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Abstract 

The performance of the agricultural sector in sub-Saharan Africa (SSA) remains low compared to 

other regions. This is often attributed to the fact that agriculture in SSA is rain-fed, as well as to 

inadequate investment in research and development (R&D). It is well documented in the literature 

that climate variability is a possible reason for the low productivity observed in agriculture. It is 

similarly well documented that R&D investment affects the growth of agricultural productivity. 

This paper investigates whether public spending on R&D mitigates the negative effects of climate 

variability (measured by variability in rainfall) on agricultural productivity in SSA. We do so by 

employing a dynamic production model, and the Generalised Methods of Moments (GMM) 

technique. Based on cross-country panel data from the period 1995 to 2016, our empirical findings 

reveal that both climate variability and the interaction of R&D with climate variability are strongly 

correlated with agricultural productivity. As expected, climate variability reduces agriculture 

productivity by 0.433% to 0.296%. The interaction of R&D and climate variability enhances 

agricultural productivity by 0.124% to 0.065%. We also show that R&D is an absorption channel 

for the inimical effects of climate variability, and that the way in which climate variability impacts 

agricultural productivity depends on the magnitude of spending on R&D; in order to move from a 

negative to a positive impact of climate variability on agricultural productivity, public spending 

on R&D must increase by 3.492% to 4.554%. We conclude that to address the negative effects of 

climate variability, there is a need for governments to prioritise and increase spending on R&D. 
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1. Introduction 

Agricultural productivity is vital for most African economies, given that the agricultural sector 

accounts for more than 70% of the total labour force on the continent (World Bank, 2000). 

However, the performance of the agricultural sector in sub-Saharan Africa (SSA) remains low 

compared with developing countries elsewhere. Given that agriculture in SSA is rain-fed, Hansen 

et al. (2011) argue that low productivity in the agricultural sector of most SSA countries could be 

attributed to variability in climate. Amare et al. (2018) observe that there are three possible ways 

in which climate variability could impact agricultural productivity. Using rainfall as a proxy for 

climate variability, they note that rainfall variability expressed in terms of historical rainfall might 

be a direct input for food-crop cultivation. Second, variability in rainfall could negatively impact 

the behaviour of farmers, and thus influence their decision-making regarding the use of inputs such 

as labour and fertiliser (see Sesmero et al., 2017). Therefore, as a result of these behavioural 

decisions, rainfall variability could result in the loss of crop yield in the agricultural sector.  

In addition, the role of research and development (R&D) in accelerating and sustaining the growth 

of agricultural productivity has attracted much interest and is well recognised in the literature 

(Pardey et al., 2013). Andersen (2015) argues that public spending on agricultural R&D is essential 

for future food security. Considering the deterioration in climatic conditions, therefore, one of the 

most important instruments SSA economies have for achieving sustained agricultural production 

and food security is increased public spending on R&D in the agricultural sector. There is a 

growing volume of empirical literature investigating the relationships between public investment 

in agricultural R&D, climate change, and agricultural productivity in general (see Bathla et al., 

2019; Khan et al., 2018; Amare et al., 2018; Andersen, 2015; Bervejillo et al., 2012; Alene, 2010; 

Salim & Islam, 2010). While Bathla et al. (2019) found that public investment in agricultural R&D 

and subsidies have the highest marginal returns on agricultural productivity in low-income states 

in India, Andersen (2015) showed the real rate of return on public investment in agricultural R&D 

in the United States to be 10.5% per annum. Amare et al. (2018) demonstrated that rainfall 

variability decreases agricultural productivity (and hence household consumption) by 37%. Salim 

and Islam also showed that both R&D and climate change matter for long-run productivity growth 

in agriculture, with the long-run elasticity of total factor productivity with respect to R&D 

expenditure and climate change in Western Australia being 0.497 and 0.506 respectively. 
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Though our study is an extension of Bathla et al. (2019), Khan et al. (2018), Amare et al. (2018) 

and Salim and Islam (2010), we use a different approach to explicitly explain the exact relationship 

between R&D and climate variability on agricultural productivity using cross-country panel 

econometrics on selected SSA countries. Even though there is a vast amount of literature on the 

impacts of R&D and climate change on agriculture, economic studies on whether R&D mitigates 

the effects of climate variability are scarce, especially in Africa. O’Donnell et al. (2006) have 

shown that existing studies on this area are still qualitative – given that measurement of agricultural 

productivity under climate variability is an arduous task, due to a lack of data and suitable 

methodologies. Given the deteriorating climatic conditions and the need to ensure food security, 

many governments in Africa have committed to the African Union’s recommendation (in Malabo 

in 2003) to increase their annual spending on agriculture to 10% of total national expenditure. 

However, to effect the course of this strategic initiative, more analysis is called for, using high-

quality data and a rigorous approach. 

Though there is a large body of literature on the impacts of climate change on agricultural 

production, individual studies generally focus on the impact of climate change on agriculture at 

only country and cross-country level. The range of literature on the relationship between climate 

variability and agricultural productivity is relatively small. By evaluating the impact of climate 

variability on agricultural productivity, this paper contributes to this scant literature. Moreover, 

although there is a growing number of studies on the impact of R&D on agricultural productivity, 

our study evaluation of the impact of R&D and climate variability and their interaction on 

agricultural productivity is a first. We investigate the role of R&D in mitigating the impact of 

climate change on agricultural productivity. Our study supplements the findings of past studies in 

several ways. First, we capture the linear effect of climate variability (proxied by rainfall 

variability) on agricultural productivity, in the period 1995 to 2016. We use climate variability 

rather than climate change, as climate variability captures changes that occur within a shorter 

timeframe. 

Second, given that rainfall is heterogeneous and that low agricultural productivity in many SSA 

countries that depend on rain-fed agriculture production is often attributed to climate variability, 

we correlate climate variability with R&D to determine whether R&D serves as an absorption 

channel through which the inimical effects of climate variability could be mitigated, which has not 

traditionally been carried out in the literature. This is crucial, since risk-averse farmers cannot 
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adapt to climate variability unless they can access credit, crop insurance and market information – 

all non-existent in many SSA countries. Given that climate variability induces risk, the farmers’ 

anticipation of such climatic shocks might influence their behavioural and production decisions – 

such as those regarding hire of labour, use of fertiliser, and capital – with the aim of avoiding 

losses, which results in low agricultural productivity. Therefore, these behavioural decisions might 

result in noticeable and time-varying changes in market conditions such as prices of food and 

profitability. Against this backdrop, it becomes desirable to have evidence regarding the absorption 

channel through which the negative effects of climate variability on agricultural production could 

be mitigated. This gains significance when one considers that increased agricultural productivity 

can lead to a reduction in food prices, which in turn increases the real income and purchasing 

power of households.  

Third, we document that R&D is a source of non-linearity between climate variability and 

agricultural productivity, and that the way in which climate variability affects agricultural 

productivity depends on the magnitude of spending on R&D. Thus, we compute the threshold at 

which governments should increase spending on R&D in order to move from a negative to a 

positive impact on climate variability. 

The rest of the paper proceeds as follows. Section 2 provides an overview of agriculture in SSA, 

followed by a critical review of the recent literature in Section 3. Data sources are documented in 

Section 4. Section 5 presents the analytical framework, followed by an analysis of empirical results 

in Section 6. A summary of findings and policy implications is provided in the final section. 

 

1. An overview of agriculture in sub-Saharan Africa (SSA) 

Alene (2010) argues that productivity growth in agriculture has been identified as vital to the 

general economic growth of SSA countries. Therefore, much agricultural and development 

economics research has focused on measuring and explaining productivity growth in agriculture. 

Despite the great strides made in improving agriculture productivity, agricultural production has 

been unable to meet the higher and more diversified food requirements of SSA populations. 

NEPAD (2003) noted that in many SSA countries, population growth has exceeded growth in 

agricultural production, exposing large numbers of people to hunger, food insecurity and 

malnutrition. In terms of exports, SSA’s world share of agricultural exports declined from 8% in 

1971-80 to 3.4% in 1991-2000, whereas agricultural imports accounted for about 15% of total 
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imports. Additionally, FAO (2016) documented that grains and cereals continue to be the main 

energy source for about 962 million people in the SSA sub-region. FAOSTAT (2010) noted that 

total consumption of cereals is projected to increase by more than 52 metric tonnes by 2025.  

However, cereal productivity in Africa is lower than half the world average. Badu-Apraku and 

Fakorede (2017) observed that maize – which is the biggest food crop cultivated in SSA – accounts 

for more than 40% of overall cereal consumption and occupies 25 million hectares in SSA. It is 

cultivated primarily on smallholder farms and provides around 20% of the population’s calorie 

intake. AfDB (2015) argued that although a significant number of countries in SSA have achieved 

increases in productivity, average maize productivity in SSA (estimated at about 1.8 million tonnes 

per hectare) is still well below the global mean production of 5 million tonnes per hectare. At the 

same time, Bhagavatula (2013) observed that sorghum is the second-biggest crop (after maize) 

cultivated in SSA, covering 22% of total cereal area. The African continent accounts for about 

61% of total sorghum area globally, and production of about 41%. However, FAO (2011) showed 

that in SSA, mean yields of sorghum have remained static at or below 700 thousand tonnes per 

hectare, compared with the world average of 1.37 million tonnes per hectare. 

In addition, the World Bank (2000) observed that agriculture in SSA differs from agriculture in 

the rest of the world. FAOSTAT (2005) showed that in SSA, agriculture accounts for 35% of gross 

domestic product (GDP) and employs 70% of the population. At the same time, more than 95% of 

the farmed land is rain-fed. The IPCC (2014) projected that a 1.5°C to 2°C increase in global 

temperatures would mean greater risks for Africa in the form of more severe droughts, more heat 

waves and more potential crop failures. Therefore, the brunt of the adverse impacts of climate 

change is expected to be borne by countries with large agricultural sectors in the tropics and 

subtropics where agricultural production is weather sensitive and adaptive capacity is low. 

Sensitivity to climate influences the strategies adopted by farmers, who are mostly reluctant to 

invest in intensive agriculture, and therefore affects agricultural production. Morton (2007) 

observed that the effects of climate change are most extreme for small-scale farmers, compared to 

large-scale farmers. Abid et al. (2016) and Ncube and Lagardien (2014) have shown that in the 

face of climate change, small-scale farmers resort to several coping strategies including the use of 

traditional adaptation techniques such as crop switching.  

However, Burke and Lobell (2010) postulated that in most parts of SSA, the magnitude and speed 

of the predicted changes due to climate change are likely to outstrip local efforts to manage those 
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changes. This will require enormous public as well as private investment in R&D to meet the needs 

of farmers in SSA, small-scale farmers especially. Alene and Coulibaly (2009) provided evidence 

that investment in agricultural R&D can generate adequate growth in agricultural productivity, and 

thus increase per capita income and minimise poverty in developing economies. 

Gert-Jan and Beintema (2015) showed that investment in public agricultural R&D for SSA was 

estimated at $1.7 billion in 2011. This was more than a third higher than the $1.2 billion reported 

in 2000. However, a country-by-country analysis revealed that spending growth in 2000-2011 was 

primarily driven by only a handful of countries (Nigeria and Uganda in particular). At the same 

time, Ghana, Kenya, and Tanzania also reported relatively high increases in total spending in 2000-

2011. Although increases and decreases in absolute rates of agricultural R&D spending by the 

larger economies in SSA outweigh those of the smaller economies, a closer look at the relative 

changes in investment levels over time shows substantial cross-country disparities and challenges. 

Furthermore, the World Bank (2017) showed that SSA had recorded a negative agricultural R&D 

investment growth rate, but that this had increased with time, from an overall annual growth rate 

of -2.7% in 1980-1989 to -2.3 in 1990-1999 and -0.6 in 2000-2011. Investment in R&D accounted 

for approximately 1.1% of the agricultural value added per year between 1980 and 2011 in SSA. 

About 40% of SSA countries spend at least 1% of the agricultural value added on R&D, as part of 

the goal set by the New Partnership for Africa’s Development (NEPAD) of the African Union. 

Botswana, Mauritius, Namibia and South Africa had at least 2% of the largest investment shares 

each year. Additionally, countries including Nigeria, Ethiopia, Tanzania and Ghana spent on 

average less than 0.7% of the amount of their agricultural value added per year on R&D. In all, 

the total amount of spending on R&D in SSA either stagnated or declined in the period 1980-2011. 

 

2. Review of literature 

2.1 Climate change and agricultural productivity 

In recent years, a large number of studies (Amare et al., 2018; Chang et al., 2016; Salim and Islam, 

2010; Schlenker and Roberts, 2009) have shown that climate change plays an important role in 

agricultural productivity. This means there is a wide range of empirical studies analysing the 

effects of climate change on agricultural productivity in the literature. Our study reviews some of 

the past and the most recent studies on the relationship between climate change and agricultural 

productivity.  
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Barrios et al. (2008) examined the impact of climate change on the level of total agricultural 

production in SSA and non-SSA (NSSA) countries. In doing so, they used a new cross-country 

panel climatic dataset in an agricultural production framework. Their results showed that climate, 

measured as changes in countrywide rainfall and temperature, has been a major determinant of 

agricultural production in SSA. In contrast, NSSA countries appear not to be affected by climate 

in the same manner. 

Schlenker and Roberts (2009), pairing a panel of county-level yields for corn, soyabeans and 

cotton with a new fine-scale weather dataset that incorporates the whole distribution of 

temperatures within each day and across all days in the growing season, found that yields increase 

with temperature up to 29°C for corn, 30°C for soyabeans, and 32°C for cotton. However, 

temperatures above these thresholds are very harmful to crop productivity. The study showed that 

if current growing regions remain fixed, area-weighted average yields are expected to decrease by 

30-46% before the end of the century.  

Knox et al. (2012) analysed the impacts of climate change on the yield of eight major crops in 

Africa and South Asia, using a systematic review and meta-analysis of data from 52 original 

publications. They showed that average change in yield of all crops in Africa and Asia will hit -

8% by the year 2050. The results were particularly serious for Africa, where average yield 

variations were estimated to be around -17% for wheat production and -5% for maize.  

Chen et al. (2015) estimated the relationship between weather elements and crop yields in China, 

using an empirical framework. Their study discovered that there is a non-linear relationship 

between crop yields and climate variables; and further that climate variability has caused an 

economic loss of about US$820 million in China's corn and soyabean sectors in the last decade. 

Ma and Maystadt (2017) examined the impact of weather variations on maize yields and household 

income in China. They observed that temperature, drought, and precipitation have detrimental 

effects on maize yields. Their study revealed that the impact is stronger in the Northern spring; 

one standard deviation in temperature and drought conditions decreases maize yields by 1.4% and 

2.5% respectively.  

In another study, Kuwayama et al. (2018) estimated the impacts of drought on crop yields in the 

US between 2001 and 2013. They found that drought has negative and statistically significant 

effects on crop yields – reductions in the range of 0.1% to 1.2% for corn and soyabean yields. 

Amare et al. (2018) noted that negative rainfall shocks have heterogeneous effects on crop-specific 
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agricultural productivity, also dependent on geographical zones. Using an instrumental variables 

regression approach, where agricultural land productivity is instrumented with negative rainfall 

shocks, they found that a negative rainfall shock decreases agricultural productivity (and hence 

household consumption) by 37%. 

In a very recent study, Bocchiola et al. (2019) examined the impact of climate change on 

agricultural productivity and food security in the Himalayas. They observed that on average, 

climate variability will decrease wheat (25%), rice (42%) and maize (46%) production by 2100. 

However, under a modified land-use scenario, wheat yield would decrease further (38%), while 

rice and maize yield would improve very slightly (22% and 45% respectively) in response to 

occupation of higher altitudes. In light of these studies, the general conclusion that arises from the 

literature is that climate change could affect agricultural production significantly. 

 

2.2 Public spending on R&D and agricultural productivity 

Following the work of Griliches (1958), several studies have included R&D expenditure as an 

explanatory variable in productivity or production outcomes. Hall and Scobie (2006) observed that 

higher productivity may result from many sources, but an increase in the stock of knowledge is 

widely seen to be the primary source of productivity. Hence, investing in R&D can lead to a change 

in productivity, by changing the quality of conventional inputs and outputs (Fan, 2000). In the 

article by Griliches (1979) on assessing the contribution of R&D to productivity growth, he opines 

that since it is not possible to quantify the amount of knowledge stock, it is appropriate to take 

spending on R&D as a proxy for knowledge stock. In turn, the literature supposes that climate 

variability significantly affects agricultural productivity, given that agricultural activity is one of 

the major contributors to climate change in recent times (Antle and Mullen, 2008). 

Fan et al. (2008) observed that the main determinant of government allocation of resources to the 

agricultural sector is its public good nature. Therefore, government expenditure on agriculture is a 

means by which the government pursues developmental as well as welfare policies by increasing 

capital stock (Armas et al., 2012). Fan (2000) measured economic returns on R&D investment in 

Chinese agriculture using the production function approach. The study showed that rates of return 

on investment in R&D in Chinese agriculture are high, ranging from 36% to 90% within the study 

period, and that the rates increase over time. 
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Alene (2010) measured and compared total factor productivity growth in African agriculture under 

contemporaneous and sequential technology frontiers in the period 1970-2004. Using a fixed-

effects regression model and a polynomial distributed lag structure, the study further examined 

sources of agricultural productivity growth. While their conventional estimates showed an average 

productivity growth rate of 0.3% per annum, their improved measure under sequential technology 

showed that African agricultural productivity grew at a higher rate, of 1.8% per annum. At the 

same time, agricultural R&D, weather, and trade reforms turned out to have significant effects on 

productivity in African agriculture. R&D was a socially profitable investment in African 

agriculture, having a rate of return of 33%t per annum. The study showed further that a strong 

R&D expenditure growth of about 2% per annum in the 1970s yielded strong productivity growth 

after the mid-1980s. However, a stagnation in R&D expenditure in the 1980s and early 1990s led 

to slower productivity growth in the 2000s. 

Salim and Islam (2010) explored the impact of R&D and climate change on agricultural 

productivity growth in Western Australia during the period 1977-2005. They adopted the 

augmented Cobb-Douglas production function to estimate the equilibrium relationship to output, 

as well as to productivity growth in the long run. They concluded that both R&D and climate 

change matter for long-run productivity growth. The long-run elasticity of total factor productivity 

with respect to R&D expenditure is 0.497. Further, they showed that an increase in R&D 

investment in deteriorating climatic conditions in the agricultural sector improves the long-run 

prospects of productivity growth. 

Using newly constructed data, Bervejillo et al. (2012) modelled and measured agricultural 

productivity growth and return on public agricultural R&D in Uruguay in the period 1961-2010. 

They showed that public funding for agricultural R&D spurred sustained growth in agricultural 

productivity when productivity growth was stagnating in many other countries. Their study 

revealed further that the benefit-cost ratio varied significantly across models with different lag 

structures, and that internal rate of return on R&D was very stable, ranging from 23% to 27% per 

annum in the study period. Andersen and Song (2013) examined the relationship between public 

investment in agricultural R&D in the US and the productivity-enhancing benefits it generates. In 

particular, they found that the real rate of return (RRR) on public investment in agricultural R&D 

in the US ranged between 8% and 10% per annum. 
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To better understand the relationship between public investment in agricultural R&D and 

productivity, Andersen (2015) – using R&D expenditure data from 1949-2002, in the US – showed 

that the real rate of return on public spending on agricultural R&D was 10.5% per annum, 

indicating that government spending in agricultural R&D earns healthy economic returns, which 

justifies these expenditures to the general public and to policymakers.  

Recently, using a unique state-level dataset covering the period 1995-2007, Khan et al. (2018) 

examined the role of R&D in Australia’s broadacre farming. They found that R&D investments 

significantly increase output. Their results also showed that there are substantial variations in the 

impact of R&D on output across the average farm at state level, because of technology parameters 

and technical inefficiencies. Jaijit et al. (2019) explored the economic, social and environmental 

impact of Thai rice research expenditure, using the simultaneous equation modelling technique. 

Their results show that production-research expenditure was the most obvious means of reducing 

the amount of nitrogen fertiliser used, while breeding-research expenditure had the same effect in 

terms of improving farmers’ economic status through planting rice.  

And in a recent study on agriculture in India, using data on public investment from 1981/82 to 

2013/14, it was found that public investment in agricultural R&D has the highest marginal returns 

in low-income states in India (Bathla et al., 2019). Therefore, there is consensus in the literature 

that there are significant returns from R&D spending, particularly in the agricultural sector. 

 

3. Data sources 

Panel data on agricultural production and conventional agricultural inputs (land, capital, labour 

and fertiliser) for 14 SSA countries for the period 1995-2016 have been obtained from the FAO 

database (FAO, 2020) and the ILOSTAT database. They are Benin, Botswana, Burkina Faso, Ivory 

Coast, Ethiopia, Ghana, Kenya, Malawi, Mali, Niger, Nigeria, South Africa, Togo and Zambia, 

chosen for the availability of their data. Data on agricultural R&D (measured in millions of US 

dollars) were taken from the IFPRI (International Food Policy Research Institute) Agricultural 

Science and Technology Indicators database. A summary and description of the data sources is 

presented in Table 1 below. 
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Table 1: Data description and sources  

Variable Description Data Source 

Maize Crop yield in 1000 per hectare FAO 

 

Agricultural land area 

 

Land under permanent crops in 1000 

per hectare 

 

FAO 

 

Labour 

 

Measured as the total number of 

employments in agriculture 

 

ILO 

 

Capital  

 

 

Fertiliser 

 

Rainfall 

 

 

Gross fixed capital formation in 

agriculture (millions of US$) 

 

Fertiliser applied to crops in tonnes 

 

Monthly average rainfall in 

millimetres 

 

FAO 

 

 

FAO 

 

World Bank climate 

change knowledge portal 

 

Literacy 

 

 

 

R&D 

 

The proportion of the adult population 

that is literate 

 

 

Data on agricultural research and 

investments (millions of US$) 

 

World Bank, World 

Development Indicators 

database 

 

International Food Policy 

Research Institute 

 

Based on Table 1, one of our main variables of interest is climate variability. This is proxied by 

annual rainfall (in millimetres) to capture the effect of climate variability on agricultural 

productivity. Despite the crucial role of rainfall in the largely rain fed SSA agriculture, the actual 

impact of climate variability on agricultural production is still nascent. We follow the literature 

(Trong-Anh, 2019; Amare et al., 2018) to capture climate variability (proxied by rainfall 

variability) as follows: 

Rainfall Variability (RVit) = log( 
�̅�𝑖𝑡 − 𝑥𝑖𝑡−1𝑥𝑆𝐷  )      (1) 
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where �̅�𝑖𝑡 represents the average historical rainfall calculated for the sample period in country ί at 

a time (t), 𝑥𝑖𝑡−1 indicates past rainfall, and 𝑥𝑆𝐷 represents the standard deviation from the mean 

rainfall within the sample period (1995-2016).  

Also, another variable of interest is agricultural R&D investment, acknowledged in the literature 

to increase agricultural productivity (Khan et al., 2018; Andersen, 2015; Alene, 2010; Salim and 

Islam, 2010; Alston et al., 1995). Khan et al. (2018) found that R&D investment significantly 

increases output in Australia’s broadacre farming. In the US, Andersen (2015) showed that the real 

rate of return (RRR) on public spending on agricultural R&D was 10.5% per annum. Alene (2010) 

and Salim and Islam (2010) indicated that R&D investment in Africa and Australia improves 

agricultural productivity. Alston et al. (1995) outlined a structural model that ties expenditure on 

agricultural research to growth in agricultural productivity. 

According to the literature, literacy – our third variable of interest from Table 1 – also affects 

agricultural productivity. Hayami and Ruttan (1985) have noted that the percentage of the adult 

population that is literate (the adult literacy rate) is used as an educational metric to compensate 

for differentials in labour efficiency. We can expect that literacy to improve farmers’ ability to 

make use of the information provided by extension officials. Alene (2010) observed that in general, 

a more educated population is able to provide better agricultural services and thus increase 

agricultural production, even without increasing the quality of agricultural labour. 

 

4.  Model specification 

Over the years. agricultural productivity measurement has become a vital area of development 

economics and agricultural research (see for example Amare et al., 2018; Alene, 2010; Craig et 

al., 1997; Evenson and Pray, 1991; Hayami and Ruttan, 1985). To address the research problem, 

this paper employs a production function approach, following on from Griliches (1995) and 

Andersen (2015). We adopt a neo-classical production function to show the relationship between 

climate variability and agricultural productivity growth over time. We assume a farmer’s objective 

is to maximise farm output, and thus we define the function of production as: 

Yit = ƒ(Ait, Lit , Kit , lit, fit, Zit)        (2) 

where Y represents agricultural output for crop (i) at time (t) proxied by yield of maize and 

sorghum; t is a time index – that is, t = 1995, 1992, … 2016; Ait represents land used for farming 

crop (i) at time (t). Lit represents labour, Kit represents capital, lit indicates literacy rate, fit indicates 
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fertiliser and Zit is climate variability (proxied by variability in rainfall). Our model also assumes 

that soil quality remained constant over the study period across countries (see Schlenker and 

Roberts, 2009; Welch et al., 2010). It is important to note that our function does not necessarily 

represent the true relationships between the inputs and the output; rather, its purpose is simply to 

serve as a vehicle for exploration and interpretation of the outcomes. Equation 3 below thus depicts 

our linear dynamic model, which captures the linear effects of climate variability on agricultural 

output. We specify a dynamic model because the literature suggests that changes in climatic 

patterns influence farmers’ expectations and are more likely to prompt behavioural changes 

(especially the adoption of conventional inputs), and thus affect agricultural production (see 

Sesmero et al., 2017; Barrios et al., 2010). 

Yit = βYt-1 + γClimate_Varit + αLaborit + φCapitalit + θLandit + ɸLiteracyit + ηFertilizerit + Ɛit     (3) 

        

where Yt-1 is the lag of agricultural output; Ɛit is the error term, supposedly uncorrelated with all 

of the explanatory variables, and β, γ, α, θ, ɸ and η are parameters to be estimated. Though 

several studies (see Bathla et al., 2019; Khan et al., 2018; Andersen, 2015; Bervejillo et al., 

2012; Alene, 2010) have specified a similar function to Equation 3, few have tried to understand 

whether the impact of climate variability may be mitigated by public spending on R&D. To 

account for this, we augment Equation 3 with an interaction term, to capture the absorption 

channel through which the inimical effects of climate variability could be mitigated. This is 

important because the literature has shown that rainfall (proxy for climate) is heterogenous, and 

that the yield of a specific crop may depend not only on the amount of rainfall, but also on the 

adoption of new technology (e.g., improved seeds) pioneered by spending on R&D (see Amare 

et al., 2018; Huffman et al., 2018; Salim and Islam, 2010). We expand the production function of 

equation 3 as follows: 

Yit = βYt-1 + γClimate_Varit + δClimate_Var*R&Dit + αLaborit + φCapitalit + θLandit + ɸLiteracyit 

+ ηFertilizerit + ώit + Ɛit                                       (4) 

where Climate_Var*R&Dit denotes the interaction of climate variability and R&D, and δ is a 

parameter to be estimated. This is key to our research, given that climate variability poses crop 

production risks, raising the risk of adoption of farm technology – especially in rain-fed, liquidity-

constrained and imperfect market settings – and thus reducing agricultural production (see Barrios 

et al., 2010; Brown et al., 2010; Dercon and Christiaensen, 2011; Di Falco and Chavas, 2009). By 
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introducing the interaction term, we envisage that spending on R&D will absorb the negative 

effects of climate variability on agricultural production, and thus increase productivity. A time 

variant effect ώit is used to control for country heterogeneity in agricultural production. However, 

agricultural production, which is supposed to be concurrently determined by farmers’ application 

of inputs, may be an autonomous decision on the part of the farmers. It is also predicted that 

agricultural production will be associated with the non-observable characteristics of farmers that 

influence their decision to adopt inputs. Therefore, our pooled ordinary least square (OLS) 

specification in Equation 4 will yield biased predictions (Bellemare, 2013; Hausman and Taylor, 

1981). 

The literature further documents that OLS specifications are biased if independent variables are 

correlated with the dependent variables – coupled with the issue that OLS does not capture 

country-specific heterogeneity (Bathla, 2017). There is the possibility of simultaneity bias between 

agricultural production and the explanatory variables – labour, fertiliser, capital, etc. – as the use 

of these inputs is dependent on farmers’ income, which is also dependent on agricultural 

productivity. However, these biases can be addressed by estimating a system of moment equation 

using a system GMM technique (Arellano and Bond 1991; Blundell and Bond 1998). According 

to Arellano and Bond (1991), such an estimation can be achieved by transforming all the regressors 

through differencing. Therefore, our final estimation is based on Equation 5 below.  

ΔYit = ΔβYt-1 + γΔClimate_Varit + δΔClimate_Var*R&Dit + αΔLaborit + φΔCapitalit +θΔLandit + 

ɸΔLiteracyit + ηΔFertilizerit + Ɛit       (5) 

From Equation (5) above we take the partial derivative with respect to climate variability, and thus 

arrive at Equation 6 below. 𝑑Y𝑑Climate_Var= γ + δR&D         (6) 

Equation 6 shows that R&D is a source of non-linearity between climate variability and 

agricultural productivity, and that the way climate variability impacts agricultural productivity 

depends on the magnitude of spending on R&D. 

 

5. Empirical results and discussion 

5.1 Descriptive statistics 

Table 2 below presents descriptive statistics from the raw data used in our study. The number of 

observations for each variable was 308. This comes from the fact that our panel data covered 14 



14 

 

countries in SSA over a 22-year period (1995-2016). The mean yields for Maize and Sorghum 

were 16575 and 10087 respectively. Our main variables of interest, climate variability and its 

interaction with R&D, had a mean of approximately 68mm and 1.4, respectively. 

 

Table 2: Descriptive statistics of selected variables 

 
     

VARIABLES Observation Mean Std. Dev Minimum Maximum 

 

Maize 

 

Sorghum 

 

308 

 

308 

 

16575.510 

 

10087.580 

 

8292.679 

 

5991.669 

 

849 

 

1281 

 

53009 

 

34286 

 
     

Climate 

 

R&D 

 

Capital 

308 

 

308 

 

308 

68.386 

 

48.115 

 

453.369 

30.446 

 

66.318 

 

791.063 
 

11.357 

 

0.000 

 

2.325 
 

144.889 

 

276.900 

 

4875.112 

 
     

Land 308 8904.922 9849.266 184 43400 

   
   

Labour 

 

Literacy 

 

Fertiliser 

308 

 

308 

 

308 

6057702 

 

54.446 

 

77874.24 

7728374 

 

21.522 

 

110329.4 

76914.74 

 

12.800 

 

11 

33500000 

 

94.368 

 

570800 

    
  

LnMaize 308 9.552 0.675 6.744 10.878 

     
 

LnSorghum 

 

LnClimat 

 

LnR&D 

308 

 

138 

 

300 

9.069 

 

1.366 

 

3.158 

0.554 

 

1.490 

 

1.192 

7.155 

 

-3.807 

 

0.956 

10.442 

 

3.279 

 

5.624 
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LnR&D*Climate 

 

LnCapital 

 

LnLand 

 

LnLabour 

 

LnLiteracy 

 

LnFertiliser 
 

 

135 

 

308 

 

308 

 

308 

 

308 

 

308 
 

 

4.114 

 

4.984 

 

8.582 

 

14.972 

 

3.903 

 

10.282 

 

4.141 

 

1.545 

 

1.126 

 

1.219 

 

0.462 

 

1.642 

 

-10.626 

 

0.844 

 

5.215 

 

11.250 

 

2.549 

 

2.398 
 

 

9.713 

 

8.492 

 

10.678 

 

17.326 

 

4.547 

 

13.255 

 

The results for our conventional inputs are as follows. Land had a mean of 8904 hectares (the 

average land use for the 14 countries). Labour had a mean of 6057702, signifying the average 

number of people employed in agriculture in the 14 countries. The mean literacy for the 14 

countries used in the study was 54%. This supports the assumption that more than half of the 

population above the age of 15 have had some form of formal education. The mean use of fertiliser 

in the 14 countries was 77874 tonnes. From Table 1 above, we plot a graph for climate variability 

and maize output to establish a correlation. This is particularly important because several studies 

(see Shaw, 1988; Mugo et al., 1998) have been undertaken to identify the stage of growth most 

susceptible to climate variability in maize. These have shown that climate variability from two 

weeks before cultivation until two weeks after germination lowers maize yield most significantly. 

NeSmith and Ritchie (1992) observed that climate variability can limit grain productivity by as 

much as 90% before maize tassel. As SSA agriculture mainly depends on rainfall, the trend of 

movement for maize production seems mostly to follow the trend of variations in climate (see 

Figure 1 below). 
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Figure 1: Trends in maize output and rainfall variation in sub-Saharan Africa, 1995-2016 

 

As sorghum is the second-biggest crop (after maize) cultivated in SSA, we also plot a graph for 

sorghum output and climate variability to determine the trend of the relationship between the two 

variables. Fawusi and Agboola (1980) showed that sorghum requires average temperatures 

between 24°C and 27°C in order to attain optimum yield.  

 

 

Figure 2: Trends in sorghum output and rainfall variation in sub-Saharan Africa, 1995-2016 
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Figure 2 below shows that sorghum productivity between 1995 and 2016 has fluctuated among the 

14 SSA countries. At the same time, the rainfall pattern (proxy for climate variability) has been 

erratic. 

 

5.2 Results and discussion 

In this section, results are presented from the production functions specified in Equation 6 in the 

analytical framework. We discuss these results, beginning with the pooled OLS and followed by 

the GMM specification. Our output variable of interest is agricultural productivity, measured by 

the natural log of maize yield per hectare. Since our output and input variables in the model are 

expressed in natural logarithms, their coefficients with respect to each value are interpreted as 

elasticities. We start with Table 3 below, which shows findings from the pooled OLS including 

conventional and major inputs. From Model 1, we show that our main variable of interest (climate 

variability) is negative, as expected without controlling for other inputs. In Model 2, we introduce 

our second variable of interest (the interaction term) in addition to climate variability. Though it 

is not significant, the sign of the coefficient is positive, signalling that investment in R&D mitigates 

the effects of climate variability. In Models 3-6 we introduce our conventional inputs one after the 

other; the signs of our key variables (climate variability and the interaction term) remain as 

expected and are also significant. In Model 7, a complete specification with all input variables, 

climate variability is seen to reduce agricultural productivity by an elasticity of 0.403. As shown 

in previous studies (see Sesmero et al., 2017; Dercon and Christiansen, 2011), this negative effect 

might be as a result of climate variability inducing risk, which affects farmers’ behavioural 

decisions regarding the adoption of farm technology and inputs, and thus increases the risk of loss 

in yield which tends to affect productivity in agriculture.  

Our estimated coefficient of climate variability (-0.401) from Model 7 is statistically significant at 

1%. This indicates that with all other things being equal, a 10% variation in climate decreases 

agricultural production by about 4.01%. However, according to Model 7, when we correlate 

climate variability with R&D, the resultant coefficient is positive (0.121) and significant at 1%. 

This is consistent with the literature (see Amare et al., 2018; Salim & Islam, 2010) that rainfall is 

heterogenous and that its effect on crop yield also depends on other inputs – especially the use of 

improved seeds, which is derived from R&D investment. Besides climate variability and the 
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interaction term, agricultural productivity is also influenced significantly by land, with an elasticity 

of 0.261, which is highly significant at 1%. This implies that with all other things being equal, a 

10% increase in agricultural land will result in an increase in agricultural productivity of about 

2.61%.  

Given that we use a dynamic model, the lag of maize (output variable) is significant in Models 1-

7, showing that the past maize yield affects the current production of maize. Of the other factors 

of agricultural production, none of labour, capital, literacy or fertiliser was significant for the 

pooled OLS model. These factors together explain 92.4% of the variations in agricultural 

productivity, as indicated by the R2. However, these are only reported as a benchmark, given that 

our pooled OLS technique does not account for either endogeneity or heterogeneity within our 

estimates. Therefore, our pooled OLS estimates are biased: there is a possibility of simultaneity 

bias between our explanatory independent variables (i.e., capital, fertiliser and labour) and the 

output variable. This is alluded to by Wooldridge (2010), who observed that the difficulty with 

predicting agricultural productivity drivers is that non-observed characteristics (i.e., inputs) are 

likely to be correlated with output. 

 

 Table 3: OLS estimates for agricultural productivity (proxied by maize) 

 (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) 

VARIABLES LnMaize LnMaize LnMaize LnMaize LnMaize LnMaize LnMaize 

        

LnlaglMaize 0.942*** 0.918*** 0.429*** 0.434*** 0.434*** 0.403*** 0.403*** 

 (0.035) (0.042) (0.074) (0.075) (0.075) (0.077) (0.077) 

LnClimate -0.021 -0.091* -0.358*** -0.402*** -0.402*** -0.405*** -0.401*** 

 (0.022) (0.049) (0.054) (0.072) (0.072) (0.072) (0.079) 

LnR&D*Climate  0.025 0.111*** 0.122*** 0.122*** 0.123*** 0.121*** 

  (0.017) (0.020) (0.024) (0.024) (0.023) (0.026) 

LnLand   0.270*** 0.298*** 0.298*** 0.259*** 0.261*** 

   (0.055) (0.063) (0.063) (0.068) (0.070) 

LnLabor    0.055 0.055 0.036 0.035 

    (0.048) (0.048) (0.050) (0.051) 

LnCapital     -0.040 0.024 0.020 

     (0.044) (0.061) (0.069) 
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LnLiteracy      -0.142 -0.142 

      (0.097) (0.098) 

LnFertilizer       0.005 

       (0.041) 

Constant 0.577* 0.916** 2.543*** 2.271*** 2.271*** 3.669*** 3.362*** 

 (0.336) (0.434) (0.542) (0.538) (0.538) (0.936) (0.973) 

        

Observations 130 127 127 127 127 127 127 

R-squared 0.862 0.880 0.922 0.923 0.923 0.924 0.924 

Note: Standard errors in parentheses (), *** p<0.01, ** p<0.05, * p<0.1 

Therefore, such an association could bias the estimators of pooled OLS. To mitigate such 

prospective bias, we follow the literature (see Rocha and Soares, 2015; Björkman-Nyqvist, 2013; 

Macinni et al., 2009) and employ two- to five-period lagged levels of the interaction variable as 

an instrument in Equation 6 above using the Generalised Methods of Moments (GMM) technique. 

Our estimated results from the GMM specification in Table 4 below show that agricultural 

production is determined by all the explanatory variables except literacy and fertiliser. However, 

the estimated coefficients for climate variability, the interaction variable, land, labour and capital 

all differ from those obtained in the pooled OLS model. Furthermore, we undertook diagnostic 

tests to ascertain the robustness of our estimates and instruments. The AR test for no second-order 

serial correlation was passed at 1% significance level. The Sargan test for over-identifying 

restrictions was also passed at 1% significance level. Therefore, we fail to reject the null hypothesis 

and conclude that our instruments are legitimate and valid. 

 

 Table 4: GMM estimates for agricultural productivity (proxied by maize) 

 (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) 

VARIABLES LnMaize LnMaize LnMaize LnMaize LnMaize LnMaize LnMaize 

        

LnlaglMaize 0.400* 0.234** 0.220** 0.252*** 0.079 0.104 0.109 

 (0.224) (0.094) (0.090) (0.092) (0.098) (0.099) (0.100) 

LnClimate 0.101 -0.430*** -0.393*** -0.379*** -0.438*** -0.426*** -0.433*** 

 (0.244) (0.140) (0.134) (0.135) (0.126) (0.126) (0.128) 

LnRandD*Climate  0.114*** 0.109*** 0.103*** 0.121*** 0.122*** 0.124*** 



20 

 

  (0.033) (0.032) (0.032) (0.030) (0.030) (0.030) 

LnLand   0.774*** 1.066*** 0.658** 0.721** 0.727** 

   (0.237) (0.304) (0.303) (0.306) (0.308) 

LnLabor    -0.229 -0.328** -0.418*** -0.457*** 

    (0.148) (0.139) (0.151) (0.161) 

LnCapital     0.229*** 0.169** 0.142* 

     (0.064) (0.075) (0.084) 

LnLiteracy      0.535 0.550 

      (0.347) (0.351) 

LnFertilizer       0.041 

       (0.055) 

        

Observations 106 105 105 105 105 105 105 

AR(1) 

AR(2) 

Wald χ2 

Sargan Test 

-3.15 

0.79 

3.21 

13.74 

(0.201) 

-5.63 

0.44 

22.58 

99.13 

(0.000) 

-5.48 

1.04 

35.53 

98.57 

(0.000) 

-5.52 

1.44 

37.53 

95.06 

(0.000) 

-5.41 

0.60 

56.97 

98.95 

(0.000) 

-5.42 

0.63 

59.34 

96.57 

(0.000) 

-5.42 

0.63 

59.34 

96.57 

(0.000) 

Note: Standard errors in parentheses (),*** p<0.01, ** p<0.05, * p<0.1 

 

We follow the same specification as in the pooled OLS by showing that our main variable (climate 

variability) is negative and its interaction with R&D is positive, as expected in Model 2 without 

controlling for other inputs. In Models 3-6 we introduce our conventional inputs one after the 

other, and the signs of our key variables of interest, climate variability and the interaction term 

remain as expected and are significant. In Model 7, where we have a complete specification with 

all input variables, climate variability is seen to reduce agricultural productivity by an elasticity of 

0.433 and is significant at 1%. Controlling for country heterogeneity and endogeneity within our 

GMM specification, this indicates that the coefficient of our main variable of interest is higher 

than that of the pooled OLS, further underlining that the pooled OLS underestimated the effect of 

this variable.  

The negative coefficient of climate variability (-0.433) shows that with all other things being equal, 

a 10% increase in climate variability will result in a decrease in agricultural productivity of 4.33%. 

However, in Model 7 the interaction of climate variability with R&D is 0.124 and is significant at 
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1%. This shows that investment in R&D mitigates the negative effects of climate variability on 

agricultural productivity and thus serves as an absorption channel. The positive coefficient of the 

interaction variable also shows that not only does R&D mitigate the inimical effects of climate 

variability, it also improves agricultural productivity. This is of major significance to this study, 

given that the literature indicates that there are several mechanisms through which enhancing 

agricultural productivity can reduce poverty. These include creation of jobs, increases in income, 

and reduction in food prices (see Benin, 2016; Fan, 2008; Irz and Tiffin, 2006; Gollin et al., 2002). 

Gollin et al. (2014) and Christiaensen et al. (2011) describe the effect of growth in agricultural 

productivity on poverty alleviation as a dual effect. They conclude that agricultural productivity 

growth creates jobs, which in turn generate income, especially for farmers. At the same time, 

improving productivity in agriculture also creates jobs along the value chain process, thereby 

generating income for those involved.  

The GMM specification also revealed higher coefficients for the conventional input variables, 

compared to the pooled OLS specification. Again, unlike in the pooled OLS, all conventional 

inputs for agricultural productivity are significant except fertiliser. Land shows a higher positive-

magnitude effect on agricultural productivity with an elasticity of 0.727 and is significant at 5%. 

This shows that all other things being equal, a 10% increase in agricultural land will result in an 

increase in agricultural productivity of 7.27%. However, labour was significant at 1% but had an 

elasticity of -0.457. Capital was found to exert a positive effect on agricultural productivity with 

an elasticity of 0.142 and is significant at 10%. This shows that all other things being equal, a 10% 

increase in capital will result in a 1.42% increase in agricultural productivity. While fertiliser is a 

major determinant of crop yields, the findings show that the use of fertiliser does not affect 

agricultural productivity; this variable was found not to be significant. Ochieng et al. (2016) argue 

that this could be attributed to low application levels of fertiliser in agriculture, especially in SSA. 

However, the literature (see Sarker et al., 2012) shows that while chemical fertiliser may improve 

crop production, it also has the tendency to emit greenhouse gases into the atmosphere, which 

further contributes to the warming of the climate.  

Though literacy rate has a positive coefficient, it was also found not to significantly affect 

agricultural output. Also, given that we used a dynamic model, the lag of maize (output variable) 

is significant in Models 1-4 but not significant in Models 5-7 when we control for all inputs of 

agriculture production. From the final model, we conclude that past production of maize does not 
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significantly affect current production of maize. Our results are consistent with previous studies 

(Dhehibi et al., 2017; Chebil et al., 2014), which investigated the impact of research, development, 

and extension (RD&E) and climate change on agriculture productivity growth and total factor 

productivity in Tunisia. Dhehibi et al. (2017) found that while climate change reduces agriculture 

productivity by an elasticity of -0.109, RD&E increases agriculture productivity by an elasticity 

of 0.05. Chebil et al. (2014) observed that drought reduces total factor productivity of cereals, 

while RD&E positively affects the cereal sector in Tunisia.  

In addition, the Model 7 results for the interaction variable show that climate variability and 

agricultural productivity are linked, with a slope that could be expressed as: 𝑑Yield𝑑Rain = -0.433 + 0.124R&D        (7) 

From Equation (7) it is obvious that the threshold from a negative to a positive impact of climate 

variability on agricultural productivity is determined by spending on R&D. According to the 

function, in order to move from a negative impact of climate variability on agricultural productivity 

to a positive impact, investments in R&D in SSA should be increased by a threshold of 3.492%. 

 

5.3 Extended approach 

To corroborate our estimates using maize yield, we also use sorghum yield as a proxy for 

agricultural productivity. This is because sorghum is the second-

biggest crop (after maize) cultivated in SSA, covering 22% of total cereal area. In general, the 

African continent accounts for about 61% of total global sorghum area, with production of about 

41%. Our output variable of interest is agricultural productivity, measured by the natural log of 

sorghum yield per hectare. Since our output and input variables in the model are expressed in 

natural logarithms, their coefficients with respect to each value are interpreted as elasticities.  

We start with Table 5 below, which shows findings from the pooled OLS which includes 

conventional and major inputs. Model 1 shows that our main variable of interest, climate 

variability, is negative as expected without controlling for other inputs. In Model 2, we introduce 

our second variable of interest, the interaction term in addition to climate variability, which is 

positive and significant as expected. The pooled OLS results from Model 7 show that both climate 

variability and the interaction variable are strongly correlated with agricultural productivity, and 

thus corroborate our estimates when using maize yield.  
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Table 5: OLS Estimates for Agricultural Productivity (proxied by Sorghum) 

 (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) 

VARIABLES LnSorghum LnSorghum LnSorghum LnSorghum LnSorghum LnSorghum LnSorghum 

        

LnlaglSorghum 0.803*** 0.546*** 0.500*** 0.500*** 0.450*** 0.429*** 0.403*** 

 (0.052) (0.088) (0.093) (0.094) (0.095) (0.095) (0.098) 

LnClimate -0.023 -0.323*** -0.353*** -0.352*** -0.245** -0.236** -0.206** 

 (0.026) (0.081) (0.083) (0.084) (0.097) (0.096) (0.101) 

LnR&D*Climate  0.106*** 0.115*** 0.114*** 0.086*** 0.083** 0.071** 

  (0.027) (0.028) (0.030) (0.032) (0.032) (0.034) 

LnLand   0.042 0.050 -0.042 -0.127 -0.108 

   (0.028) (0.061) (0.074) (0.086) (0.088) 

LnLabor    -0.009 0.002 -0.036 -0.048 

    (0.064) (0.063) (0.065) (0.066) 

LnCapital     0.125** 0.231*** 0.194** 

     (0.060) (0.081) (0.089) 

LnLiteracy      -0.237* -0.246* 

      (0.124) (0.125) 

LnFertilizer       0.056 

       (0.056) 

Constant 1.820*** 3.944*** 4.103*** 4.172*** 4.616*** 6.454*** 6.290*** 

 (0.485) (0.804) (0.860) (1.008) (1.015) (1.392) (1.358) 

        

Observations 130 127 127 127 127 127 127 

R-squared 0.675 0.762 0.767 0.767 0.777 0.785 0.787 

Note: Standard errors in parentheses (), *** p<0.01, ** p<0.05, * p<0.1 

 

Climate variability is seen to reduce agricultural productivity by an elasticity of 0.206 and is 

significant at 5%. This indicates that with all things being equal, a 10% variation in climatic 

conditions will reduce agricultural productivity by 2.06%. At the same time, the interaction 

between R&D and climate variability increases agricultural productivity by an elasticity of 0.071 

and is significant at 5%. This also confirms our findings from the maize estimate that spending on 

R&D serves as an absorption channel for the inimical effect of climate variability on agricultural 

productivity. Capital is found to be positive, with an elasticity of 0.194, and is significant at 5%. 
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At the same time, literacy is found to reduce agricultural productivity, with an elasticity of -0.246, 

and is significant at 10%.  

Also, given that we use a dynamic model, the lag of sorghum (an output variable) is significant in 

Models 1-7, thus showing that past sorghum yields affect current production of sorghum. 

However, given the limitations of pooled OLS estimates, these results are considered benchmark. 

We therefore perform the GMM technique to overcome these limitations. 

In Table 6 below, Model 7 shows that persistent variability in climate reduces agricultural 

productivity by an elasticity of 0.296. This indicates that all things being equal, a 10% variation in 

the climate will reduce agricultural productivity by 2.96%. However, the interaction of R&D and 

climate variability significantly enhances agricultural productivity, by an elasticity of 0.065, thus 

confirming our findings from the maize estimates that investment in R&D mitigates the inimical 

effect of climate variability on agricultural productivity 

 

 Table 6: GMM estimates for agricultural productivity (proxied by sorghum) 

 (Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) (Model 7) 

VARIABLES LnSorghum LnSorghum LnSorghum LnSorghum LnSorghum LnSorghum LnSorghum 

        

LnlaglSorghum -0.311 0.015 0.024 -0.200** -0.249*** -0.249*** -0.256*** 

 (0.216) (0.098) (0.094) (0.099) (0.095) (0.095) (0.098) 

LnClimate -0.166 -0.244 -0.262 -0.259* -0.272** -0.273** -0.296** 

 (0.217) (0.171) (0.164) (0.137) (0.129) (0.129) (0.133) 

LnR&D*Climate  0.057 0.058 0.057* 0.061** 0.060** 0.065** 

  (0.040) (0.038) (0.032) (0.030) (0.030) (0.031) 

LnLand   -0.487* -1.170*** -1.429*** -1.432*** -1.431*** 

   (0.283) (0.312) (0.308) (0.310) (0.317) 

LnLabor    0.634*** 0.544*** 0.550*** 0.442** 

    (0.155) (0.150) (0.160) (0.173) 

LnCapital     0.162*** 0.166** 0.094 

     (0.060) (0.069) (0.079) 

LnLiteracy      -0.039 -0.002 

      (0.360) (0.369) 

LnFertilizer       0.119** 

       (0.059) 
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Observations 106 105 105 105 105 105 105 

 

AR(1) 

AR(2) 

Wald χ2 

Sargan Test 

 

-2.01 

1.17 

2.52 

25.03 

(0.283) 

 

-8.14 

3.92 

2.27 

100.95 

(0.518) 

 

-8.06 

3.82 

5.43 

107.11 

(0.246) 

 

-5.55 

1.95 

22.89 

114.54 

(0.000) 

 

-4.85 

1.01 

33.24 

121.90 

(0.000) 

 

-4.85 

1.01 

33.25 

121.87 

(0.000) 

 

-4.60 

0.438 

35.71 

111.83 

(0.000) 

Note: Standard errors in parentheses (), *** p<0.01, ** p<0.05, * p<0.1 

 

Additionally, our conventional inputs are significant, with the exception of literacy. Land is 

significant but tends to exert a negative effect on agricultural production, with an elasticity of -

1.43. Labour is found to increase agricultural productivity by an elasticity of 0.442 and is 

significant at 5%. Capital is found to enhance agricultural productivity by an elasticity of 0.166. 

This implies that all things being equal, a 10% increase in capital will raise agricultural 

productivity by 1.66%. Fertiliser is found to enhance agricultural productivity by an elasticity of 

0.119. This indicates that in the case of sorghum, with all other things being equal, a 10% increase 

in fertiliser application will raise agricultural productivity by 1.19%. We also performed diagnostic 

tests to ascertain the robustness of our estimates and instruments. The AR test for no second-order 

serial correlation was passed at 1% significance level. The Sargan test for over-identifying 

restrictions was passed at 1% significance level, and therefore we fail to refute the null hypothesis 

that our instruments are legitimate and valid. 

From our dynamic specification, the lag of sorghum (output variable) is not significant in Models 

1-3. However, it tends to be significant from Models 4-7 with negative coefficients, revealing that 

past sorghum yield significantly reduces current production of sorghum. Furthermore, given that 

R&D mitigates the inimical effect of climate variability, we can show that the relation between 

climate variability and agricultural productivity is linked with a slope that could be expressed as: 𝑑Yield𝑑Climate_Var= -0.296 + 0.065R&D       (8) 

Equation (8) shows that spending on R&D is an absorption channel for the negative effect of 

climate variability on agricultural productivity. Therefore, to move from a negative to a positive 

effect of climate variability on agricultural productivity, there is a need to increase spending on 

R&D in SSA by a threshold of 4.554%.  
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6. Conclusions and policy implications 

This paper aims to investigate whether public spending on research and development (R&D) 

mitigates the negative impacts of climate variability on agricultural productivity. The analysis is 

based on panel data for 14 countries in sub-Saharan Africa (SSA) from 1995 to 2016 using the 

Generalised Method of Moments (GMM) estimation technique. The empirical results show that 

climate variability significantly reduces agricultural productivity. However, the interaction of 

R&D with climate variability enhances agricultural productivity. Estimates from both OLS and 

GMM techniques show consistent outcomes. The estimated GMM results show that climate 

variability will have a greater impact on maize productivity than on sorghum productivity.  

In addition, climate variability is expected to reduce agricultural productivity by an elasticity of 

0.433 and 0.296, respectively for maize and sorghum. However, the interaction of R&D with 

climate variability mitigates the negative effect of climate variability and thus enhances 

agricultural productivity by an elasticity of 0.124 (maize) and 0.065 (sorghum) using maize and 

sorghum as proxies of agricultural production. Additionally, to move from a negative to a positive 

impact of climate variability on agricultural productivity, our analysis shows that public spending 

on R&D should increase between 3.492% and 4.554% for maize and sorghum respectively. The 

estimates further show that R&D is an absorption channel for the inimical effect of climate 

variability, and that the way climate variability impacts agricultural productivity depends on the 

magnitude of spending on R&D.  

Therefore, our study demonstrates the importance of increasing public investment in R&D in the 

agricultural sector. Furthermore, given that there are no insurance markets in most developing 

countries – and that in places where they do exist, they often suffer from information asymmetry, 

lack of data infrastructure, and limited access of insurers to reinsurance – it is difficult for farmers 

to mitigate risks posed by climate variability, which leads to loss of yield. Our study makes the 

point that increasing investment in R&D in the agricultural sector could serve as an adaptation 

mechanism by farmers regarding climate change. Therefore, governments must give priority to 

and increase spending on R&D, as opposed to providing disaster relief programmes and insurance 

premium subsidies to farmers. Finally, it should be noted that the model used in this paper is not 

designed to estimate the long-term effect of the interaction term on agriculture production; future 

research could explore such long-run relationships. 
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