Akyildirim, Erdinc and Goncu, Ahmet and Hekimoglu, Alper and Nguyen, Duc Khuong and Sensoy, Ahmet (2021): Statistical arbitrage: Factor investing approach.
Preview |
PDF
MPRA_paper_105766.pdf Download (1MB) | Preview |
Abstract
We introduce a continuous time model for stock prices in a general factor representation with the noise driven by a geometric Brownian motion process. We derive the theoretical hitting probability distribution for the long-until-barrier strategies and the conditions for statistical arbitrage. We optimize our statistical arbitrage strategies with respect to the expected discounted returns and the Sharpe ratio. Bootstrapping results show that the theoretical hitting probability distribution is a realistic representation of the empirical hitting probabilities. We test the empirical performance of the long-until-barrier strategies using US equities and demonstrate that our trading rules can generate statistical arbitrage profits.
Item Type: | MPRA Paper |
---|---|
Original Title: | Statistical arbitrage: Factor investing approach |
Language: | English |
Keywords: | Statistical arbitrage; factor models; trading strategies; geometric Brownian motion; Monte Carlo simulation. |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 105766 |
Depositing User: | Prof. Duc Khuong Nguyen |
Date Deposited: | 08 Feb 2021 11:10 |
Last Modified: | 08 Feb 2021 11:10 |
References: | Avellaneda, M., Lee, J.H., 2010. Statistical arbitrage in the us equities market. Quantitative Finance 10, 761–782. Bertram, W.K., 2009. Optimal trading strategies for Ito diffusion processes. Physica A: Statistical Mechanics and its Applications 388, 2865–2873. Bertram, W.K., 2010. Analytical solutions for optimal statistical arbitrage trading. Physica A: Statistical Mechanics and its Applications 389, 2234–2243. Bondarenko, O., 2003. Statistical arbitrage and securities prices. Review of Financial Studies 16, 875–919. Cummins, M., Bucca, A., 2012. Quantitative spread trading on crude oil and refined products markets. Quantitative Finance 12, 1857–1875. Do, B., Faff, R., 2010. Does simple pairs trading still work? Financial Analysts Journal 66, 83–95. Elliott, R.J., Van Der Hoek, J., Malcolm, W.P., 2005. Pairs trading. Quantitative Finance 5, 271–276. Fama, E.F., French, K.R., 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33, 3–56. Focardi, S.M., Fabozzi, F.J., Mitov, I.K., 2016. A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance. Journal of Banking and Finance 65, 134–155. Gatev, E., Goetzmann, W.N., Rouwenhorst, K.G., 2006. Pairs trading: Performance of a relative-value arbitrage rule. Review of Financial Studies 19, 797–827. Goncu, A., 2015. Statistical arbitrage in the black–scholes framework. Quantitative Finance 15, 1489–1499. Goncu, A., Akyildirim, E., 2017. Statistical arbitrage in the multi-asset Black–Scholes economy. Annals of Financial Economics 12, 1750004. Hogan, S., Jarrow, R., Teo, M., Warachka, M., 2004. Testing market efficiency using statis- tical arbitrage with applications to momentum and value strategies. Journal of Financial Economics 73, 525–565. Huck, N., 2019. Large data sets and machine learning: Applications to statistical arbitrage. European Journal of Operational Research 278, 330–342. Huck, N., Afawubo, K., 2015. Pairs trading and selection methods: is cointegration superior? Applied Economics 47, 599–613. Jarrow, R., Li, H., Ye, X., Hu, M., 2019. Exploring mispricing in the term structure of CDS spreads. Review of Finance 23, 161–198. Jarrow, R., Teo, M., Tse, Y.K., Warachka, M., 2012. An improved test for statistical arbitrage. Journal of Financial Markets 15, 47–80. Knoll, J., Stu ̈binger, J., Grottke, M., 2019. Exploiting social media with higher-order factorization machines: Statistical arbitrage on high-frequency data of the S&P 500. Quantitative Finance 19, 571–585. Krauss, C., Do, X.A., Huck, N., 2017. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research 259, 689–702. Lutkebohmert, E., Sester, J., 2020. Robust statistical arbitrage strategies. Quantitative Finance (forthcoming). Mayordomo, S., Pena, J.I., Romo, J., 2014. Testing for statistical arbitrage in credit derivatives markets. Journal of Empirical Finance 26, 59–75. Nasekin, S., Hardle, W.K., 2019. Model-driven statistical arbitrage on letf option markets. Quantitative Finance 19, 1817–1837. Shreve, S.E., 2004. Stochastic Calculus for Finance II: Continuous-Time Models. Springer- Verlag, New York. Stubinger, J., 2019. Statistical arbitrage with optimal causal paths on high-frequency data of the S&P 500. Quantitative Finance 19, 921–935. Stubinger, J., Endres, S., 2018. Pairs trading with a mean-reverting jump–diffusion model on high-frequency data. Quantitative Finance 18, 1735–1751. Stubinger, J., Mangold, B., Krauss, C., 2018. Statistical arbitrage with vine copulas. Quantitative Finance 18, 1831–1849. White, H., 2000. A reality check for data snooping. Econometrica 68, 1097–1126. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/105766 |