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Abstract

This paper aims at assessing the temporal relationship that exists between the time
reference of dynamic models with infinite and finite horizon. Specifically, comparing
the optimal inter-temporal plans arising from an infinite-horizon model and a 2-period
overlapping generations model in their stationary equilibria, I offer a straightforward way
to determine the number of time periods of the former that may form a unit of time of
the latter. In this way, I show that the theoretical length of a generation is an increasing
function of the discount factor of the optimizing agent and I provide an economic rationale
for such a relationship grounded on consumption smoothing.
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1 Introduction
According to a widely accepted view, the length of a generation, i.e. the number of periods
between successive young-old relationships in human communities, is something around 25

years.1 As proof of this, a quarter of a century is also the time interval usually acknowledged
for a human generation by demographers and geneticists (e.g. Weiss, 1973; Thomson et al.
2000).

From the very beginning of modern economic science, economists studied a large variety
of important relationships that involve human beings in different stages of their life by taking
the underlying time perspective in serious consideration (cf. Samuelson, 1958; Diamond, 1965;
Galor and Weil, 1996). However, to the best of my knowledge, economic dynamics takes the
length of a generation as given without any attempt to provide a possible criterion to measure
the actual duration of young-old relationships that are typical of finite-time models. In this
paper, I aim at filling this gap by evaluating the theoretical length of a generation from an
exquisitely economic point of view.

The starting point of my deepening is the assessment of the temporal relationship that holds
between the time reference of commonly used dynamic models with infinite and finite horizon.
Specifically, comparing the optimal inter-temporal plans arising from an infinite horizon (IH)
model and a companion 2-period overlapping generations (OLG) model in their stationary
equilibria, I provide a straightforward way to determine the number of time periods of the
former that may form a unit of time of the latter. In other words, analysing the behaviour
of a representative household endowed with logarithmic instantaneous preferences that puts
forward an optimal intertemporal plan aimed at financing its consumption expenditure by
means of its own wealth, I show that the hypothetical length of a generation depends on how
heavily the household itself discount future utility streams. To be precise, I show that the
number of periods of the IH model that form the first unit of time in the OLG model is an
increasing function of the discount factor value. In this way, relying on dynamic models with
a sound microfoundation, I am able to give a point evaluation of the theoretical length of a
generation as well as to give some insights on how calibrate the rate of intertemporal preference
in conventional business cycle models.

The paper is arranged as follows. Section 2 describes the common framework of the analysis.
Section 3 develops the IH model. Section 4 sets out the 2-period OLG model. Section 5 makes
a comparison between the optimal consumption plans arising from the mentioned dynamic
models. Finally, section 6 concludes.

1The young (old) are usually the children (parents) of the old (young) born in the previous period.
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2 A common framework
Taking time as a discrete phenomenon, I consider an IH and a 2-period OLG model in which
a representative household endowed with logarithmic instantaneous preferences puts forward
an optimal inter-temporal plan aimed at financing its consumption expenditure by means of
its own wealth. In addition, I make the hypothesis that in both cases the household discounts
future utility streams with a constant discount rate.

Assuming that the household is called in to choose among n > 1 goods, the maximandum
of its inter-temporal problem is the following:

T
∑

t=s

(

1

1 + r

)t−s n
∑

i=1

gi log (ci,t) (1)

where s is the starting period, T is the final period, r > 0 is a measure of real interest rate, ci,t is
the real consumption of the i-th good at time t – with t = s, . . . , T – and gi – with i = 1, . . . , n

– is weight in terms of instantaneous utility assigned to the i-th good.
For sake of simplicity, I also assume that the instantaneous utility is a log-linearization of a

homogenous function of degree one. Therefore, it holds

n
∑

i=1

gi = 1 (2)

Let me now introduce to the structure of the intertemporal budget constraint. In the
starting period, the representative household is assumed to be endowed with a real wealth
equal to Ws ≥ 0. This amount of resources can be thought as the sum of the household’s
human and financial wealth evaluated in the initial period of the optimization problem and it
can be alternately consumed or – if saved – invested in the capital market at the prevailing
interest rate. Consequently, the intertemporal budget constraint of the household is of the form

T
∑

t=s

(

1

1 + r

)t−s n
∑

i=1

ci,t 6 Ws (3)

In a quite conventional way, the intertemporal budget constraint defined by eq. (3) simply
states that the actual value of the consumption expenditure over the n goods carried out from s

to T cannot be higher than the value of the initial wealth of the household. Moreover, since the
interest rate used to discount future consumption streams is equal to the one used to discount
their future instantaneous utilities, such an intertemporal budget constraint will imply the
stationarity of the consumption plans in the two models developed below (cf. Ramsey, 1928;
Cass, 1965; Koopmans, 1965).

In the remainder of the paper, I will use t to denote the unit of time of the IH model while I
will use τ to denote the unit of time of the 2-period OLG model. Consequently, T will be equal
to ∞ for the IH model whereas in the OLG model – in which the household is initially young,
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then after a period it becomes old – T will be equal to s + 1. Obviously, it seems reasonable
to argue that τ > t, i.e. that the time horizon covered by a period of the OLG model is
longer than the one covered by a single period of the IH model. Given such a different time
perspective, I will also assume that the real interest rate plugged into the IH model – indicated
by rIH > 0 – is strictly lower than the one plugged into the OLG model, denoted instead by
rOLG > 0. Everything else being equal, this hypothesis means that the representative young
household of the OLG model will tend to discount future consumption streams more heavily
than the household of the IH model does. However, at the same time, the old household of the
OLG model will enjoy a higher return on its financial investment on the capital market. Given
this general framework, the main goal of the theoretical analysis that follows is to provide a
way to assess the possible magnitude of the ratio τ/t.

3 The IH model
In this section, I develop a simple IH model that draws on Farmer and Plotnikov (2012) and
Farmer (2010, Chapter 6). Specifically, the problem of the representative infinitely lived house-
hold is assumed to be the following:

max
{{ci,t}ni=1}

∞

t=s

∞
∑

t=s

(

1

1 + rIH

)t−s n
∑

i=1

gi log (ci,t) (4)

s.to

∞
∑

t=s

(

1

1 + rIH

)t−s n
∑

i=1

ci,t 6 Ws (5)

The problem above can be solved by writing the implied Lagrangian. Hence,

L (·) ≡
∞
∑

t=s

(

1

1 + rIH

)t−s n
∑

i=1

gi log (ci,t)− λ

(

∞
∑

t=s

(

1

1 + rIH

)t−s n
∑

i=1

ci,t −Ws

)

(6)

where λ is the Lagrange multiplier.
The first-order conditions (FOCs) for eq. (6) are given by the following sequences:

gi − λci,t = 0 i = 1, . . . , n t = s, . . . ,∞ (7)

Recalling the result in eq. (2), the aggregation over the n consumption goods reveals that
the expressions in eq. (7) can be written as

Ct =
1

λ
t = s, . . . ,∞ (8)
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where Ct ≡

n
∑

i=1

ci,t is the aggregate consumption expenditure at time t.

Plugging the result in eq. (8) into the intertemporal budget constraint in eq. (5) allows us
to write down the Lagrange multiplier as a function of the real interest rate and the value of
initial wealth. Formally speaking, it holds

λ =
1

Ws

1 + rIH

rIH
(9)

Substituting eq. (9) into eq. (8) leads to

Ct =
rIH

1 + rIH
Ws (10)

The expression in eq. (10) reveals that the optimal plan of the infinitely lived household is
to consume in each period a fraction of its own wealth equal to rIH/(1 + rIH). Consequently,
the higher the value of the discount rate, i.e. the more impatient the household, the higher the
share of the initial wealth allocated to current consumption.

4 The 2-period OLG model
In this section, I develop a simple 2-period OLG model that draws on Guerrazzi (2007, 2010).
Specifically, the representative household that lives for 2 periods is assumed to solve the fol-
lowing problem:

max
{{ci,t}ni=1}

s+1

τ=s

s+1
∑

τ=s

(

1

1 + rOLG

)τ−s n
∑

i=1

gi log (ci,τ ) (11)

s.to

n
∑

i=1

ci,s +
1

1 + rOLG

n
∑

i=1

ci,s+1 6 Ws (12)

As before, the problem above can be solved by writing the implied Lagrangian. Hence,

L (·) ≡
s+1
∑

τ=s

(

1

1 + rOLG

)τ−s n
∑

i=1

gi log (ci,τ )− λ

(

n
∑

i=1

ci,s +
1

1 + rOLG

n
∑

i=1

ci,s+1 −Ws

)

(13)

The FOCs for eq. (13) are given by the following sequences:

gi − λci,τ = 0 i = 1, . . . , n τ = {s, s+ 1} (14)

Recalling the result in eq. (2), the aggregation over the n consumption goods reveals the
expressions in eq. (14) necessarily imply that
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Cs = Cs+1 (15)

where Cs ≡
n
∑

i=1

ci,s is the aggregate consumption expenditure in the starting period when the

household is young whereas Cs+1 ≡
n
∑

i=1

ci,s+1 is the aggregate consumption expenditure in the
final period when the household is old.

Substituting the result in eq. (15) into the intertemporal budget constraint in eq. (12) leads
to

Cτ =
1 + rOLG

2 + rOLG
Ws τ = {s, s+ 1} (16)

The expression in eq. (16) reveals that the optimal plan of the household that lives for
2 periods is to consume in each period the fraction (1 + rOLG)(2 + rOLG). Such a fraction is
always higher than the share of wealth consumed by the infinitely lived household conveyed by
eq. (10) no matter the actual value of the real interest rate. In general, if r is the real interest
rate prevailing on the capital market that is also used to discount future utility streams, then
it would be possible to show that a household that lives for m periods consumes a fraction
1 + (1 + r)−1 + · · · + (1 + r)1−m of its own wealth. Consequently, whenever m → ∞ the
expression in eq. (16) collapses to the one in eq. (10).

5 IH versus OLG
In this section, I put forward a comparison between the optimal intertemporal consumption
plans of the two household’s problems described above by assessing the number of units of
time of the IH model may form a unit of time in the 2-period OLG model. A simple way
to make such an assessment is to find the number of units of time over which the infinitely
lived household consumes the same amount of resources consumed in a unit of time by the
household the lives for two periods. Formally speaking this means that the theoretical length
of a generation is given by the value of t that solves the following equation:

t
rIH

1 + rIH
=

1 + rOLG

2 + rOLG
(17)

In order to find a solution to eq. (17) that depends on one configuration only of the rate
of interest, it is necessary to make some assumptions about the relationship between rIH and
rOLG. In what follows, I will assume that the rate of return prevailing in the OLG model in
IH model is achieved only after the theoretical length of a generation. Taking into account the
expression in eq. (17), formally speaking this means that

(1 + rIH)
t = 1 + rOLG (18)
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Plugging eq. (18) into eq. (17) reveals that for each value of rHI the theoretical length of a
generation is found by retrieving the value of t that solves the following expression:

t
rIH

1 + rIH
=

(1 + rIH)
t

1 + (1 + rIH)t
(19)

On the one hand, given the value of rIH, the expression of the LHS of eq. (19) is equal
to zero for t = 0 and thereafter it rises linearly with the unit of time of the IH model. On
the other hand, the expression on the RHS is equal to 1/2 for t = 0 and thereafter it rises at
decreasing rates with increases in t. Consequently, as shown in the diagram of Figure 1, there
will be only one meaningful solution to eq. (19) – say tG – and such a solution – according to
the resource consumption criterion suggested by eq. (17) – returns the theoretical length of a
generation.2

LHS of (19)

½

t

RHS of (19)

tG

rIH

1+rIH

Figure 1: The length of a generation

An intriguing feature of tG is that it is negatively related to the magnitude of rIH; indeed, for
higher (lower) values of the real interest rate the line and the curve depicted in Figure 1 rotate
in counter-clockwise (clockwise) direction. However, given the different shapes, the movement
of the expression on the RHS of eq. (19) is always more pronounced than the corresponding
movement of the one on the LHS. Consequently, higher (lower) values of rIH lead to lower
(higher) values of tG.

An economic rationale for the relationship between the interest rate and the theoretical
length of a generation can be given as follows. First, a household that does not care about the
future will consume immediately all of its wealth no matter the length of its horizon: indeed,
whenever rIH → ∞, the IH as well as the 2-period OLG model deliver the same intertemporal
consumption optimal plan. Consequently, in this case the theoretical length of a generation

2Obviously, the point value of rIH can always be tuned in order to have tG ∈ N.
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coincides with the single period of the IH model. By contrast, when the household starts to
care about its future it will smooth its consumption expenditure throughout its relevant time
horizon. In general, whenever rIH < ∞, the length of a generation increases with the value of
the implied discount factor.

In the real business cycle literature, the discount rate of optimizing consumers is usually
calibrated on a quarterly base in order to deliver an implied value of rIH around 1% (e.g.
Kydland and Prescott, 1982; Long and Plosser, 1983). Implementing the procedure described
above, such a value of the real interest rate implies that time unit of the OLG model would
last about 66 periods of the IH model. Therefore, if the time reference of the IH model were a
quarter, then a generation would cover about 16 years only. Consequently, if we aim at achieving
the conventional figure of 25 years commonly accepted by demographers and geneticists, then
the discount factor should be calibrated at highest values by targeting a value of rIH around
0.7%. According to data released by the World Bank for the US economy, such a value of the
quarterly real interest rate is close to the estimation of the corresponding annual reference over
the last twenty years which amounts to 2.84%.3 See the time series plotted in Figure 2.

1

2.5

4

5.5

7

Real interest rate (%)

Average value

2.84

Figure 2: Real interest rates in the US (2000-2019)

6 Concluding remarks
This paper aimed at assessing the relationship between the time reference of infinite and finite
horizon dynamic models through the comparison of the consumption plans of the involved opti-

3Data on real interest rate can be downloaded from data.worldbank.org.
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mizing households. Such a theoretical exploration revealed three remarkable results. First, the
length of generation decreases with the value of the real interest rate. Second, the conventional
figures exploited to calibrate the discount factor in real business cycles model lead to a theoret-
ical generation that is shorter with respect to the reference of 25 years usually acknowledged
by demographers and geneticists. Furthermore, such a reference can be achieved by calibrating
the discount rate by targeting the average value of the real interest rates observed in the US
over the last two decades.

The analysis carried out in this paper could be developed in different directions. For in-
stance, it could be interesting to see how the results summarized above change when households
with different time horizons have also different values of the initial wealth, are endowed with
different preferences and/or there is no equality between the discount and the interest rate
prevailing on the capital market. Different results could also be achieved by computing in how
many periods the present value of the consumption stream from the HI model equals value of
consumption of the young household from the OLG model. The implied extensions are left to
further developments.
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