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Abstract

I study a multi-sender signaling game between an uninformed decision maker and

two senders with common private information and opposed interests. Senders can

misreport information at a cost that is tied to the size of the misrepresentation. The

main results concern the amount of information that is transmitted in equilibrium

and the language used by senders to convey such information. Fully revealing and

pure strategy equilibria exist but are not plausible. I identify sufficient conditions

under which equilibria always exist, are plausible, and essentially unique, and deliver

a complete characterization of such equilibria. As an application, I study the

informative value of different judicial procedures.
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1 Introduction

How and how much information is revealed when two equally informed senders with

conflicting interests provide advice to a decision maker? When senders are well informed

and misreporting is prohibitively expensive, the decision maker can “rely on the information

of the interested parties” to always make the right choice.1 However, there are many

situations where information is not fully verifiable and it is possible to misreport it at a

reasonable cost.2 Intuition would suggest that, in these cases, the decision maker might

obtain conflicting advice and make wrong choices as a result of being poorly informed.

On the applied front, this type of interaction is at the core of a large number of

applications: during electoral campaigns, candidates competing for consensus provide

voters with different accounts of the same facts; newspapers with opposed political leanings

deliver conflicting and inaccurate news; prosecutors and defendants may tamper with

evidence to persuade a jury; co-workers competing for a promotion may exaggerate their

own contribution to a team project; advocacy groups use amicus curiae briefs to influence

court cases, and methods used in lobbying against public health include “industry-funded

research that confuses the evidence and keeps the public in doubt” (Chan, 2013).

I address the above questions with a costly signaling game between an uninformed

decision maker and two senders with common information and conflicting goals. The two

senders observe the realization of a random variable—the state—and then simultaneously

or privately deliver a report to the decision maker. These reports are literal statements

about the realized state. Senders can misreport such information, but to do so they incur

“misreporting costs” that are increasing with the magnitude of misrepresentation. By

contrast, reporting truthfully is costless. After observing the reports, the decision maker

must select one of two alternatives, and each player obtains a payoff from the selected

alternative that depends on the state. Every player finds the relative value of the two

alternatives to be increasing with the state.3

Throughout the paper, I restrict attention to equilibria where the decision maker’s

posterior beliefs satisfy a first-order stochastic dominance condition with respect to the

senders’ reports. Under this restriction, reports claiming that the state takes strictly higher

values cannot signal to the decision maker that the relative value of the two alternatives is

strictly lower. This condition is natural given the type of strategic interaction considered

here, where senders have opposed goals, reports are literal, and misreporting is costly.

It imposes some sort of monotonicity over the senders’ reporting strategies, and thus it

1See, e.g., P. Milgrom and Roberts (1986b).
2Misreporting information is a costly activity due to, e.g., the time and effort that is required to

misrepresent information, or because misreporting generates an expected loss in reputation, credibility,
and future influence. Misreporting is more difficult, and thus more costly, when information is harder.

3The state is a valence or vertical differentiation parameter, and can be thought of representing the
relative quality of the two alternatives. Examples are leadership or competence in politicians, durability
or product quality of commercial goods, and fit with the state of the word of policies.
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is akin to restrictions that are widely used in many economic applications, such as in

auction theory and in models of communication with lying costs.

The main results of this paper concern the amount of information that can be plausibly

transmitted in equilibrium and the “language” used by senders to deliver such information.

I first show that misreporting occurs in every equilibrium. Yet, there are “receiver-efficient”

equilibria where the decision maker obtains enough information to always select her

preferred alternative as if fully informed. In spite of senders’ misreporting behavior, the

decision maker might even end up obtaining more information than what she needs. All

these equilibria, while important for this analysis, turn out to be unreasonable.

I show that all receiver-efficient and fully revealing equilibria rely on an ad-hoc choice

of beliefs that have implausible discontinuities to discourage deviations. I identify two

well-known refinements that eliminate such equilibria: unprejudiced beliefs (Bagwell &

Ramey, 1991) and ε-robsutness (Battaglini, 2002).4 A similar fate is met by pure strategy

equilibria, as I show that they are all receiver-efficient and thus unreasonable. This result

motivates the search for mixed strategy equilibria that are robust to such refinements.

The analysis of equilibria in mixed strategies is, however, a daunting task: a notorious

problem of signaling games is that they typically yield a wealth of equilibria, and here this

issue is exacerbated by the presence of multiple senders and of rich state and signal spaces.

Canonical refinements based on the notion of strategic stability (Kohlberg & Mertens,

1986) are of little help, as they are developed for settings with a single sender. I thus

proceed by drawing on the implausibility of receiver-efficient and pure strategy equilibria

to introduce reasonable restrictions on the decision maker’s posterior beliefs.

More specifically, I focus the subsequent analysis on equilibria that satisfy two addi-

tional conditions on the posterior beliefs of the decision maker: the first one is a strong

form of first-order stochastic dominance which requires that conflicting reports claiming

a strictly higher state must signal that the relative value of the two alternatives is, in

expectation, strictly higher; the second is a dominance condition under which the decision

maker excludes the possibility that senders may deliver reports that are equilibrium

dominated.5 I refer to equilibria satisfying these two conditions as “direct equilibria,” as

they feature reports which are direct signals of the realized state.

I provide a complete characterization of direct equilibria, and show that they possess

desirable properties: they always exists, they are essentially unique, and they survive the

refinement criteria that break down fully revealing, receiver-efficient, and pure strategy

equilibria. The two conditions imposed by direct equilibria, even though relatively natural

and mild, are therefore sufficient to ensure robustness and uniqueness while preserving

existence.

4See Section 4 for a formal definition of unprejudiced beliefs and ε-robustness. I show that these two
refinements are tightly connected: equilibria that are ε-robust must have unprejudiced beliefs (Lemma 3).
This result suggests a novel rationale for the use of ε-robustness in multi-sender communication games.

5See Definition 4 in Section 5 for a complete and formal statement of these two conditions.
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In direct equilibria, the transmission of information is qualitatively different than

in comparable models of strategic communication. There is neither “babbling” nor full

revelation, in contrast with predictions advanced by related models of cheap talk and

verifiable disclosure, respectively. By contrast, “revelation” is a probabilistic phenomenon

in the sense that the decision maker fully learns almost every state with some positive

probability. Full revelation is more likely to occur in extreme states, while it is relatively

unlikely in intermediate states. There are extreme states in which both senders always

truthfully reveal the state to the decision maker even though they have opposed goals.

Senders’ equilibrium behavior is mixed, as they always report the truth with some

positive probability, and they misreport otherwise. Therefore, in (almost) every state the

two senders may deliver exactly the same truthful report even though they have conflicting

interests. They might also end up delivering different reports that however imply the

same recommended action to the decision maker. Whenever one of these two events takes

place, the decision maker fully learns the realized state. In the former case full revelation

occurs without wasteful signaling expenditures, while the latter case requires a sender to

engage in costly misreporting. This is in contrast with previous results in multi-sender

signaling games, where full revelation is either always inefficient (Emons & Fluet, 2009)

or it is always efficient (Bagwell & Ramey, 1991).6

Conditional on misreporting, senders deliver reports in a convex set, and no particular

misrepresentation in such set is delivered with strictly positive probability. The misreport-

ing behavior of each sender is directly determined by the feature of its opponent, such as

the opponent’s costs structure and payoff function, and it is determined only indirectly by

its own features. Upon observing two conflicting reports recommending different actions,

the decision maker understands that “the truth is somewhere in between” and that at

least one of the two senders is misreporting. The decision maker cross-validates reports

and allocates the burden of proof across senders by accounting for their characteristics.

The setting studied in the main part of the paper allows for a large number of

asymmetries. I also analyze the specific case where senders have a similar payoff and

cost structure, and where the distribution of the state is such that no sender is ex-

ante advantaged in any way. In this “symmetric environment,” I provide a closed-form

solution to direct equilibria and show that they naturally display symmetric strategies.

The decision maker equally allocates the burden of proof among senders by following

the recommendation of the sender delivering the most extreme report.7 The senders’

misreporting behavior depends on the shape of the common cost function: with convex

costs, senders are more likely to deliver large misrepresentations of the state rather than

6Signaling games with a single sender typically have inefficient separating equailibria. See for example
Spence (1973), P. Milgrom and Roberts (1982, 1986a), Kartik (2009), Kartik, Ottaviani, and Squintani
(2007).

7This result is reminiscent of equilibria in the all-pay auction with complete information, where the
prize is assigned to the player submitting the highest bid (Baye, Kovenock, & De Vries, 1996).
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small lies, while the opposite is true for concave misreporting costs.

As a brief application, I use insights from the analysis of direct equilibria to study the

informational value of different judicial systems. Shin (1998) shows that, when information

is fully verifiable, the adversarial judicial procedure is always superior to the inquisitorial

procedure. However, Shin (1998) also conjectures that such sharp result may crucially

depend on the assumption of verifiability. I show that, when information is not fully

verifiable, then the inquisitorial procedure may indeed be superior than the adversarial

procedure, thus proving the above conjecture to be correct.

The remainder of this article is organized as follows. In Section 2, I discuss the related

literature. Section 3 introduces the model, which I solve in Section 4 and 5. In Section 6,

I provide an example and an application. Finally, Section 7 concludes. Formal proofs are

relegated to Appendix A.

2 Related Literature

This paper contributes to different strands of literature. First, it relates to models of

strategic communication with multiple senders. This line of work shows several channels

through which full information revelation can be obtained (Battaglini, 2002; Krishna &

Morgan, 2001; P. Milgrom & Roberts, 1986b). Papers in this literature typically assume

that misreporting is either costless (cheap talk) or impossible (verifiable disclosure). By

contrast, in this article misreporting is possible at a cost that depends on the magnitude

of misrepresentation. Under this modelling specification, I show that fully revealing

equilibria exist but are not plausible.

Therefore, this paper relates to models of strategic communication with misreporting

costs (Chen, 2011; Chen, Kartik, & Sobel, 2008; Kartik, 2009; Kartik et al., 2007; Ottaviani

& Squintani, 2006). All these papers are concerned with the single-sender case, while I

consider a multi-sender setting. An exception is Dziuda and Salas (2018), where they

study a communication game with endogenous lying costs and consider a case with two

senders.

The introduction of misreporting costs makes this a costly signaling model. Therefore,

this paper contributes to the literature of multi-sender signaling with perfectly correlated

types, but it differs from this line of work in a number of ways. First, in my model the

messages or signals of senders have the only role of transmitting information, and thus do

not directly affect how players value each alternative. This is not the case, e.g., in related

models of limit entry (Bagwell & Ramey, 1991; Schultz, 1996), price competition (Bester

& Demuth, 2015; Fluet & Garella, 2002; Hertzendorf & Overgaard, 2001; Yehezkel, 2008),

and public good provision (Schultz, 1996).8 Second, I model a setting where the signals of

8For example, in these models firms may signal quality through prices, which affect market demand
and thus profits. Some of these papers also study signaling by both pricing and advertising together.
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senders are fully observable.9 By contrast, in the entry deterrence models of Harrington

(1987) and Orzach and Tauman (1996), incumbent firms simultaneously select their own

pre-entry output, but the entrant can observe only the resulting market price.

A key feature of the model analyzed in this paper is that both senders pay their

own signaling costs independently of the decision maker’s choice. This all-pay feature is

missing in related multi-sender signaling models of electoral competition (Banks, 1990;

Callander & Wilkie, 2007), where only the elected candidate incurs the signaling cost.10

The type of strategic interaction and competition that is analyzed in this article is

reminiscent of and closely related to all-pay contest models, where contestants compete

for a prize by simultaneously delivering costly scores or bids (Baye et al., 1996; Siegel,

2009). In these papers, the mapping from signals or scores to outcomes is exogenously

determined by a contest success function. For example, Skaperdas and Vaidya (2012)

study persuasion by contending parties as an all-pay contest. The paper studied here

differs from this literature in that the decision maker is a strategic actor whose choice

is endogenously determined as a part of an equilibrium. Similarly, Gul and Pesendorfer

(2012) study political contests were two parties with opposing interests provide costly

payoff-relevant signals to a strategic voter. However, in their model only one party incurs

a cost at each moment, and parties cannot distort information.

Finally, this paper is also connected to work studying adversarial procedures (De-

watripont & Tirole, 1999; Shin, 1998). Differently than this line of work, I consider a

model where information is not fully verifiable. In this regard, Emons and Fluet (2009)

constitute an exception. However, they consider a setting with a continuum of types,

signals, and receiver’s actions, which yields only fully revealing equilibria.

3 The Model

Set-up and timeline. There are three players: two informed senders (1 and 2) and one

uninformed decision maker (dm). Let θ ∈ Θ ⊆ R be the underlying state, distributed

according to the full support probability density function f . After observing the realized

state θ, each of the two senders simultaneously or privately deliver to the decision maker

a report rj ∈ Rj, where rj is a report by sender j and Rj is the report space of sender j.

The decision maker, after observing the pair of reports (r1, r2) but not the state θ, selects

an alternative a ∈ {+©, -©}.

Payoffs. Player i ∈ {1, 2, dm} obtains a payoff of ui(a, θ) if the decision maker selects

9Signals are not fully observable if, e.g., they are aggregated into a single score and the receiver can
observe only such score, but cannot observe each individual signal.

10These papers also differs from my model in that they consider settings where senders do not have
common information. Similarly, Mailath (1989) and Daughety and Reinganum (2007) study price signaling
and Honryo (2018) studies risk shifts in settings with imperfectly correlated types. My model should be
seen as complementary to this line of work.
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alternative a in state θ. I normalize ui ( -©, θ) = 0 for all θ ∈ Θ and denote by ui(θ) ≡

ui(+©, θ), where ui(θ) is weakly increasing in θ. The decision maker’s expected utility from

selecting +© given the senders’ reports is Udm(r1, r2). Thus, the state θ is an element of

vertical differentiation or valence component over which players share a common preference,

and it is interpreted as the relative quality of alternative +© with respect to alternative -©.

I may refer to the state θ also as the senders’ “type.”

Misreporting costs. Sender j bears a cost kjCj(rj, θ) for delivering report rj when the

state is θ. The cost function Cj(rj, θ) ≥ 0 is continuous and such that, for every θ ∈ Θ

and j ∈ {1, 2}, we have that Cj(θ, θ) = 0 and

if rj ≷ θ, then
dCj(rj, θ)

drj

≷ 0 ≷
dCj(rj, θ)

dθ
.

The scalar kj > 0 is a finite parameter measuring the intensity of misreporting costs.

Therefore, misreporting is increasingly costly with the magnitude of misrepresentation,

while truthful reporting is always costless. Sender j’s total utility is

wj(rj, θ, a) = 1{a = +©}uj(θ) − kjCj(rj, θ),

where 1{·} is the indicator function. It follows that, conditional on the decision maker’s

eventual choice, both senders prefer to deliver reports that are closer to the truth.

Definitions and assumptions. I assume that the state space and the report spaces

are the same, i.e., R1 = R2 = Θ. Thus, a generic report r has the literal or exogenous

meaning “The state is θ = r.” I say that sender j reports truthfully when rj = θ, and

misreports otherwise. I sometimes use −j to denote the sender other than sender j.

I define the “threshold” τi as the state in which player i is indifferent between the two

alternatives. Formally, τi := {θ ∈ Θ|ui(θ) = 0}. I assume that utilities ui(θ) are such that

τi exists and is unique11 for every i ∈ {1, 2, dm}. The threshold τi tells us that player i

prefers +© over -© when the state θ is greater than τi. Throughout the paper, I consider

the case where senders have opposing biases, i.e., τ1 < τdm < τ2. To make the problem

non-trivial I let τdm ∈ Θ, and I normalize τdm = 0. Therefore, the decision maker prefers

to select the positive alternative +© when the state θ takes positive values, and prefers

to select the negative alternative -© when the state is negative. I assume that when the

decision maker is indifferent between the two alternatives at given beliefs, she selects +©.

I define the “reach” of sender j in state θ as the report which associated misreporting

costs offset j’s gains from having its own preferred alternative eventually selected. Formally,

11These assumptions are for notational convenience. The model can accommodate for senders that
always strictly prefer one alternative over the other and for utility functions such that ui(θ) 6= 0 for every
θ ∈ Θ, including step utility functions.
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the “upper reach” r̄j(θ) ≥ θ of sender j in state θ is defined as

r̄j(θ) := max
{

r ∈ R | (−1)1{θ<τj}uj (θ) = kjCj (r, θ)
}

. (1)

Similarly, the “lower reach” r
¯

j(θ) ≤ θ of sender j in state θ is defined as

r
¯

j(θ) := min
{

r ∈ R | (−1)1{θ<τj}uj (θ) = kjCj (r, θ)
}

. (2)

I will sometimes use the “inverse reaches” r̄−1
1 (r1) and r

¯
−1
2 (r2), where r̄−1

j (·) and r
¯

−1
j (·)

map from Rj to Θ and are defined as the inverse functions of r̄j(θ) and r
¯

j(θ), respectively.

I assume that the state and report spaces are large enough, that is,

Θ ⊇ R̂ := [r
¯

2(0), r̄1(0)] .

This assumption ensures that the information senders can transmit is not artificially

bounded by restrictions in the reports that they can deliver.

Strategies. A pure strategy for sender j is a function ρj : Θ → Rj such that ρj(θ) is

the report delivered by sender j in state θ. A mixed strategy for sender j is a mixed

probability measure φj : Θ → ∆(Rj), where φj(rj, θ) is the mixed probability density that

φj(θ) assigns to a report rj ∈ Rj. I denote by Sj(θ) the support of sender j’s strategy in

state θ. Section 5 introduces additional notation that is required to study equilibria in

mixed strategies.

I say that a pair of reports (r1, r2) is off-path if, given the senders’ strategies, (r1, r2)

will never be observed by the decision maker. Otherwise, I say that the pair (r1, r2) is on-

path. A posterior beliefs function for the decision maker is a mapping p : R1 ×R2 → ∆(Θ)

which, given any pair of reports (r1, r2), generates posterior beliefs p(θ|r1, r2) with CDF

P (θ|r1, r2). Given a pair of reports (r1, r2) and posterior beliefs p(θ|r1, r2), the decision

maker selects an alternative in the sequentially rational set β(r1, r2), where

β(r1, r2) = arg max
a∈{+©, -©}

Ep [udm(a, θ)|r1, r2] .

As mentioned before, if p(θ|r1, r2) is such that Udm(r1, r2) = 0, then β(r1, r2) = +©.

Solution concept. The solution concept is perfect Bayesian equilibrium (PBE).12

Throughout the paper, I restrict attention to equilibria where beliefs p satisfy the following

first-order stochastic dominance condition: for every rj ≥ r′
j and j ∈ {1, 2},

Udm(r1, r2) ≥ Udm(r′
1, r

′
2). (FOSD)

Condition (FOSD) says that a higher report cannot signal to the decision maker a lower

12For a textbook definition of perfect Bayesian equilibrium, see Fudenberg and Tirole (1991).
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expected utility from selecting alternative +©.13 A focus on these equilibria is natural

given that the value of +© is increasing in the state, reports are literal, and misreporting is

costly.

Since in equilibrium the decision maker has correct beliefs, imposing conditions on p has

consequences over the senders’ equilibrium reporting behavior. An immediate implication

of (FOSD) is that senders play strategies that satisfy some sort of monotonicity condition:

in every equilibrium, a sender that prefers alternative +© over -© is never going to deliver a

report that is strictly lower than the actual realized value of θ. The next lemma formalizes

this result.

Lemma 1. In every perfect Bayesian equilibrium satisfying (FOSD), minSj(θ) ≥ θ for

θ ≥ τj and max Sj(θ) ≤ θ otherwise, j ∈ {1, 2}.

Lemma 1 shows how (FOSD) is akin to assumptions that are widely used in many

economic applications, such as the monotone bidding strategies in auction theory (e.g.,

Wilson (1977)), the monotone likelihood ratio property in signal distributions (e.g.,

P. R. Milgrom (1981)), and the message monotonicity in related communication games

(e.g., Kartik (2009)). To study mixed strategy equilibria, I will use a stronger version

of (FOSD) coupled with an additional condition that draws on a dominance argument.

Section 5 introduces these conditions together with additional notation that is required

to describe mixed strategies. Hereafter, I refer to perfect Bayesian equilibria that satisfy

(FOSD) simply as “equilibria.”

3.1 Benchmark

Before solving for the equilibria of the model, I briefly consider a number of benchmark

cases that are useful to interpret the results in the next sections.

Full information. Under full information about the state θ, the decision maker selects

+© when θ ≥ 0 and selects -© otherwise. Both senders would always report truthfully. The

ex-ante full information welfare obtained by the decision maker in this scenario is

Wfi =
∫ max Θ

0
f(θ)udm(θ)dθ. (3)

Perfect alignment. Sender j is perfectly aligned with the decision maker when τj = τdm.

There is an equilibrium where the perfectly aligned sender j always reports truthfully

and the decision maker blindly trusts j’s reports. The other sender, even if not perfectly

aligned, can do no better than reporting truthfully as well. In this case, the decision

maker gets her full information welfare Wfi, and no misreporting takes place.

13Posterior beliefs p(θ|r1, r2) first-order stochastically dominate p(θ|r′

1
, r′

2
) for rj ≥ r′

j , j ∈ {1, 2}, if and

only if
∫

u(θ)p(θ|r1, r2)dθ ≥
∫

u(θ)p(θ|r′

1
, r′

2
)dθ for every weakly increasing utility function u(θ). Thus,

condition (FOSD) is weaker than that as it needs to apply only to u(θ) ≡ udm(θ).
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Verifiable information. Consider the case where information about the state is fully

verifiable, that is, kj = ∞, j ∈ {1, 2}. Senders cannot profitably withhold information,

but even if they could we would obtain an equilibrium where in every state at least one

of the two senders discloses truthfully (P. Milgrom & Roberts, 1986b).14 As before, the

decision maker gets its full information welfare Wfi.

Cheap talk. Suppose now that k1 = k2 = 0. A babbling equilibrium exists, where

the decision maker adjudicates according to her prior f only, while senders deliver

uninformative messages. There is no equilibrium where the decision maker obtains enough

information to always select her preferred alternative.15 In an informative equilibrium,

the decision maker can only learn that the state is between the senders’ thresholds τj.

Therefore, when misreporting is “cheap,” the decision maker obtains an ex-ante welfare

that is strictly lower than Wfi.

4 Receiver-efficient and Pure Strategy Equilibria

The goal of this section is that of studying the existence and the plausibility of equilibria

where the decision maker always obtains the information she needs to select her preferred

alternative. This class of equilibria is important because it is believed that competition

in “the marketplace of ideas” may result in the truth becoming known (Gentzkow &

Shapiro, 2008). Competing forces may indeed yield full information revelation in cheap

talk settings (Battaglini, 2002) as well as in models of verifiable disclosure (P. Milgrom &

Roberts, 1986b).

In this setting, the combination of a rich state space together with a binary action

space implies that, to select her favorite alternative, the decision maker does not need to

know precisely what is the realized state θ. All the decision maker needs to know is, in

fact, only whether the state is positive or negative. For the purpose of this section, a focus

on fully revealing equilibria would therefore be too restrictive. The following definition

gives a weaker notion of revelation that will provide useful for the analysis that follows.

Definition 1. A “fully revealing equilibrium” (FRE) is an equilibrium where for every

θ′ ∈ Θ, rj ∈ Sj(θ
′), and j ∈ {1, 2}, P (θ|r1, r2) = 1 if and only if θ ≥ θ′. A “receiver-

efficient equilibrium” (REE) is an equilibrium where for every θ ∈ Θ, rj ∈ Sj(θ), and

j ∈ {1, 2}, β(r1, r2) = +© if θ ≥ 0, and β(r1, r2) = -© otherwise.

14If withholding is not possible or prohibitively expensive, then this result holds even when only one of
the two senders has verifiable information, i.e., 0 ≤ kj < ki = ∞ for i 6= j: in equilibrium, the decision
maker pays attention only to sender i and disregards every report delivered by sender j, which cannot do
better than reporting truthfully as well.

15Battaglini (2002) shows conditions under which there is full revelation of the state in cheap talk
games. With a binary action space the decision maker cannot take extreme actions that punish both
senders, and thus there cannot be equilibria where the state is fully revealed.
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A fully revealing equilibrium is also receiver-efficient, but a receiver-efficient equilibrium

is not necessarily fully revealing. If competing forces could discipline senders into always

report truthfully their private information about the state, then full revelation would

naturally occur. However, the following observation points out that, in the game considered

here and described in Section 3, misreporting occurs in every equilibrium.

Observation 1. Misreporting occurs in every equilibrium.

To see why, suppose by way of contradiction that there exists an equilibrium16 where

misreporting never occurs, that is, where ρ1(θ) = ρ2(θ) = θ for every θ ∈ Θ. Consider

such a truthful equilibrium and a state θ = ǫ > 0, where ǫ is small enough. To discourage

deviations, off-path beliefs must be such that β(ǫ,−ǫ) = +©. However, there always exists

an ǫ > 0 such that, when the state is θ = −ǫ, sender 1 can profitably deviate from the

prescribed truthful strategy by reporting r1 = ǫ, as u1(−ǫ) > k1C1(ǫ,−ǫ). This contradicts

the existence of equilibria where misreporting never occurs.

The question is: if senders misreport in every equilibrium, do receiver-efficient equilibria

exist at all? Figure 1 provides a positive graphical answer by showing reporting strategies

that not only constitute a receiver-efficent equilibrium, but are also fully revealing.17

To verify that Figure 1 depicts an equilibrium, consider the following strategies: sender

1 delivers ρ1(θ) = r̄1(0) for every θ ∈ [0, r̄1(0)], where for simplicity we assume that

r̄1(0) < τ2. Otherwise, sender 1 reports truthfully. By contrast, sender 2 always report

truthfully, i.e., ρ2(θ) = θ for all θ ∈ Θ. Given any on-path pair of reports, posterior beliefs

are such that P (θ|r1, r2) = 0 for every θ < r2 and P (θ|r1, r2) = 1 otherwise, which is

consistent with sender 2 playing a separating strategy. Off-path beliefs are such that such

that Udm(r1, r2) < 0 if r1 < r̄1(0), and P (θ|r1, r2) = 1 if and only if θ ≥ r1 ≥ r̄1(0). By

definition of reach, sender 1 would never find it profitable to deliver a report r1 ≥ r̄1(0)

when θ < 0. Sender 2 cannot deviate from its truthful strategy by delivering a negative

report when the state is positive: since ρ1(θ) ≥ r̄1(0) for every θ ≥ 0, such a deviation

would induce β(·) = +©. No sender has a profitable individual deviation from the prescribed

equilibrium strategies. Therefore, there exist equilibria where senders always fully reveal

the state to the decision maker, even though full revelation involves misreporting.

Incidentally, Figure 1 also proves the existence of equilibria in pure strategies. In-

tuitively, when two competing senders with opposed interests play pure strategies, the

decision maker can “undo” their reports to recover the underlying truth. This argument

may suggest that all pure strategy equilibria are receiver-efficient. The next lemma shows

that such intuition is correct and, in addition, that all receiver-efficient equilibria are in

pure strategies.

16Observation 1 applies to every perfect Bayesian equilibria, and not only to those satisfying (FOSD).
17In a single-sender setting with unbounded state space, Kartik et al. (2007) study a fully revealing

equilibrium where misreporting occurs in every state. There, the reporting strategy is fully separating.
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θ

ρj(θ)

τ1 0 τ2

r̄1(0)

Figure 1: Senders’ strategies in a receiver-efficient and fully revealing equilibrium. The
reporting rules of sender 1 and 2 are in black and dashed gray, respectively.

Lemma 2. An equilibrium is receiver-efficient if and only if it is in pure strategies.

The receiver-efficient and fully revealing equilibrium strategies discussed above are,

however, problematic. To see what the problem is, consider again the strategies pictured

in Figure 1 and a state θ′ ∈ (0, r̄1(0)). Suppose that in state θ′ sender 1 deviates from the

prescribed equilibrium by reporting the truth instead of ρ1(θ′) = r̄1(0), whereas sender 2

sticks to its separating reporting rule. Notice that, in the equilibrium under consideration,

sender 1 never delivers r1 = θ′. Upon observing the off-path pair of reports (θ′, θ′), beliefs

p induce an expected payoff of Udm(θ′, θ′) < 0 and lead to β(θ′, θ′) = -©. These off-path

beliefs require the decision maker to conjecture that the state is likely to be negative.

However, this means that the decision maker must entertain the possibility that (i) both

senders performed at the same time a deviation from the prescribed equilibrium strategies,

and that (ii) sender 2 has delivered a strictly dominated report.

In addition, the receiver-efficient equilibrium in Figure 1 is sustained by beliefs that

are discontinuous: for every on-path pair of reports (r̄1(0), r2) such that r2 ∈ (0, r̄1(0)),

beliefs are such that Udm(r̄1(0), r2) = udm(r2) > 0; by contrast, Udm(r̄1(0) − ǫ, r2) < 0 for

every arbitrarily small ǫ > 0. This discontinuity is crucial to discourage deviations, but it

does not seem plausible especially when considering its problematic implications discussed

above. In the remaining part of this section, I put receiver-efficient equilibria under the

scrutiny of two well-known tests for games with multiple senders: unprejudiced beliefs

(Bagwell & Ramey, 1991) and ε-robustness (Battaglini, 2002).

Unprejudiced beliefs. Consider again a deviation from the equilibrium depicted in

Figure 1 where both senders report truthfully in some state θ′ ∈ (0, r̄1(0)). If, whenever

possible, the decision maker conjectures deviations as individual and thus as originating

from one sender only, then she should infer that sender 1 has performed the deviation:

13



sender 1 never delivers r1 = θ′ on the equilibrium path, whereas sender 2 truthfully

reports r2 = θ′ only when the state is indeed θ′. Since sender 2 is following its separating

strategy, the decision maker should infer that the state is θ′ > 0. According to this line of

reasoning, off-path beliefs must be such that P (θ|θ′, θ′) = 1 if and only if θ ≥ θ′, and thus

β(θ′, θ′) = +©. Therefore, such a deviation becomes profitable for sender 1 because it saves

on misreporting costs without affecting the outcome.

Bagwell and Ramey (1991) introduce the concept of “unprejudiced beliefs,” which

formalize the idea that the decision maker should exclude the possibility that multiple

senders are deviating at the same time whenever it is possible that only a single sender is

deviating. Vida and Honryo (2019) show that, in generic multi-sender signaling games,

strategic stability (Kohlberg & Mertens, 1986) implies unprejudiced beliefs. Apart for its

relationship with the notion of strategic stability, unprejudiced beliefs are intuitive, easily

applicable, and consistent with the notion of Nash equilibrium, and therefore constitute a

sensible way to refine equilibria in multi-sender signaling games where other criteria fail

to do so. The following definition formalizes unprejudiced beliefs.18

Definition 2 (Vida & Honryo, 2019). Given senders’ strategies ρj, beliefs p are unprej-

udiced if, for every pair of reports (r1, r2) such that ρj(θ
′) = rj for some θ′ ∈ Θ and

j ∈ {1, 2}, we have that p(θ′′|r1, r2) > 0 only if there is a sender i ∈ {1, 2} such that

ρi(θ
′′) = ri.

We have seen how the above “informational free-riding” argument breaks down the

receiver-efficient equilibrium depicted in Figure 1. A natural question is whether such

argument applies only in that particular case or if instead it prunes out other equilibria.

The next proposition tells us that in fact there is no receiver-efficient equilibrium that

supports unprejudiced beliefs.

Proposition 1. There are no receiver-efficient equilibria with unprejudiced beliefs.

ε-robustness. In the model described in Section 3, senders are perfectly informed and

the receiver can perfectly observe the senders’ reports. There is no “noise” or perturbation

in what senders report or in what the decision maker observes. This modelling strategy

allows me to isolate the effects of strategic interactions and inference from the effects

of statistical information aggregation. However, this procedure may give us excessive

freedom to pick ad-hoc beliefs that would not survive the presence of even arbitrarily

small perturbations in the transmission of information.

I follow Battaglini (2002) and define an ε-perturbed game as the game described in

Section 3 in which the decision maker perfectly observes the report of sender j with

probability 1 − εj and with probability εj observes a random report r̃j, where r̃j is a

18Definition 2 is weaker than the definition originally introduced by Bagwell and Ramey (1991), and
therefore it is useful to test for equilibria that do not support unprejudiced beliefs.
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random variable with continuous distribution Gj, density gj, and support in Θ. This may

correspond to a situation where with some probability the decision maker misreads reports;

or, alternatively, where with some probability senders commit mistakes in delivering their

reports.19 As before, senders incur misreporting costs that depend only on the realized

state θ and on their “intended” report rj, but not on the wrongly observed or delivered

r̃j. The introduction of noise makes any pair of reports to be possible on the equilibrium

path. The decision maker’s posterior beliefs depend on ε = (ε1, ε2), G = (G1, G2), and on

the senders’ reporting strategies ρj(θ).

Definition 3 (Battaglini (2002)). An equilibrium is ε-robust if there exists a pair of

distributions G = (G1, G2) and a sequence εn = (εn
1 , ε

n
2 ) converging to zero such that the

off-path beliefs of the equilibrium are the limit as εn → 0+ of the beliefs that the equilibrium

strategies would induce in an ε-perturbed game.

Intuitively, as the noise ε fades away, the event in which the decision maker misreads

both reports becomes negligible. At the limit as ε → 0+, the decision maker infers that

she is correctly observing at least one of the two reports. Therefore, upon observing an

off-path pair of reports, beliefs in an ε-robust equilibrium are as if the decision maker

conjectures—whenever possible—that one sender is following its prescribed reporting

strategy while the other is not. This conclusion is reminiscent of unprejudiced beliefs,

and suggests that there might be a tight connection between these two refinement criteria.

The next lemma confirms the existence of such a relationship.

Lemma 3. If a perfect Bayesian equilibrium is ε-robust, then it has unprejudiced beliefs.

A straight forward implication of Lemma 3 and Proposition 1 is that no receiver-

efficient or fully revealing equilibrium is ε-robust. By Lemma 2, we obtain that also pure

strategy equilibria do not have unprejudiced beliefs and are not ε-robust. These results

suggest that mixed strategy equilibria are qualitatively important, whereas in related

work pure strategies have a prominent role.20 The next section is dedicated to finding

equilibria that are robust in the sense that are ε-robust, and supported by unprejudiced

beliefs.

19Battaglini (2002) introduces noise in what senders know, while here I perturb the reports observed
by the decision maker. This type of perturbation is qualitatively equivalent to that used by Battaglini
(2002).

20For example, Kartik et al. (2007) and Kartik (2009) focus on pure strategy only, and in Chen (2011)
there are no (monotone) mixed strategies. Most work on multi-sender signaling (see Section 2) also study
only pure strategy equilibria. Results in Section 4 also suggest that the similarity between this setting
and contest theory goes beyond the type of strategic interaction between senders, but it extends also to
the equilibrium behavior, which, in contests, is typically in mixed strategies (Siegel, 2009).
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5 Direct Equilibria

Findings in the previous section show that pure strategy equilibria exist and are receiver-

efficient, but are supported by an unreasonable choice of off-path beliefs. Such results

motivate the quest for “robust” equilibria which, if exist, must therefore be in mixed

strategies. The two main goals of this section are that of providing sufficient conditions

under which equilibria are robust and to characterize such robust equilibria.

Since (FOSD) is not enough to rule out unreasonable equilibria, I need to impose a

different set of restrictions to study robust mixed strategy equilibria. However, classical

refinements for signaling games such as the “intuitive criterion” (Cho & Kreps, 1987) and

the “universal divinity” (Banks & Sobel, 1987) have little bite here, as they are developed

for single-sender settings. To date, there is no large consensus on how to extend these

criteria to multi-sender settings. By contrast, ε-robustness and unprejudiced beliefs proved

to be useful in testing separating equilibria of multi-sender signaling games, but cannot

be easily applied when looking for non-separating equilibria in mixed strategies.

Therefore, I draw on the implausibility of receiver-efficient equilibria to impose two

conditions on how the decision maker interprets the senders’ reports. I refer to equilibria

satisfying these conditions as “direct equilibria.”

Definition 4. A “direct equilibrium” (DE) is a perfect Bayesian equilibrium where poste-

rior beliefs p satisfy the following conditions:

i) condition (FOSD) holds, and for every pair of reports (r1, r2) such that r
¯

2(0) < r2 ≤

0 ≤ r1 < r̄1(0), and for j ∈ {1, 2},

dUdm(r1, r2)

drj

> 0; (D)

ii) upon observing the pairs of reports (r̄1(0), r
¯

2(0)) and (0, 0), beliefs p are such that

the decision maker is indifferent between the two alternatives, that is,

Udm (r̄1(0), r
¯

2(0)) = Udm (0, 0) = 0. (C)

The first condition, (D), imposes a “strict” first-order stochastic dominance on posterior

beliefs p, but only for pairs of reports consisting of conflicting recommendations. Otherwise,

(FOSD) applies. Since (D) implies (FOSD), Lemma 1 applies also to direct equilibria.

Intuitively, (D) means that strictly higher conflicting reports inform the decision maker

that the expected value of selecting alternative +© is strictly higher. As for (FOSD), this

condition is natural and consistent with the idea that reports are literal statements about

the state and that misreporting is costly.

Condition (C) draws from a simple argument of equilibrium dominance. To see why,

consider a report rj ∈ R̂, and define by Qj(rj) the set of states for which delivering report
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rj is potentially profitable for sender j given that beliefs p satisfy (D). By Lemma 1 and

the definition of inverse reach, we obtain that Q1(r1) = [r̄−1
1 (r1), r1] ∩ Θ and Q2(r2) =

[r2, r
¯

−1
2 (r2)] ∩ Θ. Denote the intersection of these two sets by Q(r1, r2) = Q1(r1) ∩Q2(r2).

If Q(r1, r2) 6= ∅, then it would be sensible for the decision maker to exclude the possibility

that the realized state lies outside Q(r1, r2), i.e., p(θ|r1, r2) = 0 for all θ /∈ Q(r1, r2). Since

Q(r̄1(0), r
¯

2(0)) = Q(0, 0) = {0}, upon receiving the pairs or reports (r̄1(0), r
¯

2(0)) or (0, 0),

the decision maker should understand that the realized state21 is for sure θ = 0. Otherwise,

the decision maker would have to believe that at least one of the two senders has delivered

a report that is equilibrium dominated. Condition (C) is even less stringent than this

argument suggests, as it does not require beliefs to be degenerate at 0, and does not

impose conditions over pairs of reports22 other than (r̄1(0), r
¯

2(0)) and (0, 0).

As an immediate application of direct equilibria, reconsider the fully revealing and

voter-efficient equilibrium in Figure 1 previously discussed in Section 4. To prevent a

deviation by sender 1, beliefs p are such that Udm(θ′, θ′) < 0 for any θ′ ∈ (0, r̄1(0)), and

thus β(θ′, θ′) = -©. That cannot be a direct equilibrium: by (C) we have that Udm(0, 0) = 0,

and by (D) it must be that Udm(θ′, θ′) ≥ 0, leading to β(θ′, θ′) = +© and thus to a profitable

deviation by sender 1. Therefore, conditions (C) and (D) rule out at least some equilibria

that, we have seen, are not plausible.

By the end of this section we will see that direct equilibria have a number of remarkable

properties: they always exists, they are essentially unique, and there are direct equilibria

that are ε-robust and thus with unprejudiced beliefs.

5.1 Notation for Mixed Strategies

Before analyzing direct equilibria, I first introduce further notation. To describe mixed

strategies, I use a “mixed” probability distribution φj(rj, θ) which, for every state θ,

assigns a mixed probability density to report rj by sender j. This specification allows me

to describe the senders’ reporting strategies as mixed random variables which distribution

can be partly continuous and partly discrete.23

Formally, I partition the support Sj(θ) of each sender in two subsets, Cj(θ) and Dj(θ).

To represent atoms in φj(θ), I define a partial probability density function αj(·, θ) on Dj(θ)

such that 0 ≤ αj(rj, θ) ≤ 1 for all rj ∈ Dj(θ), and α̂j(θ) =
∑

rj∈Dj(θ) αj(rj, θ). By contrast,

the continuous part of the distribution φj(θ) is described by a partial probability density

function ψj(·, θ) on Cj(θ) such that
∫

rj∈Cj(θ) ψj(rj, θ)dθ = 1 − α̂j(θ). I set αj(r
′, θ) = 0 for

21From P (θ|r̄1(0), r
¯2

(0)) = P (θ|0, 0) = 1 iff θ ≥ 0 we get Udm (r̄1(0), r
¯2

(0)) = Udm (0, 0) = udm(0) = 0.
22As we shall see, it turns out that in every direct equilibrium the pair (r̄1(0), r

¯2
(0)) is on-path only for

θ = 0, and thus it fully reveals that the state is indeed zero. By contrast, no sender ever delivers rj = 0,
and thus the pair of reports (0, 0) is not only off-path, but it must constitute a double deviation.

23Mixed type distributions that have both a continuous and a discrete component to their probability
distributions are widely used to model zero-inflated data such as queuing times. For example, the “rectified
gaussian” is a mixed discrete-continuous distribution.
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all r′ /∈ Dj(θ) and ψj(r
′′, θ) = 0 for all r′′ /∈ Cj(θ).

As we shall see (Lemma 7 and Proposition 4), in every direct equilibrium Dj(θ) = {θ}

for all θ ∈ Θ and j ∈ {1, 2}. Therefore, I hereafter simplify notation by setting αj(θ) ≡

αj(θ, θ) = α̂j(θ). The score αj(θ) thus represents the probability that sender j reports

truthfully in state θ ∈ Θ. The partial density probabilities24 αj(θ) and ψj(·, θ) determine

the “generalized” density function φj(θ) through the well defined mixed distribution

φj(x, θ) = δ(x− θ)αj(θ) + ψj(x, θ),

where δ(·) is the Dirac delta “generalized” function.25

A mixed strategy for sender j is a mixed probability measure φj(θ) : Θ → ∆(Rj) with

support Sj(θ). I indicate with φj(rj, θ) the mixed probability assigned by φj(θ) to a report

rj in state θ that satisfies

∫

rj∈Sj(θ)
φj(rj, θ)drj = αj(θ) +

∫

rj∈Cj(θ)
ψj(rj, θ)drj = 1.

I denote by Φj(rj, θ) and Ψj(rj, θ) the CDFs of φj and ψj, respectively. Sender j’s expected

utility from delivering rj when the state is θ in a direct equilibrium ω is W ω
j (rj, θ).

5.2 Solving for Direct Equilibria

In the remaining parts of this section, I characterize direct equilibria and show their

properties. All proofs and a number of intermediate results are relegated to Appendix A.2.

Given a pair of reports (r1, r2) the decision maker forms posterior beliefs p(θ|r1, r2),

which determine whether she rationally selects +© or -©. Consider a direct equilibrium and

a pair of reports (r1, r2) such that r2 < 0 and Udm(r1, r2) < 0, and suppose that there

exists a report r′
1 ∈ R1 such that Udm(r′

1, r2) > 0. By conditions (C) and (D), it must be26

that there exists a report r′′
1 ∈ (r1, r

′
1) such that Udm(r′′

1 , r2) = 0. In this case, r′′
1 “swings”

the decision maker’s choice as β(r, r2) = +© for all r ≥ r′′
1 and β(r, r2) = -© otherwise, and

I say that r′′
1 is the “swing report” of r2. The notion of swing report is key for the analysis

of direct equilibria, and the following definition formalizes this concept.

Definition 5. Given a report r, I define the “swing report” s(r) as

s(r) =







{r2 ∈ R2 | Udm(r, r2) = 0} if r ≥ 0

{r1 ∈ R1 | Udm(r1, r) = 0} otherwise.

24Under this specification, even the “mass” αj(·) is a partial probability “density.”
25The Dirac delta δ(x) is a generalized function such that δ(x) = 0 for all x 6= 0, δ(0) = ∞ and

∫ ǫ

−ǫ
δ(x)dx = 1 for any ǫ > 0.

26By (C) we have Udm(0, 0) = 0, and by (D) we have Udm(0, r2) < 0 and r′

1
> r1. Since the

differentiability of Udm for conflicting reports implies its continuity, and since Udm(r′

1
, r2) > 0, it follows

from the intermediate value theorem that there must be a r′′

1
∈ (0, r′

1
) such that Udm(r′′

1
, r2) = 0.
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If s(r) = ∅, then I set s(r) = −∞ for r ≥ 0, and s(r) = ∞ otherwise.

With some abuse of language, I hereafter say that sender j “swings” the report of

its opponent −j whenever the pair of reports (r1, r2) induce the selection of sender j’s

preferred alternative. When there is a conflict of interests between senders, that is for

some θ ∈ (τ1, τ2), sender 1 swings the report of sender 2 whenever r1 ≥ s(r2). Similarly,

sender 2 swings the report of sender 1 when r2 < s(r1).

In a direct equilibrium, the swing report s(r) has a number of intuitive properties: first,

condition (D) ensures that the swing report, if it exists, is unique; second, condition (C)

pins down the swing report for s(r̄1(0)) = r
¯

2(0), s(r
¯

2(0)) = r̄1(0), and s(0) = 0. From the

interaction of conditions (C) and (D), it follows that every report r ∈ R̂ = [r
¯

2(0), r̄1(0)]

has a unique swing report s(r) ∈ R̂ such that if r > 0 then s(r) < 0. Moreover, for

all r ∈ R̂, the swing report of a swing report is the report itself, i.e., s(s(r)) = r, and

strictly higher reports have strictly lower swing reports. Importantly, s(r) is endogenously

determined in equilibrium through the posterior beliefs p. The following lemma formalizes

these equilibrium features of the swing report function.

Lemma 4. In a direct equilibrium, every report r ∈ R̂ has a swing report s(r) ∈ R̂ such

that (i) if r ≷ 0 then s(r) ≶ 0 and s(0) = 0; (ii) s(s(r)) = r; (iii) for every r ∈ R̂,
ds(r)

dr
< 0; (iv) s (r̄1(0)) = r

¯
2(0).

Therefore, s(r) is effectively a strictly decreasing function of r in the set [r
¯

2(0), r̄1(0)],

and in such domain I refer to s(r) as the “swing report function.” When the state takes

extreme values, a sender may not be able to profitably swing the report of its opponent

even when the opponent reports truthfully. This happens when s(θ) is beyond a sender’s

reach. In such cases, we should expect both senders to always report truthfully, and thus

to deliver congruent reports that reveal the state. It is therefore useful to define cutoffs

in the state space that help determine when truthful reporting always occurs in direct

equilibria.

Definition 6. The “truthful cutoffs” are defined as

θ1 := {θ ∈ Θ | s(θ) = r̄1(θ)} ,

θ2 := {θ ∈ Θ | s(θ) = r
¯

2(θ)} .

The truthful cutoffs are also determined in equilibrium, as they depend on s(r). Recall

that by condition (C) we have that s(r
¯

2(0)) = r̄1(0) and s(0) = 0. Since r̄1(θ) is increasing

in θ and r̄1(τ1) = τ1 < 0 < s(τ1), it follows that 0 > θ1 > max{τ1, r
¯

2(0)}. Similarly,

we obtain that 0 < θ2 < min{τ2, r̄1(0)}. Therefore, in any direct equilibrium the set

of states that lie within the truthful cutoffs (θ1, θ2) is also a strict subset of [τ1, τ2] and

of [r
¯

2(0), r̄1(0)]. This equilibrium feature of the truthful cutoffs is convenient because

19



it implies that for every state θ ∈ (θ1, θ2) there is always a conflict of interest between

senders, and that the swing report function s(θ) exists and is well defined in such a set.27

In a direct equilibrium, we should expect both senders to always report truthfully—and

thus to play pure strategies—whenever the state lies outside the truthful cutoffs. By

contrast, when the state takes values within the truthful cutoffs, we might expect senders

to play mixed strategies and to engage in some misreporting activity. As the following

lemma shows, these two conjectures turn out to be correct in every direct equilibrium.

Lemma 5. In a direct equilibrium, Sj(θ) = {θ} for all θ /∈ (θ1, θ2), and |Sj(θ)|> 1 for

every θ ∈ (θ1, θ2), j ∈ {1, 2}.

This result, together with the previous observation that (θ1, θ2) ⊂ [τ1, τ2], shows an

interesting characteristic of direct equilibria: in relatively extreme states, both senders

always deliver matching and truthful reports even though they have opposing interests.

Since senders’ reports coincide, it follows from Lemma 1 that in these cases the decision

maker learns the underlying state. Therefore, full information revelation always occurs in

extreme states that lie outside the truthful cutoffs.

Given the results outlined above, from now on I focus on players’ behavior when the

state takes values within the truthful cutoffs. I proceed by first studying the reporting

strategies when senders misreport their private information. Conditional on misreporting

in state θ, sender j’s strategy φj(θ) has support in the set Sj(θ) \ {θ}. To describe and

study equilibrium supports and strategies, it is useful to understand if such set is convex

or not. The next lemma tells us that Sj(θ) \ {θ} is always convex.

Lemma 6. In a direct equilibrium, Sj(θ) \{θ} is convex for all θ ∈ (θ1, θ2) and j ∈ {1, 2}.

The intuition behind Lemma 6 is the following: in equilibrium, the presence of a

“hole” in the set Sj(θ) \ {θ} must imply that j’s opponent never wastes resources to swing

reports that are in such a hole, as they are never delivered. However, this means that in

Sj(θ) \ {θ} there are two different reports that yield approximately the same probability

of inducing the selection of j’s preferred alternative but have different costs. This cannot

be possible in an equilibrium, and therefore the set Sj(θ) \ {θ} must be convex.

While senders may misrepresent the same state in a number of ways, the above

argument also suggests that, conditional on misreporting, there is no report that they

deliver with strictly positive probability. To see why, suppose by way of contradiction that

sender j misreports some state θ by delivering rj ∈ Sj(θ) \ {θ} with some strictly positive

“mass” probability αj(rj, θ) > 0. That is, j’s strategy φj(θ) has an atom in rj. It follows

that sender −j’s expected payoff is discontinuous around r−j = s(rj), and therefore s(rj)

cannot be in the interior28 of S−j(θ). If s(rj) /∈ S−j(θ), then j can profitably “move” the

27These results are formalized by Lemma A.1 in Appendix A.2.
28Recall that every report in the equilibrium support must yield the same expected payoff.

20



atom to some cheaper report that ensures the selection of its own favorite alternative.

If instead s(rj) is on the boundary of S−j(θ), then one of the two senders would have a

profitable deviation: either there are reports outside S−j(θ) that yield an higher expected

payoff than reports inside the support, or there is some report that dominates rj. In

both cases, we obtain a contradiction with j’s strategy being part of an equilibrium.

The following lemma formalizes the idea that the equilibrium reporting strategies are

non-atomic whenever senders misreport their private information.29

Lemma 7. In a direct equilibrium, strategies φj(θ) have no atoms in Sj(θ) \ {θ} for every

θ ∈ (θ1, θ2) and j ∈ {1, 2}.

5.2.1 Strategies, Supports, and Beliefs

I am now ready to state the main results of this section. Lemmata 6 and 7 tell us that,

conditional on misreporting, senders play an atomless reporting strategy with support in

a convex set. By using the method of payoff-equation, I obtain the partial probability

densities ψj(rj, θ). The next proposition establishes senders’ misreporting behavior.

Proposition 2. In a direct equilibrium, for every θ ∈ (θ1, θ2) and i, j ∈ {1, 2} with i 6= j,

sender j delivers report rj ∈ Sj(θ) \ {θ} according to

ψj(rj, θ) =
ki

−ui(θ)

dCi(s(rj), θ)

drj

.

Each sender’s misreporting behavior depends directly on its opponent’s utility and

costs, while it may only depend indirectly on its own characteristics through the swing

report function s(r). Whether a sender is more likely to deliver small lies or large

misrepresentations, depends on the shape of its opponent’s misreporting costs function

together with the shape of the swing report function, where the latter is determined in

equilibrium. In Section 6.1 I discuss more in detail the senders’ misreporting behavior for

the particular case where senders have symmetric features.

Since the sets Sj(θ)\{θ} are convex and the strategies φj(θ) are atomless on Sj(θ)\{θ},

I can integrate the partial probability densities ψj to pin down the senders’ equilibrium

supports. This procedure allows me to prove the the next proposition.

Proposition 3. In a direct equilibrium, for every state θ ∈ (θ1, θ2), supports Sj(θ) are

S1(θ) = {θ} ∪ [max {s(θ), θ} ,min {r̄1(θ), s (r
¯

2(θ))}] ,

S2(θ) = {θ} ∪ [max {r
¯

2(θ), s (r̄1(θ))} ,min {s(θ), θ}] .

29The intuition of results provided in this section omits a number of additional steps that are necessary
to prove Lemmata 6 and 7. See Lemmata A.2 to A.7 in Appendix A.2.
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So far, I focused the analysis on senders’ misreporting behavior. However, the above

proposition shows that “the truth” is always part of equilibrium supports. Having fully

characterized the senders’ misreporting strategies ψj(·, θ) and supports Sj(θ), I can now

proceed to establish senders’ truthful reporting behavior.

Proposition 4. In a direct equilibrium, for every state θ ∈ (θ1, θ2), strategies φj(θ) have

an atom at rj = θ of size αj(θ), where

α1(θ) =







k2

−u2(θ)
C2 (s(θ), θ) if θ ∈ [0, θ2)

1 − k2

−u2(θ)
C2 (s(r̄1(θ)), θ) if θ ∈ (θ1, 0],

α2(θ) =







1 − k1

u1(θ)
C1 (s(r

¯
2(θ)), θ) if θ ∈ [0, θ2)

k1

u1(θ)
C1 (s(θ), θ) if θ ∈ (θ1, 0].

Both senders report truthfully with strictly positive probability in almost every state.

The only exception is θ = 0, where the truth is never reported as α1(0) = α2(0) = 0. With

probability α1(θ)α2(θ) both senders deliver the truth, and by Lemma 1 we obtain that

whenever this event occurs the decision maker fully learns the realized state. Moreover,

by Proposition 3 we get that the decision maker may learn the realized state even when

only one of the two senders reports truthfully: if the realized state is positive, then full

revelation occurs whenever sender 2 reports truthfully; if the state is negative, then full

revelation occurs when sender 1 reports truthfully. In these cases, senders deliver different

reports which nevertheless recommend the decision maker to select same alternative.

The probability that full revelation takes place and the probability of observing congru-

ent reports are both increasing as the realized state is further away from zero.30 Therefore,

in direct equilibria we obtain that the revelation of the state and the congruence of reports

are phenomena that are more likely to occur in extreme states than in intermediate or

central states. To see this, note that

dα1(θ)

dθ
=







k2

u2(θ)2

du2(θ)
dθ

C2 (s(θ), θ) + k2

−u2(θ)
dC2(s(θ),θ)

dθ
> 0 if θ ∈ [0, θ2)

− k2

u2(θ)2

du2(θ)
dθ

C2 (s(r̄1(θ)), θ) − k2

−u2(θ)
dC2(s(r̄1(θ)),θ)

dθ
< 0 if θ ∈ (θ1, 0),

dα2(θ)

dθ
=







k1

u1(θ)2

du1(θ)
dθ

C1 (s(r
¯

2(θ)), θ) − k1

u1(θ)
dC1(s(r

¯2(θ)),θ)
dθ

> 0 if θ ∈ [0, θ2)

− k1

u1(θ)2

du1(θ)
dθ

C1 (s(θ), θ) + k1

u1(θ)
dC1(s(θ),θ)

dθ
< 0 if θ ∈ (θ1, 0).

Figure 2 depicts both the probability that senders deliver the same report and the

probability that the decision maker fully learns the realized state.

After obtaining the senders’ equilibrium supports and strategies, I can now proceed to

study the decision maker’s posterior beliefs. It is key for this analysis to understand how

30This is because the decision maker’s threshold τdm is normalized to zero.
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Figure 2: The probability that the decision maker fully learns the state (dashed black line)
and the probability that senders deliver matching reports (full black line) as functions of
the realized state in a direct equilibrium of a symmetric environment with linear utilities
and quadratic loss misreporting costs.

beliefs p determine the decision maker’s choice given any pair of reports. To this end, it

is sufficient to examine how posterior beliefs shape the swing report function s(r). By

Lemma 4, we have that s(r) ∈ R̂ for every r ∈ R̂, with s(r) < 0 if r > 0, s(r) > 0 if r < 0,

and s(0) = 0. Given the supports and the strategies as in Propositions 2, 3, and 4, we

obtain that every pair of reports (r1, r2) such that r
¯

2(0) ≤ r2 < 0 < r1 ≤ r̄1(0) is on-path.

By Definition 5 and Lemma 4 we have that, for a pair of reports (r1, r2 = s(r1)),

Udm(r1, s(r1)) = Udm(s(r2), r2) =
∫

Θ
udm(θ)p(θ|r1, s(r1))dθ = 0.

Therefore, I can use p(r1, s(r1)|θ) = φ1(r1, θ) · φ2(s(r1), θ) and previous results to show

how posterior beliefs p pin down the swing report function s(r) in a direct equilibrium.

The next proposition shows how the swing report depends on the model’s parameters.

Proposition 5. In a direct equilibrium, the swing report function s(ri) is implicitly defined

for i, j ∈ {1, 2}, i 6= j, and ri ∈ R̂, as

s(ri) =

{

rj ∈ Rj

∣
∣
∣
∣

∫ min{r1,r
¯

−1

2
(r2)}

max{r2,r̄−1

1
(r1)}

f(θ)
udm(θ)

u1(θ)u2(θ)

dCj(rj, θ)

drj

dCi(ri, θ)

dri

dθ = 0

}

. (4)

5.2.2 Uniqueness, Robustness, and Existence

Propositions 2 to 5 complete the characterization of direct equilibria. However, there

are three potential issues that must be addressed: first, there may be multiple direct

equilibria which yield different solutions; second, direct equilibria may not be robust to

the refinements introduced and discussed in Section 4, and thus they may be unreasonable;

third, direct equilibria might not exists at all. I conclude this section by showing that

direct equilibria are essentially unique, are robust, and always exist.
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The issue of multiplicity is cleared out by the observation that equation (4), which

implicitly determines the swing report function s(r), depends only on the primitives of the

model. In particular, the swing report function depends on the prior beliefs, the players’

utilities, and the senders’ costs only. Given these primitives, the swing report function is

the same in every direct equilibrium, and therefore also the senders’ reporting strategies

and supports are the same across all direct equilibria. Conditions (C) and (D) are thus

sufficient to ensure that all equilibria are essentially unique in the sense that they are all

strategy and outcome equivalent.

Corollary 1. Direct equilibria are essentially unique.

In Section 4, I find that all pure strategy and all receiver-efficient equilibria are not

plausible for two different reasons: they feature informational free-riding opportunities

that generate individual profitable deviations, and they are not robust to the presence of

even arbitrarily small noise in communication. Robustness to informational free-riding

opportunities and to noise require equilibria to support unprejudiced beliefs (Bagwell &

Ramey, 1991) and to be ε-robust (Battaglini, 2002), respectively. I also show that these

two different criteria are tightly connected, as ε-robust equilibria have unprejudiced beliefs.

The question is: can direct equilibria support unprejudiced beliefs and be ε-robust?

To study whether there exists direct equilibria with unprejudiced beliefs I apply the

following definition, which is adapted from Bagwell and Ramey (1991) to accommodate

for non-degenerate mixed strategies.31

Definition 7. Given senders’ strategies φj, beliefs p are unprejudiced if, for every off-path

pair of reports (r1, r2) such that φj(rj, θ
′) > 0 for some j ∈ {1, 2} and θ′ ∈ Θ, we have

that p(θ′′|r1, r2) > 0 if and only if there is a sender i ∈ {1, 2} such that φi(ri, θ
′′) > 0.

The next corollary confirms that there exists direct equilibria supported by unprejudiced

beliefs (as in both Definition 2 and 7) that are also ε-robust.32

Corollary 2. There are direct equilibria with unprejudiced beliefs that are also ε-robust.

Even well behaved signaling games may have no equilibria (Manelli, 1996). However,

given beliefs p, the equilibrium reporting strategies and supports in Proposition 2 to 4 are

by construction such that no sender has individual profitable deviations. Moreover, given

such strategies, the decision maker choice is sequentially rational. Therefore, as long as

the assumptions established in Section 3 are satisfied, a direct equilibrium always exists.

Corollary 3. A direct equilibrium always exists.

31Definition 2, which is introduced by Vida and Honryo (2019) and is used in Section 4, is a weaker
version of Definition 7. Lemma 3 applies to unprejudiced beliefs as in both definitions.

32Since ε-robustness implies unprejudiced beliefs, it would be sufficient to show that there exist direct
equilibria that are ε-robust. Corollary 2 simply remarks that the two refinements are different.
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6 An Example and Application

6.1 Example: Symmetric Environments

As follows, I provide an example where senders have similar features and the state is

symmetrically distributed. This environment is an important benchmark because it

deals with situations where no sender is ex-ante advantaged. In addition, it gives us

a closed-form solution for senders’ equilibrium strategies and supports. The following

definition formalizes what I mean by a “symmetric environment.”

Definition 8. In a symmetric environment,

i) the state is symmetrically distributed around zero, i.e., f(θ) = f(−θ) for all θ ∈ Θ;

ii) kjCj(r, θ) = kC(r, θ) for j ∈ {1, 2}, where k > 0 and C(·) satisfies C(θ + x, θ) =

C(θ − x, θ) for every θ ∈ Θ and x ∈ R;

iii) payoffs satisfy33 udm(θ) = −udm(−θ) and u1(θ) = −u2(−θ) for all θ ∈ Θ.

Conditions i) to iii) are in addition to the assumptions in Section 3.

In symmetric environments the two senders differ only because they have opposed

interests. In these cases, there is no particular reason why the decision maker should give

more importance to the report of one sender than the other. Intuition would suggest that,

in a symmetric environment, the decision maker should equally assign the “burden of

proof” among senders. The next corollary confirms that this intuition is indeed correct in

a direct equilibrium.

Corollary 4. In a direct equilibrium of a symmetric environment, s(r) = −r for every

r ∈ R̂.

In a symmetric environment, the decision maker follows the recommendation of the

sender that delivers the most extreme report. The burden of proof is equally distributed

among senders, as Corollary 4 shows. Moreover, the swing report function is linear even

though some fundamentals, e.g., the costs functions, may be non-linear. Remarkably, in

symmetric environments direct equilibria naturally display symmetric strategies.34

With an explicit solution for the swing report function, we obtain a natural closed-form

solution for the senders’ equilibrium strategies and supports. In applications this is

particularly useful because in similar environments, such as in contests, typically little

33By definition of threshold τj (see Section 3), this last condition implies that τ2 = −τ1.
34Corollary 4 is reminiscent of results in all-pay contests or auctions, where it is shown that with two

bidders or contestants, only symmetric solutions exists (Baye et al., 1996). Moreover, in all-pay auctions
the bidder with the highest bid (or the greatest effort) always wins. By contrast, here the sender with the
most extreme report wins, but it may not be the one paying the highest misreporting costs.
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Figure 3: The partial probability density ψ as a function of the misreporting costs’ shape
and of the extent of misreporting, in a symmetric environment where C(r, θ) = |(r− θ)exp|
and θ = 0. With square loss costs, exp = 2, the density ψ grows linearly as reports get
further away from the truth. With absolute value linear costs, exp = 1, every misreport
in the support has the same partial density. With concave costs, exp ∈ (0, 1), small
misrepresentation are more likely than large lies, and when exp > 1 the opposite is true.

is known about mixed strategy equilibria except in some special cases (see Levine and

Mattozzi (2019); Siegel (2009)).

I can now use this closed-form solution to examine the determinants and the features of

senders’ misreporting behavior. I show that the shape of the costs function, in particular

its convexity/concavity or second derivative, determines whether senders are more likely to

deliver large lies than small misrepresentation or the other way around. From Proposition 2

and Corollary 4 we obtain that, in a symmetric environment, misreporting behavior is

described by the following partial density, for j ∈ {1, 2} and j 6= i,

ψj(rj, θ) =
k

−ui(θ)

dC(−rj, θ)

drj

.

Therefore, if C(·) is strictly convex, we have that dψ1(r1, θ)/dr1 > 0 for all θ ∈

S1(θ) \ {θ} and dψ2(r2, θ)/dr2 < 0 for all θ ∈ S2(θ) \ {θ}. This means that, conditional

on misreporting, senders are more likely to deliver large misrepresentation of the state

rather than small lies. By contrast, when senders have concave costs, misreports that are

closer to the truth are more likely to be delivered than large lies. The type of senders’

interim misreporting behavior is entirely driven by the shape of the cost function C, and

not by k or by utilities uj. Figure 3 shows senders’ misreporting behavior for different

concavities of the misreporting costs function.
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6.2 Application: Judicial Procedures

In a seminal paper, Shin (1998) compares the informative value of adversarial and

inquisitorial procedures. Under the adversarial procedure, two parties with opposing

interests make their case to an uninformed decision maker. By contrast, the inquisitorial

procedure requires the decision maker to adjudicate only based on her own acquired

information. The question of which procedure allows the decision maker to take more

informed decisions is of interest in a host of applications.

To answer this question, Shin (1998) studies a model of verifiable disclosure where

parties can either disclose or withhold information, but they cannot misrepresent evidence

because such information is fully verifiable. In the adversarial procedure, the decision

maker cannot rely on the information of the interested parties to secure full revelation

because the two parties may be uninformed. In the inquisitorial procedure, the decision

maker obtains with some probability an informative signal of the underlying evidence.

The tension faced by the decision maker is thus that of obtaining two pieces of biased

information versus one piece of unbiased information. Within this framework, Shin (1998)

finds that the adversarial procedure is always superior to the inquisitorial procedure.

This sharp result raises a natural question: why then systems that are reminiscent of

inquisitorial procedures so are often used in practice? On this point, Shin (1998) argues

that the assumption of full verifiability might play a key role in determining the superiority

of adversarial procedures, and that “potential violations of the verifiability assumption

will be an important limiting factor in qualifying our findings in favor of the adversarial

procedure” (Shin, 1998, p. 403).

Here, I analyze the validity of this conjecture by using results derived in this paper.

The framework introduced in Section 3 allows me to model the adversarial procedure for

when information is not fully verifiable and parties can misrepresent evidence. Results

derived in Section 4 suggest that under this procedure the decision maker cannot plausibly

achieve receiver-efficiency and obtain the full information welfare Wfi. Moreover, if we

accept that conditions (C) and (D) are sensible modeling assumptions, then results in

Section 5 indicate that the ex-ante equilibrium welfare of the decision maker is also strictly

lower and bounded away from Wfi. To see this, notice that the expected payoff obtained

by the decision maker in direct equilibria is bounded above by W̄dm, where35

W̄dm =
∫ max Θ

0
f(θ)udm(θ)dθ

︸ ︷︷ ︸

=Wfi

+
∫ 0

θ1

f(θ)udm(θ)(1 − α1(θ))α2(θ)dθ
︸ ︷︷ ︸

<0

< Wfi.

35The upper bound W̄dm is obtained by assuming that the decision maker makes less mistakes than
she would in a direct equilibrium: she mistakenly selects +© only when θ ∈ (θ1, 0) and sender 2 reports
truthfully while sender 1 misreports. Otherwise, she chooses the correct alternative. Therefore, W̄dm is
an upper bound of the ex-ante welfare obtained by the decision maker in direct equilibria.
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To model the inquisitorial procedure, I follow Shin (1998) in assuming that the decision

maker obtains with probability q a potentially noisy signal σ of the realized state θ. It is

straight forward to see that, under the inquisitorial procedure, the decision maker can

obtain an expected payoff which, for high q and sufficiently precise σ, is arbitrarily close

to Wfi and thus higher than W̄dm. Therefore, there is always a combination of parameters

under which the inquisitorial procedure is superior to the adversarial procedure in that

it yields more information to the decision maker. The conjecture of Shin (1998) is thus

proved correct for any finite intensity of misreporting costs kj > 0.

It is worth pointing out that, in addition to the verifiability assumption, there are

other modeling differences between my setting and Shin (1998): first, I assume that the

two parties are always perfectly informed about the realized state, while in Shin (1998)

they may be uninformed or observe a noisy signal of the realized state; second, I consider

a decision maker that is less informed than the two parties, while in Shin (1998) every

player is, on average, equally informed.36 These two differences give in my setting a

relative advantage to the adversarial procedure, and therefore add further force to the

potential superiority of inquisitorial procedures.37

7 Concluding Remarks

This article studies a multi-sender signaling model with two informed senders and one

uninformed decision maker. Senders have perfectly correlated information, which they

can misreport at a cost that is tied to the magnitude of misrepresentation. This setting

covers a number of applications in economics and politics, including electoral campaigns,

contested takeovers, lobbying, informative advertising, and judicial decision making.

I restrict attention to equilibria where the decision maker’s posterior beliefs satisfy a

first-order stochastic dominance condition. Fully revealing, receiver-efficient, and pure

strategy equilibria exist, but they are not robust. I identify two natural restrictions on the

decision maker’s posterior beliefs under which equilibria always exists, are robust, and are

essentially unique. I dub equilibria that satisfy these two conditions as “direct equilibria.”

Therefore, this paper provides a tractable and appealing approach to study strategic

communication from multiple senders with common information that is neither fully

verifiable nor totally “cheap.” As an application of direct equilibria, I study the informative

value of judicial procedures and show that, when information is not fully verifiable, then

inquisitorial systems may be superior than adversarial systems.

36In Shin (1998), as we increase the decision maker’s ability to gather precise information in the
inquisitorial system, we also increase the information possessed in expectation by the contending parties
precisely because all players are assumed to be equally informed on average.

37Moreover, in my setting “withholding” is not possible or it is prohibitively expensive. In Shin (1998),
if parties are perfectly informed but cannot withhold information, then the decision maker could obtain
full revelation out of the adversarial procedure, making it always superior than the inquisitorial system.
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The transmission of information in direct equilibria takes place in a qualitatively

different way with respect to related models of strategic communication. I conclude that

the introduction of misreporting costs is not just a technical twist that adds an element

of realism; rather, it is an essential component to understand the strategic interaction

underlying the setting considered in this paper.38

38Accounting for misreporting costs also allows to perform comparative statics on such costs that are
currently unexplored. For example, it allows to study the effects of “fake news laws” or of technological
advancements such as “deepfake videos” which affect senders’ misreporting costs. This is left for future
research.
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A Appendix

Lemma 1. In every perfect Bayesian equilibrium satisfying (FOSD), minSj(θ) ≥ θ for

θ ≥ τj and max Sj(θ) ≤ θ otherwise, j ∈ {1, 2}.

Proof of Lemma 1. Consider a PBE satisfying (FOSD) and consider a state θ ≥ τ1. For

sender 1, every report r1 < θ is dominated by truthful reporting because C1(r1, θ) >

0 = C1(θ, θ) and by (FOSD) we have that Udm(θ, r2) ≥ Udm(r1, r2) for every r2 ∈ R2.

Therefore, it must be that r1 /∈ S1(θ) for all r1 < θ and θ ≥ τ1. A similar argument applies

to sender 2 and to states θ ≤ τj, j ∈ {1, 2}.

A.1 Receiver-efficient and Pure Strategy Equilibria

Lemma 2. An equilibrium is receiver-efficient if and only if it is in pure strategies.

Proof of Lemma 2. Consider a pure strategy equilibrium and suppose that it is not receiver-

efficient, e.g., because β(ρ1(θ′), ρ2(θ′)) = -© for some θ′ ≥ 0. In equilibrium, senders never

engage in misreporting to implement their less preferred alternative with certainty, and

therefore it must be that ρ1(θ
′) = θ′. Beliefs p must be such that β(r1, ρ2(θ

′)) = -© for

all r1 ∈ (r
¯

1(θ
′), r̄1(θ

′)), otherwise sender 1 would have a profitable deviation. The pair

of reports (θ′, ρ2(θ
′)) can induce -© only if (ρ1(θ

′′), ρ2(θ
′′)) = (θ′, ρ2(θ

′)) for some θ′′ < 0.

There is no θ ∈ [τ1, 0) such that sender 1 would misreport by delivering r1 = θ′ ≥ 0 to

implement -©, thus it must be that θ′′ < τ1. Since there is always a r′
1 ∈ (r

¯
1(θ′), θ′) such that

C1(r
′
1, θ

′′) < C1(θ
′, θ′′) and β(r′

1, ρ2(θ
′′)) = -©, sender 1 has a profitable deviation in state

θ′′, contradicting that there exists a pure strategy equilibrium that is not receiver-efficient.

Now consider a REE and suppose that it is not in pure strategies, but there is a state

θ′ ∈ Θ and sender j ∈ {1, 2} such that Sj(θ
′) ⊇ {r′

j, r
′′
j }, with r′

j 6= r′′
j . Since in a REE

we have that β(r′
1, r

′
2) = β(r′′

1 , r
′′
2) for every r′

i, r
′′
i ∈ Si(θ), i ∈ {1, 2}, it must be that

Cj(r
′
j, θ

′) = Cj(r
′′
j , θ

′). By Lemma 1, this is possible only if r′
j = r′′

j , contradicting that

there exists a REE that is not in pure strategies.

Proposition 1. There are no receiver-efficient equilibria with unprejudiced beliefs.

Proof of Proposition 1. In a REE, senders play pure strategies (Lemma 2) and the decision

maker always selects her preferred alternative as if under complete information, that is,

β(ρ1(θ), ρ2(θ)) = +© for all θ ≥ 0 and β(ρ1(θ), ρ2(θ)) = -© otherwise. Since misreporting

is costly, senders report truthfully in states where their least preferred alternative is

implemented: ρ2(θ) = θ for all θ ∈ [0, τ2] and ρ1(θ) = θ for all θ ∈ [τ1, 0). However,

there are no REE where ρj(θ) = θ for all θ ∈ [τ1, τ2], j ∈ {1, 2}: there would always be a

state θ ∈ (τ1, τ2) and an off-path pair of reports (r1, r2), r1 6= r2, such that a sender can

profitably deviate from truthful reporting (see also Observation 1). Therefore, in every
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REE either sender 1 misreports in some state θ ∈ [0, τ2), or sender 2 misreports in some

θ ∈ (τ1, 0], or both.

Consider now a REE where ρ1(θ
′) 6= θ′ for some θ′ ∈ [0, τ2). By Lemma 1, we

have that ρ1(θ
′) > θ′. To sustain the equilibrium, off-path beliefs p must be such that

β(r1, θ
′) = -© for all r1 ∈ [θ′, ρ1(θ

′)) and β(ρ1(θ
′′), r2) = +© for all r2 ∈ (r

¯
2(θ

′′), θ′′] and

θ′′ ∈ [θ′, τ2). This implies that there must be an open set S of non-negative states such

that ρ1(θ
′′′) ≥ ρ1(θ

′) > θ′′′ = ρ2(θ
′′′) for all θ′′′ ∈ S. It follows that, for every θ′′′ ∈ S, the

pair of reports (θ′′′, θ′′′) is off-path. By Lemma 1, and since ρ2(θ) = θ for all θ ∈ [0, τ2] and

ρ1(θ) = θ for all θ ∈ [τ1, 0), we have that beliefs p are unprejudiced (Definition 2) only if

p(θ|θ′′′, θ′′′) = 0 for all θ < 0. Therefore, unprejudiced beliefs imply that β(θ′′′, θ′′′) = +©,

and thus sender 1 can profitably deviate by reporting the truth in state θ′′′ ∈ S. A similar

argument applies for REE where ρ2(θ′) 6= θ′ for some θ′ ∈ (τ1, 0]. Therefore, there are no

REE (and, by Lemma 2, no pure strategy equilibria) with unprejudiced beliefs.

Lemma 3. If a perfect Bayesian equilibrium is ε-robust, then it has unprejudiced beliefs.

Proof. Consider the posterior beliefs pG,ε that the strategies φj of a PBE (see Section 5

for the notation used to describe mixed strategies) induce in an ε-perturbed game for

some distribution G and sequence εn,

pG,ε(θ|r1, r2) = f(θ)
p(r1, r2|θ)

p(r1, r2)

=
f(θ) [ε1ε2g1(r1)g2(r2) + ε1(1 − ε2)g1(r1)φ2(r2, θ) + (1 − ε1)ε2g2(r2)φ1(r1, θ)]

ε1ε2g1(r1)g2(r2) + ε1(1 − ε2)g1(r1)
∫

Θ f(θ)φ2(r2, θ)dθ + (1 − ε1)ε2g2(r2)
∫

Θ f(θ)φ1(r1, θ)dθ
.

As εn → 0+ the event in which both reports are wrongly delivered or observed becomes

negligible, and thus we have that pG,ε → pG,0+ , where

pG,0+(θ|r1, r2) =
f(θ) [ε1g1(r1)φ2(r2, θ) + ε2g2(r2)φ1(r1, θ)]

ε1g1(r1)
∫

Θ f(θ)φ2(r2, θ)dθ + ε2g2(r2)
∫

Θ f(θ)φ1(r1, θ)dθ
. (5)

From (5) we obtain that, for any distribution G with full support and any sequence

εn → 0+, pG,0+(θ|r1, r2) > 0 if and only if φj(rj, θ) > 0 for some j ∈ {1, 2}. By Definition 7

(and thus even by Definition 2) we get that the limit beliefs pG,0+ are unprejudiced, and

therefore every PBE that is ε-robust has unprejudiced beliefs.39

A.2 Direct Equilibria

Lemma 4. In a direct equilibrium, every report r ∈ R̂ has a swing report s(r) ∈ R̂ such

that (i) if r ≷ 0 then s(r) ≶ 0 and s(0) = 0; (ii) s(s(r)) = r; (iii) for every r ∈ R̂,

39Notice that the proof of Lemma 3 readily extends to a n-senders version of the game, for any finite
n ≥ 2. In particular, given a profile of reports (r1, . . . , rn) and a set of senders N = {1, . . . , n}, then
pG,0+(θ|r1, . . . , rn) > 0 if and only if φj(rj , θ) > 0 for n − 1 senders. This is consistent with the idea
behind unprejudiced beliefs that the decision maker conjectures deviations as individual.
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ds(r)
dr

< 0; (iv) s (r̄1(0)) = r
¯

2(0).

Proof. Consider a report r1 by sender 1 such that r1 ∈ (0, r̄1(0)]. By (C) and (D) we obtain

that Udm(r1, r
¯

2(0)) < 0 < Udm(r1, 0), and therefore there must exists a r2 ∈ [r
¯

2(0), 0)

such that Udm(r1, r2) = 0. Thus, r2 = s(r1). A similar argument holds for a report

r2 ∈ [r
¯

2(0), 0). It follows that, for every r ∈ R̂, there exists a s(r) ∈ R̂ such that if r > 0

then s(r) < 0, and if r < 0 then s(r) > 0. From (C) and Definition 5 we obtain that

s(0) = 0 and s (r̄1(0)) = r
¯

2(0). From Definition 5 and point (i) we get that if r′ = s(r)

then r = s(r′), and thus s(s(r)) = r. By applying the implicit function theorem and (D)

on s(r), we obtain that for every r ∈ R̂, ds(r)
dr

< 0.

Lemma A.1. In a direct equilibrium, truthful cutoffs are such that θ1 < 0 < θ2 and

(θ1, θ2) ⊂ [τ1, τ2] ∩ R̂.

Proof. By Lemma 4 we have that s (r̄1(0)) = r
¯

2(0) < 0 and, for every r ∈ R̂, ds(r)/dr < 0.

Moreover, dr
¯

2(θ)/dθ > 0 and thus r
¯

2(θ) > r
¯

2(0) for every θ > 0. Since s(0) = 0, there

is a state θ′ ∈ (0, r̄1(0)) such that s(θ′) = r
¯

2(θ
′). From Definition 5, we obtain that

θ′ = θ2 ∈ (0, r̄1(0)). Similarly, we get that θ1 ∈ (r
¯

2(0), 0). Since r̄1(τ1) = τ1 < 0 and

r
¯

2(τ2) = τ2 > 0, it follows from Definition 6 that (θ1, θ2) ⊂ [τ1, τ2].

Lemma 5. In a direct equilibrium, Sj(θ) = {θ} for all θ /∈ (θ1, θ2), and |Sj(θ)|> 1 for

every θ ∈ (θ1, θ2), j ∈ {1, 2}.

Proof. I begin by proving first that Sj(θ) = {θ} for all θ /∈ (θ1, θ2). Consider a DE and

a state θ ≥ θ2. Since by Lemma 1 we have that minS1(θ) ≥ θ ≥ θ2, it must be that

S2(θ) = {θ} as s(r1) ≤ r
¯

2(θ) for every r1 ∈ S1(θ). Since β(θ, θ) = +©, sender 1 best replies

to r2 = θ with r1 = θ and thus S1(θ) = {θ} as well. A similar argument applies to states

θ ≤ θ1, completing the first part of the proof. Note that when θ = θ1, sender 1 is actually

indifferent between reporting θ1 and r̄1(θ1). Since this is a measure zero event which is

irrelevant for the analysis that follows, I will consider only the case where S1(θ1) = {θ1},

without any loss of generality.

I turn now to prove that Sj(θ) contains more than one element for every θ ∈ (θ1, θ2).

Suppose by way of contradiction that S1(θ) = {r1} for some θ ∈ (θ1, θ2). By Lemma 1, we

have that r1 ≥ θ. Consider first the case where θ ≤ r1 < 0. In a DE, sender 2 best replies

to r1 ∈ [θ, 0) with r2 = θ = S2(θ) because, by (C) and (D), we get β(r1, θ) = -©. However,

sender 1 can profitably deviate from the prescribed strategy by delivering r′
1 = s(θ), where

0 < s(θ) < r̄1(θ) (Lemmata 4 and A.1), contradicting that S1(θ) = {r1}. Consider now

the case where r1 ≥ 0 and r1 ≥ θ. If s(r1) ≤ r
¯

2(θ), then it must be that S2(θ) = {θ}.

By Definition 6 and Lemma 4 we have that r
¯

2(θ) < 0 and r1 ≥ s(r
¯

2(θ)) > 0. Since

r
¯

2(θ) < θ, sender 1 can profitably deviate from the prescribed strategy by reporting either

r′
1 = s(θ) ∈ (0, r1) if θ < 0, or r′

1 = θ if θ ≥ 0, as in both cases we get that β(r′
1, θ) = +©

and C1(r′
1, θ) < C1(r1, θ). If instead s(r1) > r

¯
2(θ), then sender 2 must be delivering some
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r′
2 ∈ (r

¯
2(θ), s(r1)). Therefore, if r1 > θ, then sender 1 is strictly better off by reporting θ

rather than r1 because β(θ, r′
2) = β(r1, r

′
2) = -© and C1(r1, θ) > 0 = C1(θ, θ). If instead

r1 = θ, then θ ≥ 0 and since r
¯

2(θ) ≥ r
¯

2(0) we have that s(r′
2) ≤ r̄1(θ) (Lemma 4). In this

case, sender 1 can profitably deviate from the prescribed strategy by reporting r′
1 = s(r′

2).

Similar arguments apply to S2(θ) = {r2}, completing the proof.

Lemma A.2. In a direct equilibrium, for every θ ∈ (θ1, θ2) supports Sj(θ) are such that

max S1(θ) ≤ min {r̄1(0), r̄1(θ), s (r
¯

2(θ))} ,

minS2(θ) ≥ max {r
¯

2(0), r
¯

2(θ), s (r̄1(θ))} .

Proof. Consider a DE and a θ ∈ (θ1, θ2). By definition of reach (equations (1) and (2))

every r1 > r̄1(θ) is strictly dominated by truthful reporting, and thus max S1(θ) ≤ r̄1(θ).

Similarly, we obtain that minS2(θ) ≥ r
¯

2(θ) and therefore by (D) and by Definition 5

every r1 > s(r
¯

2(θ)) is dominated by r′
1 = s(r

¯
2(θ)) and every r2 < s(r̄1(θ)) is dominated by

r′
2 = s(r̄1(θ)). Thus, max S1(θ) ≤ s(r

¯
2(θ)) and minS2(θ) ≥ s(r̄1(θ)). For every θ ∈ [0, θ2)

we have r̄1(θ) ≥ r̄1(0) and r
¯

2(θ) ≥ r
¯

2(0), and thus minS2(θ) ≥ r
¯

2(0). Since s(r
¯

2(0)) = r̄1(0)

(Lemma 4), it follows by (D) and by Definition 5 that s(r2) ≤ r̄1(0) for every r2 ∈ S2(θ),

and thus max S1(θ) ≤ r̄1(0). Similarly, we obtain that minS2(θ) ≥ s(r̄1(0)) for every

θ ∈ (θ1, 0).

Lemma A.3. In a direct equilibrium, r2 /∈ S2(θ) for every r2 ∈ (s(minS1(θ)), θ) and

θ > 0, and r1 /∈ S1(θ) for every r1 ∈ (θ, s(max S2(θ))) and θ < 0.

Proof. Consider a θ ∈ (0, θ2). By Lemmata 1 and 4 we have that s(minS1(θ)) < 0, and

by Definition 5 we have that β(r1, r2) = +© for every r1 ∈ S1(θ) and r2 ∈ (s (minS1(θ)) , θ).

Therefore, for sender 2 every r2 ∈ (s (minS1(θ)) , θ) is strictly dominated by truthful

reporting, and thus r2 /∈ S2(θ). A similar argument applies to sender 1 for θ ∈ (θ1, 0) and

Lemma 5 shows the case θ /∈ (θ1, θ2), completing the proof.

Lemma A.4. In a direct equilibrium, for every θ ∈ (θ1, θ2), reports r1 ∈ (minS1(θ),max S1(θ))

have s(r1) > r
¯

2(θ), and reports r2 ∈ (minS2(θ),max S2(θ)) have s(r2) < r̄1(θ).

Proof. Suppose not, and consider r′
1 ∈ (minS1(θ),max S1(θ)) for some θ ∈ (θ1, θ2) such

that s(r′
1) < r

¯
2(θ). By Definition 6 we have r

¯
2(θ) < 0 and by Lemma 4 we have s(r

¯
2(θ)) <

r′
1. This is in contradiction with Lemma A.2, which states that max S1(θ) ≤ s(r

¯
2(θ)). A

similar argument holds for reports r2 ∈ (minS2(θ),max S2(θ)), completing the proof.

Lemma A.5. In a direct equilibrium, αj(rj, θ) = 0 for all rj ∈ (minSj(θ),max Sj(θ)),

j ∈ {1, 2}, and θ ∈ (θ1, θ2).

Proof. Consider a θ ∈ (θ1, θ2) and suppose that there is a DE where sender 1’s strategy

φ1(θ) has an atom α1(r′
1, θ) > 0 in some report r′

1 ∈ (minS1(θ),max S1(θ)). By Lemma A.4
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we have that s(r′
1) > r

¯
2(θ). The expected payoff of sender 2 is discontinuous around r2 =

s(r′
1) and thus it must be that, for some ǫ > 0 small enough, (s(r′

1), s(r′
1) + ǫ) ∩S2(θ) = ∅.

Therefore, there exists an ǫ′ small enough such that sender 1 can profitably deviate from

the prescribed strategy by moving probability from r′
1 to some r′′

1 ∈ (s (s(r′
1) + ǫ′) , r′

1),

where by Lemma 4 s (s(r′
1) + ǫ′) < r′

1, thus contradicting that this is an equilibrium. A

similar argument applies to atoms in sender 2’s strategy, completing the proof.

Lemma A.6. In a direct equilibrium, minS1(θ) = θ for all θ ≥ 0, and max S2(θ) = θ for

all θ ≤ 0.

Proof. Consider a DE and a θ ≥ 0. By Lemma 1, it must be that minS1(θ) ≥ θ. Suppose

by way of contradiction that minS1(θ) > θ. By Lemma 5 it has to be that θ < θ2 and by

Lemma A.3 we obtain that S2(θ)∩(s(minS1(θ)), θ) = ∅. Therefore, unless sender 2’s strat-

egy has an atom α2(s(minS1(θ)), θ) > 0, we have that Φ2(s(minS1(θ)), θ) = Φ2(s(θ), θ).

However, since β(r1, s(minS1(θ))) = +© for all r1 ∈ S1(θ) and C2(s(minS1(θ)), θ) > 0,

it must be that α2(s(minS1(θ)), θ) = 0 as s(minS1(θ)) is strictly dominated by r2 = θ.

Hence, for some ǫ > 0, sender 1 can profitably deviate from the prescribed strategy by

moving probability from every r1 ∈ [minS1(θ),minS1(θ) + ǫ) ∩ S1(θ) to r1 = θ, contra-

dicting that there can be a DE with minS1(θ) > θ for a θ ≥ 0. A similar argument holds

for sender 2 and θ ≤ 0, completing the proof.

Lemma A.7. In a direct equilibrium, |Sj(θ)\{θ}|> 1 for every θ ∈ (θ1, θ2) and j ∈ {1, 2}.

Proof. Consider a DE and a state θ ∈ [0, θ2). By Lemma A.6 we have that minS1(θ) =

θ, and by Lemma 5 we have that |S1(θ)|> 1. Suppose by way of contradiction that

S1(θ) \ {θ} = {r1} for some r1 > 0. Since C1(r1, θ) > 0, in equilibrium it must be that

r1 induces +© with strictly higher probability than truthful reporting. This implies that

there is some r2 ∈ [s(r1), s(θ)) in the support of sender 2’s strategy, r2 ∈ S2(θ). Since

reports that are further away from the realized state are more expensive, it must be that

α2(r′
2, θ) > 0 for some r′

2 ∈ [s(r1), s(θ)), and φ2(r2, θ) = 0 for all r2 ∈ [s(r1), r
′
2). But then

sender 1 can profitably deviate from the prescribed strategy by moving probability from

r1 to s(r′
2), contradicting that this is an equilibrium.

Consider now the case where θ ∈ (θ1, 0) and suppose again that S1(θ) \ {θ} = {r1}. By

Lemma 5, we have that |Sj(θ)|> 1 for j ∈ {1, 2}, and thus minS1(θ) = θ. By Lemmata A.2

and A.3 we have that r1 ≥ s(θ) > 0 and max S2(θ) = θ. If r1 = s(θ), then sender 2 can

profitably deviate from the prescribed strategy by always reporting θ − ǫ for some ǫ > 0

small enough. If instead r1 > s(θ), then it must be that S2(θ) ∩ [s(r1), θ) = ∅ as every

r2 ∈ [s(r1), θ) would be strictly dominated by truthful reporting. Since |S2(θ)|> 1, there

must be some r2 < s(r1) such that r2 ∈ S2(θ). Therefore, sender 1 can profitably deviate

by moving probability from r1 to s(θ), contradicting that this is an equilibrium. A similar

argument applies to S2(θ) \ {θ}, completing the proof.
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Lemma 6. In a direct equilibrium, Sj(θ) \{θ} is convex for all θ ∈ (θ1, θ2) and j ∈ {1, 2}.

Proof. Consider a DE and a state θ ∈ (θ1, θ2). By Lemma A.7 we have that |Sj(θ)\{θ}|> 1,

j ∈ {1, 2}. Suppose by way of contradiction that S1(θ) \ {θ} is not convex, but instead

there are two reports r′
1, r

′′
1 ∈ S1(θ) \ {θ} with r′

1 < r′′
1 , such that r1 /∈ S1(θ) \ {θ} for

every r1 ∈ (r′
1, r

′′
1). By Lemmata 1, 4, and A.3 we have that r′

1 > 0, r′
1 ≥ s(θ), and

s(r′′
1) < s(r′

1) < 0. Since C1(r
′′
1 , θ) > C1(r

′
1, θ) and dCj(r,θ)

dr
> 0 for every r > θ, it must be

that every report r1 ≥ r′′
1 such that φ1(r1, θ) > 0 induces the implementation of alternative

+© with a strictly higher probability than every report r′′′
1 ≤ r′

1 such that φ1(r
′′′
1 , θ) > 0.

This is possible only if r2 ∈ S2(θ) for some r2 ∈ [s(r′′
1), s(r′

1)]. Since Φ1(r1, θ) is constant

for all r1 ∈ (r′
1, r

′′
1), it must be that sender 2’s strategy has an atom α2(r2, θ) > 0 in

some r2 ∈ (s(r′′
1), s(r′

1)], and φ2(r
′
2, θ) = 0 for all r′

2 ∈ [s(r′′
1), s(r′

1)] such that r′
2 6= r2.

However, for some ǫ > 0 small enough, sender 1 can profitably deviate from the prescribed

strategy by moving probability from all r1 ∈ [r′′
1 , r

′′
1 + ǫ) such that r1 ∈ S1(θ) to s(r2) < r′′

1 ,

contradicting that this is an equilibrium. A similar argument applies to S2(θ) \ {θ},

completing the proof.

Lemma 7. In a direct equilibrium, strategies φj(θ) have no atoms in Sj(θ) \ {θ} for every

θ ∈ (θ1, θ2) and j ∈ {1, 2}.

Proof. Lemma 5 shows that |Sj(θ)|> 1 for all θ ∈ (θ1, θ2) and Lemma A.5 shows that

φj(θ) has no atoms in (minSj(θ),max Sj(θ)). Consider a θ ∈ (θ1, θ2), and suppose

that φ1(θ) has an atom in max S1(θ), i.e., α1(max S1(θ), θ) > 0. By Lemma A.2, we

have that max S1(θ) ≤ min{s(r
¯

2(θ)), r̄1(θ)} and minS2(θ) ≥ max{r
¯

2(θ), s(r̄1(θ))}. If

minS2(θ) > s(max S1(θ)), then sender 1 can profitably deviate from the prescribed strategy

by moving probability from the atom in max S1(θ) to some r1 ∈ [s(minS2(θ)),max S1(θ)).

If minS2(θ) = s(max S1(θ)), then, since the probability of implementing -© is discontinuous

in r2 = s(max S1(θ)), it must be that r′
2 /∈ S2(θ) for all r′

2 ∈ [s(max S1(θ)), s(max S1(θ))+ǫ]

and some ǫ > 0. Otherwise, sender 2 could profitably deviate by moving probability from

some r′
2 ∈ [s(max S1(θ)), s(max S1(θ)) + ǫ] to some report r′′

2 = s(max S2(θ)) − ǫ′ for some

ǫ′ > 0. However, this would contradict Lemmata A.7 and 6, and thus it would not be

possible in a DE.

Suppose now that φ1(θ) has an atom in minS1(θ), i.e., α1(minS1(θ), θ) > 0. By

Lemma A.6, if θ ≥ 0 then minS1(θ) = θ, and thus suppose that θ ∈ (θ1, 0) and that

minS1(θ) > θ when θ < 0. By Lemmata 4, A.3, and A.6 we have that minS1(θ) ≥ s(θ) > 0.

If minS1(θ) = s(θ), then it must be that φ2(θ, θ) = 0, otherwise sender 2 could profitably

deviate from the prescribed strategy by moving probability from θ to θ− ǫ for some ǫ > 0

small enough. But then, the atom in minS1(θ) would be strictly dominated by truthful

reporting as C1(s(θ), θ) > 0 and β(s(θ), r2) = -© for every r2 ∈ S2(θ), contradicting that

this is an equilibrium. Consider now the case where minS1(θ) > s(θ). By definition,

we have that Φ1(r1, θ) = 0 for every r1 < minS1(θ), and by Lemma 4 we have that
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s(minS1(θ)) < θ. Therefore, it must be that φ2(r2, θ) = 0 for every r2 ∈ [s(minS1(θ)), θ).

However this implies that, for sender 1, minS1(θ) is dominated by s(θ), contradicting that

this can be an equilibrium. Similar arguments hold for atoms α2(r2, θ) for r2 ∈ S2(θ) \{θ},

completing the proof.

Proposition 2. In a direct equilibrium, for every θ ∈ (θ1, θ2) and i, j ∈ {1, 2} with i 6= j,

sender j delivers report rj ∈ Sj(θ) \ {θ} according to

ψj(rj, θ) =
ki

−ui(θ)

dCi(s(rj), θ)

drj

.

Proof. Consider a DE and a state θ ∈ (θ1, θ2). Given strategy φ1(θ), sender 2 gets

an expected utility of W ω
2 (r2, θ) = (1 − Φ1(s(r2), θ))u2(θ) − k2C2(r2, θ) from delivering

r2 ∈ S2(θ)\{θ}. By Lemmata 6 and 7 we have that Sj(θ)\{θ} is convex and atomless. By

Lemmata 1, A.1, and A.2, we have that Sj(θ) ⊂ R̂ for all θ ∈ (θ1, θ2), and thus by Lemma 4

we have that ds(r)
dr

< 0 for all rj ∈ Sj(θ). Therefore, we can apply the method of payoff-

equation: by setting
dW ω

2
(r2,θ)

dr2
= 0, and since φj(rj, θ) = ψj(rj, θ) for all rj ∈ Sj(θ) \ {θ}

(Lemma 7), we obtain the partial pdf ψ1(s(r2), θ) = k2

−u2(θ)
dC2(r2,θ)

dr2

dr2

ds(r2)
= k2

−u2(θ)
dC2(r2,θ)

ds(r2)
.

By replacing r1 = s(r2) we obtain that ψ1(r1, θ) = k2

−u2(θ)
dC2(s(r1),θ)

dr1
for r1 ∈ S1(θ) \ {θ}.

Similarly, we obtain that for r2 ∈ S2(θ) \ {θ}, ψ2(r2, θ) = k1

−u1(θ)
dC1(s(r2),θ)

dr2
.

Lemma A.8. In a direct equilibrium, S1(θ) is convex for all θ ≥ 0 and S2(θ) is convex

for all θ ≤ 0.

Proof. Consider a DE and suppose by way of contradiction that S1(θ) is not convex

for some θ ∈ [0, θ2). By Lemma A.6 we have that minS1(θ) = θ, and by Lemma 6 we

have that S1(θ) \ {θ} is convex. Therefore, it must be that minS1(θ) \ {θ} > θ and

φ1(r1, θ) = 0 for every r1 ∈ (θ,minS1(θ) \ {θ}). In equilibrium, every r1 > minS1(θ)\{θ}

such that φ1(r1, θ) > 0 must yield the implementation of alternative +© with strictly higher

probability than truthful reporting, as C1(r1, θ) > 0. This is possible only if φ2(r2, θ) > 0

for some r2 ∈ [s (minS1(θ) \ {θ}) , s(θ)). However, for some ǫ > 0 small enough, it must

be that φ2(r
′
2, θ) = 0 for every r′

2 ∈ [s (minS1(θ) \ {θ}) , s(θ) − ǫ), as every such a report

r′
2 is dominated by reporting s(θ) − ǫ. Therefore, there exists an ǫ′ > 0 such that sender 1

can profitably deviate from the prescribed strategy by moving probability from reports

in the set [minS1(θ) \ {θ},minS1(θ) \ {θ} + ǫ′) to s(s(θ) − ǫ), contradicting that this is

an equilibrium. Lemma 5 considers the case where θ /∈ (θ1, θ2), and a similar argument

applies to states θ ≤ 0 and support S2(θ).

Proposition 3. In a direct equilibrium, for every state θ ∈ (θ1, θ2), supports Sj(θ) are

S1(θ) = {θ} ∪ [max {s(θ), θ} ,min {r̄1(θ), s (r
¯

2(θ))}] ,

S2(θ) = {θ} ∪ [max {r
¯

2(θ), s (r̄1(θ))} ,min {s(θ), θ}] .
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Proof. Consider a direct equilibrium and a state θ ∈ [0, θ2). Since for every θ ≥ 0 we have

that θ ∈ S1(θ) (Lemma A.6) and both sets S1(θ) and S1(θ)\{θ} are convex (Lemmata A.8

and 6), it follows that S1(θ) = [θ,max S1(θ)].

Lemma 6 shows that also S2(θ) \ {θ} is convex. Since minS1(θ) = θ, Lemma A.3 says

that when θ > 0 we have φ2(r2, θ) = 0 for all r2 ∈ (s(θ), θ), and thus max S2(θ)\{θ} ≤ s(θ)

for all θ ∈ (0, θ2). Suppose that max S2(θ) \ {θ} < s(θ). In this case, it must be that

φ1(r1, θ) = 0 for every r1 ∈ (θ, s(max S2(θ) \ {θ})), as for sender 1 every such a report r1

would be dominated by truthful reporting. This is in contradiction with Lemma A.8, and

therefore it must be that max S2(θ) \ {θ} = s(θ) for every θ ∈ (0, θ2). When θ = 0, we

have that max S2(0) = 0 (Lemma A.6).

Lemma 7 shows that φ2(r2, θ) is atomless in S2(θ)\{θ}. Therefore, for a r2 ∈ S2(θ)\{θ}

we have that Φ2(r2, θ) = Ψ2(r2, θ), and thus by using Proposition 2 we can write

Φ2(r2, θ)|r2∈S2(θ)\{θ}=
∫ r2

min S2(θ)
ψ2(r, θ)dr =

k1

u1(θ)
[C1(s(minS2(θ)), θ) − C1(s(r2), θ)] .

The probability that sender 2 misreports information in state θ ∈ (0, θ2) is thus

Φ2(s(θ), θ) =
k1

u1(θ)
C1(s(minS2(θ)), θ). (6)

Since minS2(θ) ≥ r
¯

2(θ) (Lemma A.2), it follows from Lemma 4 that, for every θ ∈ (0, θ2),

s(minS2(θ)) < r̄1(θ). Lemma A.7 shows that the set S2(θ) \ {θ} is not a singleton, and

since max S2(θ) \ {θ} ≤ s(θ) it must be that minS2(θ) < s(θ). Thus by Lemma 4 we have,

for θ ∈ (0, θ2), that s(minS2(θ)) ∈ (θ, r̄1(θ)). Finally, by definition of upper reach we get

that C1(r̄1(θ), θ) = u1(θ)/k1, and C1(r1, θ) < u1(θ)/k1 for every r1 ∈ [θ, r̄1(θ)). Therefore,

it follows that Φ2(s(θ), θ) ∈ (0, 1) for every θ ∈ (0, θ2). By using s(s(r)) = r and s(0) = 0

(Lemma 4), when θ = 0 we obtain that Φ2(s(0), 0) = 1 only if minS2(0) = r
¯

2(0).

The above argument shows that θ ∈ S2(θ) and that φ2(θ) has an atom in r2 = θ

of size α2(θ) = 1 − Φ2(s(θ), θ). Lemma 1 implies that every pair of on-path reports

(r1, r2) such that rj ≥ 0, j ∈ {1, 2}, must yield β(r1, r2) = +©. Therefore, by reporting

truthfully when θ ≥ 0, sender 2 obtains a payoff of W ω
2 (θ, θ) = u2(θ). It must be that

max S1(θ) ≤ s(minS2(θ)), otherwise every report r1 > s(minS2(θ)) would be dominated

by s(minS2(θ)). Since φ1(θ) has no atom in s(minS2(θ)) > θ (Lemma 7), by reporting

r2 = minS2(θ) sender 2 (almost) always induces the selection of its preferred alternative

-©, and gets an expected payoff of W ω
2 (minS2(θ), θ) = −k2C2(minS2(θ), θ).

In equilibrium each sender must receive the same expected payoff from delivering any

report that is in the support of its own strategy. Since by definition of lower reach we

obtain C2(r
¯

2(θ), θ) = −u2(θ)/k2, it follows that W ω
2 (minS2(θ), θ) = u2(θ) = W ω

2 (θ, θ) only

if minS2(θ) = r
¯

2(θ). Therefore, for a θ ∈ [0, θ2), we have that S2(θ) = [r
¯

2(θ), s(θ)]∪{θ}. It

also follows that max S1(θ) = s(r
¯

2(θ)): if max S1(θ) < s(r
¯

2(θ)), then r
¯

2(θ) < s(max S1(θ))
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and every r2 < s(max S1(θ)) would be strictly dominated by s(max S1(θ)). Thus, S1(θ) =

[θ, s(r
¯

2(θ))]. Similar arguments apply to the case θ ∈ (θ1, 0), completing the proof.

Proposition 4. In a direct equilibrium, for every state θ ∈ (θ1, θ2), strategies φj(θ) have

an atom at rj = θ of size αj(θ), where

α1(θ) =







k2

−u2(θ)
C2 (s(θ), θ) if θ ∈ [0, θ2)

1 − k2

−u2(θ)
C2 (s(r̄1(θ)), θ) if θ ∈ (θ1, 0],

α2(θ) =







1 − k1

u1(θ)
C1 (s(r

¯
2(θ)), θ) if θ ∈ [0, θ2)

k1

u1(θ)
C1 (s(θ), θ) if θ ∈ (θ1, 0].

Proof. Consider a direct equilibrium and a state θ ∈ [0, θ2). The proof of Proposition 3

shows that φ2(θ) has an atom in r2 = θ of size α2(θ) = 1 − Φ2(s(θ), θ). From equation (6)

and given minS2(θ) = r
¯

2(θ), we obtain that

α2(θ) = 1 −
k1

u1(θ)
C1(s(r

¯
2(θ)), θ).

By Lemma 7, sender 1’s strategy φ1(θ) admits an atom only in minS1(θ) = θ. Therefore,

we can use Proposition 2 to write

Φ1(r1, θ)|r1∈S1(θ) = α1(θ) +
∫ r1

θ
ψ1(r, θ)dr

= α1(θ) +
k2

−u2(θ)
[C2(s(r1), θ) − C2(s(θ), θ)] .

Since max S1(θ) = s(r
¯

2(θ)), it must be that Φ1(s(r
¯

2(θ)), θ) = 1. By using s(s(r
¯

2(θ))) =

r
¯

2(θ) (Lemma 4) and given that from the definition of lower reach we obtain C2(r
¯

2(θ), θ) =

−k2/u2(θ), we have

Φ1(s(r
¯

2(θ)), θ) = α1(θ) +
k2

−u2(θ)
[C2(s(s(r

¯
2(θ))), θ) − C2(s(θ), θ)]

= α1(θ) + 1 −
k2

−u2(θ)
C2(s(θ), θ) = 1,

from which we obtain that

α1(θ) =
k2

−u2(θ)
C2(s(θ), θ).

A similar procedure can be used for θ ∈ (θ1, 0), completing the proof.

Lemma A.9. In a direct equilibrium, for every (on-path) pair of reports (r1, r2) such that
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r2 = s(r1), posterior beliefs are

p(θ|r1, r2) > 0 if and only if θ ∈ [max{r2, r̄
−1
1 (r1)},min{r1, r

¯
−1
2 (r2)}].

Proof. Consider a DE and a pair of reports (r1, r2) such that r̄1(0) ≥ r1 > 0 > r2 ≥ r
¯

2(0).

Given equilibrium supports in Proposition 3, all such pairs are on-path (e.g., for θ = 0).

Upon observing (r1, r2), the decision maker forms posterior beliefs p(θ|r1, r2). By Lemma 1,

it must be that p(θ|r1, r2) = 0 for every θ /∈ [r2, r1]. By Lemma 5, it must be that

p(θ|r1, r2) = 0 for every θ /∈ [θ1, θ2]. By Proposition 3 we have that minS2(θ) ≥ r
¯

2(θ) and

max S1(θ) ≤ r̄1(θ), and therefore p(θ|r1, r2) = 0 for every θ /∈
[

r̄−1
1 (r1), r

¯
−1
2 (r2)

]

, where

from equations (1) and (2) we obtain

r̄−1
1 (r1) = min {θ ∈ Θ|u1(θ) = k1C1(r1, θ)} ,

r
¯

−1
2 (r2) = max {θ ∈ Θ|−u2(θ) = k2C2(r2, θ)} .

From Proposition 3 we also have that, for every θ ∈ [0, θ2), max S1(θ) = s(r
¯

2(θ)) ≤ r1(θ).

Therefore, given the report r1 ∈ (0, r̄1(0)], it must be that p(θ|r1, r2) = 0 for all θ such

that s(r
¯

2(θ)) < r1. By Lemma 4 and since dr
¯

2(θ)/dθ > 0, there is a state θ′ such that

s(r
¯

2(θ
′)) = r1. Denote such state with t1(r1) := {θ ∈ Θ|s(r

¯
2(θ)) = r1}, where t1(r1) > 0

and dt1(r1)/dr1 > 0. Similarly, denote t2(r2) := {θ ∈ Θ|s(r̄1(θ)) = r2}. Given equilibrium

supports, it must be that p(θ|r1, r2) = 0 for all θ /∈ [t2(r2), t1(r1)].

By Lemma 4 and since s(r
¯

2(θ2)) = θ2 (Definition 6), we obtain that t1(r1) ≤ θ2 for

every r1 ∈ [θ2, r̄1(0)], and thus min{r1, t1(r1)} ≤ θ2 for all r1 ∈ (0, r̄1(0)]. Similarly, we get

that max{r2, t2(r2)} ≥ θ1 for all r2 ∈ [r
¯

2(0), 0). Therefore, we have that p(θ|r1, r2) = 0

for every θ /∈ [max{r2, r̄
−1
1 (r1), t2(r2)},min{r1, r

¯
−1
2 (r2), t1(r1)}], and by Proposition 3 we

obtain that p(θ|r1, r2) ∝ f(θ) · φ1(r1, θ) · φ2(r2, θ) > 0 otherwise.

Consider now the case where r2 = s(r1) (or, by Lemma 4, r1 = s(r2)). By definition,

at state θ′ = t1(r1) we have s(r
¯

2(θ
′)) = r1. Thus, we get that s(r1) = r

¯
2(θ

′) = r2

and r
¯

−1
2 (r2) = θ′ = t1(r1). Similarly, we obtain that r̄−1

1 (r1) = t2(r2). Therefore,

for every pair of reports (r1, s(r1)) we have that p(θ|r1, s(r1)) > 0 if and only if θ ∈
[

max
{

r2, r̄
−1
1 (r1)

}

,min
{

r1, r
¯

−1
2 (r2)

}]

.

Proposition 5. In a direct equilibrium, the swing report function s(ri) is implicitly defined

for i, j ∈ {1, 2}, i 6= j, and ri ∈ R̂, as

s(ri) =

{

rj ∈ Rj

∣
∣
∣
∣

∫ min{r1,r
¯

−1

2
(r2)}

max{r2,r̄−1

1
(r1)}

f(θ)
udm(θ)

u1(θ)u2(θ)

dCj(rj, θ)

drj

dCi(ri, θ)

dri

dθ = 0

}

. (4)

Proof. Given the equilibrium reporting strategies φj(rj|θ) = δ(rj − θ)αj(θ) + ψj(rj|θ),

j ∈ {1, 2} (Propositions 2, 3, and 4), the mixed probability distribution p(r1, r2|θ) =
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φ1(r1, θ)φ2(r2, θ) is

p(r1, r2|θ) = δ(r1 − θ)δ(r2 − θ)α1(θ)α2(θ) + δ(r1 − θ)α1(θ)ψ2(r2, θ)

+ δ(r2 − θ)ψ1(r1, θ)α2(θ) + ψ1(r1, θ)ψ2(r2, θ).

Consider a pair of reports (r1, r2) such that r̄1(0) ≥ r1 > 0 > r2 ≥ r
¯

2(0) and r2 = s(r1)

(as by Lemma 4 we have that if r > 0, then s(r) < 0). Since dCj(rj ,θ)

drj

∣
∣
∣
rj=θ

= 0 for

every θ ∈ Θ, we obtain that ψj(s(θ), θ) = 0 for i, j ∈ {1, 2}, i 6= j, and therefore

p(r1, s(r1)|θ) = ψ1(r1, θ)ψ2(s(r1), θ).

The swing report s(r1) is defined in Definition 5 as the r2 ∈ R2 such that Udm(r1, r2) =
∫

Θ udm(θ)p(θ|r1, r2)dθ = 0, and by Lemma 4 we know that s(r1) ∈ [r
¯

2(0), 0). By

Lemma A.9 we have that p(θ|r1, s(r1)) > 0 if and only if θ ∈ [max{r2, r̄
−1
1 (r1)},min{r1, r

¯
−1
2 (r2)}],

and therefore by using Bayes’ rule we can rewrite the condition Udm(r1, s(r1)) = 0 as

Gs(r1, s(r1)) = 0, where

Gs(r1, r2) =
1

p(r1, r2)

∫ min{r1,r
¯

−1

2
(r2)}

max{r2,r̄−1

1
(r1)}

udm(θ)f(θ)ψ1(r1, θ)ψ2(r2, θ)dθ.

By substituting for the equilibrium strategies ψj(rj, θ) as described in Proposition 2, we

obtain the implicit definition of the swing report given in equation (4).

Corollary 1. Direct equilibria are essentially unique.

Proof. The solution of equation (4) is unique and depends only on the model’s primitives

udm(θ), f(θ), ui(θ), τi, ki, Ci(ri, θ), for i ∈ {1, 2}. Therefore, for every r ∈ [r
¯

2(0), r̄1(0)],

the swing report s(r) is the same across every DE. It follows that the truthful cutoffs θ1

and θ2, and the senders’ reporting strategies φj(θ) and supports Sj(θ), j ∈ {1, 2}, are also

the same in all DE. Thus, all DE are strategy and outcome equivalent.

Lemma A.10. There exists direct equilibria with unprejudiced beliefs.

Proof. Consider a DE and an off-path pair reports (r1, r2). By Propositions 2, 3, and 4,

and by Lemma 5, we obtain that the only pair of reports such that φj(rj, θ) = 0 for all

θ ∈ Θ and j ∈ {1, 2} is (0, 0). For every other off-path pair of reports, there is always a

sender i such that φi(ri, θ) > 0 for some θ ∈ Θ. There are three types of off-path pairs of

reports that need to be considered: those that violate Lemma 1, such as when r1 > r2;

those that violate Proposition 3, such as when r1 > s(r
¯

2(r2)); those that violate Lemma 5,

such as when r1 6= r2 for some (r1, r2) /∈ (θ1, θ2)
2.

For beliefs to be unprejudiced, Definition 7 requires that for every such off-path pair

of reports we have that p(θ′′|r1, r2) > 0 if and only if there is a sender i ∈ {1, 2} such that

φi(ri, θ
′′) > 0. Since p(θ′′|r1, r2) can be arbitrarily small, I can just focus on beliefs that

rationalize deviations as originating from only one sender. Hereafter, I will consider some
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posterior beliefs p′ which, given an off-path pair of reports (r1, r2), rationalize deviations as

originating with certainty from one specific sender i under the constraint that φj(rj, θ) > 0

for some θ ∈ Θ and j ∈ {1, 2}. If there is a DE with such beliefs p′, then there exists a

DE with beliefs p′′ (e.g., a small perturbation of p′) that satisfy Definition 7 (and thus

also Definition 2).

First, if 0 ≤ r1 < r2 (resp. r1 < r2 ≤ 0), then set p′ such that the decision maker

believes the deviation has been performed by sender 1 (2). Given the equilibrium strategies,

it must be that sender 2 (1) is reporting truthfully, and thus p′ leads to β(r1, r2) = +©

( -©). Consider now the case r1 < 0 < r2, and set p′ such that the decision maker believes

that only sender 1 (or 2) is deviating. Therefore, it must be that sender 2 (1) is reporting

truthfully, and thus β(r1, r2) = +© ( -©). Second, consider an off-path pair of reports such

that, for an x ≥ 0, r2 > x and r1 ≥ s(r
¯

2(x)) (resp. r1 < y ≤ 0 and r2 ≤ s(r̄1(y))). If

through p′ the decision maker believes that sender 1 (2) is the deviator, then it must

be that θ = r2 (θ = r1) and therefore β(r1, r2) = +© ( -©). Finally, consider an off-path

pair (r1, r2) /∈ (θ1, θ2)
2 with r1 6= r2. If both r1, r2 ≥ θ2 (resp. r1, r2 ≤ θ1), then, by

rationalizing the deviation as originating from one sender, the decision maker would infer

that θ ≥ θ2 > 0 (θ ≤ θ1 < 0) and select β(r1, r2) = +© ( -©).

Since p′ is consistent with conditions (C) and (D), and since given p′ no sender has

individual profitable deviations from the prescribed equilibrium strategies, it follows that

there are DE with unprejudiced beliefs as defined in Definition 2 and 7.

Corollary 2. There are direct equilibria with unprejudiced beliefs that are also ε-robust.

Proof. Consider an ε-perturbed game with sequence εn and full support distributions

Ĝ = (Ĝ1, Ĝ2) such that ĝ1(r1) ≈ 0 for all r1 < 0 and ĝ2(r2) ≈ 0 for all r2 > 0. This means

that it is relatively unlikely that the report of sender 1 (resp. 2) is by mistake observed

to be negative (resp. positive). By equation (5), the limit beliefs p̂0+ induced by the

strategies of a DE after observing a pair of reports (r1, r2) such that 0 ≤ r1 < r2 are

p̂0+(θ|r1 ≥ 0, r2 > 0) ≈ f(θ)
δ(r2 − θ)α2(θ)

f(r2)α2(r2)
.

Therefore, the CDF P̂0+ =
∫

p0+(θ|r1, r2)dθ is such that

P̂0+(θ|r1 ≥ 0, r2 > 0) ≈







0 if θ < r2

1 if θ ≥ r2.

As εn → 0+ and for every off-path pair of reports that are both positive, the decision

maker is almost sure that the realized state coincides with the report of sender 2. Similarly,

we obtain that P̂0+(r1 < 0, r2 ≤ 0) ≈ 0 for all θ < r1 and ≈ 1 otherwise, and by Lemma 3,

we have that p̂0+(θ|r1 < 0, r2 > 0) > 0 only for θ ∈ {r1, r2}. Therefore, limit beliefs p̂0+
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are arbitrarily close to the posterior beliefs p′ in the proof of Lemma A.10, and therefore

can support a DE. Since a DE is also a PBE, by Lemma 3 we obtain that there exists

direct equilibria with unprejudiced beliefs that are also ε-robust.

Corollary 3. A direct equilibrium always exists.

Proof. Given strategies φj(rj, θ) = δ(rj − θ)αj(θ) + ψj(rj, θ) as in Proposition 2 and 4,

with support Sj(θ) as in Proposition 3, posterior beliefs p(θ|r1, r2) are such that the swing

report function s(r) is as in Proposition 5. Given s(r), strategies φj(rj, θ) are optimal by

construction, and thus no sender j ∈ {1, 2} can perform a profitable individual deviation

from φj(rj, θ). Therefore, for every primitive of the model that satisfies the conditions

outlined in Section 3, there must exist a direct equilibrium as defined by Definition 4.

A.3 Example: Symmetric Environments

Corollary 4. In a direct equilibrium of a symmetric environment, s(r) = −r for every

r ∈ R̂.

Proof. The proof follows directly from Proposition 5: consider a symmetric environment

and suppose that s(r) = −r. Given a report r ∈ (0, r̄1(0)), the interval of integration

in (4) has max{−r, r̄−1
1 (r)} = − min{r, r

¯
−1
2 (−r)}. Since the integrand in (4) is symmetric

around zero, we obtain that Gs(r,−r) = 0, confirming that indeed s(r) = −r.
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