of effort. It is natural to think that the

amount by which one agent could reduce the costs of the other may depend on how much effort

the latter exerts. In the first stage, agents decide how much effort they are to exert, which has

a direct impact on their pairwise cost reductions. We model this first stage as a non-cooperative

game, in which agents determine the level of pairwise effort to reduce the cost of their partners.

In the second stage, agents engage in a bilateral interaction between independent partners. We

study this bilateral cooperation as a cooperative game in which agents reduce each other’s costs

as a result of cooperation, so that the total reduction in the cost of each agent in a coalition is

the sum of the reductions generated by the rest of the members of that coalition. In the non-

cooperative game that precedes cooperation with pairwise cost reduction, the agents anticipate

the cost allocation that results from the cooperative game in the second stage by incorporating

the effect of the effort exerted into their cost functions. Based on this model, we explore the

costs, benefits, and challenges associated with setting up a pairwise effort network. We identify

a family of cost allocations with weighted pairwise reduction which are always feasible in the

cooperative game and contain the Shapley value. We show that there are always cost allocations

with weighted pairwise reductions that generate an optimal level of efficient effort and provide a

procedure for finding the efficient effort equilibrium.
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1 Introduction

The search for greater efficiency, access to new markets and greater competitiveness are some of the

main factors that result in inter-organizational or inter-corporate cooperation structures. Depending

on the degree of integration or interdependence between partners and on the intended goals of agree-

ments, there are different forms of cooperation. These forms have been widely studied in economic

literature (see e.g. Todeva and Knoke (2005) for a survey). There is one specific type of cooperation

whose properties and characteristics differentiate it from the rest. It can occur between agents that

share for example resources, knowledge or infrastructure. The common purpose is to obtain individual

advantages such as reducing their respective individual costs. The particularity of this form of coop-

eration lies in the fact that the cost reduction is based on bilateral interactions. In particular, given

any pair of cooperating agents, one agent reduces the cost of the other agent by a certain amount

which is independent of cooperation with other agents. This means that if there are more agents in

the coalition the amount of the cost reduction does not change. This pairwise cost reduction remains

constant for any possible coalition to which the pair of agents may belong. Therefore, for any agent,

the total cost reduction in any coalition can easily be calculated as the sum of the reductions obtained

from each bilateral interaction with the other members of the coalition.

There are several situations where this kind of cooperation with pairwise cost reduction occurs and

is profitable. For example, the strategic collaboration agreements between firms to reduce logistical

operational costs. The need to increase market share requires logistics firms to expand their radius of

action as far as possible. This means major investments in expensive infrastructures at new sites, which

increase operational costs. To reduce those costs while maintaining control of their respective markets

and hindering access by new competitors, agreements are established between companies. They offer

the resources held by each firm in its respective area of influence under advantageous conditions.

This enables them to expand their operating ranges with significant cost savings. Interactions occur

bilaterally, with each company using the resources of the other. These cost reductions are independent

of any cost reductions that can also be obtained by interacting with other agents in larger coalitions.

The second situation is that of free trade agreements between countries. In a globalized economy,

free trade agreements are quite common. They facilitate trade in goods and services between countries,

reducing trade barriers and consequently the cost of trade. These cost reductions are specific to each

pair of countries, and are independent of any other agreements that either may decide to establish with

other countries. A third situation is the sharing of market data. Currently, information on customers

and their purchase patterns is vitally important for firms. It enables them to maximize returns on

advertising costs and focus on their ideal target markets. Cooperation between firms (usually from

complementary sectors) consists of sharing information about their respective customers. This reduces

the costs of each of the firms involved. The information that a particular firm provides is specific to it,

so the value of the information that it receives from another specific firm is independent of information

from other firms. Even if two firms provide information about the same customer, the information

itself is different because it describes the purchase of a different good or service. This can increase the
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value of that particular customer as a target, which again boosts the value of this particular kind of

cooperation.

The last situation considered here is that of inter-firm cooperation agreements to reduce costs

by increasing the range of their respective telecommunication networks. In eminently competitive

sectors such as mobile telephony and online services, cooperation between operators has become quite

common. For example, they share the locations of their respective antennas, which enables them to

expand the reach of their networks. This means greater benefits thanks to the offering of a broader

service, while avoiding the costs that would be entailed by each company installing its own structures.

Here again, cost reduction is bilateral when two agents decide to share and use each other’s antennas.

These cost savings are independent of any collaboration agreements that each firm may have with

other agents to share antennas in larger coalitions.

The cost reduction between agents may be highly asymmetric when they cooperate in pairs. For

example, if two agents A and B decide to cooperate, agent A could provide a major reduction for agent

B, while the reduction provided in the opposite direction could be more modest. These asymmetries

could induce imbalances or discriminations that may jeopardize cooperation. A fair distribution

mechanism for the costs generated by cooperation is undoubtedly needed to ensure the stability of

any strategic partnership (see Thomson, 2010).

In addition, it is quite common for this kind of cooperation to require the agents involved to make

a set level of effort. It is natural to think that the amount by which agent can reduce the costs of the

other (if they decide to cooperate) could depend on the effort that the agent exerts. For example, if

one country can obtain information relevant to another (e.g. information on tax evasion and the flight

of capital involving its citizens), the amount and quality of the specific information may depend of the

effort that the first country exerts in gathering it. This extends the situation beyond a cooperative

model. We model the sequence of decisions as a two-stage bi-form game (Brandenburger and Stuart,

2007). In the first stage, agents decide how much (costly) effort they are willing to exert. This has

a direct impact on their pairwise cost reductions. This first stage is modeled as a non-cooperative

game in which agents determine the level of pairwise effort to reduce the costs of their partners. In

the second stage, agents engage in bilateral interaction with multiple independent partners where the

cost reduction brought by each agent to another agent remains constant in any possible coalition. We

study this bilateral cooperation as a cooperative game in which cooperation leads agents to reduce

their respective costs, so that the total reduction in costs for each agent in a coalition is the sum of the

reductions generated by the rest of the members of that coalition. In the non-cooperative game that

precedes cooperation, the agents anticipate the cost allocation that will result from the cooperative

game in the second stage by incorporating the effect of the effort made into their cost functions. Based

on this model, we explore costs, benefits, and challenges associated with setting up a pairwise effort

network.

We investigate the impact of pairwise efforts on cost reductions and the resulting cost structure

for the network. In particular, we explore the design of a cost-allocation mechanism that efficiently
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allocates the gains from pairwise effort to all parties. To that end, we first compute the optimal level of

cost reduction, taking into account the pairwise cost reductions collectively accrued by all agents. An

ideal allocation scheme should encourage agents to participate in it and, at the same time, establish

proper incentives to make efforts prior to cooperation. Specifically, we first show that it is profitable

for all agents to participate in a pairwise effort network. Then we study how the total reduction in

costs should be allocated to the members of the network. We do this by modeling the pairwise cost

reduction between agents that takes place in the second stage as a cooperative game, which we refer

to as the pairwise effort game or “PE-game”.

We prove that PE-games are concave (i.e. the marginal contribution of an agent diminishes as

a coalition grows) and thus totally balanced, i.e. the core of every subgame is non-empty. We

interpret a non-empty core as a setting where all-included cooperation is feasible, in the sense that

there are possible cost reductions that make all agents better off (or, at least, not worse off). The

totally balanced property suggests that this all-included cooperation is consistent. We identify various

allocation mechanisms that may arise in the core of PE-games. In particular, we discuss a family of

cost allocations with weighted pairwise reduction which is always a subset of the core of PE-games.

This is a broad family of core allocations which includes the Shapley value, which is obtained when all

the weights work out to a half. We provide a highly intuitive, simple expression for the Shapley value,

which matches the Nucleolus in our model. To select one of these core-allocations in the second stage,

we take into account the incentives that it generates in the efforts made by agents, and consequently

in the aggregate cost of a coalition. We show that the Shapley value can induce inefficient effort

strategies in equilibrium in the non-cooperative model. However, it is always possible to find core

allocations with weighted pairwise reductions that create appropriate incentives for agents to make

optimal efforts that minimize aggregate costs, i.e. core allocations that generate an efficient level of

effort in equilibrium.

This paper contributes to the literature by presenting a doubly robust cost sharing mechanism.

That mechanism not only has good properties regarding the cooperative game in the second stage but

also creates appropriate incentives in the non-cooperative game in the first stage.

Cooperative game theory has developed a substantial mathematical framework to identify and

provide suitable cost sharing allocations (see, e.g., Fiestras-Janeiro et al. 2011; Guajardo and Rön-

nqvist 2016, for a survey). Multiple solutions have been proposed from a wide range of approaches

(see, e.g., Moulin 1987; Slikker and Van den Nouweland 2012; Lozano et al. 2013). The Shapley Value

(Shapley 1953) is considered one of the most outstanding of them, and suitable solution concept (see,

e.g., Moretti and Patrone 2008; Serrano 2009 for a survey). As an allocation rule it has very good

properties, such as efficiency, proportionality, and individual and coalitional rationality. However, it

has the disadvantage of posing computational difficulties, which increase as the number of players

increases. Nonetheless, there is a large body of literature in which the Shapley value is proposed

as a simple, easy-to-apply solution in different economic scenarios (see, e.g., Littlechild and Owen

1973; Bilbao et al. 2008; Li and Zhang 2009; Kimms and Kozeletskyi 2016; Le et al. 2018; Meca et
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al. 2019). These papers give simplified solutions for different classes of games. They take the cost

structure as given and do not consider the system externalities that arise when agents make efforts

to give and receive cost reductions. Our paper here incorporates both the non-cooperative aspects of

making efficient efforts by modeling decisions related to pairwise cost reductions and the cooperative

nature of giving and receiving cost reductions in pairwise effort networks.

We refer to action by agents as "effort", as in the principal-agent literature. In this setting, the

concept of "effort" is widely used in analyzing different kinds of problem. One of the first was the

moral hazard problem: See for example Holmstrom (1982). Other examples are Holmstrom (1999)

and Dewatripont et al. (1999), who identify conditions under which more information can induce an

agent to make less effort. The approach in our model is quite different, in that we do not consider any

kind of principal. As far as we know, our model is novel in that it analyzes the incentive for agents to

make efforts in a game with two stages: A non-cooperative stage where agents choose how much effort

to make and a cooperative second stage. As mentioned, we show how the solution of the cooperative

stage determines the incentives that agents have to make an effort in the first stage, and consequently

the efficiency of the final outcome.

Bernstein et al. (2015) also use a bi-form model to analyze the role of process improvement in a

decentralized assembly system in which an assembler lays in components from several suppliers. The

assembler faces a deterministic demand and suppliers incur variable inventory costs and fixed setup

production costs. In the first stage of the game suppliers make investments in process improvement

activities to reduce their fixed production costs. Upon establishing a relationship with the suppliers,

the assembler sets up a knowledge sharing network which is modeled as a cooperative game between

suppliers in which all suppliers achieve reductions in their fixed costs. They compare two classes of

allocation mechanism: Altruistic allocation enables non-efficient suppliers to keep the full benefits of

the cost reductions achieved due to learning from the efficient supplier. The Tute allocation mechanism

benefits a supplier by transferring the incremental benefit generated by the inclusion of an efficient

supplier in the network. They find that the system-optimal level of cost reduction is achieved under

the Tute allocation rule. Our bi-form game is novel in terms of incentive for efforts by agents and

is also richer in results: We provide a procedure for finding the unique efficient effort equilibrium in

cooperation with pairwise cost reduction.

2 Model

We consider a model with a finite set of agents N = {1, 2, ..n}, where each agent has a good (for

example resources, knowledge, or infrastructure) and has to perform a certain activity. The total cost

of an agent’s activity can be reduced if it cooperates with another agent, which means that the two

agents share their goods. These cost reductions obtained by sharing goods in pairs depend on the

effort made previously by each agent, i.e. ei = (ei1, ..., ei(i−1), ei(i+1), ...ein) ∈ [0, 1]
n−1 for each i ∈ N ,

where eij ∈ [0, 1] stands for the level of effort by agent i. Thus, for any pair of cooperating agents
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i, j ∈ N and a given effort eij , agent i reduces the total cost of agent j by an amount rji(eij) ∈ R+,

and vice versa. These particular reductions between agents i, j ∈ N are independent of cooperation

with other agents. Furthermore, these efforts have an additional associated cost ci(ei) ∈ R for any

i ∈ N . We refer to this kind of model as a pairwise inter-organizational model.

The sequence of events is as follows:

1. In the first stage, each agent decides its effort profile and bears the additional associated costs.

2. In the second stage, given the effort made in the first stage, agents cooperate and reduce their

respective total costs in pairs.

Thus, these agents participate in bilateral interactions with multiple independent partners whose

cost reductions are coalitionally independent, i.e., the cost reduction given by each agent to another

agent remains constant in any possible coalition. This means that the total reduction in cost for each

agent in a coalition S ∈ N is the sum of the pairwise cost reductions given to that agent by the rest

of the members of the coalition, i.e. for agent i, it is
∑

j∈S\{i} rij(eji). Hence, in the first stage,

agents can make efforts, and in the second stage, by the pairwise sharing, they give and receive cost

reductions according to these previous efforts.

We assume perfect information regarding to the agents’ costs and cost reductions depending on

efforts. As mentioned above, agent i incurs a cost ci(ei) by making the effort profile ei, and receives

from agent j a cost reduction rij(eji). We assume that ci(.) : [0, 1]
n−1 → R+ is a scalar field of class

C2([0, 1]n−1) .1 Moreover, for all eij ∈ [0, 1] with j ∈ N\{i}, where it is assumed that ∂ci(ei)
∂eij

> 0,
∂c2i (ei)
∂2eij

> 0, and
∂c2i (ei)
∂eij∂eih

= 0 for all h 6= i, j, which implies that the marginal cost ∂ci(ei)
∂eij

is independent

of effort that i exerts with agents other than j.2 We also assume that, for all j ∈ N\{i}, function

rij(.) : [0, 1]→ R+ is class C
2, increasing and concave 3 at [0, 1].

Given an effort profile e = (e1, ..., ei, ..., en) ∈ [0, 1]
n(n−1), we denote by ψi(e) the final cost allocated

to agent i, which results from the allocation of the aggregate total cost achieved through cooperation

in the second stage. We assume that in the first stage each agent chooses the effort level that minimizes

its final cost. That effort is made in anticipation of the result of the cooperative cost game that follows

in the second stage. Therefore, we first analyze the second stage (see Section 3), where we focus on

different allocations of the aggregate total cost through cooperation with pairwise cost reduction.

Analyzing the second stage first enables the first stage to be analyzed in Section 4, where we calculate

the efficient effort strategies in equilibrium4 .

1A scalar field is said to be class C2 at [0, 1]n−1 if its 2-partial derivatives exist at all points of [0, 1]n−1 and are

continuous.
2This last assumption implies that the Hessian matrix is a diagonal matrix.
3∂rji(eij)/δeij > 0 (increasing) and ∂

2rji(eij)/δ
2eij < 0 (concave).

4An effort strategy profile is said to be in equilibrium when each agent has nothing to gain by changing only their

own effort strategy given the strategies of all the other agents.
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3 Cooperation with Pairwise Cost Reduction

This section presents the analysis of cooperation with pairwise cost reduction in the second stage.

Agents make their efforts in pairwise sharing in the first stage, and initiate cooperation with efforts

e = (e1, ..., ei, ..., en). We model the pairwise effort game (henceforth PE-game) as a multiple-agent

cooperative game where each agent i incurs an initial cost of ci(ei). All agents in a pairwise effort

group (coalition) give cost reductions to and receive such reductions from other agents. As a result,

all agents in the coalition reduce their initial costs to levels that depend on the efforts made by the

others. Any agent outside the pairwise effort network does not benefit from this pairwise cost reduction

opportunity. Although we introduce all the game-theoretic concepts used in this paper, readers are

referred to González-Díaz et al. (2010) for more details on cooperative and non-cooperative games.

We refer to the pairwise effort network as a PE-network and denote it by the t-uple (N, e, {ci(ei), {rji(eij)}j∈N\{i}}i∈N ).

We associate a TU cost game with each PE-network. That TU cost game is 3-upla (N, e, c), where

N is the finite set of players, e ∈ [0, 1]n(n−1) the effort profile, and c : 2N → R is the so-called

characteristic function of the game, which assigns to each subset S ⊂ N the cost c(S) that is in-

curred if agents in S cooperate. By convention, c(∅) = 0. The cost of agent i in coalition S ⊂ N

is given by cS(i) := ci(ei) −
∑

j∈S\{i} rij(eji). This cost can be interpreted as the reduced cost

of agent i after participating in the PE-network together with the agents in S. Note that the

larger the PE-network an agent participates in, the greater the cost reduction it achieves, i.e. for

all i ∈ S ⊂ T ⊂ N, cT ({i}) ≤ cS({i}). Thus, in a PE-network, the cost function is given by

c(S) :=
∑

i∈S c
S({i}) =

∑
i∈S [ci(ei)−

∑
j∈S\{i} rij(eji)].

The class of PE-games has some similarities with the class of linear cost games introduced in Meca

and Sosic (2014). They define the concept of cost-coalitional vectors as a collection of certain a priori

information, available in the cooperative model, represented by the costs of the agents in all possible

coalitions to which they could belong. There, the cost of a coalition was also the sum of the costs of all

agents in that coalition. However, the PE-games considered here are significantly different from their

linear cost games. Linear cost games focus on the role played by benefactors (giving) and beneficiaries

(receiving) as two groups of disjointed agents, but PE-games consider that all the agents could be

dual benefactors, in the sense that they could play the roles of benefactors and/or beneficiaries at the

same time. In addition, PE-games are based on a bilateral cooperation between agents that enables

both to reduce their costs but it is coalitionally independent.

We now consider a PE-network (N, e, {ci(ei), {rij(eij)}j∈N\{i}}i∈N ) and consider whether if it is

profitable for the agents in N to form the grand coalition to obtain a significant reduction in costs.

Here, we prove that the answer to this question is yes, because the associated PE-game (N, e, c) is

concave, in the sense that for all i ∈ N and all S, T ⊆ N such that S ⊆ T ⊂ N with i ∈ S, then

c(S)− c(S \ {i}) ≥ c(T )− c(T \ {i}). This concavity property provides us with additional information

about the game: the marginal contribution of an agent diminishes as a coalition grows. This is

well-known and is called the "snowball effect".
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The first result in this section shows that PE-games are always concave. To prove this, the class

of unanimity games must be described. Shapley (1953) proves that the family of unanimity games

{(N, uT ), T ⊆ N} form a basis of the vector space of all games with sets of players N , where (N, uT )

is defined, for each, S ⊆ N as follows:

uT (S) =





1, T ⊆ S

0, otherwise

Hence, for each cost game (N, c) there are unique real coefficients (αT )T⊆N such that c =
∑

T⊆N αTuT . Many different classes of games, including airport games (Littlechild and Owen, 1973)

and sequencing games (Curiel et al., 1989), can be characterized through constrains on these coeffi-

cients.

Proposition 1 Every PE-game is concave.

Proof. Let (N, e, {ci(ei), {rji(eij)}j∈N\{i}}i∈N ) be a PE-network and (N, e, c) the associated PE-

game. First, we prove that this game can be rewritten as a weighted sum of unanimity games u{i}

and u{i,j} for all i, j ∈ N as follows:

c =
∑

i∈N

ci(ei)u{i} −
∑

i,j∈N ;i 6=j

rij(eji)u{i,j}. (1)

Indeed, for all S ⊆ N ,

c(S) =
∑

i∈N

ci(ei)u{i}(S)−
∑

i,j∈N ;i 6=j

rij(eji)u{i,j}(S) =

=
∑

i∈S

ci(ei)−
∑

i,j∈S;i 6=j

rij(eji) =

=
∑

i∈S

ci(ei)−
∑

i∈S

∑

j∈S\{i}

rij(eji).

It is easily shown that the additive game
∑

i∈N ci(ei)u{i} is concave and that u{i,j} is convex.

Thus, the game −
∑

i,j∈N ;i 6=j rij(eji)u{i,j} is concave because of rij(eji) > 0 for all i, j ∈ N. Finally,

the concavity of (N, e, c) follows from the fact that game c is the sum of two concave games.

This means that the grand coalition can obtain a significant reduction in costs. In that case, the

reduced total cost is given by c(N) =
∑

i∈N

ci(ei)−R(N), where R(N) =
∑

i∈N

∑

j∈N\{i}

rij(eji) is the total

reduction produced by bilateral reductions between all agents in the network, which turns out to be

the total cost savings for all agents.

An allocation rule for PE-games is a map ψ which assigns a vector ψ (e) ∈ Rn to every (N, e, c),

satisfying efficiency, that is,
∑

i∈N

ψi (e) = c(N). Each component ψi (e) indicates the cost allocated to
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i ∈ N , so an allocation rule for PE-games is a procedure for allocating the reduced total to all the

agents in N when they cooperate. It is a well-known result in cooperative game theory that concave

games are totally balanced: The core of a concave game is non-empty, and since any subgame of a

concave game is concave, the core of any subgame is also non-empty. That means that coalitionally

stable allocation rules can always be found for PE-games. We interpret a non-empty core for PE-

games as indicating a setting where all included cooperation is feasible, in the sense that there are

possible cost reductions that make all agents better off (or, at least, not worse off). The totally

balanced property suggests that this all-included cooperation is consistent, i.e. for every group of

agents whole-group cooperation is also feasible.

A highly natural allocation rule for PE-games is ϕi (e) = cN ({i}) = ci(ei)−Ri(N), for all i ∈ N ,

with Ri(N) =
∑

j∈N\{i}

rij(eji) being the total reduction received by agent i ∈ N from the rest of

the agents j ∈ N\{i}. It has good properties at least with respect to computability and coalitional

stability in the sense of the core. This means that, for every PE-game (N, c), ϕ(e) should satisfy

the requirement that
∑

i∈S

ϕi (e) ≤ c(S) for every S ⊆ N . Notice that, for every S ⊆ N,
∑

i∈S

ϕi (e) =
∑

i∈S

cN (i) ≤
∑

i∈S

cS(i) = c(S). Nevertheless, the agents could argue that this allocation does not

compensate them for their dual role of giving and receiving. Note that the allocation only considers

their role as receivers.

PE-games are concave, so cooperative game theory provides allocation rules for them with good

properties, at least with respect to coalitional stability and acceptability of items. We highlight the

Shapley value (see Shapley 1953), which assigns a unique allocation (among the agents) of a total

surplus generated by the grand coalition. It measures how important each agent is to the overall

cooperation, and what cost can it reasonably expect. It is a "fair" allocation in the sense that it is

the only distribution with certain desirable properties listed below. The Shapley value of a concave

game is the center of gravity of its core (see Shapley 1971). In general, this allocation becomes harder

to compute when the number of agents increases. Despite everything, we present a simple expression

here for the Shapley value of PE-games that takes into account all bilateral relations between agents

and compensates them for their dual role of giving and receiving.

Given a general cost game (N, c), we denote by φ(c) the Shapley value, where for each agent i ∈ N,

the corresponding cost allocation is

φi(c) =
∑

i∈T⊆N

(n− t)!(t− 1)!

n!
[(c(T )− c(T\{i})] , with | T |= t. (2)

The Shapley value has many desirable properties, and it is also the only allocation rule that satisfies

a certain subset of those properties (see Moulin, 2004). For example, it is the only allocation rule

that satisfies the four properties of Efficiency, Equal treatment of equals, Linearity and Null player

(Shapley, 1953). Next, we describe all of these properties of the Shapley value, which are useful in

demonstrating our next result.
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(EFF) Efficiency. The sum of the Shapley values of all agents equals the value of the grand coalition,

so that all the gain is allocated to the agents:

∑

i∈N

φi (c) = c(N). (3)

(ETE) Equal treatment of equals. If i and j are two agents who are equivalent in the sense that

c(S ∪ {i}) = c(S ∪ {j}) for every coalition S of N which contains neither i nor j, then φi(c) =

φj(c).

(LIN) Linearity. If two cost games c and c∗ are combined, then the cost allocation should correspond

to the costs derived from c and the costs derived from c∗:

φi(c+ c
∗) = φi(c) + φi(c

∗),∀i ∈ N. (4)

Also, for any real number a,

φi(ac) = aφi(c),∀i ∈ N. (5)

(NUP) Null Player. The Shapley value φi(c) of a null player i in a game c is zero. A player i is null

in c if c(S ∪ {i}) = c(S) for all coalitions S that do not contain i.

Given a PE-game (N, e, c), we denote by φ(e) the Shapley value of the cost game. The following

Theorem shows that the Shapley value provides an acceptable allocation for PE-games. Indeed, it

reduces the individual cost of an agent by half the total reduction that it obtains from the others

(Ri(N)) plus a half of the total reduction that it provides to the rest of the agents, which is Gi(N) =
∑

j∈N\{i} rji(eij).

Theorem 1 Let (N, e, c) be a PE-game. For each agent k ∈ N,φk(e) = ck(ek)−
1
2 [Rk(N) +Gk(N)].

Proof. Consider the PE-game (N, e, c) rewritten as a weighted sum of unanimity games given by (1).

That is,

c =
∑

i∈N

ci(ei)u{i} −
∑

i,j∈N ;i 6=j

rij(eji)u{i,j}.

Take an agent k ∈ N . By the (LIN) property of the Shapley value, φk(e), it follows that

φk(e) = φk

(
∑

i∈N

ci(ei)u{i}

)

− φk




∑

i,j∈N ;i 6=j

rij(eji)
(
u{i,j}

)




=
∑

i∈N

ci(ei)φk
(
u{i}

)
−
∑

i∈N

∑

j∈N\{i}

rij(eji)φk
(
u{i,j}

)
.

(6)

In addition, it is known from the (NUP) property that
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φk
(
u{i}

)
=





1, i = k

0, otherwise
(7)

and from (ETE) and (NUP), that

φk
(
u{i,j}

)
=





1/2, i = k, j = k, i 6= j

0, otherwise
(8)

Consequently, by substituting the values (7) and (8) in equation (6), the following is obtained:

φk(e) = ck(ek)−
∑

j∈N\{k}

rkj(ejk)φk
(
u{k,j}

)
−

∑

j∈N\{k}

rjk(ekj)φk
(
u{j,k}

)

= ck(ek)−
1

2

∑

j∈N\{k}

[rkj(ejk) + rjk(ekj)].

Finally, it can be concluded that, for each agent k ∈ N ,

φk(e) = ck(ek)−
1

2
[Rk(N) +Gk(N)].

From Theorem 1 it can be derived that the Shapley value, φ(e), considers the dual role of giving

and receiving of all agents, and the final effect on those agents depends on which role is stronger. As

mentioned above, if an allocation does not compensate them for their dual role of giving and receiving,

and it only considers their role as receivers, as the individual cost in the grand coalition, ϕ(e), does,

the cooperation cannot be acceptable to those dual agents. This non-acceptability can be avoided by

using the Shapley value, which also matches with the Nucleolus (Schmeiler 1989) for PE-games.

The nucleolus selects the allocation in which the coalition with the smallest excess (the worst

treated) has the highest possible excess. The nucleolus maximizes the "welfare" of the worst treated

coalitions. Denote by ν(e) ∈ Rn the Nucleolus of the PE-game (N, e, c), associated with a PE-network

(N, e, {ci(ei), {rij(eij)}j∈N\{i}}i∈N ). First, we define the excess of coalition S in (N, e, c) with respect

to allocation x as d (S, x) = c(S) −
∑

i∈S xi. This number can be considered as an index of the

"welfare" of coalition S at x: The greater d (S, x), the better coalition S is at x. Let d∗(x) be the

vector of the 2n excesses arranged in (weakly) increasing order, i.e., d∗i (x) ≤ d∗j (x) for all i < j.

Second, we define the lexicographical order �l. For any x, y ∈ Rn, x �l y if and only if there is an

index k such that for any i < k, xi = yi and xk > yk. The nucleolus of the PE-game (N, e, c) is the

set

ν(e) = {x ∈ X : d∗(x) �l d
∗(y) for all y ∈ X}

with X = {x ∈ Rn :
∑

i∈N xi = c(N), xi ≥ c(i) for all i ∈ N}.
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The Proposition 2 proves that for PE-games the Shapley value matches the Nucleolus. This is a

very good property that few cost games satisfy.

Proposition 2 Let (N, e, c) be a PE-game. For each agent k ∈ N , νk(e) = φk(e).

Proof. To prove that for PE-games the Shapley value coincides with the Nucleolus, it is first necessary

to describe the class of PS-games introduced by Kar et al (2009).

Denote by Mic(T ) the marginal contribution of player i ∈ S, that is, Mic(T ) = c(T )− c(T \ {i}),

for all i ∈ T ⊆ N . A cost game (N, c) satisfies the PS property if for all i ∈ N , there exists ki ∈ R

such that Mic(T ∪ {i}) +Mic(N \ T ) = ki, for all i ∈ N and all T ⊆ N \ {i}. Kar et al (2009) show

that for PS games, the Shapley value coincides with the Nucleolus; that is, φi(c) = νi(c) =
ki
2 , for all

i ∈ N .

Therefore, it only remains to show that (N, e, c) is a PS-game with ki = [ci(ei)−Ri(N)]+ [ci(ei)−

Gi(N)], for all i ∈ N .

First, we prove that Mic(T ) = ci(ei)−
∑

j∈T\{i}[rji(eij)+ rij(eji)] for all i ∈ T ⊆ N . Indeed, take

a coalition T ⊆ N and an agent i ∈ T . Then, by definition of the PE-game,

c(T ) =
∑

h∈T c
T
h = cTi +

∑
h∈T\{i} c

T
h .

Then, substituting the expressions of cTi and c
T
h it follows that

c(T ) =
(
ci(ei)−

∑
j∈T\{i} rij(eji)

)
+
∑

h∈T\{i}

(
ch(eh)−

∑
j∈T\{h} rhj(ejh)

)
=

ci(ei)−
∑

j∈T\{i} rij(eji) +
∑

h∈T\{i}

(
ch(eh)−

(∑
j∈T\{h,i} rhj(ejh)

)
− rhi(eih)

)
=

ci(ei)−
∑

j∈T\{i} rij(eji) +
∑

h∈T\{i}

(
ch(eh)−

(∑
j∈T\{h,i} rhj(ejh)

))
−
∑

h∈T\{i} rhi(eih) =

ci(ei)−
∑

j∈T\{i} rij(eji) + c(T\{i})−
∑

h∈T\{i} rhieih).

Hence,

Mic(T ) := c(T )− c(T\{i}) = ci(ei)−
∑

j∈T\{i} (rij(eji) + rji(eij)) .

Second, we show that Mic(T ∪{i})+Mic(N \T ) = [ci(ei)−Ri(N)]+ [ci(ei)−Gi(N)] for all i ∈ N

and T ⊆ N \ {i}. Indeed, take a coalition T ⊆ N and an agent i ∈ T . It is shown that Mic(T ∪

{i}) = ci(ei)−
∑

j∈T (rji(eij) + rij(eji)) , andMic(N \T ) = ci(ei)−
∑

j∈N\(T∪{i}) (rji(eij) + rij(eji)) .

Therefore,

Mic(T ∪ {i}) +Mic(N \ T ) = 2ci(ei)−
∑

j∈N\{i} (rji(eij) + rij(eji)) =

[
ci(ei)−

∑
j∈N\{i} rij(eji)

]
+
[
ci(ei)−

∑
j∈N\{i} rji(eij)

]
.

Hence, Mic(T ∪ {i}) +Mic(N \ T ) = [ci(ei)− Ri(N)] + [ci(ei)−Gi(N)] = ki), and so (N, e, c) is

a PS game.

Therefore, given a profile of efforts, the Shapley value is a very suitable way of allocating the
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reduced cost due to cooperation. Note that, the cost reduction as a result of cooperation between

any pair of agents i, j ∈ N is rij(eji) + rji(eij), and the Shapley value assigns one half of this amount

to i and the other half to j. This seems a reasonable way to split this aggregated cost reduction.

However, if agents knew before choosing their levels of efforts that the cost reductions resulting from

their efforts were going to be allocated according to the Shapley value, the incentives created could

generate inefficiencies. Some agents could find it optimal to exert too little effort and in some situations

this could be inefficient.

For example, consider a PE-network in which one agent has the ability to produce a substantial

reduction in costs for other agents with a low effort cost and the rest of the agents have almost no

ability to reduce costs for others even with a high effort cost. If the Shapley value is used as the

allocation rule for this game, agents may not have incentives to make any level of effort. Note that

in the first step agents have to decide how much effort to make. However, if the Shapley value is

modified to give a greater portion of the pairwise cost reduction to this especially productive agent,

it might make more effort and thus produce a greater reduction in cost for other agents. This change

in the Shapley value generates new allocation rules, which can reduce the cost of the grand coalition

regarding the Shapley allocation. The following example with three agents illustrates these ideas.

Example 1 (A 3-firm case). Consider a pairwise inter-organizational situation with three firms,

i.e. N = {1, 2, 3}. For any effort profile e ∈ [0, 1]6, the PE-network is given by the following initial

costs,

c1(e12,e13) = 100 + 100e12 + 4e
2
12 + 100e13 + 4e

2
13

c2(e21,e23) = 100 + 100e21 + 4e
2
21 + 100e23 + 4e

2
23

c3(e31,e32) = 100 + 100e31 + 4e
2
31 + 100e32 + 4e

2
32

and the following pairwise reduced costs, all of them in thousands of Euros,

ri1(e1i) = 2 + 200e1i − 3e
2
1i with i = 2, 3

ri2(e2i) = 2 + 3e2i − e
2
2i with i = 1, 3

ri3(e3i) = 2 + 3e2i − e
2
3i with i = 1, 2

If the allocation rule in the second stage is the Shapley value, the firms choose their levels of effort

according to this cost allocation function. It is straight forward to show that in this case the unique

effort equilibrium e∗, is one in which the three firms make no effort, i.e. e∗ij = 0 for i, j ∈ N .
5 Thus,

the Shapley value distributes the cost of the grand coalition c∗(N) = 288 equally, i.e. for each firm

i = 1, 2, 3, φi(e
∗) = ci(e

∗
i )−

1
2

∑
j∈N\{i}[rij(e

∗
ji) + rji(e

∗
ij)] = 100−

1
2 ((2 + 2) + (2 + 2)) = 96.

Note that, for example, in the relationship between firm 1 and 2, the pairwise cost reduction is

r12(e21) + r21(e12), and the Shapley value gives
1
2 of this amount to firm 1 and the other 1

2 to firm

2. However, if the proportion that firm 1 obtains is increased, e.g. from 1
2 to

3
4 , and the part for

firm 2 is thus reduced to 1
4 , the incentive of firm 1 to make an effort can be increased. The same

5Theorem 3, in Section 4, shows the efforts of equilibrium in the non-cooperative stage of the game in the general

case.
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can be done between firms 1 and 3 so that the incentive of firm 1 to make an effort for firm 3 is also

increased. These changes in the Shapley value lead to a new allocation rule which we denote by A(e) =

(A1(e), A2(e), A3(e)) for any effort profile e ∈ [0, 1]
6. With this new allocation rule, the equilibrium

efforts are zero for firms 2 and 3, and one for by firm 1. That is, e∗∗1j = 1, for j = 2, 3, e
∗∗
2j = 0, for j =

1, 3, and e∗∗3j = 0, for j = 1, 2. In this case, the grand coalition cost c
∗∗(N) = 152 is allocated equally

between firms 2 and 3, and the rest to firm 1. That is, Ai(e
∗∗) = 100− 1

4 [(2+100−3)+2]−
1
2 (2+2) =

72, 75 for i = 2, 3, and A1(e
∗∗) = 100+100+4+100+4− 3

4 [(2+(2+200−3))+(2+(2+200−3))] = 6, 5.

Hence, the new allocation rule A(e∗∗) greatly reduces the grand coalition cost (by 136.000 Euros)

as well as the costs of each firm; i.e. a reduction of 89.500 Euros for firm 1 and 23.250 Euros for

firms 2 and 3. In relative terms, with the value of Shapley each company pays 33.33% of the total

cost. However, with the modified Shapley value agent 1 only pays 4.4% of the total cost, while agents

2 and 3 pay 47.8% each. Therefore, the modified Shapley value generates a more efficient outcome in

the sense that it creates more appropriate incentives for firms.

To reach efficient effort strategies in equilibrium (henceforth EEE) in the first stage, we consider a

new family of allocation rules, for PE-games (second stage), based on the Shapley value. This family

consists of the rules A(e) ∈ Rn, where for all i ∈ N ,

Ai(e) = ci(ei)−
∑

j∈N\{i} αij [rij(eji) + rji(eij)],

with αij ∈ [0, 1], for all j ∈ N\{i}, such that αij = 1−αji. The Shapley value is a particular case

of this family of rules in which αij =
1
2 . This family of cost allocation for PE-games is referred to as

cost allocation with weighted pairwise reduction.

The Theorem below shows that the family of cost allocations with weighted pairwise reduction is

always a subset of the core of PE-games. This property identifies a wide subset of the large core of

PE-games, which includes the Shapley value and the Nucleolus.

Theorem 2 Let (N, e, c) be a PE-game. For every family of weights αij ∈ [0, 1], i, j ∈ N, i 6= j, such

that αij + αji = 1, A(e) belongs to the core of (N, e, c).

Proof. Consider the PE-game (N, e, c) associated with the PE-network (N, e, {ci(ei), {rij(eij)}j∈N\{i}}i∈N ).

Take a family of weights αij ∈ [0, 1], i, j ∈ N, i 6= j such that αij+αji = 1, and A(e) the corresponding

cost allocation with weighted pairwise reduction with Ai(e) = ci(ei)−
∑

j∈N\{i} αij [rij(eji)+rji(eij)],

for all i ∈ N . To prove that A(e) ∈ C(N, e, c) it must be checked that (1)
∑

i∈N Ai(e) = c(N), (2)
∑

i∈S Ai(e) ≤ c(S), for all S ⊂ N.

We start by checking (1). Notice that
∑

i∈N Ai(e) = c(N) is equivalent to

∑
i∈N

∑
j∈N\{i} αij [rij(eji) + rji(eij)] =

∑
i∈N

∑
j∈N\{i} rij(eji).

Indeed,
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∑
i∈N

∑
j∈N\{i} αij [rij(eji)+rji(eij)] =

∑
i∈N

∑
j∈N\{i}(αij+αji)rij(eji) =

∑
i∈N

∑
j∈N\{i} rij(eji),

where the last equality is due to αij + αji = 1 for all i, j ∈ N.

Next we check (2). Take S ⊂ N.Notice now that
∑

i∈S Ai(e) ≤ c(S) is equivalent to
∑

i∈S

∑
j∈N\{i} αij [rij(eji)+

rji(eij)]−
∑

i∈S

∑
j∈S\{i} rij(eji) ≥ 0.

Indeed, an argument similar to that used in (1) leads to

∑
i∈S

∑
j∈N\{i} αij [rij(eji) + rji(eij)]−

∑
i∈S

∑
j∈S\{i} rij(eji) =

∑
i∈S

∑
j∈S\{i} αij [rij(eji)+rji(eij)]+

∑
i∈S

∑
j∈N\S∪{i} αij [rij(eji)+rji(eij)]−

∑
i∈S

∑
j∈S\{i} rij(eji) =

∑
i∈S

∑
j∈S\{i} rij(eji) +

∑
i∈S

∑
j∈N\S∪{i} αij [rij(eji) + rji(eij)]−

∑
i∈S

∑
j∈S\{i} rij(eji) =

∑
i∈S

∑
j∈N\S∪{i} αij [rij(eji) + rji(eij)] ≥ 0.

Now we are ready to carry out a complete analysis of the EEE for cooperation in pairwise cost

reduction.

4 Analysis of Efficient Effort strategies in Equilibrium

This section analyzes the non-cooperative effort game that arises in the first stage. Agents decide

how much pairwise effort to make to reduce the costs of other agents, and do so in anticipation of the

allocation of the total cost reduction of the PE-game resulting from the second stage. Our goal is to

demonstrate that there are always core allocations in the cooperative game of the second stage that

induce an efficient effort equilibrium level in the first stage. We consider that an effort profile e1 ∈ E

is more efficient than a profile e2 ∈ E if the aggregate cost generates in the second stage by e1 is lower

than that generated by e2.

We therefore first study the non-cooperative effort game that arises under the cost allocation

A(e) ∈ Rn defined in the previous section. This game is defined by (N, {Ei}i∈N , {Ai}i∈N ), where

for every agent i ∈ N , Ei := [0, 1](n−1) is the players’ i strategy set, and for all effort profiles

e ∈ E :=
∏
i∈N Ei, the cost function is:

Ai(e) = ci(ei)−
∑

j∈N\{i}

αij [rij(eji) + rji(eij)], (9)

with αij ∈ [0, 1]. The interaction between agents i and j generates an aggregate cost reduction

which is rij(eji) + rji(eij). The parameter αij measures the proportions in which this reduction is

shared between agents i and j, i.e. αij is the proportion for agent i and αji = 1− αij for agent j. In

this game, we use the following definition of equilibrium.

Definition 1 The effort profile e∗ = (e∗1, ..., e
∗
n) ∈ E is an equilibrium for the game (N, {Ei}i∈N , {Ai}i∈N ),
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if and only if e∗i is the optimal effort for agent i ∈ N given the strategies of all the other agents

j ∈ N\{i}.

First, note that the optimal effort for agent i ∈ N given the strategies of all the other agents

j ∈ N\{i} is the effort ei that minimizes Ai(ei, e−i). To simplify notation and analysis, we consider

that for all i ∈ N and j ∈ N\{i}, c′i(eij) :=
∂ci(ei)
∂eij

, c′′i (eij) :=
∂2ci(ei)
∂e2ij

, r′ji(eij) :=
∂rji(eij)
∂eij

and

r′′ji(eij) :=
∂2rji(eij)

∂e2ij
. Note that ∂Ai(e)

∂eij
= c′i(eij) − αijr

′
ji(eij) and

∂2Ai(e)
∂e2ij

= c′′i (eij) − αijr
′′
ji(eij) > 0

because, because, as assumed above, c′′i (eij) > 0 and r′′ji(eij) < 0. Thus, the function Ai is convex

in the effort eij that agent i exerts for any j ∈ N\{i}. This means that for agent i there is a unique

optimal level of effort êij for each j ∈ N\{i}. That optimal level êij depends on the parameter αij ,

on the marginal cost of agent i in regard to effort êij , i.e. c
′
i(eij), and on the marginal cost-reduction

for agent j in regard to effort êij , i.e. r
′
ji(eij). Consequently, although the cost function of agent i

depends on other agents’ efforts (eji for all j ∈ N\{i}), the optimal effort does not.

Before analyzing the EEE of the non-cooperative effort game, we define thresholds of alpha para-

meters that will enable them to be reached.

Definition 2 Given an effort game (N, {Ei}i∈N , {Ai}i∈N ), we define the following lower and upper

thresholds for each pair of agents i and j,

αij :=
c′i(0)
r′ji(0)

, ᾱij :=
c′i(1)
r′ji(1)

, αji :=
c′j(0)

r′ij(0)
, and ᾱji :=

c′j(1)

r′ij(1)
.

It is clear that 0 < αij < ᾱij because c
′
i is an increasing function and r

′
ji decreasing. Analogously,

0 < αji < ᾱji.

The first Theorem in this section characterizes all possible types of effort equilibrium according to

the value of the parameter αij , for all i, j ∈ N, i 6= j. Before proving this Theorem, we consider two

previous Lemmas that will be very useful for latter results. The first one characterizes the optimal

effort level for agent i ∈ N in the first stage non-cooperative game.

Lemma 1 Let (N, {Ei}i∈N , {Ai}i∈N ) be the effort game, with êij being the optimal level of effort that

agent i exerts to reduce the costs of agent j. Thus,

1. êij = 0 if and only if αij ≤ αij

2. There is a unique êij ∈ (0, 1) that holds c
′
i(êij)− αijr

′
ji(êij) = 0 if and only if αij < αij < ᾱij.

3. êij = 1 if and only αij ≥ ᾱij.

Proof. First, remember that the cost function Ai(e) is convex for all i ∈ N . To obtain the optimal

effort, we analyze the derivative of this function with respect to eij , for any j ∈ N\{i}. It must be
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noted that, for all eij ∈ [0, 1],
∂Ai(e)
∂eij

> 0 ⇐⇒ c′i(eij) > αijr
′
ji(eij), which is a necessary and sufficient

condition for êij = 0 to be the optimal effort.
6

We begin by proving point 1. Note that αij =
c′i(0)
r′ji(0)

<
c′i(eij)
r′ji(eij)

because c′i > 0, r′ji > 0, c′′i > 0,

and r′′ji < 0. Thus, c
′
i(eij) is a positive and increasing function, and r

′
ji(eij) a positive and decreasing

function, so for any eij > 0, c
′
i(0) < c′i(eij) and r

′
ji(0) > r′ji(eij). Therefore, αij ≤ αij ⇐⇒ c′i(eij) >

αijr
′
ji(eij) for all eij > 0 ⇐⇒ êij = 0.

The demonstration in point 3 is similar to that of point 1. The above arguments are the same and

only the signs of the inequalities change.

To end the proof, we prove point 2. First, we show that there is a unique êij ∈ (0, 1) such that

c′i(êij) = αijr
′
ji(êij), which is the unique optimal effort because

∂Ai(e)
∂eij

∣∣∣
ei=êij

= 0 and Ai(e) is a

convex function. In addition, c′i(eij) is a positive and increasing function and r
′
ji(eij) a positive and

decreasing function, in eij ∈ [0, 1]. This implies that equation
∂Ai(e)
∂eij

= c′i(eij)− αijr
′
ji(eij) = 0 has a

unique root, which belongs to (0, 1) if and only if αij ∈ (αij , ᾱij). Note that if αij ∈ (αij , ᾱij) then

c′i(0) < αijr
′
ji(0) and c

′
i(1) > αijr

′
ji(1), and so there is a unique point êij where c

′
i(êij) = αijr

′
ji(êij).

We now need to write down the previous Lemma 1 for agent j but depending on αij , the proof of

which is straightforward.

Lemma 2 Let αji =
c′j(eji=0)

r′ij(eji=0)
and ᾱji =

c′j(eji=1)

r′ij(eji=1)
, where 0 < αji < ᾱji, and êji the optimal level of

effort that j exerts to reduce the costs of player i, then:

1. êji = 0 ⇐⇒ αji ≤ αji ⇐⇒ αij ≥ 1− αji.

2. There is a unique êij such that 0 < êji < 1 ⇐⇒ αji < αji < ᾱji ⇐⇒ 1− ᾱji < αij < 1− αji.

3. êji = 1 ⇐⇒ αji ≥ ᾱji ⇐⇒ αij ≤ 1− ᾱji.

To simplify the Theorem notation, (a, b)− stands for Min{a, b} and (a, b)+ for Max{a, b}.

Theorem 3 Consider the effort game (N, {Ei}i∈N , {Ai}i∈N ). Let e
∗
ij and e

∗
ji be the pairwise efforts

in any unique equilibrium (e∗ij , e
∗
ji). Thus,

1. e∗ij = e∗ji = 0 if and only if αij ∈ (1− αji, αij).

2. e∗ij = 0 and there is a unique e
∗
ji ∈ (0, 1) if and only if αij ∈

(
1− ᾱji,

(
αij , 1− αji

)
−

)
.

3. e∗ij = 0 and e
∗
ji = 1 if and only if αij ∈

(
0,
(
αij , 1− ᾱji

)
−

)
.

4. e∗ij = 1 and e
∗
ji = 0 if and only if αij ∈

((
ᾱij , 1− αji

)+
, 1
)
.

6This occurs because Ai(e) is an increasing function in eij and the minimum value is obtained for êij = 0, which is

the optimal effort for agent i.
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5. e∗ij = 1 and there is a unique e
∗
ji ∈ (0, 1) if and only if αij ∈ ((ᾱij , 1− ᾱji)

+
, 1− αji).

6. e∗ij = 1 and e
∗
ji = 1 if and only if αij ∈ (ᾱij , 1− ᾱji).

7. There is a unique e∗ij ∈ (0, 1) and e
∗
ji = 0 if and only if αij ∈

((
αij , 1− αji

)+
, ᾱij

)
.

8. There is a unique e∗ij ∈ (0, 1) and e
∗
ji = 1 if and only if αij ∈ (αij , (ᾱij , 1− ᾱji)−).

9. There is a unique e∗ij ∈ (0, 1) and e
∗
ji ∈ (0, 1) if and only if αij ∈

((
αij , 1− ᾱji

)+
,
(
ᾱij , 1− αji

)
−

)
.

In points 7.(2.), 8.(5.), and 9.(9.), e∗ij (e
∗
ji) is the unique real solution of equation c′i(eij) −

αijr
′
ji(eij) = 0 (c

′
j(eji)− αjir

′
ij(eji) = 0).

Proof. We begin with point 1. Note that, by Lemma 1 êij = 0 ⇐⇒ αij ≤ αij , and by Lemma 2,

êji = 0 ⇐⇒ αji ≤ αji ⇐⇒ αij ≥ 1−αji. Therefore, e
∗
ij = e∗ji = 0 if and only if αij ∈ (1−αji, αij).

For point 2. note that, by Lemma 1 êij = 0 ⇐⇒ αij ≤ αij , and by Lemma 2, there is a unique

êij such that 0 < êji < 1 ⇐⇒ αji < αji < ᾱji ⇐⇒ 1− ᾱji < αij < 1− αji. Therefore, e
∗
ij = 0 and

there is a unique e∗ji ∈ (0, 1) if and only if αij ∈ (1− ᾱji,Min{αij , 1− αji}).

Similarly, demonstrations of the remaining cases can be obtained straightforwardly from Lemmas

1 and 2. Since there are only three possible types of optimal effort for any agent i and j, as described

in Lemmas 1 and 2, there are only nine possible cases depending on the values of αij regarding to αij ,

ᾱij , αji, and ᾱji.

The next corollary shows how the pairwise equilibrium efforts e∗ij depend on αij , for all i, j ∈

N, i 6= j. As expected, as the proportion of aggregate cost reduction obtained by an agent increases,

the effort that agent exerts also increases (or at least stays the same).

Corollary 1 Let (N, {Ei}i∈N , {Ai}i∈N ) be the effort game and (e
∗
ij , e

∗
ji) the pairwise efforts equilib-

rium. Thus,

•
∂e∗ij
∂αij

> 0, if αij ∈ (αij , ᾱij);
∂e∗ij
∂αij

= 0, otherwise.

•
∂e∗ji
∂αij

< 0, if αij ∈ (1− ᾱji, 1− αji);
∂e∗ji
∂αij

= 0, otherwise.

Proof. By the implicit function theorem,
∂e∗ij
∂αij

= −

∂(c′i(e
∗

ij)−αijr
′

ji(e
∗

ij))

∂αij

∂(c′
i
(e∗
ij
)−αijr

′

ji
(e∗
ij
))

∂e∗
ij

=
r′ji(e

∗

ij)

c′′i (e
∗

ij)−αijr
′′

ji(e
∗

ij)
> 0, because

r′ji(e
∗
ij) > 0, c′′i (e

∗
ij) > 0, and r′′ji(e

∗
ij) < 0. Thus, for any αij ≤ αij , Lemma 1 implies that e

∗
ij = 0,

thus,
∂e∗ij
∂αij

= 0. However, if αij ∈ (αij , ᾱij), then e
∗
ij ∈ (0, 1) and

∂e∗ij
∂αij

> 0. Finally, if αij ≥ ᾱij ,

then e∗ij = 1 and
∂e∗ij
∂αij

= 0. Analogously, if αji ≤ αji ⇐⇒ αij ≥ 1 − αji, then e∗ji = 0 and
∂e∗ji
∂αij

= 0, if αji ∈ (αji, ᾱji) ⇐⇒ αij ∈ (1 − ᾱji, 1 − αji), then e
∗
ji ∈ (0, 1) and

∂e∗ji
∂αij

< 0. Finally, if

αji ≥ ᾱji ⇐⇒ αij ≤ 1− ᾱji, then e
∗
ij = 1 and

∂e∗ji
∂αij

= 0.

The results above are really useful when the goal is to incentivize agents i, j ∈ N to make more

pairwise effort eij by means of the parameter αij . However, we wish to go further, specifically to
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achieve efficiency within the family of cost allocations with weighted pairwise reduction. In other

words we wish to find the αij , for all i, j ∈ N that minimizes the aggregate cost function
∑

i∈N Ai(e
∗)

in equilibrium, where both Ai (e) and the effort equilibrium e∗ depends on αij .

4.1 Efficient Effort Equilibrium

The search for alpha parameters which will lead to the EEE can be simplified by taking into account

the bilateral and independent interactions of agents. Note first that any pair of agents have a particular

αij , and second that the optimal effort that any agent i ∈ N makes in regard to any agent j ∈ N\{i}

is independent of the optimal effort that agent i exerts in regard to any other agent h ∈ N\{i, j}.

Thus, minimizing
∑

i∈N Ai(e
∗) in terms of αij is equivalent to minimizing the function L

∗(αij) =

Ai(e
∗)+Aj(e

∗), since each particular αij only appears in Ai(e
∗) and Aj(e

∗). Fortunately, the problem

can be further simplified: Note that, Ai(e
∗) and Aj(e

∗) are the sums of different terms, but αij

only appears in those terms related to the interaction between i and j (see (9)). These terms are

ci(e
∗
i ) − αij(rij(e

∗
ji) + rji(e

∗
ij)) from Ai(e

∗), and cj(e
∗
j ) − (1 − αij)(rji(e

∗
ij) + rij(e

∗
ji)) from Aj(e

∗).

Thus, we a new function A∗i (αij) := ci(e
∗
i )−αij(rij(e

∗
ji)+rji(e

∗
ij)) can be considered, and analogously

A∗j (1−αij). Note that
∂x(Ai(e

∗))
∂αxij

=
∂x(A∗

i (αij))
∂αxij

and
∂x(Aj(e

∗))
∂αxij

=
∂x(A∗

j (1−αij))

∂αxij
for x = 1, 2, .... Therefore,

for each pair i and j, it is possible to define the function L∗ij(αij) := A∗i (αij) + A∗j (1 − αij), where
∂x(L∗(αij))

∂αxij
=

∂x(L∗ij(αij))

∂αxij
for x = 1, 2, .... So minimizing L∗(αij) is equivalent to minimizing L

∗
ij(αij).

We now focus on finding the αij that minimizes function L
∗
ij(αij), and provide a procedure for

finding the unique EEE. First, to solve the above optimization problem it is necessary to know the

function L∗ij(αij) very well. The following Proposition shows that, according to the value of the effort

equilibrium, the cost function L∗ij(αij) is a continuous piecewise function with four types of piece.

This result characterizes all of those pieces, showing the shape of L∗ij(αij) and the optimal αij in each

type of piece. Second, the main theorem in this section characterizes the optimal α∗ij , for all i, j ∈ N

with i 6= j, which incentivizes an efficient effort equilibrium, which is also provided.

To demonstrate the following results, three technical lemmas that can be found in the Appendix

are needed. Lemmas 3, 4, and 5 characterize the derivative
∂(A∗

i (αij))
∂αij

,
∂(L∗ij(αij))

∂αij
, and

∂2(L∗ij(αij))

∂α2ij

respectively.

Proposition 3 Consider the effort game (N, {Ei}i∈N , {Ai}i∈N ) and e
∗ as the effort equilibrium. Let

αij ∈ [a, b] be a piece of L
∗
ij(αij) with 0 ≤ a < b ≤ 1, L∗ij(αij) can have only four types of piece:

Constant: (e∗ij , e
∗
ji) is equal to either (0, 0), (1, 0), (0, 1) or (1, 1). Thus

∂(L∗ij(αij))

∂αij
= 0 and L∗ij(αij)

is always constant. Therefore, any αij ∈ [a, b] minimizes L
∗
ij(αij).

Increasing: e∗ij is equal to either 0 or 1, and 0 < e∗ji < 1. Thus
∂(L∗ij(αij))

∂αij
= −αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

> 0

and L∗ij(αij) is always increasing. Therefore, αij = a minimizes L∗ij(αij).

Decreasing: 0 < e∗ij < 1, and e
∗
ji is equal to either 0 or 1. Thus

∂(L∗ij(αij))

∂αij
= −(1−αij)

∂rji(e
∗

ij)

∂e∗ij

∂e∗ij
∂αij

<
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0 and L∗ij(αij) is always decreasing. Therefore, αij = b minimizes L∗ij(αij).

Depending on cost function shape: 0 < e∗ij < 1 and 0 < e∗ji < 1. Thus,

∂(L∗ij(αij))

∂αij
= −αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− (1− αij)
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

.

In this case, there is always a unique α̌
[a,b]
ij ∈ [a, b] that minimizes L∗ij(αij), which is:

α̌
[a,b]
ij =






a if
∂(L∗ij(αij))

∂αij
> 0 for all αij ∈ [a, b]

b if
∂(L∗ij(αij))

∂αij
< 0 for all αij ∈ [a, b]

Solution of
∂(L∗ij(αij))

∂αij
= 0 otherwise

Proof. First note that Theorem 3 determines the nine possible types of effort equilibrium, all of which

are considered in the four types of piece of Proposition 3. The four types of equilibrium associated

with the constant piece in Proposition 3 are characterized in points 1, 3, 4, and 6 of Theorem 3. For

the increasing case of Proposition 3, the equilibria correspond to points 2 and 5 of Theorem 3, and for

the decreasing case points 7 and 8. Finally, in the case depending on cost function shape the point 9

of Theorem 3 characterizes the last equilibrium.

Proposition 3 is straightforward when comparing Theorem 3 and Lemma 4. Additionally, the case

depending on cost function shape needs Lemma 5, so in this piece,
∂2(L∗ij(αij))

∂α2ij
> 0. In this last case,

it is also straightforward to show that
∂(L∗ij(αij))

∂αij
is continuous, so there is always a unique α̌ij that

minimizes L∗ij(αij) in such pieces.

It is now possible to characterize the optimal αij that minimizes the pairwise cost L
∗
ij(αij) of any

pair of agents i, j ∈ N . For any effort game considered here, there are only six possible distributions

of the lower and upper thresholds of the alpha parameter.7 These cases are8 :

Case A αij < ᾱij < 1− ᾱji < 1− αji

Case B αij < 1− ᾱji < ᾱij < 1− αji

Case C αij < 1− ᾱji < 1− αji < ᾱij

Case D 1− ᾱji < αij < ᾱij < 1− αji

Case E 1− ᾱji < αij < 1− αji < ᾱij

Case F 1− ᾱji < 1− αji < αij < ᾱij

(10)

This means that the continuous piecewise cost function L∗ij(αij) has only five pieces, and each

piece must belong to one of the four types described in Proposition 3.

The last Theorem characterizes the optimal α∗ij in all six cases [see (10)]. Thus, given an effort

game, Theorem 4 provides the α∗ij that incentivizes an efficient effort equilibrium, and that equilibrium

is also provided.

7Note that αji < ᾱji and αij < ᾱij .
8For expositional purposes, we omit the particular possible knife-edge cases. For example in Case A the only tie

that might occur is when ᾱij = 1 − ᾱji. In this case there are only four pieces. The piece missing, i.e. (α̂ij , 1 − α̂ji),

is the piece where the optimal αij was according to Theorem 4. In that case, the optimal will be the endpoints of this

interval, {α̂ij , 1− α̂ji}, which must be equal. If the missing interval does not contain the optimal, the latter will be as

described in Theorem 4.
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Theorem 4 Let (N, {Ei}i∈N , {Ai}i∈N ) be an effort game and Λ(α) = min{α, 1}, with α∗ij to be the

solution of min
αij∈[0,1]

L∗ij(αij). Thus,

Case A α∗ij is equal to any αij ∈ [ᾱij , 1− ᾱji], with e
∗
ij = 1 = e∗ji.

Case B α∗ij = α̌
[1−ᾱji,ᾱij ]
ij , where e∗ij and e∗ji are, respectively, the unique solution of c

′
i(eij) −

α∗ijr
′
ji(eij) = 0 and c

′
j(eji)− α

∗
jir

′
ij(eji) = 0.

Case C αCij = argmin{L
∗
ij(α̌

[1−ᾱji,1−αji]
ij ), L∗ij(Λ(ᾱij))}, where

C.1 if αCij = α̌
[1−ᾱji,1−αji]
ij , then α∗ij = αCij and e

∗
ij and e

∗
ji are, respectively, the unique solution

of c′i(eij)− α
∗
ijr

′
ji(eij) = 0 and c

′
j(eji)− α

∗
jir

′
ij(eji) = 0;

C.2 if αCij = Λ(ᾱij) and ᾱij > 1, then α
∗
ij = αCij and e

∗
ij is the solution of c

′
i(eij)−α

∗
ijr

′
ji(eij) = 0

and e∗ji = 0;

C.3 if αCij = Λ(ᾱij) and ᾱij < 1, then α
∗
ij is equal to any αij ∈ [ᾱij , 1] and e

∗
ij = 1, e

∗
ji = 0.

Case D αDij = argmin{L
∗
ij(Λ(1− ᾱji)), L

∗
ij(α̌

[αij ,ᾱij]
ij )}, where

D.1 if αDij = Λ(1− ᾱji) and 1− ᾱji > 0, then α
∗
ij is equal to any αij ∈ [0, 1− ᾱji] and e

∗
ij = 0,

e∗ji = 1;

D.2 if αDij = Λ(1− ᾱji) and 1− ᾱji < 0, then α
∗
ij = αDij , e

∗
ij = 0, and e

∗
ji is the unique solution

of c′j(eji)− αjir
′
ij(eji) = 0;

D.3 if αDij = α̌
[αij ,ᾱij]
ij , then α∗ij = αDij , and e

∗
ij , and e

∗
ji are, respectively, the unique solution of

c′i(eij)− αijr
′
ji(eij) = 0 and c

′
j(eji)− αjir

′
ij(eji) = 0.

Case E αEij = argmin{L
∗
ij(Λ(1− ᾱji)), α̌

[αij ,1−αji]
ij , L∗ij(Λ(ᾱij))}, where

E.1 if αEij = Λ(1− ᾱji) and 1− ᾱji > 0, then α
∗
ij is equal to any αij ∈ [0, 1− ᾱji], e

∗
ij = 0, and

e∗ji = 1;

E.2 if αEij = Λ(1 − ᾱji) and 1 − ᾱji < 0, then α∗ij = αEij , e
∗
ij = 0, and e∗ji is the solution of

c′j(eji)− αjir
′
ij(eji) = 0;

E.3 if αEij = α̌
[αij ,ᾱij]
ij , then α∗ij = αEij , and e

∗
ij and e

∗
ji are, respectively, the solution of c

′
i(eij)−

α∗ijr
′
ji(eij) = 0 and c

′
j(eji)− α

∗
jir

′
ij(eji) = 0;

E.4 if αEij = Λ(ᾱij) and ᾱij > 1, then α
∗
ij = αEij , e

∗
ij is the solution of c

′
i(eij) − α∗ijr

′
ji(eij) = 0

and e∗ji = 0;

E.5 if αEij = Λ(ᾱij) and ᾱij < 1, then α
∗
ij is equal to any αij ∈ [ᾱij , 1], e

∗
ij = 1, and e

∗
ji = 0.

Case F αFij = argmin{L
∗
ij(Λ(1− ᾱji)), L

∗
ij(Λ(ᾱij))}, where

F.1 if αFij = Λ(1− ᾱji) and 1− ᾱji > 0, then α
∗
ij is equal to any αij ∈ [0, 1− ᾱji], e

∗
ij = 0, and

e∗ji = 1;
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F.2 if αFij = Λ(1 − ᾱji), 1 − ᾱji < 0 and 1 − αji > 0, then α∗ij = αFij , e
∗
ij = 0, and e∗ji is the

unique solution of c′j(eji)− α
∗
jir

′
ij(eji) = 0;

F.3 if αFij = Λ(ᾱij) and ᾱij < 1, then α
∗
ij is equal to any αij ∈ [ᾱij , 1], e

∗
ij = 1, and e

∗
ji = 0;

F.4 if αFij = Λ(ᾱij), ᾱij > 1 and αij < 1, then α∗ij = αFij , e
∗
ij is the unique solution of

c′i(eij)− α
∗
ijr

′
ji(eij) = 0 and e

∗
ji = 0;

F.5 if αFij = Λ(ᾱij), 1 − αji < 0 and αij > 1, then α∗ij is equal to any αij ∈ [0, 1], and

e∗ij = 0 = e∗ji.

Proof. As L∗ij(αij) is a continuous piecewise function, we analyze the five pieces that define it in

each case. First, by using Theorem 3, we show the value of the efforts in the unique equilibrium in

each piece. This enables to the type of the piece to be determined according to Proposition 3, thus

giving the value of αij that minimizes L
∗
ij(αij) in each piece. Comparing the pieces gives the α

∗
ij

that minimizes the aggregate cost for each of the six cases. This value need not be unique. Note,

in addition, that αij , ᾱij , ᾱji and αji are always greater than zero, but any of them may be greater

than one, which implies that some pieces of certain cases may not exist. We prove the theorem case

by case:

1. Case A (αij < ᾱij < 1− ᾱji < 1− αji)

Note that those thresholds are always greater than zero, so 0 < αij < ᾱij < 1−ᾱji < 1−αji < 1.

If αij ∈
(
0, αij

)
, then e∗ij = 0, e

∗
ji = 1, and L

∗
ij(αij) is constant in this interval.

If αij ∈
(
αij , ᾱij

)
, then 0 < e∗ij < 1, e∗ji = 1, and L∗ij(αij) is decreasing, which implies that

αij = 1− ᾱji minimizes L
∗
ij(αij).

If αij ∈ (ᾱij , 1− ᾱji), then e
∗
ij = 1, and e

∗
ji = 1, and L

∗
ij(αij) is constant in this interval.

If αij ∈
(
1− ᾱji, 1− αji

)
, then e∗ij = 1, 0 < e∗ji < 1, and L

∗
ij(αij) is increasing, which implies

that 1− ᾱji minimizes L
∗
ij(αij).

If αij ∈
(
1− αji, 1

)
, then e∗ij = 1, e

∗
ji = 0, and L

∗
ij(αij) is constant in this interval.

Therefore, α∗ij is equal to any αij ∈ [ᾱij , 1− ᾱji] so by Theorem 3, e∗ij = 1 = e∗ji = 1.

2. Case B (αij < 1− ᾱji < ᾱij < 1− αji)

Analogously, 0 < αij < 1− ᾱji < ᾱij < 1− αji < 1.

If αij ∈
(
0, αij

)
, then e∗ij = 0, e

∗
ji = 1, and L

∗
ij(αij) is constant in this interval.

If αij ∈
(
αij , 1− ᾱji

)
, then 0 < e∗ij < 1, e

∗
ji = 1, and L

∗
ij(αij) is decreasing, which implies that

αij = 1− ᾱji minimizes L
∗
ij(αij).

If αij ∈ (1− ᾱji, ᾱij), then 0 < e∗ij < 1, and 0 < e∗ji < 1, which implies that α̌ij minimizes

L∗ij(αij).

If αij ∈
(
ᾱij , 1− αji

)
, then e∗ij = 1, 0 < e∗ji < 1, and L

∗
ij(αij) is increasing, which implies that

ᾱij minimizes L
∗
ij(αij).
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If αij ∈
(
1− αji, 1

)
, then e∗ij = 1, e

∗
ji = 0, and L

∗
ij(αij) is constant in this interval.

Therefore, α∗ij = α̌
[1−ᾱji,ᾱij ]
ij and, by Theorem 3, e∗ij and e

∗
ji are, respectively, the solution of

c′i(eij)− αijr
′
ji(eij) = 0 and c

′
j(eji)− αjir

′
ij(eji) = 0.

3. Case C (αij < 1− ᾱji < 1− αji < ᾱij)

It may happen here that either ᾱij < 1 or ᾱij ≥ 1. Thus there are two subcases:

0 < αij < 1− ᾱji < 1− αji < ᾱij < 1

0 < αij < 1− ᾱji < 1− αji < 1 < ᾱij

Starting with the first subcase,

if αij ∈
(
0, αij

)
, then e∗ij = 0, e

∗
ji = 1, and L

∗
ij(αij) is constant in this interval.

If αij ∈
(
αij , 1− ᾱji

)
, then 0 < e∗ij < 1, e

∗
ji = 1, and L

∗
ij(αij) is decreasing, which implies that

αij = 1− ᾱji minimizes L
∗
ij(αij).

If αij ∈
(
1− ᾱji, 1− αji

)
, then 0 < e∗ij < 1, and 0 < e∗ji < 1, which implies that α̌ij minimizes

L∗ij(αij).

If αij ∈
(
1− αji, ᾱij

)
, then 0 < e∗ij < 1, e

∗
ji = 0, and L

∗
ij(αij) is decreasing, which implies that

ᾱ minimizes L∗ij(αij).

If αij ∈ (ᾱij , 1), then e
∗
ij = 1, e

∗
ji = 0, and L

∗
ij(αij) is constant, in this interval.

However, in the second subcase ᾱij > 1, which implies that the last interval described above

does not exist. The rest of the analysis is similar to the first subcase.

Therefore, αCij = argmin{L∗ij(α̌
[1−ᾱji,1−αji]
ij ), L∗ij(Λ(ᾱij))}. Note that, if α

C
ij = Λ(ᾱij) and

ᾱij < 1, then α
∗
ij is equal to any αij ∈ (ᾱij , 1). Otherwise, α

∗
ij = αCij .

Finally, by Theorem 3,

if αCij = α̌
[1−ᾱji,1−αji]
ij , then e∗ij and e

∗
ji are, respectively, the solution of c

′
i(eij)−αijr

′
ji(eij) = 0

and c′j(eji)− αjir
′
ij(eji) = 0,

if αCij = Λ(ᾱij) and ᾱij > 1, then e
∗
ij is the solution of c

′
i(eij)− αijr

′
ji(eij) = 0 and e

∗
ji = 0,

if αCij = Λ(ᾱij) and ᾱij < 1, then e
∗
ij = 1, e

∗
ji = 0.

4. Case D (1− ᾱji < αij < ᾱij < 1− αji)

It may happen here that either 1− ᾱji > 0 or 1− ᾱji ≤ 0. Thus there are two subcases:

0 < 1− ᾱji < αij < ᾱij < 1− αji < 1

1− ᾱji < 0 < αij < ᾱij < 1− αji < 1

Starting with the first subcase,

if αij ∈ (0, 1− ᾱji), then e
∗
ij = 0, e

∗
ji = 1, and L

∗
ij(αij) is constant in this interval.

If αij ∈
(
1− ᾱji, αij

)
, then e∗ij = 0, 0 < e∗ji < 1, and L

∗
ij(αij) is increasing, which implies that

αij = 1− ᾱji minimizes L
∗
ij(αij).

If αij ∈
(
αij , ᾱij

)
, then 0 < e∗ji < 1, and 0 < e∗ji < 1, which implies that α̌ij minimizes L

∗
ij(αij).
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If αij ∈
(
ᾱij , 1− αji

)
, then e∗ij = 1, 0 < e∗ji < 1, and L

∗
ij(αij) is increasing, which implies that

ᾱij minimizes L
∗
ij(αij).

If αij ∈ (ᾱij , 1), then e
∗
ij = 1, e

∗
ji = 0, and L

∗
ij(αij) is constant in this interval.

However, if 1 − ᾱji < 0 the first interval above does not exist. Again, the rest of the analysis

is similar to the first subcase.

Therefore, αDij = argmin{L
∗
ij(Λ(1− ᾱji)), L

∗
ij(α̌

[αij ,ᾱij]
ij )}.

Note that if αDij = Λ(1 − ᾱji) and 1 − ᾱji > 0, then α∗ij is equal to any αij ∈ [0, 1 − ᾱji].

Otherwise, α∗ij = αDij .

Finally, by Theorem 3,

if αDij = Λ(1− ᾱji) and 1− ᾱji > 0, then e
∗
ij = 0, e

∗
ji = 1,

if αDij = Λ(1−ᾱji) and 1−ᾱji < 0, then e
∗
ij = 0, and e

∗
ji is the solution of c

′
j(eji)−αjir

′
ij(eji) = 0

if αDij = α̌
[αij ,ᾱij]
ij , then e∗ij and e

∗
ji are, respectively, the solution of c

′
i(eij)−αijr

′
ji(eij) = 0 and

c′j(eji)− αjir
′
ij(eji) = 0.

5. Case E (1− ᾱji < αij < 1− αji < ᾱij)

In this case, it may happen that either 1− ᾱji > 0 or 1− ᾱji ≤ 0, and either ᾱij < 1 or ᾱij ≥ 1.

Thus there are four subcases:

0 < 1− ᾱji < αij < 1− αji < ᾱij < 1

1− ᾱji < 0 < αij < 1− αji < ᾱij < 1

0 < 1− ᾱji < αij < 1− αji < 1 < ᾱij

1− ᾱji < 0 < αij < 1− αji < 1 < ᾱij

Focusing on the first subcase,

if αij ∈ (0, 1− ᾱji), then e
∗
ij = 0, e

∗
ji = 1, and L

∗
ij(αij) is constant in this interval.

If αij ∈
(
1− ᾱji, αij

)
, then e∗ij = 0, 0 < e∗ji < 1, and L

∗
ij(αij) is increasing, which implies that

αij = 1− ᾱji minimizes L
∗
ij(αij).

If αij ∈
(
αij , 1− αji

)
, then 0 < e∗ji < 1, and 0 < e∗ji < 1, which implies that α̌ij minimizes

L∗ij(αij).

If αij ∈
(
1− αji, ᾱij

)
, then 0 < e∗ij < 1, e

∗
ji = 0, and L

∗
ij(αij) is decreasing, which implies that

ᾱij minimizes L
∗
ij(αij).

If αij ∈ (ᾱij , 1), then e
∗
ij = 1, e

∗
ji = 0, and L

∗
ij(αij) is constant in this interval.

In the other three subcases, the first and/or last interval may not exist. Once again, the rest

of the analysis for those subcases is similar to the first one.

Therefore, αEij = argmin{L
∗
ij(Λ(1− ᾱji)), α̌

[αij ,1−αji]
ij , L∗ij(Λ(ᾱij))}

Note that if αEij = Λ(1− ᾱji) and 1− ᾱji > 0 then α
∗
ij is equal to any αij ∈ [0, 1− ᾱji], and

if αEij = Λ(ᾱij) and ᾱij < 1, then α
∗
ij is equal to any αij ∈ [ᾱij , 1]. Otherwise α

∗
ij = αEij .
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Thus, by Theorem 3,

if αEij = Λ(1− ᾱji) and 1− ᾱji > 0, then e
∗
ij = 0, e

∗
ji = 1,

if αEij = Λ(1−ᾱji) and 1−ᾱji < 0, then e
∗
ij = 0, and e

∗
ji is the solution of c

′
j(eji)−αjir

′
ij(eji) = 0,

if αEij = α̌
[αij ,ᾱij]
ij , then e∗ij and e

∗
ji are, respectively, the solution of c

′
i(eij)−αijr

′
ji(eij) = 0 and

c′j(eji)− αjir
′
ij(eji) = 0,

if αEij = Λ(ᾱij) and ᾱij > 1, then e
∗
ij is the solution of c

′
i(eij)− αijr

′
ji(eij) = 0 and e

∗
ji = 0,

if αEij = Λ(ᾱij) and ᾱij < 1, then e
∗
ij = 1, e

∗
ji = 0.

6. Case F (1− ᾱji < 1− αji < αij < ᾱij)

This is the most general case and anything could happen with thresholds greater than one.

Thus there are nine subcases.

First consider the case 0 < 1− ᾱji < 1− αji < αij < ᾱij < 1

If αij ∈ (0, 1− ᾱji), then e
∗
ij = 0, e

∗
ji = 1, and L

∗
ij(αij) is constant in this interval.

If αij ∈
(
1− ᾱji, 1− αji

)
, then e∗ij = 0, 0 < e∗ji < 1, and L

∗
ij(αij) is increasing, which implies

that αij = 1− ᾱji minimizes L
∗
ij(αij).

If αij ∈
(
1− αji, αij

)
, then e∗ij = 0, e

∗
ji = 0, and L

∗
ij(αij) is constant in this interval.

If αij ∈
(
αij , ᾱij

)
, then 0 < e∗ij < 1, e∗ji = 0, and L∗ij(αij) is decreasing, which implies that

αij = ᾱij minimizes L
∗
ij(αij).

If αij ∈ (ᾱij , 1), then e
∗
ij = 1, e

∗
ji = 0, and L

∗
ij(αij) is constant in this interval.

In any other subcase, the first, second, second to last, and last intervals considered above, may

not exist. The rest of the analysis for those subcases is similar to the first one.

Therefore, αFij = argMin{L∗ij(Λ(1 − ᾱji)), L
∗
ij(Λ(ᾱij))}. Note that, if α

F
ij = Λ(1 − ᾱji) and

1 − ᾱji > 0, then α∗ij is equal to any αij ∈ [0, 1 − ᾱji], but if α
F
ij = Λ(ᾱij) and ᾱij < 1,

then α∗ij is equal to any αij ∈ [ᾱij , 1]. Additionally, if 1 − ᾱji < 0 and ᾱij > 1, then

L∗ij(Λ(1− ᾱji)) = L∗ij(Λ(ᾱij), so α
∗
ij is equal to any αij ∈ [0, 1].

Finally, by using Theorem 3,

if αFij = Λ(1− ᾱji) and 1− ᾱji > 0, then e
∗
ij = 0, e

∗
ji = 1,

if αFij = Λ(1− ᾱji), 1− ᾱji < 0 and 1− αji > 0, then e
∗
ij = 0, and e

∗
ji is the unique solution of

c′j(eji)− αjir
′
ij(eji) = 0,

if αFij = Λ(ᾱij) and ᾱij < 1, then e
∗
ij = 1, e

∗
ji = 0,

if αFij = Λ(ᾱij), ᾱij > 1 and αij < 1, then e
∗
ij is the unique solution of c

′
i(eij)− αijr

′
ji(eij) = 0

and e∗ji = 0,

if 1−ᾱji < 0 and αij > 1, α
∗
ij has two solutions Λ(1−ᾱji) and Λ(ᾱij) because L

∗
ij(Λ(1−ᾱji)) =

L∗ij(Λ(ᾱij)), then e
∗
ij = 0 = e∗ji.
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To conclude the paper, we describe a procedure for finding the unique EEE.

EEE Procedure

Given an effort game (N, {Ei}i∈N , {Ai}i∈N ),

1. we first calculate the lower and upper thresholds of the bilateral interaction between any pair of

agents by using Definition 2;

2. we then focus on the list (10) and determine which case (A-F) applies;

3. Theorem 4 provides the optimal α∗ij for all i, j ∈ N , to minimize the centralized (aggregate)

cost allocation
∑

i∈N Ai(e
∗), the efficient effort equilibrium (e∗ij , e

∗
ji) for every pair of agents,

and thus the unique efficient effort equilibrium e∗ for the game;

4. at this point the optimal cost allocation that incentivizes agents i, j ∈ N to make an efficient

effort equilibrium e∗ij and e
∗
ji is known, i.e.

Ai(e
∗) = ci(e

∗
i )−

∑

j∈N\{i}

α∗ij [rij(e
∗
ji) + rji(e

∗
ij)];

The 3-firm case given in Example 1 can be used to illustrate this procedure.

Example 2 Consider again the PE-network with 3 firms given by Example 1. By Definition 2, the

pair of firms {1, 2} has the thresholds α12 = 0.5, ᾱ12 = 0.557, α21 = 33.3, and ᾱ21 = 108, which

correspond to Case F in the Table 10. By using Theorem 4, it can easily be checked that it is subcase

F.3. Thus, e∗∗12 = 1, e
∗∗
21 = 0, and α

∗∗
12 ∈ [0.557, 1]. As firms 2 and 3 are identical, e

∗∗
13 = 1, e

∗∗
31 = 0,

and α∗∗13 ∈ [0.557, 1].

Finally, for the pair {2, 3}, α23 = 33.3, ᾱ23 = 108, α32 = 33.3, and ᾱ32 = 108. This is again Case

F, but now subcase F.5. Thus, e∗∗23 = 0, e
∗∗
32 = 0, and α

∗∗
23 ∈ [0, 1].

It can be concluded that e∗∗1 = (1, 1), e∗∗2 = e∗∗3 = (0, 0), so the unique EEF is e∗∗ = ((1, 1) , (0, 0) , (0, 0)) .

The cost allocation with weighted pairwise reduction for each firm is

A1(e
∗∗) = 308− 201 (α∗∗12 + α

∗∗
13) ,

A2(e
∗∗) = 100− 201α∗∗21 − 4α

∗∗
23,

A3(e
∗∗) = 100− 201α∗∗31 − 4α

∗∗
32,

where α∗∗12 ∈ [0.557, 1], α
∗∗
13 ∈ [0.557, 1], α

∗∗
23 ∈ [0, 1], α

∗∗
21 = 1−α

∗∗
12, α

∗∗
31 = 1−α

∗∗
13, and α

∗∗
32 = 1−α

∗∗
23.

As discussed above, this cost allocation with weights for firm 1 (between 0.5574 and 1) greater than

the Shapley value (0.5) encourages that firm to exert the maximum level of effort in regard to each of

the other firms (i.e. e∗∗1 = (1, 1)).
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5 Conclusions and future research

This paper presents a model of cooperation with pairwise cost reduction. The direct impact of pairwise

effort on cost reductions is investigated by means of a two-stage bi-form game. First, the agents

determine the level of pairwise effort to be made to reduce the cost of their partners. Second, they

participate in a bilateral interaction with multiple independent partners where the cost reduction that

each agent gives to another agent remains constant in any possible coalition. As a result of cooperation,

agents reduce each other’s costs. In the non-cooperative game that precedes cooperation, the agents

anticipate the cost allocation that will result from the cooperative game by incorporating the effect

of the effort made into their cost functions. We show that all-included cooperation is feasible, in the

sense that there are possible cost reductions that make all agents better off (or, at least, not worse

off), and consistent. We then identify a family of feasible cost allocations with weighted pairwise

reduction. One of these cost allocations is selected by taking into account the incentives generated

in the efforts that agents make, and consequently in the total cost of coalitions. Surprisingly, we

find that the Shapley value, which coincides with the Nucleolus in this model, can induce inefficient

effort strategies in equilibrium in the non-cooperative model. However, it is always possible to select a

core-allocation with appropriate pairwise weights that can generate an optimal level of efficient effort.

We provide a procedure for obtaining the unique EEE in cooperation with pairwise cost reduction.

There are several directions for future research. First, this paper assumes that the individual effort

cost function ci(ei) is independent of the effort of other agents, and that the marginal cost
∂ci(ei)
∂eij

is

independent of the effort that i makes in regard to agents other than j, i.e.
∂c2i (ei)
∂eij∂eih

= 0. We make

a similar assumption with the cost reduction function rij(e
∗
ji). There is some degree of independence

between efforts. This is a reasonable assumption in many contexts, but in some settings different

assumptions might be needed. For example, there are situations with strategic complementarity in

which the efforts of agents reinforce each other. In such cases the function is supermodular. In other

cases there is strategic substitutability, so that efforts offset each other and the function is submodular.

Focusing on the effort cost function of one agent, if
∂c2i (ei)
∂eij∂eih

> 0 then there is complementarity

between the efforts, and if
∂c2i (ei)
∂eij∂eih

< 0, then there is substitutability. This is a very interesting future

extension. It could also be worth considering this complementarity/substitutability not only between

the different efforts that one agent makes in regard to other agents but also between the efforts made

by different agents. This assumption can be made on both the effort cost functions and the cost

reduction function. Obviously, complementarity on the effort cost function has the opposite effect to

that on the cost reduction function.

The second direction is related to the assumption of bilateral interaction between agents. This has

the advantage of being analytically more tractable and is widely applied in practice (e.g., Fang and

Wang 2019; Amin et al. 2020, Park et al. 2010 ), but overall interaction between agents, dependent

on groups, is an important factor that we believe does not affect the success of cooperation. One

possible future extension would be to investigate the cooperative model with multiple cost reduction,

and also the impact of the efforts made on those cost reductions. Finally, we identify a large family of

27



core-allocations with weighted pairwise reduction which contains the Shapley value and the Nucleolus

and always provides a level of efficient effort in equilibrium. This family is very rich in itself, as a set

solution concept for our cooperative model. Research into this core-allocation family can be furthered

through an in-depth analysis of its structure and its geometric relationship to the core.
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6 Appendix

The first lemma shows how the optimal cost function of agent i ∈ N depends on αij . Henceforth, to

simplify notation, we consider that for any i, j ∈ N ,
∂rij(e

∗

ji)

∂e∗ji
and

∂ci(e
∗

i )
∂e∗ij

stand for derivatives
∂rij(eji)
∂eji

and ∂ci(ei)
∂eij

evaluated in the unique effort equilibrium.

Lemma 3 Let (N, {Ei}i∈N , {Ai}i∈N ) be the effort game and e
∗ the effort equilibrium. Thus,

1. ∂(Ai(e
∗))

∂αij
=

∂(A∗

i (αij))
∂αij

=





−rij(e

∗
ji)− αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− rji(e
∗
ij), if αij ∈ (1− ᾱji, 1− αji)

−rij(e
∗
ji)− rji(e

∗
ij) < 0, otherwise

2.
∂(Aj(e

∗))
∂αij

=
∂(A∗

j (1−αij))

∂αij
=





rji(e

∗
ij)− (1− αij)

∂rji(e
∗

ij)

∂e∗ij

∂e∗ij
∂αij

+ rij(e
∗
ji), if αij ∈ (αij , ᾱij)

rji(e
∗
ij) + rij(e

∗
ji) > 0, otherwise.

Proof. It is known that Ai(e
∗) = ci(e

∗
i ) −

∑
z∈N\{i} αiz(riz(e

∗
zi) + rzi(e

∗
iz)), and A

∗
i (αij) = ci(e

∗
i ) −

αij(rij(e
∗
ji) + rji(e

∗
ij)), thus

∂(Ai(e
∗))

∂αij
=

∂(A∗

i (αij))
∂αij

=
∂ci(e

∗

i )
∂e∗ij

∂e∗ij
∂αij

− rij(e
∗
ji)− αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− rji(e
∗
ij)− αij

∂rji(e
∗

ij)

∂e∗ij

∂e∗ij
∂αij

,

=
(
∂ci(e

∗

i )
∂e∗ij

− αij
∂rji(e

∗

ij)

∂e∗ij

)
∂e∗ij
∂αij

− rij(e
∗
ji)− αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− rji(e
∗
ij).

The first term of the above expression is always zero, i.e.
(
∂ci(e

∗

i )
∂e∗ij

− αij
∂rji(e

∗

ij)

∂e∗ij

)
∂e∗ij
∂αij

= 0. To see

this, note that if αij ∈ (αij , ᾱij), then e
∗
ij ∈ (0, 1) by Lemma 1, so

(
∂ci(e

∗

i )
∂e∗ij

− αij
∂rji(e

∗

ij)

∂e∗ij

)
= 0 because

it is evaluated in equilibrium. In the other case, where αij ≤ αij or αij ≥ ᾱij , e
∗
ij = 0 by Proposition

1, so
∂e∗ji
∂αij

= 0 . Therefore, ∂(Ai(e
∗))

∂αij
= −rij(e

∗
ji)− αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− rji(e
∗
ij).

It is known by assumption that rij(e
∗
ji) ≥ 0,

∂rij(e
∗

ji)

∂e∗ji
> 0. If αij ∈ (1 − ᾱji, 1 − αji), then by

Proposition 1,
∂e∗ji
∂αij

< 0. However, if αij /∈ (1 − ᾱji, 1 − αji) then, by Proposition 1,
∂e∗ji
∂αij

= 0, so
∂(Ai(e

∗))
∂αij

= −rij(e
∗
ji)− rji(e

∗
ij).
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The proof is analogous for
∂(Aj(e

∗))
∂αij

.

Notice that the effect of αij on the cost function of agent i could be positive or negative because

of two simultaneous effects. First effect: as expected, if αij increases so does the proportion of cost

reduction that agent i can obtain increases, and thus the cost function, Ai(e
∗), decreases. This

decrease is measured by the term −rij(e
∗
ji) − rji(e

∗
ij) < 0 in the derivative. Second effect: when αij

increases, the effort of agent j decreases in equilibrium, so the cost function of agent i increases. The

term −αij
∂rij(e

∗

ji)

∂e∗ji

e∗ji
∂αij

> 0 measures this second effect. The sum of these two effects determines the

sign of the derivative. Therefore, an increase in the proportion of the aggregate cost reduction an

agent obtains could increase the costa of that agent if the second effect dominates the first. This is

an interesting result: Giving too much to a particular agent could be not only worse for the aggregate

cost but also for that particular agent.

The second lemma calculates the derivative of the aggregate cost function L∗ij(αij) = A∗i (αij) +

A∗j (1− αij) in the effort equilibrium for any i, j ∈ N .

Lemma 4 Let (N, {Ei}i∈N , {Ai}i∈N ) be the effort game, and e
∗ the effort equilibrium. Thus,

∂(L∗ij(αij))

∂αij
= −αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

Ij − (1− αij)
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

Ii,

where Ii =





1 if αij ∈ (αij , ᾱij)

0 otherwise
and Ij =





1 if αij ∈ (1− ᾱji, 1− αji)

0 otherwise
.

Proof. It is known by Lemma 3 that
∂(L∗ij(αij))

∂αij
= −rij(e

∗
ji) − αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− rji(e
∗
ij) + rji(e

∗
ij) −

(1− αij)
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

+ rij(e
∗
ji). Simplifying for the different subsets of αij , the following emerges:

∂(L∗ij(αij)

∂αij
= −αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− (1− αij)
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

if αij ∈ (αij , ᾱij) ∩ (1− ᾱji, 1− αji),

∂(L∗ij(αij))

∂αij
= 0 if αij /∈ (αij , ᾱij) ∪ (1− ᾱji, 1− αji),

∂(L∗ij(αij))

∂αij
= −αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

> 0 if αij ∈ (1− ᾱji, 1− αji) ∩
(
(0, αij) ∪ (ᾱij , 1)

)

∂(L∗ij(αij))

∂αij
= −(1− αij)

∂rji(e
∗

ij)

∂e∗ij

∂e∗ij
∂αij

< 0 if αij ∈
(
(0, 1− ᾱji) ∪

(
1− αji, 1

)
) ∩
(
αij ∪ ᾱij

))
.

The derivative is a piecewise function and there are intervals where its sign is independent of

the particular form of the functions of the game. For those cases, it is straightforward to find the

optimal αij that minimizes the function L
∗
ij(αij) = A∗i (αij) + A∗j (1 − αij). In those intervals, the

derivative is either positive, negative or zero throughout the interval. These cases are respectively
∂(L∗ij(αij))

∂αij
= −αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

> 0,
∂(L∗ij(αij))

∂αij
= −(1 − αij)

∂rji(e
∗

ij)

∂e∗ij

∂e∗ij
∂αij

< 0, and
∂(L∗ij(αij))

∂αij
= 0.

However, there is an interval where the sign of the derivative depends on the particular form of

functions of the game. In this particular case
∂(L∗ij(αij))

∂αij
= −αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− (1 − αij)
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

.

This occurs when αij ∈ (αij , ᾱij)∩ (1− ᾱji, 1−αji), which implies that in equilibrium simultaneously

0 < e∗ij < 1 and 0 < e∗ji < 1. Therefore, in this case only, the derivative may be equal to zero for

some αij within this interval. In that case, the second derivative is needed to solve the optimization
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problem.

The third Lemma shows that the aggregate cost function L∗ij(αij) is convex in αij . Two additional

assumptions about third derivatives need to be introduced.

Lemma 5 Let (N, {Ei}i∈N , {Ai}i∈N ) be the effort game, e
∗ the effort equilibrium, and

∂3ci(e
∗

i )

∂e∗3ij
> 0

and
∂3rji(e

∗

ij)

∂e∗3ij
< 0, for any i, j ∈ N . Thus

∂2L∗ij(αij))

∂α∗2ij
> 0 for all αij ∈ (αij , ᾱij) ∩ (1− ᾱji, 1− αji).

Proof. Take αij ∈ (αij , ᾱij) ∩ (1− ᾱji, 1− αji). Thus,

∂2(L∗ij(αij))

∂α2ij
=

∂2(A∗

i (αij)+A
∗

j (1−αij))

∂α2ij

=
∂

(
−αij

∂rij(e
∗

ji)

∂e∗
ji

∂e∗ji
∂αij

−(1−αij)
∂rji(e

∗

ij)

∂e∗
ij

∂e∗ij
∂αij

)

∂αij

= −
∂rij(e

∗

ji)

∂e∗ji

∂e∗ji
∂αij

− αij
(
∂2rij(e

∗

ji)

∂e∗ji∂αij

∂e∗ji
∂αij

+
∂rij(e

∗

ji)

∂e∗ji

∂2e∗ji
∂α2ij

)

+
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

− (1− αij)
(
∂2rji(e

∗

ij)

∂e∗ij∂αij

∂e∗ij
∂αij

+
∂rji(e

∗

ij)

∂e∗ij

∂2e∗ij
∂α2ij

)

= −
∂rij(e

∗

ji)

∂e∗ji

∂e∗ji
∂αij

− αij
(
∂2rij(e

∗

ji)

∂e∗2ji

∂e∗ij
∂αij

∂e∗ji
∂αij

+
∂rij(e

∗

ji)

∂e∗ji

∂2e∗ji
∂α2ij

)

+
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

− (1− αij)
(
∂2rji(e

∗

ij)

∂e∗2ij

∂e∗ij
∂αij

∂e∗ij
∂αij

+
∂rji(e

∗

ij)

∂e∗ij

∂2e∗ij
∂α2ij

)

=
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

−
∂rij(e

∗

ji)

∂e∗ji

∂e∗ji
∂αij

− αij

(
∂2rij(e

∗

ji)

∂e∗2ji

(
∂e∗ji
∂αij

)2
+

∂rij(e
∗

ji)

∂e∗ji

∂2e∗ji
∂α2ij

)

−(1− αij)

(
∂2rji(e

∗

ij)

∂e∗2ij

(
∂e∗ij
∂αij

)2
+

∂rji(e
∗

ij)

∂e∗ij

∂2e∗ij
∂α2ij

)
.

Now we prove that
∂2e∗ji
∂α2ij

< 0 and
∂2e∗ij
∂α2ij

< 0, so
∂2(L∗ij(αij))

∂α2ij
> 0.

We first prove that
∂2e∗ji
∂α2ij

< 0. It is known that

∂Aj(e
∗)

∂eji
=

∂cj(e
∗

j )

∂e∗ji
− (1− αij)

∂rij(e
∗

ji)

∂e∗ji
= 0

We now derive the second term regarding αij .

∂2cj(e
∗

j )

∂e∗2ji

∂e∗ji
∂αij

+
∂rij(e

∗

ji)

∂e∗ji
− (1− αij)

∂2rij(e
∗

ji)

∂e∗2ji

∂e∗ji
∂αij

= 0

We now do the same to αij .
(
∂3cj(e

∗

j )

∂e∗3ji

(
∂e∗ji
∂αij

)2
+

∂2cj(e
∗

j )

∂e∗2ji

∂2e∗ji
∂α2ji

)
+

∂2rij(e
∗

ji)

∂e∗2ji

∂e∗ji
∂αij

−(1− αij)

(
∂3rij(e

∗

ji)

∂e∗3ji

(
∂e∗ji
∂αij

)2
+

∂2rij(e
∗

ji)

∂e∗2ji

∂2e∗ji
∂α2ji

)
= 0

(
∂2cj(e

∗

j )

∂e∗2ji
− (1− αij)

∂2rij(e
∗

ji)

∂e∗2ji

)
∂2e∗ji
∂α2ji

+
∂2rij(e

∗

ji)

∂e∗2ji

∂e∗ji
∂αij

+
(
∂3cj(e

∗

j )

∂e∗3ji
− (1− αij)

∂3rij(e
∗

ji)

∂e∗3ji

)(
∂e∗ji
∂αij

)2
= 0
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∂2e∗ji
∂α2ij

=
−
∂2rij(e

∗

ji)

∂e∗2
ji

∂e∗ji
∂αij

−

(
∂3cj(e

∗

j )

∂e∗3
ji

−(1−αij)
∂3rij(e

∗

ji)

∂e∗3
ji

)(
∂e∗ji
∂αij

)2

∂2cj(e
∗

j
)

∂e∗2
ji

−(1−αij)
∂2rij(e

∗

ji
)

∂e∗2
ji

Clearly, this expression is lower than zero if
∂3cj(e

∗

j )

∂e∗3ji
> 0 and

∂3rij(e
∗

ji)

∂e∗3ji
< 0; note that

∂e∗ji
∂αij

< 0 by

Proposition 1.

Analogously, we obtain

∂2e∗ij
∂α2ij

=

∂2rji(e
∗

ij)

∂e∗2
ij

∂e∗ij
∂αij

−

(
∂3ci(e

∗

i )

∂e∗3
ij

−αij
∂3rji(e

∗

ij)

∂e∗3
ij

)(
∂e∗ij
∂αij

)2

∂2ci(e
∗

i
)

∂e∗2
ij

−αij
∂2rji(e

∗

ij
)

∂e∗2
ij

< 0.

Lemma 5 enables us to state that in any interval where the piecewise derivative function takes the

value
∂(L∗ij(αij))

∂αij
= −αij

∂rij(e
∗

ji)

∂e∗ji

∂e∗ji
∂αij

− (1− αij)
∂rji(e

∗

ij)

∂e∗ij

∂e∗ij
∂αij

, the function L∗ij(αij) is convex (see also

Lemma 4).
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