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Abstract 

For more than 40 years, Mathematical Programming is the traditional tool for energy planning at the national or 

regional level aiming at cost minimization subject to specific technological, political and demand satisfaction 

constraints. The liberalization of the energy market along with the ongoing technical progress increased the level of 

competition and forced energy consumers, even at the unit level, to make their choices among a large number of 

alternative or complementary energy technologies, fuels and/or suppliers. In the present work we develop a 

modelling framework for energy planning in units of the tertiary sector giving special emphasis to model reduction 

and to the uncertainty of the economic parameters. In the given case study, the energy rehabilitation of a hospital in 

Athens is examined and the installation of a cogeneration, absorption and compression unit is examined for the 

supply of the electricity, heating and cooling load. The basic innovation of the given energy model lies in the 

uncertainty modelling through the combined use of Mathematical Programming (namely, Mixed Integer Linear 

Programming, MILP) and Monte Carlo simulation that permits the risk management for the most volatile 

parameters of the objective function such as the fuel costs and the interest rate.  The results come in the form of 

probability distributions that provide fruitful information to the decision maker. The effect of model reduction 

through appropriate data compression of the load data is also addressed. 
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1. INTRODUCTION  

Mathematical Programming (MP), and in particular, Linear Programming (LP) models have 

been the traditional tool for energy planning. The main objective is usually the minimization of 

cost subject to specific technological, political and demand satisfaction constraints [1]. In many 

cases it is advisable to use, apart from the continuous, integer variables in order to describe 
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inherently discrete phenomena (economies of scale, technology choices, logical conditions etc.), 

which may be present in the decision situation. The resultant Mixed Integer Linear Programming 

(MILP) models are harder to solve than the corresponding LP models, but they represent a more 

realistic view of the decision situation, whereas the increasing computer capacities make their 

implementation all the more easier [2].  

However, the liberalization of the energy market along with the ongoing technical progress 

increased the level of competition and forced energy consumers to make their own choices 

among a large number of alternative or complementary energy technologies and/or suppliers. 

Examples of such energy planning applications of multi-objective models in units of the 

industrial or tertiary sector can be found in [3-5]. 

The existence of numerous alternative energy options, which may differ in technical, economic 

and or environmental performance, has caused a growing need in implementing energy planning 

models in smaller systems. This need becomes even more imperative nowadays, as the 

increasing interest towards environmental issues has led to a growing public awareness. 

Moreover, the intrinsic uncertainty in some of the key energy planning parameters (e.g. the load 

demand or energy prices) should be properly addressed. As a result, decision makers, at the level 

of individual units, are often confronted to a complicated decision problem, which becomes even 

more difficult to solve because of the underlying uncertainties.  

The purpose of this paper is to develop an energy planning framework combining Mathematical 

Programming and Monte Carlo simulation that can be properly used in buildings of the Services’ 

sector (hospitals, hotels, sport centers, universities etc) taking into account the uncertainty in cost 

parameters that are expressed by probability distributions. The application of the method is 

performed in a case study refereed to the energy rehabilitation of a hospital in Athens. Since 

hospitals are among the largest energy consumers in the Services’ sector, it is highly 

recommended to upgrade the existing energy supply system by using more efficient energy 
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technologies. Besides the traditional energy supply options, it is possible to implement 

Combined Heat and Power (CHP) systems, in combination with an absorption chiller for air 

conditioning.  

More specifically, the aim is to meet the hospital’s energy demand as determined by typical daily 

load profiles provided for each month, in a more efficient way at the lowest possible cost. CHP 

units, absorption and/or compression units comprise the candidate technologies, to be combined 

with the necessary back-up systems. The appropriate capacity of the new units as well as their 

operational characteristics have to be determined.  

Moreover, due to the large size of the full model, a model reduction technique is proposed 

through compression of the relevant load data. This issue is extremely important in similar 

problems as the model reduction may hopefully drive in much faster solution times, without 

affecting much the accuracy of the results obtained. In case that multiple instants of the energy 

planning model have to be solved (e.g. multi-objective formulations or multiple scenarios), the 

savings in computational time are crucial. Consequently, the effect of the model reduction on the 

final results is also investigated.  

The remainder of the paper is organized as follows: After this introductory section, the 

methodological framework is presented, describing briefly the Mathematical programming and 

the Monte Carlo simulation. A short description of the case study follows in section 3 while the 

section 4 is devoted to the data compression techniques. Section 5 deals with the model building 

describing in detail the corresponding mathematical relations. Section 6 contains a detailed 

analysis of the obtained results and discussion while the last section includes concluding 

remarks. 
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2. METHODOLOGICAL FRAMEWORK  

2.1 Mathematical Programming in the optimization of energy systems 

Mathematical Programming is the most popular method for the optimization of various systems. 

Usually MP models in their various forms (Linear Programming, Integer Programming, Non 

Linear Programming etc) have a number of decision variables (the unknowns of the problem) 

and parameters (the data of the problem). The relations of the decision variables and the 

parameters that describe the system are the constraints of the problem and the objective function 

expresses the optimization criterion. The MP models are usually written as follows: 

       max z = f(x) 

       st        

 (1) 

       gi(x)  bi   i=1…m 

where x is the vector of the decision variables, f(x) is the objective function, gi(x) are the 

constraint functions and bi the parameters expressing the Right Hand Side of the constraints.  

MP and mainly LP models are for many years the most widely applied tools in energy planning, 

and usually aim at minimizing the discounted cost of meeting energy demand (investment and 

operational) over the entire planning horizon (see e.g. [2, 6-11]. The constraints of the problem 

typically represent the demand of various energy consuming sectors or activities, as well as the 

imposed technological (energy balances, capacities etc) and possibly political limitations (e.g. 

independence from imported fuels). The decision variables usually refer to the amounts of 

energy forms and the units’ capacities. When the problem includes discrete elements like new 

facilities, economies of scale, logical conditions etc. that cannot be properly represented by 

continuous variables, Mixed Integer Linear Programming (MILP) models are used. MILP 

problems require much more computational effort than the corresponding LP problems due to 

the discontinuities in the decision variable space. However, the improvements in relevant 
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software in combination with the enormous increase in computer capacities are greatly 

facilitating their practical implementation (see e.g. [12]).  

In the building level, we can express the energy planning problem borrowing ideas from the field 

of process synthesis in chemical engineering. Specifically, the problem can be formulated as a 

multi-period structure, design and operational optimization problem [13, 14]. All the 

available energy options and their interdependencies can be considered in the superstructure of 

the system (topology of all the available energy options) and the Mathematical Programming 

model proposes the best solution in terms of structure (which units are selected), design (what 

are their sizes) and operation (how they will operate).   

2.2. Monte Carlo simulation for dealing with uncertainty 

Monte Carlo simulation is a widely used tool whenever the uncertainty is expressed in the form 

of probability distributions [15]. Usually, the uncertain parameters are given in the form of 

specific probability distributions (e.g. normal, uniform, triangular). Mathematical Programming 

and Monte Carlo can be combined whenever the nature of uncertainty is stochastic, i.e. the 

uncertain parameters are given in the form of probability distributions [16-18]. The combination 

of the Monte Carlo method and the Mathematical Programming model solution is working as 

follows: first, the user determines the number of iterations (usually 500-1000) of the Monte 

Carlo simulation. Subsequently for each sampling of the uncertain parameters, the MP model is 

solved and the results for the objective function and the main decision variables are recorded. 

The combination of Monte Carlo with Mathematical Programming is illustrated in the flowchart 

of Figure 1.  
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Figure 1. Flowchart of the combination of Monte Carlo simulation and Mathematical Programming. 

 

The information obtained by the decision maker as the optimal values of the objective function 

and the key variables is given in the form of probability distributions. Therefore, the decision 

maker can see how the objective function and the decision variables can vary, given the specific 

uncertainty on the model’s parameters.  

3. CASE STUDY 

The examined hospital is located in the greater Athens area and has a capacity of 400 beds. 

Actually, energy requirements are covered by the electricity from the electric power grid, from 

the water heating and space heating boilers, as well as from boilers for providing heat to various 

medical and non-medical uses. Cooling demand is only partially satisfied with split units, but a 

more integrated solution is sought. The development of the natural gas grid in the area offers the 

opportunity to proceed to a radical restructuring of the hospital’s energy supply system by 

simultaneously upgrading the overall energy efficiency. The technologies under consideration 

are a CHP unit (driven by an internal combustion engine) for providing power and heat, an 
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absorption unit and/or a compression unit for providing cooling load. Electricity from the grid 

and the already existent boilers can be optionally used to cover any excess demand would occur 

during system operation. The superstructure of the proposed new system is presented in Figure 2.  

The results of the energy supply optimization model will determine the candidate units that 

should be installed as well as their optimal size. The load demand is given in the form of hourly 

data (in kW) for each load category (heating, cooling and electricity) for one typical day of each 

month. Consequently, there are in total 1224 = 288 data for each one of the three loads. The 

monthly 24-hour profiles for each one of the three loads are shown graphically in Figure 3. 

Compression Unit 
(CMP)

Heat Demand

Cooling Demand

Electricity DemandElectricity from the grid

Electricity Sales

Absorption Unit 
(ABS)

Cogeneration Unit

(CHP)

Boiler

Natural Gas Supply

Electricity

Heat

Cooling load

Natural gas

 

Figure 2. The superstructure of the hospital’s energy system. 

 

It must be noted that the planned demand side management measures have been taken into 

account during the calculation of these loads. One of the issues emphasized in this study is the 

possibility of reducing the size of the model by appropriately applying data compression 

techniques (i.e. grouping of load data) and how these affect the accuracy of the obtained results. 

The candidate unit characteristics (investment cost, O&M cost, efficiency, operating limits etc) 
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are specified according to the information supplied by a relevant study [19].  

4. MODEL REDUCTION THROUGH DATA COMPRESSION   

The demand data for the three types of load, namely heating, cooling and electricity, are given 

on an hourly basis for a typical day of each month. The full 1224 model (1 typical day for each 

month is subdivide in the 24-hour intervals) is developed using the hourly energy balances for 

meting the load demand for every hour and for every load (electricity, heating, cooling). Besides 

the full 1224 model, we developed two additional models obtained through the data 

compression process in order to explore the effect of the model compression on the accuracy of 

the obtained results. The first one depicts a 612 representation (i.e. 6 seasons with 12 intraday 

periods) and the second one, an even more compact model, depicts a 3 x 6 representation (i.e 3 

seasons with 6 intraday periods). In order to achieve this representation, a technique grouping the 

months of similar characteristics to seasons was applied and subsequently the hours of the day to 

intraday periods were grouped. The challenge is to perform efficient grouping, so that the 

obtained reduced models will not present significant divergence from the initial full model. The 

whole data compression procedure is performed in Microsoft Excel associated with coding 

performed in Visual Basic. 
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Figure 3. Load profiles for a typical day for the three loads 

 4.1 Grouping of months to seasons 

For each month, a 24-hour profile for the three loads (electricity, heating and cooling) of a 
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representative (or typical) day is available. The aim of the monthly grouping to seasons is to 

create a representative day for a season, keeping (as much as possible) the characteristics of the 

corresponding months. In doing so, we create the 24-hour profile for each one of the three loads 

as an aggregation of the months’ load profiles. The rationale of the calculation is twofold: to 

assign, as the maximum power for the seasonal load profile, the maximum power found in the 

represented months and, on the other hand, to assign, as daily energy consumption, the average 

daily energy consumption of the represented months (the daily energy consumption is calculated 

as the area under the load profile). In order to achieve this, the months are grouped to a 

predetermined number of seasons according to the similarity of their load profiles. The algorithm 

for grouping the months is illustrated using the following example: Assume that we would like 

to group the 12 months into three seasons. Then, using a simple clustering method based on their 

load profiles, the following months, January, February, March, April, November and December  

will form the cluster “winter season ”, May and October will form the cluster “intermediate 

season” and June, July, August and September will form the cluster “summer season”. In Figure 

4, the heating load of the winter season is depicted.  
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Figure 4. Example of grouping the monthly profiles into seasonal profiles 

The calculation of the seasonal heat load profile is performed as follows: The maximum load 
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value in the 24-hour profiles of the grouped months is located (8 am, February with value 1456 

kW) and attributed as the maximum load value of the season’s typical day. For the remainder of 

the hours, the seasonal load is calculated as the average of the 6 months. In order to smooth the 

seasonal profile around the maximum load, the load, two hours before and after the maximum 

load, is calculated as the weighted sum, with more weight given on the month where the 

maximum load is recorded (e.g. February in the present case). Namely, at 7am and 9 am, the 

load for the seasonal profile is calculated as 0.75FEB + 0.25average(JAN, MAR, APR, NOV, 

DEC), while at 6am and 10am the load is calculated as 0.5FEB + 0.5average(JAN, MAR, 

APR, NOV, DEC). However, in doing so, the daily energy consumption of the typical season 

will be somewhat higher than the average daily energy consumption of the respective months. In 

order to restore the required equivalence, the calculated loads for the remainder 19 (= 24-5) 

hours are accordingly and evenly reduced. Following this procedure, the 24-hour load profiles 

for a typical day of a season are calculated, corresponding to the 24-hour load profiles of the 

respective months.  

4.2 Grouping of hours to intraday periods 

The next step in the data compression procedure is to group the hourly load data, as obtained 

from the daily load profiles, into intraday periods. The aim is to appropriately linearize the daily 

profiles in order to obtain a surrogate profile with flat (constant) loads assigned to each one of 

the intraday periods. In this way, we actually divide the day to 6 or 12 intraday periods of 

constant load instead of the 24-hours partition. Due to the formulation of the subsequent 

mathematical programming model, the grouping must be the same for the three load profiles 

(electricity, heating and cooling load). The challenge is to apply a grouping procedure so that the 

surrogate, linearized profile will retain the maximum load while keeping the daily energy 

consumption (the area under the load profile) of the original daily profile. In Figure 5, the three 

load profiles for a typical day of the summer season along with their surrogate profiles are 
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shown. In the surrogate profiles, the day is divided into 12 intraday periods.  
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Figure 5. Example of linearization of load profiles for a typical summer-season day 

The cut points in the surrogate profiles can be either set by the user (manual setting) or 

calculated automatically (automatic setting). The automatic process calculates the cut points 

according to the slopes of the original load profiles. Namely, it calculates the slope in every point 

of the three load profiles and ranks them in decreasing order. Then, it assigns the cut points to 

the n first points, where n is the number of required intraday periods plus one. If the user has 

already set some cut points, the number of those automatically calculated is appropriately 

reduced. A useful rule of thumb is that the cut points around the maximum load for each one of 

the three load profiles are set manually in order to guarantee the maximum load bracketing (as it 

is done for hours 19 and 21 in Figure 4 in order to capture the maximum cooling load). These cut 

points define the corresponding intraday periods. The load for each one of them is the average of 

the corresponding hourly loads. Finally, a fine-tuning may be needed in order to assure that the 

area under the linearized profile is equal to the area under the corresponding hourly profile. The 

fine- tuning is performed by appropriately reducing the base loads or/and increasing the peak 

loads. 
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5. MODEL BUILDING   

A MILP model is formulated for the cost optimization of the energy superstructure shown in Fig. 

1. Continuous decision variables indicate energy flows and equipment capacities, while binary 

decision variables refer to the adoption or rejection of the considered types of units, as well as to 

the operation of a unit during a time period. In order to maintain the linear characteristics of the 

model, we use piecewise linear approximations for the characteristics of the equipment as a 

function of its capacity. The model is treated and formulated as a multi-period synthesis and 

operational problem according to the guidelines proposed in [13].  

Economic objective function (annualized cost) 

As already mentioned, the objective function of the developed MILP  model is to minimize the 

annualized cost, namely, the sum of the annualized investment cost (assuming a discount rate i= 

8% and lifetime N= 15 years) and the annual operational and maintenance cost.  

The annualized investment cost is obtained from the investment cost by multiplying with the 

Capital Recovery Factor (CRF) given by: 

     
(1 )

(1 ) 1

N

N

i i
CRF

i

+
=

+ −
         

 (2) 

where i is the discount rate and N is the equipment’s lifetime. The objective function that 

expresses the minimization of the annualized energy cost is given by the following equation:  

)(min
4

1,

1

mm

m

mmelsk

ngelk

k
CAPslopBicptELCHPSpENERGYcZ ++−= 

==

           (3) 

where, ENERGYk is the purchased amount of energy of k-th type (k=electricity from the grid and 

natural gas), ck is the corresponding cost, pels is the selling price of the electricity from the CHP 

to the grid, ELCHPS the electric energy from the CHP that is sold to the grid and m is the index 

for the different units. The parameters icptm and slopm are the intercept and the slope respectively 
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of the line expressing the annualized cost of the unit (investment and O&M) as a function of unit 

capacity drawn from available cost data of various units (depicted in Figure 6).  
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Figure 6. Annualized investment cost as a function of nominal capacity 

The decision variables Bm and CAPm express the existence or not of m-th unit (binary variable) 

and the capacity of m-th unit respectively (we consider four cases as the CHP’s modeling 

requires two line segments – see also modeling of CHP unit below). The electricity and natural 

gas prices are drawn from the Regulatory Authority of Energy [20]. The electricity price is 102 

€/MWh (34€/MWh for off-peak electricity i.e. from 11pm-6am), the natural gas price is 30 

€/MWh and the selling price of electricity from the CHP to the grid is 56 €/MWh. It must be 

mentioned that these values are used as reference values for creating the probability distributions 

that are going to be used in the Monte Carlo simulation. 

The constraints of the model are grouped as follows: 

Demand satisfaction: The heat, electricity and cooling load produced in the network must meet 

the corresponding demands in each period. In the case of electricity, exchanges with the grid are 

possible: 

POWERk
ij   ldk

 ij  i=1..s,    j=1..p,    k=elec, heat, cool    (4) 

where s,p denote the number of seasons and periods of the day respectively, POWERk
ij is the 
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decision variable denoting the required output for serving the k-th load in season i and period j, 

and ldk
ij is the parameter that expresses the required load of k-th type in the i-th season and the j-

th period of day.  

Energy Balances: they refer to energy inputs and outputs from the CHP, absorption and 

compression units and the boiler for each period. Therefore, for the m-th unit the energy balance 

for season i (i=1…s) and period of day j (j=1…p) becomes: 

effmINPUTm
ij-OUTPUTm

ij = 0  i=1…s, j=1…p,  m=1…4     (5) 

where effm is the efficiency of the m-th unit, INPUTm
ij is the variable indicating the power input 

for unit m (in terms of power) referring to season i and period of day j, while OUTPUTm
ij is the 

corresponding output.  

Equipment Capacity: they set the corresponding upper bound to the output of each unit in each 

period, whether the latter is a parameter (i.e. for existing units such as the boiler) or a decision 

variable (i.e. for new units such as CHP, absorption and compression units).  

CAPm - lom Bm   0     &     CAPm - upmBm  ≤ 0         m=1…4    (6) 

OUTPUTm
ij - CAPm ≤ 0     i=1…s, j=1…p, m=1…4        (7) 

where CAPm is the decision variable indicating the capacity of unit m, Bm is the binary decision 

variable indicating the existence or not of the m-th unit, while lom and upm are the parameters 

indicating the lower and upper bound for these capacities. 

Technical Minimum: these constraints set the corresponding lower bound to the output of each 

unit in each period (usually 30% of its nominal capacity). There are binary variables for each 

unit m, indicating if the unit is operating or not in the i-th season and the j-th period of day (Ym
ij). 

These variables are necessary for modeling the technical minimum requirement. 

OUTPUTm
ij - upmYm

ij ≤ 0        i=1…s, j=1…p, m=1…4       (8) 
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-OUTPUTm
ij + tminmCAPm+ (tminm upm) Ym

ij ≤ ( tminm upm)    i=1…s, j=1…p, m=1…4       

(9) 

where tminm is the technical minimum of the m-th unit as the percentage of the unit’s capacity. If 

Ym
ij=1 the constraint is activated while if Ym

ij=0 it becomes inactive. 

At this point, it must be noted that the constraint of the technical minimum in the operation of 

the units is the main cause for the introduction of the binary variables Ym
ij. These binary 

variables increase significantly the computational effort of solving the MILP problem (e.g. in the 

12x24 model there are 3x12x24 = 864 such variables). Omitting the technical minimum 

constraints the computational performance is considerably improved (the problem is solved in a 

few seconds). Moreover, omitting the technical minimum constraints in the present case, the 

obtained solution underestimates the annual cost by almost 2%. However, although this 

underestimation is relatively small, a considerable divergence in the optimal capacity of the 

installed units is observed, rendering its omission questionable. It becomes obvious, the problem 

arising comprises another example characterized by the trade-off between realistic modeling and 

computational effectiveness.   

Reserve margin for cooling load: the sum of capacities of the compression and the absorption 

unit should be 20% greater than the annual hourly peak in cooling load (maxcldm). 

CAPabs + CAP cmp  1.2 maxcldm               (10) 

CHP modeling: the CHP unit is modeled by using two size domains: from 50 to 200 kW and 

from 201 to 400 kW with different investment cost and technical characteristics (i.e. efficiency 

and power to heat ratio).  

CAPv – locapv Sv  0      v=1,2               (11) 

CAPv – upcapv Sv ≤ 0      v=1,2             (12) 

CAPchp – Σv CAPv = 0               (13) 

S1 + S2  ≤ 1               (14) 
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Sv is the binary variable indicating the size domain where the selected CHP unit belongs (v=1, 2). 

The binary variables Sv are also used to link electricity and heat production through the 

appropriate power to heat ratio: 

ELij - Σv phv HTvij=0                           i=1…s, j=1…p          (15) 

where phv is the power to heat ratio for the v-th type, ELij is the electricity output of the CHP unit 

in season i and period j, HTvij is the heat output of the CHP unit of v-th type in season i and 

period j. In order to deactivate the redundant HTvij variables (corresponding to the v-th type of 

CHP unit that is not selected), we add the two following constraints:  

Σij HTvij – (2  s  p  upv) Sv ≤ 0  v=1,2           (16) 

where upv is the upper bound on the capacity for the CHP unit of v-th type (the factor 2 is added 

because capacity is defined in terms of electric output and the thermal output is at least 1 ½ times 

higher).  

Conversion of power to energy: Annual energy figures are obtained by summing the products of 

the number of hours in each day-period of a season with the respective load (heating, cooling or 

electricity).  

   ENERGYk - Σij hijPOWERk
ij = 0          k=1…K            (17) 

where ENERGYk is the total annual energy for the k-th load, hij is the parameter indicating the 

number of hours in the i-th season and the j-th period of day, POWERk
ij is the respective power 

of the k-th load and K is the number of different energy forms that we need to calculate. In this 

set of constraints, we further discriminate the energy required in off-peak periods (with reduced 

electricity cost) and we calculate the value of the objective function Z1 accordingly.  

The problem is solved by using the GAMS (General Algebric Modeling System) modeling 

language [21] and the CPLEX 10.0 solver for MILP. The full 12x24 model comprises 4925 

constraints, 5209 continuous and 868 binary variables, while data compression reduces these 
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numbers, for both 6x12 and 3x6 models, to 1254, 1321, 220, and to 335, 349, 58 respectively.  

6. RESULTS AND DISCUSSION 

6.1 Effect of model reduction 

First, the effect of model reduction is studied by solving the three models (3x6, 6x12 and 12x24) 

without the application of the Monte Carlo simulation on the uncertain parameters (e.g. no 

uncertainty of the given parameters is regarded, and only the expected values have been 

considered). The results concerning the objective function and some key variables are shown in 

Table 1.  

Table 1 : Objective function values and main variables of the MILP model without Monte Carlo 

Model 

size 

Annual cost 

(€) 
CHP 

(kW) 

ABS 

(kW) 

CMP 

(kW) 

Electricity 

from grid 

(MWh) 

Electricity 

to grid 

(MWh) 

Nat. gas 

supply 

(MWh) 

Solution 

Time  

(sec) 

3x6 289,271 193 204 214 7 572 7478 0.11 

6x12 287,477 197 207 227 14 552 7338 0.67 

12x24 286,031 198 276 203 11 604 7315 20.64 

 

Comparing the models, it is observed that small differences in the values of the objective 

function are present with remarkable increase in the solution time (for an Intel Core 2 Duo 2.0 

GHz). Regarding the size of the equipment, the greatest difference is observed in the equipment 

for cooling, where a significant switch to the absorption is observed for the full model. 

Furthermore, it is also observed that as the size of the model increases reflecting more detailed 

modelling the annual cost expressed by the objective function is reduced. The conclusions 

regarding the size of the model is that we may experience significant variations in the sizes of 

the equipment although it may not be reflected in significant variations in the annual cost.   

 

6.2 Monte – Carlo simulation and the effect of various probability distributions 

The combination of Monte Carlo simulation – Optimization is performed developing appropriate 

code in GAMS. The MILP model is solved for 1000 replications of the Monte Carlo method for 
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every model as depicted in Figure 7. The produced results comprise the optimal solutions for 

every state of nature and the corresponding optimal solutions are described in histograms for the 

design variables of the hospital energy system and the cost. 
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Figure 7. Monte Carlo simulation and Mathematical Programming. 

 

As uncertain parameters we consider the natural gas price, the electricity price and the discount 

rate used to annualize the investment costs. The selling electricity price and the off-peak 

electricity price are linked to the electricity price at a constant percentage of 55% and 34% 

respectively. Three probability distributions were used for the uncertain parameters: the uniform, 

the normal and the triangular. The characteristics of the distributions for the uncertain parameters 

are given in Table 5. These are the minimum and the maximum value for the uniform 

distribution, the mean and the standard deviation for the normal distribution and the minimum, 

the most likely and the maximum value for the triangular distribution.   

Table 2: Characteristic of the applied probability distributions 

 Natural gas cost 

(ngcost) 

Electricity cost 

(elcost) 

Discount rate  

(ir) 

uniform (25, 35) (90, 125) (5, 12) 
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normal (30, 1.67) (107.5, 5.83) (8.5, 1.17) 

triangular (25, 27, 35) (90, 116.5, 125) (5, 8, 12) 

 

The uniform distribution expresses the maximum uncertainty situation, where the value of the 

parameter can vary within an interval with equal probabilities. The normal distribution is used 

when the value of the parameter can vary around a mean value, while the triangular distribution 

is useful whenever we want to express a non-symmetrical variation around an average value. 

The Monte Carlo method produces the results in the form of probability distributions for the 

objective function as well as for the fundamental decision variables. Sampling from the defined 

distributions and is performed inside the GAMS model. The computational time is 183 seconds 

for the 3x6 model, 720 seconds for the 6x12 model and 25311 seconds for the full 12x24 model.  

The output of the model is in the form of histograms with the probability distributions of the 

annual cost and the key variables. Except from the obtained range of values these outputs 

provide fruitful information to the decision maker as he is able to see how the objective function 

and the optimal values of the key decision variables vary along this range. As it was expected for 

different type of probability distributions for the input parameters different probability for the 

output variables are obtained. For example, in Figure 8 one can see the histograms of the 

probability distribution of the annual cost for the three types of distributions (uniform, normal, 

triangular) of the input variables for the 6x12 model. It is observed that more or less the 

distribution of the annual cost follows the distribution of the input parameters. 
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Figure 8: The probability distributions of the annualized cost (output of the model) 

From these charts one can also extract information in the terms of probabilities. For example the 

probability that the annual cost is under 300,000€ is about 67% for the uniform distribution, 85% 
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for the normal distribution and 92% for the triangular distribution. 

Likewise we can observe the probability distribution of the optimal values of some key 

variables. For example the probability distribution of the CHP size if the input variables are 

sampled from the normal distribution of Table 2 is shown in Figure 9. From this chart one can 

see which is the most likely optimal size of the CHP unit. From Figure 9 it is also noticed that 

there is a small, but not negligible probability (5% which is 50 out of 1000 replications) that the 

installation of the CHP unit is not an optimal choice. This happens when the sampled price of the 

natural gas is high and simultaneously the price of the electric power is low, so it is more 

beneficial to leave out the CHP unit and satisfy the demand in heating and cooling load by 

electricity from the grid. Similar conclusion can be drawn for the other distribution and the other 

decision variables. These pieces of information are very useful for the decision maker because 

they show not only the optimal decisions (at which one may arrive without Monte Carlo 

analysis) but also the sensitivity of these decisions with regard to some critical parameters. 
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Figure 9: Probability distribution of CHP size (model 12x24) 
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7. CONCLUSIONS 

In the present paper an integrated energy planning framework based on the combined use of 

Monte Carlo simulation and Mixed Integer Linear Programming is proposed for buildings of the 

tertiary sector, taking into account the uncertainty in the fuel costs and the discount rate. The 

application of the method is demonstrated in a case study regarding the energy restructuring of a 

hospital. A key concept is the modelling of the superstructure of the hospital’s energy system 

and the subsequent optimization through Mathematical Programming. The output of this process 

is the optimal structure (which equipment), the optimal size of the equipment and the optimal 

operational conditions (energy flows for each time interval). The above approach is enhanced 

with the Monte Carlo simulation in order to take into account the stochastic uncertainty on some 

key input parameters like the required energy prices and the discount rate that are use as 

objective function coefficients.    

The combined use of Monte Carlo simulation and Mixed Integer Programming gives us the 

capability to study the variation of the values for the examined variables and the robustness of 

the solution with regard to the volatile parameters. The Monte Carlo technique permits the risk 

management for the most uncertain parameters of the objective function and produces results 

that are the optimal solutions for every state of nature and come in the form of probability 

distributions. 

The scale reduction through data compression proved to be successful as it leads to satisfactorily 

convergent results, with remarkable simultaneous reduction of the run time. However, relevant 

effects should be further investigated in other systems of different size and other structural 

characteristics. The intermediate model (6x12) seems to perform better in terms of convergence 

and computational time as it can give a good approximation to the full model with a small 

increase in computational time regarding the simplified model. For a single run, the full model is 

not computationally prohibitive but for a series of runs (like e.g. in the Monte Carlo simulation) 
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the solution time increases dramatically. 

Regarding the specific case study, it was found that the introduction of new energy technologies 

is beneficial for the hospital under the vast majority of the examined scenarios. The prevailing 

option is the installation of a CHP unit combined with an absorption unit.  

Future research may focus on a similar uncertainty analysis taking into account the uncertainty in 

load demand or the combination of both (uncertainty on load demand and energy prices).  
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