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1 Introduction

The sports industry has enjoyed prolific growth in the last decades, outpacing the GDP growth

of most countries. KPMG notes that the entire global sports market (including infrastructure,

events, training and sports goods) is estimated to be worth between $600 − $700 billion year.

This has prompted an increasing interest within the operations research community to study

several aspects related with the sports industry. Just to mention a few recent cases, Song

and Shi (2020) and Li et al., (2021) analyze the performance of teams in the National Basket

Association; Elitzur (2020) explores the use of data analytics in the Major League Baseball,

whereas Peeters et al., (2020) study the impact of managers therein. Goller and Krumer (2020)

and Yi et al., (2020) analyze the impact of game scheduling in European football leagues. Arlegi

and Dimitrov (2020) and Van Bulck et al., (2020) deal with the design of competitions.

In this paper, we shall be concerned with a major aspect of the sports industry: broadcast-

ing. It is estimated that the 2016 Olympic Summer Games had global audience of approximately

3.2 billion, and the final game of the 2018 FIFA World Cup a combined 3.572 billion viewers

(more than half of the global population aged four and over). For the 2019 regular season,

(US) National Football League games averaged 16.4 million viewers, whereas the Super Bowl

broadcast that season attracted an average TV audience of 99.9 million people. The sale of

broadcasting and media rights is currently the biggest source of revenue for sports organiza-

tions, overcoming more traditional sources such as ticket sales, merchandising or sponsorship.

According to Statista, the total value of the NFL’s national TV deal with ESPN was worth a

total of 15.2 billion US dollars from 2014 to 2021.

The allocation of thee (huge) amounts collected from selling broadcasting rights is crucial

for the management of sports organizations. In Bergantiños and Moreno-Ternero (2020a) we

introduced a formal model in which the allocation process is based on the (broadcasting)

audiences that games throughout the season generate.1 In this paper, we take the axiomatic

approach for such a model to derive appropriate (allocation) rules. We shall mostly concentrate

on axioms formalizing the principle of monotonicity, with a long tradition within the economics

and operations research literature.2

1Therein, we studied the problem theoretically and empirically (applying our theoretical results to the

Spanish football league). We have also explored further aspects of the problem theoretically (e.g., Bergantiños

and Moreno-Ternero, 2020b, 2020c, 2021) and empirically (e.g., Bergantiños and Moreno-Ternero, 2020d, 2021).
2Early instances are Megiddo (1974), Kalai and Smorodinsky (1975), Kalai (1977), Thomson and Myerson
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Monotonicity is a general principle of fair division which states that when the underlying

data of a problem change in a specific way, the solution should change accordingly. A typical

formulation is as follows. Let P and P ′ be two problems such that the situation of agent i at

P is “better” than at P ′. Then, the allocation for agent i at P should not be worse than at P ′.

Depending on the specific meaning of “better”, various monotonicity axioms could be defined.

We shall consider several meanings in our setting, giving rise to the following specific axioms:

Aggregate monotonicity : when the total audience of the tournament increases.

Monotonicity : when the audiences of all games in the tournament increase.

Pairwise monotonicity : when the aggregate audience of the two games played by any pair

of teams increases.

Team monotonicity : when the audiences of the games played by such a team increase.

Weak team monotonicity : when the audiences of the games played by such a team increase

and the rest of audiences remain the same.

Others regarding monotonicity : when the audiences of the games not played by such a team

decrease and the audiences of such a team remain the same.

We shall explore the implications of each of the above axioms, in combination with two

other basic axioms: equal treatment of equals (teams with the same audiences should receive

the same), and additivity (the rule should be additive on the audiences) .

Three focal rules exist for this model. The uniform rule (U) divides the total audience of

the tournament equally among all teams. The equal-split rule (ES) is defined in two steps.

First, the audience of each game is divided equally among the two teams playing such game.

Second, each team receives the sum over the games played. Concede-and-divide CD is defined

through a three step procedure. First, the number of fans of each team is estimated.3 Second,

the audience of each game is divided by assigning to each team its number of fans and dividing

the rest of the audience equally among both teams. Third, each team receives the sum over the

games played. Convex combinations of the three mentioned rules give rise to several natural

families of rules compromising among them. The family of EC rules comprises the convex

combinations of rules EC and CD (namely, λEC + (1− λ)CD with λ ∈ [0, 1]). Similarly, the

family of UC rules is made of the convex combinations of rules U and CD, whereas the family

(1980), Young (1985, 1987, 1988), Roemer (1986), Chun and Thomson (1988), Moulin and Thomson (1988), or

Thomson (1999).
3See Bergantiños and Moreno-Ternero (2020a) for a more detailed explanation of this step.
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of UE rules is made of the convex combinations of rules U and ES.

Our results, summarized next, provide characterizations for some of the previous rules and

families, as well as several extensions of them, when combining the monotonicity axioms with

the basic axioms described above. More precisely, we show that the uniform rule is the unique

rule satisfying aggregate monotonicity, whereas the equal-split rule is the unique rule satisfying

team monotonicity (as a matter of fact, additivity is not needed for these results). And a

rule satisfies monotonicity or pairwise monotonicity if and only if it is a certain linear (but

not necessarily convex) combination of both rules. A rule satisfies weak team monotonicity

if and only if it is a certain linear (but not necessarily convex) combination of the uniform

rule and concede-and-divide. Finally, a rule satisfies others-regarding monotonicity if and only

if it is a certain linear (but not necessarily convex) combination of the equal-split rule and

concede-and-divide.

We can infer from the summary of results just presented that monotonicity axioms become

a powerful tool to uncover the structure of the problem of sharing the revenues from broadcast-

ing sports leagues. This is similar to what happens in some other related problems. Beyond

the classical references mentioned above for the use of monotonicity, there have been recent

instances in which these axioms have characterized rules (or families of rules) in related prob-

lems, such as the ones just mentioned, as well as bargaining problems, or TU games, among

others (e.g., Tijs et al., 2006; Casajus and Huettner, 2013, 2014; Calleja and Llerena, 2017;

Bergantiños et al., 2020; Calleja et al., 2021; Gaertner and Xu, 2020; Csato and Petroczy, 2021;

Moreno-Ternero and Vidal-Puga, 2021).

Finally, let us stress that our (broadcasting) problem studied here is a specific resource

allocation problem, akin to well-known problems already analyzed in the game-theory literature.

Instances are airport problems (e.g., Littlechild and Owen, 1973), bankruptcy problems (e.g.,

O’Neill, 1982; Thomson, 2019), telecommunications problems (e.g., van den Nouweland et

al., 1996), museum pass problems (e.g., Ginsburgh and Zang, 2003; Bergantiños and Moreno-

Ternero, 2015), cost sharing in minimum cost spanning tree problems (e.g., Bergantiños and

Vidal-Puga, 2007), or labelled network games (e.g., Algaba et al., 2019).

The rest of the paper is organized as follows. In Section 2, we introduce the model, rules,

and axioms. In Section 3, we present the characterization results we obtain. We conclude in

Section 4.
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2 The model

We consider the model introduced by Bergantiños and Moreno-Ternero (2020a). Let N describe

a finite set of teams. Its cardinality is denoted by n. We assume n ≥ 3. For each pair of teams

i, j ∈ N , we denote by aij the broadcasting audience (number of viewers) for the game played

by i and j at i’s stadium. We use the notational convention that aii = 0, for each i ∈ N .

Let A ∈ An×n denote the resulting matrix of broadcasting audiences generated in the whole

tournament involving the teams within N . Each matrix A ∈ An×n with zero entries in the

diagonal will thus represent a problem and we shall refer to the set of problems as P .4

Let αi (A) denote the total audience achieved by team i, i.e.,

αi (A) =
∑

j∈N

(aij + aji).

When no confusion arises, we write αi instead of αi (A).

For each A ∈ An×n, let ||A|| denote the total audience of the tournament. Namely,

||A|| =
∑

i,j∈N

aij =
1

2

∑

i∈N

αi.

Without loss of generality, we normalize the revenue generated from each viewer to 1 (to

be interpreted as the “pay per view” fee). Thus, we sometimes refer to αi (A) by the claim of

team i and to ||A|| as the total revenue.

2.1 Rules

A (sharing) rule is a mapping that associates with each problem the list of the amounts the

teams get from the total revenue. Formally, R : P → R
n is such that, for each A ∈ P ,

∑

i∈N

Ri(A) = ||A||.

The following three rules have been highlighted as focal for this problem (e.g., Bergantiños

and Moreno-Ternero, 2020a; 2020b).

The uniform rule divides equally among all teams the overall audience of the whole tour-

nament. Formally,

4As the set N will be fixed throughout our analysis, we shall not explicitly consider it in the description of

each problem.
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Uniform rule, U : for each A ∈ P , and each i ∈ N ,

Ui(A) =
||A||

n
.

The equal-split rule divides the audience of each game equally, among the two participating

teams. Formally,

Equal-split rule, ES: for each A ∈ P , and each i ∈ N ,

ESi(A) =
αi

2
.

Concede-and-divide compares the performance of a team with the average performance of

the other teams. Formally,

Concede-and-divide, CD: for each A ∈ P , and each i ∈ N ,

CDi(A) = αi −

∑

j,k∈N\{i}

(ajk + akj)

n− 2
=

(n− 1)αi − ||A||

n− 2
.

The following family of rules (e.g., Bergantiños and Moreno-Ternero, 2020c) encompasses

the above three rules.

UC-family of rules
{
UCλ

}

λ∈[0,1]
: for each λ ∈ [0, 1] , each A ∈ P , and each i ∈ N ,

UCλ
i (A) = (1− λ)Ui(A) + λCDi(A).

Equivalently,

UCλ
i (A) = (1− λ)

||A||

n
+ λ

(n− 1)αi − ||A||

n− 2
.

At the risk of stressing the obvious, note that, when λ = 0, UCλ coincides with the uniform

rule, whereas, when λ = 1, UCλ coincides with concede-and-divide. That is, GUC0 ≡ U and

UC1 ≡ CD. Bergantiños and Moreno-Ternero (2020a) prove that for each A ∈ P ,

ES(A) =
n

2 (n− 1)
U(A) +

n− 2

2 (n− 1)
CD(A).

That is, UCλ ≡ ES, where λ = n−2
2(n−1)

.5

Consequently, the UC-family of rules can be split in two.

On the one hand, the family of rules compromising between the uniform rule and the equal-

split rule (e.g., Bergantiños and Moreno-Ternero, 2020c). Formally,

5Note that λ approaches 0.5 (from below) for n arbitrarily large.
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UE-family of rules
{
UEβ

}

β∈[0,1]
: for each β ∈ [0, 1] , each A ∈ P , and each i ∈ N ,

UEβ
i (A) = (1− β)Ui(A) + βESi(A).

On the other hand, the family of rules compromising between the equal-split rule and

concede-and-divide (e.g., Bergantiños and Moreno-Ternero, 2020c, 2021). Formally,

EC-family of rules {ECγ}γ∈[0,1]: for each γ ∈ [0, 1] , each A ∈ P , and each i ∈ N ,

ECγ
i (A) = (1− γ)ESi(A) + γCDi(A).

As Figure 1 illustrates, the family of UC rules is indeed the union of the family of UE rules

and EC rules. Note that UE0 ≡ UC0 ≡ U , EC1 ≡ UC1 ≡ CD, whereas ES ≡ UE1 ≡ EC0 ≡

UC
n−2

2(n−1) is the unique rule belonging to both families.

U ES CD

︷ ︸︸ ︷
UCλ

ECγ

︸ ︷︷ ︸

UEβ

︸ ︷︷ ︸

Figure 1. Illustration of the three families of rules.

We now present a generalization of the UC rules obtained by considering any linear (but

not necessarily convex) combination between U and CD. Formally,

GUC-family of rules
{
GUCλ

}

λ∈R
: for each λ ∈ R, each A ∈ P , and each i ∈ N ,

GUCλ
i (A) = (1− λ)Ui (A) + λCDi (A) .

Note that we could similarly obtain generalizations of the EC and UE rules, giving rise to

the same generalized family. Formally,

{
GUCλ

}

λ∈R
≡

{
GECλ

}

λ∈R
≡

{
GUEλ

}

λ∈R
.

2.2 Basic axioms

We first present two basic axioms that will be used throughout the paper, together with each

of the monotonicity axioms.

The first axiom says that if two teams generate the same audiences, then they should receive

the same amount. Formally,

7



Equal treatment of equals (ETE): For each A ∈ P , and each pair i, j ∈ N such that

aik = ajk, and aki = akj, for each k ∈ N \ {i, j},

Ri(A) = Rj(A).

The second axiom says that revenues should be additive on A. Formally,

Additivity (ADD): For each pair A and A′ ∈ P

R (A+ A′) = R (A) +R (A′) .

The axiom of additivity has an interesting implication, which will be used in most of the

ensuing results. More precisely, for each pair i, j ∈ N , with i 6= j, let 1ij denote the matrix

with the following entries:

1ijkl =







1 if (k, l) = (i, j)

0 otherwise.

Then, if R satisfies additivity,

Ri (A) =
∑

j,k∈N :j 6=k

ajkRi

(
1jk

)
, (1)

for each A ∈ P and each i ∈ N.

2.3 Monotonicity axioms

Our first monotonicity axiom says that if the overall audience in a tournament is higher than

in another, then no team can lose from it. Formally,

Aggregate monotonicity (AM): For each pair A and A′ ∈ P and each i ∈ N ,

||A|| ≤ ||A′|| ⇒ Ri (A) ≤ Ri (A
′) .

The next axiom says that the rule should be monotonic on A. Formally,

Monotonicity (M). For each pair A and A′ ∈ P and each i ∈ N ,

ajk ≤ a′jk for each j, k ∈ N ⇒ Ri (A) ≤ Ri (A
′) .

Pairwise monotonicity says that if the aggregate audience of the games played by any pair

of teams increases, then no team can be worse off. Formally,
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Pairwise monotonicity (PM) . For each pair A and A′ ∈ P and each i ∈ N ,

akj + ajk ≤ a′kj + a′jk for each j, k ∈ N ⇒ Ri(A) ≤ Ri(A
′).

Another notion is the one requiring that a team does not suffer if it increases its audience.

Formally,

Team monotonicity (TM). For each pair A and A′ ∈ P and each i ∈ N ,

aij ≤ a′ij for all j ∈ N \ {i} and

aji ≤ a′ji for all j ∈ N \ {i}






⇒ Ri (A) ≤ Ri (A

′) .

The previous axiom can be naturally weakened adding the proviso that the rest of the

audiences do not change. Formally,

Weak team monotonicity (WTM). For each pair A and A′ ∈ P and each i ∈ N ,

aij ≤ a′ij for all j ∈ N \ {i} and

aji ≤ a′ji for all j ∈ N \ {i}

ajk = a′jk when i /∈ {j, k}







⇒ Ri (A) ≤ Ri (A
′) .

The last axiom says that if the audiences of all games not involving team i increase, whereas

the rest remain the same, then team i can not be better off.

Others regarding monotonicity (OM). For each pair A and A′ ∈ P and each i ∈ N ,

aij = a′ij for all j ∈ N \ {i} and

aji = a′ji for all j ∈ N \ {i}

ajk ≤ a′jk when i /∈ {j, k}







⇒ Ri (A) ≥ Ri (A
′) .

The next proposition, whose straightforward proof we omit, summarizes the relations be-

tween the axioms introduced above.6

Proposition 1 The following implications among monotonicity axioms hold:

AM → PM →M → WTM ← TM

6A→ B means that if a rule satisfies property A, then it also satisfies property B.
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3 Characterization results

In this section we present several characterizations using the axioms introduced above. We

combine each of the monotonicity axioms with the pair of basic axioms (equal treatment of

equals and additivity) and we characterize the set of rules satisfying the three axioms (in some

cases, additivity will be redundant as the combination of equal treatment of equals and the

monotonicity axiom will suffice to characterize a rule).

3.1 Aggregate Monotonicity

Our first result states that aggregate monotonicity and equal treatment of equals characterize

the uniform rule (without needing additivity).

Theorem 1 A rule satisfies equal treatment of equals and aggregate monotonicity if and only

if it is the uniform rule.

Proof. It is straightforward to show that the uniform rule satisfies the two axioms. Conversely,

let R be a rule satisfying the two axioms. Let A ∈ P . Let Ae denote the resulting matrix from

A after splitting all its entries equally. More precisely,

Ae
ij =







||A||
(n−1)n

if i 6= j

0 otherwise.

Notice that ||Ae|| = ||A||. By aggregate monotonicity, R(A) = R(Ae). Now, by equal treatment

of equals,

Rk (A
e) =

||A||

n
= Uk (A) ,

for each k ∈ N, which concludes the proof.

3.2 Team Monotonicity

The next result states that replacing aggregate monotonicity by monotonicity at Theorem 1,

the equal-split rule is characterized (instead of the uniform rule).

Theorem 2 A rule R satisfies equal treatment of equals and team monotonicity if and only if

it is the equal-split rule.
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Proof. It is straightforward to show that the equal-split rule satisfies both axioms.

Conversely, let R be a rule satisfying the two axioms.

Claim. Let A, A′, and i ∈ N be such that for all j ∈ N\ {i} , aij = a′ij and aji = a′ji. By

team monotonicity, Ri (A) = Ri (A
′) .

We now prove that R coincides with ES by induction on

m (A) = |{{i, j} ⊂ N : aij + aji > 0}| .

If m (A) = 0, then A = 0. By equal treatment of equals, for all i ∈ N, Ri (0) = 0 = ESi (0) .

If m (A) = 1, then there exist i, j ∈ N such that akl = 0 when {k, l} 6= {i, j} . By the claim,

for each l ∈ N\ {i, j} , Rl (A) = Rl (0) = 0 = ESl (A).

By equal treatment of equals Ri (A) = Rj (A) . Thus, for each k ∈ {i, j} , Rk (A) =
aij+aji

2
=

ESk (A).

Assume that R (A) = ES (A) when m (A) ≤ m with m ≥ 1 and we prove that R (A) =

ES (A) when m (A) = m + 1. As m ≥ 1 we can find {i1, j1} and {i2, j2} such that {i1, j1} 6=

{i2, j2} , ai1j1 + aj1i1 > 0 and ai2j2 + aj2i2 > 0.

Let A1 be obtained from A by making 0 the audiences of the games played between teams i1

and j1. Namely, a1i1j1 = 0, a1j1i1 = 0 and a1ij = aij otherwise. Let k ∈ N\ {i1, j1} . By the claim

Rk (A) = Rk (A
1) . As m (A1) = m, Rk (A

1) = ESk (A
1) . Obviously ESk (A

1) = ESk (A) .

Thus, Rk (A) = ESk (A) .

Let A2 defined in a similar way to A1. If we proceed with A2 as with A1 we obtain that for

each k ∈ N\ {i2, j2} , Rk (A) = ESk (A) .

As {i1, j1} 6= {i2, j2} and Rk (A) = ESk (A) for all k ∈ (N\ {i1, j1}) ∪ (N\ {i2, j2}) we

deduce that Rk (A) = ESk (A) for all k ∈ N.

3.3 Weak Team Monotonicity

The previous two results do not make use of additivity, although the characterized rules satisfy

the axiom. This implies that adding the axiom would not change the characterization. In

particular, the equal-split rule is the only rule that satisfies equal treatment of equals, additivity

and team monotonicity. The next result states the effect of weakening team monotonicity

therein. It turns out that a wide range of generalized UC-rules (including the whole UC-

family) are characterized by those axioms.
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Theorem 3 A rule R satisfies equal treatment of equals, additivity and weak team monotonicity

if and only if R ∈
{
GUCλ : λ ≥ −1

n−1

}
.

Proof. It is not difficult to show that both the uniform rule and concede-and-divide satisfy all

the axioms in the statement. It follows from there that all the members of the generalized UC-

family of rules satisfy additivity and equal treatment of equals. As for weak team monotonicity,

let A, A′ and i ∈ N be as in its definition. By (1),

UCλ
i (A) =

∑

j,k∈N :i∈{j,k}

ajkUCλ
i

(
1jk

)
+

∑

j,k∈N\{i}

ajkUCλ
i

(
1jk

)
and

UCλ
i (A

′) =
∑

j,k∈N :i∈{j,k}

a′ijUCλ
i

(
1jk

)
+

∑

j,k∈N\{i}

ajkUCλ
i

(
1jk

)
.

Thus, UCλ
i (A) ≤ UCλ

i (A
′) provided 0 ≤ UCλ

i

(
1jk

)
= (1− λ) 1

n
+ λ for each j, k ∈ N with

i ∈ {j, k} , which is precisely equivalent to λ ≥ −1
n−1

.

Conversely, let R be a rule satisfying the three axioms. Let k ∈ N. By additivity,

Rk(A) =
∑

i,j∈N :i 6=j

aijRk

(
1ij

)
.

By equal treatment of equals, for each pair k, l ∈ N \{i, j} we have that Ri (1
ij) = Rj (1

ij) =

xij, and Rk (1
ij) = Rl (1

ij) = zij. As
∑

k∈N

Rj (1
ij) = ||1ij|| = 1, we deduce that

zij =
1− 2xij

n− 2
.

Let k ∈ N \ {i, j}. By additivity, Rj

(
1ij + 1ik

)
= xij + zik, and Rk

(
1ij + 1ik

)
= zij + xik.

By equal treatment of equals, Rj

(
1ij + 1ik

)
= Rk

(
1ij + 1ik

)
. Thus,

xij +
1− 2xik

n− 2
= xik +

1− 2xij

n− 2
⇔

(n− 2) xij + 1− 2xik = (n− 2) xik + 1− 2xij ⇔

xij = xik.

Therefore, there exists x ∈ R such that for each {i, j} ⊂ N,

Ri

(
1ij

)
= Rj

(
1ij

)
= x, and

Rl

(
1ij

)
=

1− 2x

n− 2
for each l ∈ N \ {i, j}.
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Let λ = nx−1
n−1

. Then,

GUCλ
k

(
1ij

)
= (1− λ)Uk

(
1ij

)
+ λCDk

(
1ij

)
=







(1− λ) 1
n
+ λ = x if k = i, j

(1− λ) 1
n
− λ 1

n−2
= 1−2x

n−2
otherwise.

Thus, GUCλ (1ij) = R (1ij). As GUCλ and R satisfy additivity, we deduce from here that

GUCλ(A) = R(A), for each A ∈ P .

Finally, by weak team monotonicity, x = Ri (1
ij) ≥ Ri (0) = 0, where the last equality

follows by additivity. Thus, λ ∈
[
− 1

n−1
,∞

)
, which concludes the proof.

3.4 Monotonicity and Pairwise Monotonicity

As stated in the next result, if we replace weak team monotonicity in the previous result by

either monotonicity or pairwise monotonicity we have the same effect.7 Namely, within the

rules in the family characterized at Theorem 3, only those “to the left” of the equal-split rule

(see Figure 1) survive. This implies that the whole UE-family of rules is included, whereas the

whole EC-family of rules is excluded.

Theorem 4 A rule R satisfies equal treatment of equals, additivity, and monotonicity or pair-

wise monotonicity, if and only if R ∈
{

GUCλ : − 1
n−1
≤ λ ≤ n−2

2(n−1)

}

.

Proof. As mentioned above, all the members of the generalized UC-family of rules satisfy

additivity and equal treatment of equals. As for pairwise monotonicity (which implies mono-

tonicity), let A, A′ and i ∈ N be as in its definition. By (1),

UCλ
i (A) =

∑

j∈N\{i}

UCλ
i

(
aij1

ij + aji1
ji
)
+

∑

j,k∈N\{i}

UCλ
i

(
ajk1

jk + akj1
kj
)
and

UCλ
i (A

′) =
∑

j∈N\{i}

UCλ
i

(
a′ij1

ij + a′ji1
ji
)
+

∑

j,k∈N\{i}

UCλ
i

(
a′jk1

jk + a′kj1
kj
)

Then, it is enough to prove that

UCλ
i

(
aij1

ij + aji1
ji
)
≤ UCλ

i

(
a′ij1

ij + a′ji1
ji
)
,

for each pair j ∈ N\ {i}, and

UCλ
i

(
ajk1

jk + akj1
kj
)
≤ UCλ

i

(
a′jk1

jk + a′kj1
kj
)
,

7This implies that, under equal treatment of equals and additivity, pairwise monotonicity and monotonicity

are equivalent axioms.
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for each pair j, k ∈ \ {i}, with j 6= k.

Let j ∈ N\ {i}. Then,

UCλ
i

(
aij1

ij + aji1
ji
)
= (aij + aji)

(

(1− λ)
1

n
+ λ

)

.

As − 1
n−1
≤ λ, we have (1− λ) 1

n
+ λ ≥ 0. Then,

UCλ
i

(
aij1

ij + aji1
ji
)

= (aij + aji)

(

(1− λ)
1

n
+ λ

)

≤
(
a′ij + a′ji

)
(

(1− λ)
1

n
+ λ

)

= UCλ
i

(
a′ij1

ij + a′ji1
ji
)
.

Let j, k ∈ N\ {i}. Then,

UCλ
i

(
ajk1

jk + akj1
kj
)
= (ajk + akj)

(

(1− λ)
1

n
+ λ

−1

n− 2

)

.

As λ ≤ n−2
2(n−1)

, we have (1− λ) 1
n
+ λ −1

n−2
≥ 0. then,

UCλ
i

(
ajk1

jk + akj1
kj
)

= (ajk + akj)

(

(1− λ)
1

n
+ λ

−1

n− 2

)

≤
(
a′ij + a′ji

)
(

(1− λ)
1

n
+ λ

−1

n− 2

)

= UCλ
i

(
a′jk1

jk + a′kj1
kj
)
.

Conversely, let R be a rule satisfying equal treatment of equals, additivity, and monotonicity

(which is weaker than pairwise monotonicity). By an analogous argument to that in the proof

of Theorem 3, it follows that, for each {i, j} ⊂ N,

Rk

(
1ij

)
= GUCλ

k

(
1ij

)
= (1−λ)Uk

(
1ij

)
+λCDk

(
1ij

)
=







(1− λ) 1
n
+ λ = x if k = i, j

(1− λ) 1
n
− λ 1

n−2
= 1−2x

n−2
otherwise

where λ = nx−1
n−1

.

By additivity, GUCλ(A) = R(A), for each A ∈ P .

Now, by monotonicity (and additivity), x = Ri (1
ij) ≥ Ri (0) ≥ 0 and 1−2x

n−2
= Rl (1

ij) ≥

Rl (0) ≥ 0. Thus, x ≥ 0 and 1−2x
n−2

≥ 0, which implies that x ∈
[
0, 1

2

]
, or, equivalently, λ ∈

[

− 1
n−1

, n−2
2(n−1)

]

, which concludes the proof.
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3.5 Others regarding monotonicity

We conclude providing a characterization of the family of rules satisfying equal treatment of

equals, additivity and others regarding monotonicity. It turns out that within the rules in the

family characterized at Theorem 3, only those “to the right” of the equal-split rule (see Figure

1) survive. This implies that the whole EC-family of rules is included, whereas the whole UE-

family of rules is excluded. In other words, the families characterized at Theorems 4 and 5 are

complementary to obtain the whole family characterized at Theorem 3. The equal-split rule is

the rule merging both families, which actually renders this rule pivotal (among those satisfying

the basic axioms) with respect to the monotonicity properties. It is the only one satisfying

all the monotonicity axioms we considered in this paper (except for aggregate monotonicity).

Furthermore, it separates those satisfying others regarding monotonicity from those satisfying

pairwise monotonicity or monotonicity.

Theorem 5 A rule R satisfies equal treatment of equals, additivity, and others regarding mono-

tonicity if and only if R ∈
{

GUCλ : λ ≥ n−2
2(n−1)

}

.

Proof. As mentioned above, all the members of the generalized UC-family of rules satisfy

additivity and equal treatment of equals. As for others regarding monotonicity, let A, A′ and

i ∈ N be as in its definition. By (1),

UCλ
i (A) =

∑

j∈N\{i}

UCλ
i

(
aij1

ij + aji1
ji
)
+

∑

j,k∈N\{i}

ajkUCλ
i

(
1jk

)
and

UCλ
i (A

′) =
∑

j∈N\{i}

UCλ
i

(
aij1

ij + aji1
ji
)
+

∑

j,k∈N\{i}

a′jkUCλ
i

(
1jk

)

Thus, it suffices to show that UCλ
i

(
1jk

)
= (1 − λ) 1

n
− λ 1

n−2
≤ 0 for all j, k ∈ N\ {i} . But

this happens precisely when λ ≥ n−2
2(n−1)

.

Conversely, let R be a rule satisfying the three axioms. By an analogous argument to that

in the proof of Theorem 3, it follows that, for each {i, j} ⊂ N,

Rk

(
1ij

)
= GUCλ

k

(
1ij

)
= (1−λ)Uk

(
1ij

)
+λCDk

(
1ij

)
=







(1− λ) 1
n
+ λ = x if k = i, j

(1− λ) 1
n
− λ 1

n−2
= 1−2x

n−2
otherwise.

where λ = nx−1
n−1

.

By additivity, GUCλ(A) = R(A), for each A ∈ P .
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Now, by others regarding monotonicity (and additivity), 1−2x
n−2

= Rl (1
ij) ≤ Rl (0) = 0. Thus,

x ≥ 1
2
, or, equivalently, λ ≥ n−2

2(n−1)
, which concludes the proof.

The following characterizations of the equal-split rule are straightforward corollaries from

Theorems 3, 4, and 5, and complement the discussion preceding Theorem 5.

Corollary 1 The following statements hold:

1. A rule satisfies equal treatment of equals, additivity, others regarding monotonicity and

monotonicity if and only if it is the equal-split rule.

2. A rule satisfies equal treatment of equals, additivity, others regarding monotonicity and

pairwise monotonicity if and only if it is the equal-split rule.

3.6 Summary

In Table 1, we summarize the results obtained in this section. It yields the parameter range

for which the corresponding rules within the GUC family satisfy the axioms in the same row

(and are actually characterized by them). Figure 1 illustrates the content of the table.

Axioms GUCλ where

ETE + AM λ = 0⇔ U

ETE + TM λ =
n− 2

2 (n− 1)
⇔ ES

ETE + ADD +WTM λ ≥ −
1

n− 1

ETE + ADD + {M,PM} − 1
n−1
≤ λ ≤ n−2

2(n−1)

ETE + ADD +OM λ ≥ n−2
2(n−1)

.

Table 1: Characterization Results

λ
− 1

n−1
0 n−2

2(n−1)
1 +∞−∞

WTM
︷ ︸︸ ︷

Figure 2. Performance of the rules with respect to the axioms.

︸ ︷︷ ︸

OM

︷ ︸︸ ︷
ETE, ADD

︸ ︷︷ ︸

M,PM
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In Table 2, we summarize the monotonicity axioms satisfied by the rules and families men-

tioned above. For the case of families, we only state YES when the whole family satisfies the

corresponding axiom (appearing in the same row).

U ES CD UC EC UE

AM YES NO NO NO NO NO

TM NO YES NO NO NO NO

WTM YES YES YES YES YES YES

M YES YES NO NO NO YES

PM YES YES NO NO NO YES

OM NO YES YES NO YES NO

Table 1: Performance of the rules with respect to the axioms.

4 Discussion

We have considered several monotonicity axioms for the problem of sharing the revenues from

broadcasting sports leagues. We have combined them with two basic axioms (additivity and

equal treatment of equals) obtaining as a result several characterizations. In some cases, the

characterizations are for single rules, such as the uniform rule and the equal-split rule. In

other cases, the characterizations are for families of rules containing the UE rules, the EC

rules, or the UC rules (which comprises the previous two). We have also shown that the equal-

split rule exhibits a pivotal behavior with respect to monotonicity. Except for one (aggregate

monotonicity), it satisfies all of the axioms considered in this paper. It also separates the

rules satisfying somewhat complementary monotonicity axioms. This reinforces the normative

appeal of this rule, which had also been singled-out from a game-theoretical perspective (e.g.,

Bergantiños and Moreno-Ternero, 2020a).

We conclude discussing how the results in this paper relate to other existing results in the

literature.

We characterize the uniform rule here with aggregate monotonicity and equal treatment

of equals. The two axioms had also been used separately in alternative characterizations of

the same rule (e.g., Theorems 1 and 4 in Bergantiños and Moreno-Ternero, 2020b). The
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characterization result we present in this paper is reminiscent of other results in alternative

contexts. For instance, the characterization of the egalitarian solution for bargaining problems

in Kalai (1977) and the characterization of the equal division value for TU games in van den

Brink (2007) and Casajus and Huettner (2014).

We characterize the equal-split rule here with team monotonicity and equal treatment of

equals. The latter axiom has been used in earlier characterizations of the same rule (e.g.,

Theorem 1 in Bergantiños and Moreno-Ternero, 2020a; and Theorem 2 in Bergantiños and

Moreno-Ternero, 2020b). Alternative characterizations with different axioms also exist (e.g.,

Theorem 5 in Bergantiños and Moreno-Ternero, 2020b; and Proposition 6 in Bergantiños and

Moreno-Ternero, 2020c). The characterization result we present in this paper is also reminiscent

of other results in alternative contexts. For instance, the characterization of the Shapley value

for TU games in Young (1985).

The two basic axioms of equal treatment of equals and additivity characterize themselves

the family of GUC rules (e.g., Theorem 5 in Bergantiños and Moreno-Ternero, 2020c). Our

remaining results in this paper characterize subfamilies of the GUC rules combining the two

basic axioms with a monotonicity axiom. Other subfamilies have been characterized before

with at least one of the basic axioms, but without monotonicity axioms. For instance, the

family of EC rules (e.g., Theorem 1 in Bergantiños and Moreno-Ternero, 2021; and Proposi-

tion 3 in Bergantiños and Moreno-Ternero, 2020c), the family of UC rules (e.g., Theorem 1

in Bergantiños and Moreno-Ternero, 2020c) and the family of UE rules (e.g., Corollary 3 in

Bergantiños and Moreno-Ternero, 2020c). The family we characterize in Theorem 3 contains

the family of UC rules (and, thus, the families of EC rules and UE rules). The families we char-

acterize in Theorems 3 and 5 here contain the family of EC rules. The families we characterize

in Theorems 3 and 4 contain the family of UE rules. The family characterized in Theorem 4 has

also been previously characterized upon replacing the monotonicity axioms by non-negativity

(e.g., Theorem 3 in Bergantiños and Moreno-Ternero, 2020c). Those characterization results

are also reminiscent of other results in alternative contexts. For instance, van den Brink et al.,

(2013) and Casajus and Huettner (2014) characterize a set of rules similar to our family of UE

rules. Finally, Bergantiños and Moreno-Ternero (2020c) also characterize other subfamilies of

the GUC rules, different from the ones characterized here.
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5 Appendix

We show in this appendix that all of our results are tight.

Remark 1 The axioms used in Theorem 1 are independent.

(a) The equal-split rule satisfies equal treatment of equals but violates aggregate monotonic-

ity.

(b) Let β = (βi)i∈N be such that βi > 0 for all i ∈ N and βi 6= βj when i 6= j. Let Uβ be

such that for each A and each i,

Uβ
i (A) =

βi
∑

j∈N

βj

||A|| .

The rule Uβ satisfies aggregate monotonicity but violates equal treatment of equals.

Remark 2 The axioms used in Theorem 2 are independent.

(a) The uniform rule satisfies equal treatment of equals but violates team monotonicity.

(b) Let β = (βi)i∈N be such that βi > 0 for all i ∈ N and βi 6= βj when i 6= j. For each A

and each i we define

ESβ
i (A) =

∑

j∈N\{i}

βi

βi + βj

(aij + aji) .

The rule ESβ satisfies team monotonicity but violates equal treatment of equals.

Remark 3 The axioms used in Theorem 3 are independent.

(a) The rule GUCλ with λ < − 1
n−1

satisfies additivity and equal treatment of equals but

violates weak team monotonicity.

(b) The rule Uβ, defined as in Remark 1, satisfies additivity and weak team monotonicity

but violates equal treatment of equals.

(c) Given A ∈ P , let H (A) denote the set of teams with the highest audience. Namely,

H (A) =

{

i ∈ N : αi = argmax
j∈N
{αj}

}

.

Let RH denote the rule that divides the total audience equally among the agents with the highest

audience. Namely,

RH
i (A) =







||A||
|H(A)|

if i ∈ H (A)

0 otherwise.

The rule RH satisfies equal treatment of equals and weak team monotonicity but violates addi-

tivity.
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Remark 4 The axioms used in Theorem 4 are independent.

(a) The rule GUCλ with λ > n−2
2(n−1)

satisfies additivity and equal treatment of equals but

violates monotonicity.

(b) The rule ESβ, defined as in Remark 2, satisfies additivity and monotonicity but violates

equal treatment of equals.

(c) Given A, we define Ax the matrix obtained from A by reducing the audience of the games

played by each pair of teams by x units, with the condition that no game can have a negative

audience. Let Ax be such that for each i, j ∈ N, axij + axji = aij + aji −min {x, aij + aji} . We

define A∗ = A− Ax. We now define the rule Rx as Rx (A) = U (A∗) + ES (Ax) .8 The rule Rx

satisfies equal treatment of equals and monotonicity but violates additivity.

Remark 5 The axioms used in Theorem 5 are independent.

(a) The rule GUCλ with λ < n−2
2(n−1)

satisfies additivity and equal treatment of equals but

violates others regarding monotonicity.

(b) The rule ESβ, defined as in Remark 2, satisfies additivity and others regarding mono-

tonicity but violates equal treatment of equals.

(c) The rule RH , defined as in Remark 3, satisfies equal treatment of equals and others

regarding monotonicity but violates additivity.

8Although, given A and x, several Ax could be defined. Rx (A) does not depend on the choice of Ax.
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