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Abstract 

There is an intense debate whether decision making under uncertainty is partially 
driven by cognitive abilities. The critical issue is whether choices arising from 
subjects with lower cognitive abilities are more likely driven by errors or lack of 
understanding than pure preferences for risk. The latter implies that the often argued 
link between risk preferences and cognitive abilities might be a spurious correlation. 
This experiment reports evidence from a sample of 556 participants who made 
choices in risk-related tasks about winning and losing money and completed three 
cognitive tasks, all with real monetary incentives: number-additions under time 
pressure (including incentive-compatible expected number of correct additions), the 
Cognitive Refection Test (to measure analytical/reflective thinking) and the Remote 
Associates Test (for convergent thinking). Results are unambiguous: none of our 
cognition measures plays any systematic role on risky decision making. Our data 
indeed suggest that cognitive abilities are negatively associated with noisy, 
inconsistent choices, which might have led to spurious correlations with risk 
preferences in previous studies. 

 
JEL codes: D81, C91. 
Keywords: decision making under uncertainty, cognitive abilities, online experiment. 

 

 
I Introduction 

Typically, experimental economists use lottery tasks to measure individuals’ 

preferences for risk. For instance, in the Holt and Laury (2002) mechanism, 

subjects have to choose between lottery A and B in 10 decisions (both 

lotteries with two possible outcomes and probabilities), while in Eckeland 

Grossman (2002) they have to choose among six gambles, all with a 0.5 

probability of winning a higher prize. Generally speaking, Multiple Prices Lists 

(MPL) experimental devices such as the above may involve a lot of probability 

computation. It is often observed that about 15%–20% of the participants are 

                                                 
1 We thank Pedro Caldentey for coordinating the experiment. We also thank Behave4’s 

team (http://behave4.com/) for allowing us to use their platform. This project was funded 
by Excelencia Junta de Andalucia (2012-P12-SEJ-1436) and the Spanish Ministry of 
Science (PGC2018-093506-B-I00) 

http://behave4.com/
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inconsistent; a percentage that can increase dramatically in non-student 

samples (see Charness et al. 2013). 

The truth is that lotteries or computations involving probabilities are not easy 

tasks. In fact, many brain areas related to cognition appear to be involved in 

probability calculus. In a sample of subjects making probabilistic choices, 

Berns et al. (2008) showed that brain responses (to probabilities) are 

consistent with nonlinear probability weighting. Indeed, they provided 

evidence for notable neural activity in a circumscribed network of brain 

regions that included the anterior cingulate and the visual, parietal and 

temporal cortices. 

Assuming that decision making under uncertainty (DMU) requires an ability to 

compute probabilities, it follows that choices by subjects with lower Cognitive 

Abilities (CAbs) might be partially the result of mistakes or lack of 

understanding rather than pure taste for specific prospects (risk preferences). 

However, if individuals are able to differentiate risky from non-risky prospects 

regardless of their innate capacity to evaluate probabilities—that is, even 

those endowed with low abilities can do it—then their choices reflect pure 

preferences for risk. This question is not new and has been explored using 

administrative, survey (incentivized and hypothetical) and experimental data 

(typically from the lab) on risk taking. In the following lines, we summarize the 

main findings for each of these three strands of the literature. 

Administrative data 

Christelis et al. (2010), Van Rooj et al. (2011), Grinblatt et al. (2011), Frisell et 

al. (2012), Cole et al. (2014), Beauchamp et al. (2017) and Angrisani and 

Casanova (2018) have studied the role of CAbs in risk-taking behavior in 

different contexts of life: stock market participation, alcohol consumption and 

smoking, saving, portfolio selection and violent crime. Such studies do not 

measure risk preferences in purpose-designed tasks, but simply observe 

behaviors or choices that serve as indirect observations of risk preferences. In 

this regard, Dohmen et al. consider that: 

while risk-taking behavior has been found to be correlated with various 

facets of cognition, the sign and magnitude of the correlation seems to 
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vary across contexts and studies. With a closer look at this variation, 

however, a pattern emerges. Cognitive ability tends to be positively 

correlated with avoidance of harmful risky situations and to be 

negatively correlated with risk aversion in advantageous situations. 

(2018: 120) 

This might be indicating that high cognitive ability is associated with risk 

neutrality. According to these same authors (2018:120), “evidence for this 

emerges both from studies of behavior in risky situations, often conducted by 

psychologists and psychiatrists, and also from studies focused on economic 

decision-making” as, for example, stock market participation. 

That said, since these studies use proxies that indirectly infer risk taking from 

observed behavior, it is difficult to draw firm conclusions about risk 

preferences. For instance, time is an important underlying factor beyond risk 

(i.e., volatility) in many of these decisions, thus time preferences may also 

determine savings, drug use and violent crime (Åkerlund et al. 2016, Bickel et 

al. 1999, Meier and Sprenger 2012). Moreover, the CAbs measures differ 

greatly from one study to another. For example, Christelis et al. (2010) 

employed math, verbal and recall tests and found similar results for each of 

the three measures; Angrisani and Casanova (2018) tested separately for 

numeracy and “cognition” (episodic memory and fluid intelligence) and also 

found similar relationships for the two types of measures, while Grinblatt et al. 

(2011) combined psychological tests assessing mathematical, verbal and 

logical skills into one composite score. 

Survey data 

Chapman et al. (2018) used incentivized experimental tasks (similar to MPL 

with dynamic optimization) to elicit risk aversion in a survey conducted with a 

representative US sample. Their CAbs measure is given by the number of 

correct answers to nine items combining fluid intelligence, spatial ability and 

cognitive reflection. Booth and Katic (2013) used hypothetical lottery 

investment and a self-assessment questionnaire about risk attitudes (i.e., 

general and financial risk taking) in Australian birth-cohort data. However, 

their measure of cognitive abilities is just a proxy (academic performance 
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ranking used for university entrance). Falk et al. (2018) developed the Global 

Preference Survey (GPS), an experimentally validated survey data set of time 

preference, risk preference, positive and negative reciprocity, altruism and 

trust of 80,000 people in 76 countries. They elicited risk preferences through a 

series of related quantitative questions (hypothetical lottery choice sequence 

using staircase method) as well as one qualitative question (self-assessment: 

willingness to take risks in general). The GPS also elicited a self-reported 

proxy for CAbs by asking people to assess themselves by the statement “I am 

good at math” on an 11-point Likert scale. 

Chapman et al. (2018) showed that participants with higher CAbs are more 

loss averse and less risk averse. Falk et al. (2018) confirmed that risk 

aversion is more pronounced for individuals with lower CAbs. Booth and Katic 

(2013) did not find a statistically significant correlation between CAbs and risk 

attitudes. 

Again, however, the risk preferences as well as CAbs measures vary greatly 

from one study to another. In contrast to the above administrative data 

papers, these studies tend to combine their CAbs measures into one single 

variable rather than analyzing them separately. 

Experimental data 

Brañas-Garza et al. (2008), Oechssler et al. (2009), Cokely and Kelley (2009), 

Burks et al. (2009), Campitelli and Labollita (2010), Sousa (2010), Dohmen et 

al. (2010), Beauchamp et al. (2012), Mather et al. (2012), Tymula et al. 

(2012), Rustichini et al. (2012, 2016), Benjamin et al. (2013), Sutter et al. 

(2013),Taylor (2013, 2016), Booth et al. (2014), Cueva et al. (2015), 

Andersson et al. (2016), Park (2016) and Pachur et al. (2017) studied the 

connection between risk preferences and CAbs in the lab. The lab 

experiments typically involved controlled environments and self-selected 

samples of university students. CAbs were measured through different 

devices, such as grades, test scores, Raven’s matrices, the Cognitive 

Reflection Test (CRT) and graduate examination records, among others. 

These papers can be classified into three groups. First, several studies find 

that higher CAbs are associated with more risk taking, which is consistent with 
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previous studies using administrative and survey data (see, for instance, 

Cokely and Kelley 2009, Burks et al. 2009, Dohmen et al. 2010, Campitelli 

and Labollita 2010, Brañas-Garza et al. 2011,2 Rustichini et al. 2012, 2016, 

Benjamin et al. 2013, Taylor 2013, Booth et al. 2014, Cueva et al. 2015 and 

Park 20163). According to Dohmen et al., 

a second pattern that emerges from the literature reveals differences in 

the correlation between risk taking in lotteries and cognitive ability 

depending on whether lotteries only entail gains or also potential 

losses. In particular, and similar to the findings in several 

nonexperimental settings, experimental studies tend to find a negative 

correlation between risk aversion in lottery choice and various 

measures of cognitive ability when the lottery outcomes are in the gain 

domain, whereas the findings suggest a positive correlation between 

risk aversion and cognitive ability when the lottery outcomes involve 

potential losses. (2018: 125–126; see also Oechssler et al. 2009, Burks 

et al. 2009 and Rustichini et al. 2012, 2016, among others)  

Thus, according to these results, high CAbs individuals may be less risk 

averse and more loss averse. 

Second, null results are found in Brañas-Garza et al. (2008), Sousa (2010), 

Tymula et al. (2012), Mather et al. (2012), Sutter et al. (2013), Taylor (2013,4 

20165) and Pachuret al. (2017). 

Finally, while the above experimental evidence of a negative relation between 

CAbs and risk aversion seems compelling, much evidence has also shown 

that estimated risk preferences based on MPL are highly sensitive to the 

presentation of the task and to changes in the choice set. For instance, 

Beauchamp et al. (2012) tested whether choices over risky prospects and the 

                                                 
2 These authors show that reasoning ability and risk aversion are negatively correlated in 

males, that is, higher reasoning ability is associated with a higher willingness to take risks. 
3 Park shows that this result holds for a high probability of gain or a low probability of loss. 

When subjects face low probability of gain or high probability of loss the correlation 
reverses. 

4 Taylor estimates that cognitive ability is inversely related to risk aversion when choices are 
hypothetical, but is unrelated when the choices are real. 

5 In this study, the author finds that the inverse relationship between risk aversion and CAbs 
is not robust and that high-ability subjects may misrepresent their preferences when facing 
hypothetical choices. 
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resulting preference parameter estimates are affected by framing effects that 

are implicitly introduced by the experimenter. Their experimental results 

indicate that elicited risk preferences are sensitive to scale effects but 

insensitive to information about expected value.6 

Along these lines, Andersson et al. (2016) argued that the direction of the bias 

generated by behavioral noise depends on the choice set of the risk elicitation 

task. They argue that although different studies suggest a negative correlation 

between risk aversion and CAbs (Benjamin et al. 2013, Burks et al. 2009 and 

Dohmen et al. 2010), CAbs might be related to random decision making 

rather than to risk preferences. In particular, they show that noise causes 

underestimation of risk aversion in a risk-elicitation task containing many 

decisions on the risk-loving domain, but causes overestimation in a task 

containing many options on the risk-averse domain. They find that such errors 

are correlated with CAbs in a large sample of subjects drawn from the general 

Danish population. To demonstrate that the danger of false inference is real 

for standard risk-elicitation tasks, they chose two risk-elicitation tasks such 

that one produces a positive correlation and the other a negative correlation of 

risk aversion and CAbs. 7  Taken together, these results indicate that an 

observed correlation between risk preferences and CAbs is task-contingent 

and hence spurious. In fact, it is a relatively common finding that low CAbs 

individuals are more likely to make noisy, inconsistent choices in risk-taking 

tasks (Burks et al. 2009, Chapman et al. 2018, Dohmen et al. 2018). 

Therefore, in this branch of the literature the results are somewhat more 

mixed and seem to indicate that the relationship between CAbs and risk 

taking is highly sensitive to the task used and that noise or errors play an 

important role. Whether different CAbs measures yield different results has 

also often been overlooked, since much of the evidence is based on 

                                                 
6 They present subjects with several MPL and find that inferred risk preferences vary 

systematically with the type of list used. The lists differ depending on whether there are 
many decisions in the risk-averse or in the risk-loving domain. 

7 By presenting subjects with choice tasks that vary the bias induced by random choices, 
these authors were able to generate both a negative relation between risk aversion and 
CAbs in experiment 1 and positive correlations between risk aversion and CAbs in 
experiment 2.  
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measures combining different CAbs. A recent meta-analysis, which did not 

account for inconsistent decision making and excluded studies using self-

reported risk-taking measures and proxy (indirect) measures of CAbs, found a 

weak but significant negative relationship between CAbs and risk aversion in 

the gain domain but no relationship when losses are possible (Lilleholt 2019). 

However, further meta-regressions fail to find clear systematic moderators of 

this relationship (either task type, CAbs measures used, gender, or age). 

Therefore, the critical issue is to unravel whether there is a true link between 

DMU and CAbs (i.e., not due to noise or errors) and whether this link depends 

on the risk-taking task and CAbs measures used. To address this question, 

we ran an experiment with two important features:  

i) We measured DMU using incentive-compatible individual choices in 

both the gain and mixed (including both gains and losses) domain to 

elicit risk and loss aversion, respectively. We also tested for “noisy”, 

inconsistent DMU in the two tasks.  

ii) Given that there is an ample spectrum of CAbs, we asked our subjects 

to complete three different tasks: summations under time pressure (to 

measure mathematical abilities; we also elicited the expected number 

of correct summations to measure over/under-confidence), CRT (to 

measure the disposition to rely on analytical thinking vs. intuition, see 

Brañas-Garza et al. 2015) and the Remote Associates Test (RAT; to 

measure convergent thinking, see Shen et al. 2018).  

All the tasks were presented to individuals in random order. We used a 

representative sample of first-year, undergraduate Spanish students enrolled 

in Business Economics comprising 556 participants who made their decisions 

online. 

The results are unambiguous: we do not find any systematic impact of 

CAbs— math proficiency, analytical/intuitive thinking or convergent thinking— 

on decision making under risk in either the gain or mixed domain. Significant 

quadratic relationships (Mandal and Roe 2014) were not observed either. 

However, we find an indication that both analytical and convergent thinking 

are negatively (and somewhat independently) related to noisy, inconsistent 
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decision making. Since we observe that being inconsistent is associated to 

higher risk aversion and lower loss aversion, the above result might explain 

why some previous studies find high CAbs types to be less risk averse and 

more loss averse. 

The rest of the paper is structured as follows: the next section focuses on the 

methodology used, while the results are shown in the third section. Section 

four concludes. 

 

II Methods 

Sampling: This paper uses a nationally-by-regions representative sample of 

n = 556 (the sample represents a population of 11,780 students; 52.5% 

females) comprising first-year, Spanish students enrolled in Business 

Economics (BusEc hereafter). We computed the participation or weight of 

every university in the national-by-regions representative population using the 

BusEc enrollment in September 2017 by universities provided by the Spanish 

Ministry of Education. This participation rate was the basis for computing the 

number of participants corresponding to each university. Institutions with few 

students were not included. Instead, the resulting shares were assigned to the 

largest universities of the same region.8 

Recruitment: In order to find students from every region of Spain, we first 

contacted university professors by email to ask them to collaborate. We only 

contacted the professors in charge of courses taught in year one (freshmen) 

according to the official webpage. We asked them whether they were in fact 

the lecturer(s) in charge of the course and then we requested the person in 

charge to help with the recruitment.9 All the lecturers were asked to announce 

the recruitment in class 48 hours before the experimental online platform was 

                                                 
8 The web https://sites.google.com/site/pablobranasgarza/projects/across-spain provides all 

the relevant information: weight calculations, maps and sample size by university and 
region. 

9 The two emails we sent are available on the website in both Spanish and English (see 
note 8). 
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open. Apart from other practical information, a specific login/password was 

provided for each institution in the announcement.10 

Participants: Self-selected participants logged in at home on Behave4 

Diagnosis (a webpage specifically designed to run economic experiments 

online11) and completed the tasks. The participants were given one hour and 

informed that after 30 min of inactivity the system would automatically switch 

off. Once the number of required participants for a given university was 

achieved, no more students for this institution were allowed to participate. An 

important issue here is that, in the absence of a proper lab, we have little 

control over subjects’ behavior across the experiment. Moreover, we cannot 

ensure that they are making choices alone. Nevertheless, online economic 

experiments are being increasingly used, and recent evidence suggests that 

the results obtained are valid and comparable to those obtained in physical 

lab setting (Anderhub et al. 2001, Horton et al. 2011 and Arechar et al. 2018). 

Earnings: One out of every 10 participants was randomly selected for real 

payment (i.e., each participant had a 10% chance of getting paid for real). At 

the end of the experiment, a random mechanism determined whether the 

participant was one of the winners or not. If selected, participants were asked 

for their email in order to contact them. Payments were made by bank 

transfer. One decision (from the entire set of games and tasks) was randomly 

selected for each winning subject to compute his/her payment. This has been 

proven as a valid cost-saving payment method in economic experiments 

(Charness et al. 2016). The 56 participants who were selected to be paid 

earned on average €41.37. The payments ranged from €0 (12 individuals) to 

€120 (2 individuals). The average length of the experiment was 50 min. 

Experimental tasks: Students faced a number of incentivized experimental 

economics tasks including measures of time preferences, risk aversion, loss 

aversion and distributive preferences. They also played seven incentivized 

one-shot canonical games on social behavior (Ultimatum, Dictator, Trust, 

Public Goods Game, Third Party Punishment, Stag Hunt and Beauty 
                                                 
10 Our system does not preclude the possibility of students sharing the code with friends that 

do not match our sampling criteria. A questionnaire helps us to control for this potential 
issue. 

11 https://diagnosis.behave4.com/. 
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Contest). All participants performed all the tasks in a randomly generated 

order with no feedback. All tasks implemented real monetary incentives. For 

this research we used the following tasks: 

a) CAbs. The CAbs tasks and measures are the following: 

• Number of correct 4-digit summations in 60 seconds (similar to the 

piece rate condition in Niederle and Vesterlund 2007): sumsi. This 

variable measures math proficiency in a stressful environment. 

Participants received €3 for each correct answer. 

• Expected number of correct summations in the above task: expect 

sumsi. Participants received €60 if they made the correct guess and €0 

otherwise. 

• 7-item CRT (Capraro et al. 2017; adapted from Frederick 2005 and 

Toplak et al. 2014). This test measures the disposition to override an 

intuitive/automatic answer to a problem, which is indeed incorrect. We 

obtain two measures: (i) Number of analytical or reflective responses in 

the test (reflectivei), that is, number of correct answers; (ii) number of 

intuitive, incorrect responses (intuitivei). They received €50 if they gave 

the correct answer from a randomly chosen item and €0 otherwise. 

• 13-item RAT (adapted from Mednick 1962). This task measures 

participants’ convergent thinking or the ability to find a single solution 

from apparently unconnected information, often referred to as 

convergent creativity. More specifically, participants were shown 13 

groups of three words related to another, single word and had to find 

the word for each item (e.g., for “square / cardboard / open” the correct 

answer is “box”). The measure of convergent thinking is determined by 

the number of correct answers (convergenti). Participants received €60 

if they gave the correct answer in a randomly selected item and €0 

otherwise. 

b) DMU. The basic measures regarding DMU are (see Appendix 3): 

• Number of risk-averse choices in a standard 10-item risk aversion task 

(Holt and Laury 2002): riskaversioni.. Earnings: A: p*€40, (1-p)*€32; B: 

p*€77, (1-p)*€2; p = 0.1,. . ., p = 1. 
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• Number of loss averse choices in a standard 6-item loss aversion task 

(Gächter et al. 2007): lossaversioni. Initial endowment: €40. Potential 

losses: 1st choice: 1/2*(-€10) + 1/2*(+€30); 2nd choice: 

1/2*(-€15) + 1/2*(+€30);. . .6th choice: 1/2*(-€35) + 1/2*(+€30). 

c) Additional variables and transformations: Besides the original variables 

defined above, we can compute a number of additional variables. 

• Overconfidencei = expect sumsi - sumsi 

• CRRAi: coefficient of relative risk aversion. This variable captures the 

concavity of the participant’s utility function in the gain domain. The 

larger the coefficient, the stronger the risk aversion. Risk neutral 

individuals who display a linear utility function have a CRRA of 0, 

whereas risk averse (loving) individuals who display a concave 

(convex) utility function have a CRRA > 0 (< 0). 

• Risk aversei, risk neutrali, risk loveri: binary variables take the value of 

1 if CRRAi > 0, CRRAi ≈ 0, or CRRAi < 0, respectively (0 otherwise). 

This distinction is important since previous studies suggest that it is risk 

neutrality that may be associated with high CAbs (Dohmen et al. 2018). 

• CRLAi: coefficient of relative loss aversion. This variable captures the 

ratio between the (dis)utility obtained from a loss and the utility 

obtained from a gain of identical magnitude, in absolute value. The 

higher the value, the stronger the loss aversion. Thus, a value of 1 

indicates no loss aversion, whereas values above (below) 1 indicate 

that losses are valued more (less) than gains. 

d) Measures of noisy, inconsistent DMU: Finally, we define binary variables 

that capture whether the individual made inconsistent (“irrational”) choices in 

the DMU tasks (e.g., multiple switching between options A and B or choosing 

the strictly dominated option A in the last decision). The variables are as 

follows: 

• Rinconsistenti takes the value of 1 if the participant’s choices in the risk 

aversion task were inconsistent. 

• Linconsistenti takes the value of 1 if the participant’s choices in the loss 

aversion task were inconsistent. 
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• RLincosistenti takes the value of 1 if the participant’s choices in both 

the risk and loss aversion tasks were inconsistent. 

 
 
III Results 
 
III-a Preliminary analysis 
 

Table 1 displays descriptive statistics for all the dependent and explanatory 

variables used. As can be seen, the sample is reduced in three observations 

for expect sums and hence for overconfidence due to the exclusion of outliers 

(using the mean ± 3 SD rule).  

Table 1. Descriptive statistics (computed using sampling weights) 

Variable Obs Mean SD Min Max 

Dependent variables      

Rinconsistent 556 .177 .382 0 1 

Linconsistent 556 .139 .346 0 1 

RLinconsistent 556 .045 .208 0 1 

risk aversion 556 5.553 1.883 0 10 

loss aversion 556 3.449 1.410 0 6 

risk averse 457 .656 .476 0 1 

risk neutral 457 .232 .422 0 1 

risk lover 457 .113 .317 0 1 

CRRA 457 .546 .588 -1.713 17.662 

CRLA 483 1.499 .547 .714 3 

      

Explanatory variables      

sums 556 8.848 3.579 0 21 

expect sums 553 6.902 2.977 1 29 

overconfidence 553 -1.975 2.900 -12 27 

reflective 556 2.888 1.899 0 7 

intuitive 556 2.589 1.667 0 6 

convergent 556 4.784 2.285 0 11 

       

Control variables      

female 556 0.508 0.500 0 1 

income 507 4.713 2.321 0 1 

age 556 19.24 2.333 17 45 

 

In addition, all the dependent variables that require parameterization, i.e., risk 

averse, risk neutral, risk lover, CRRA and CRLA, only use those individuals 
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whose decisions are consistent throughout the task since these measures 

cannot be computed for inconsistent decisions. This involves excluding 99 

observations in the former four cases and 73 observations in the latter case 

(see Rinconsistent and Linconsistent in Table 1). 

Tables 2 and 3 show zero-order Pearson correlations between the DMU (and 

inconsistent DMU) and CAbs variables, respectively. The impact of CAbs on 

DMU will be studied below using regression analysis. Regarding the 

relationships between our dependent variables, we observe that the number 

of risk averse and loss averse choices, that is, risk aversion and loss 

aversion, are positively albeit weakly correlated (p = 0.03), as expected. This 

correlation becomes stronger when using the parametric measures of risk and 

loss aversion, CRRA and CRLA, which exclude inconsistent individuals 

(p < 0.01). Also, a larger number of risk averse choices is positively 

associated with being inconsistent in the risk aversion task (Rinconsistent; 

p < 0.01) and negatively, but marginally, associated with being inconsistent in 

the loss aversion task (Linconsistent; p = 0.09). These results translate into 

relationships in the expected direction, which are sometimes significant when 

the risk dummies (risk averse, risk neutral and risk loving) are considered. On 

the other hand, a larger number of loss averse choices is negatively 

associated with Linconsistent (p < 0.01). Finally, Rinconsistent and 

Linconsistent are positively related (p < 0.01). 

These results are important because they reflect the fact that being 

inconsistent is linked to a larger number of risk averse choices and a smaller 

number of loss averse choices. 

For the explanatory variables, Table 3 shows that math proficiency (sums) is 

strongly positively correlated with individuals’ expectations (expect sums), but 

negatively with overconfidence (both p < 0.01). As expected, sums are 

positively correlated with both reflective and, to a lesser extent, convergent, 

and negatively correlated with intuitive (all p < 0.01). Similar relationships are 

observed for expect sums (all p < 0.01). Overconfidence is negatively 

(positively) related to reflective (intuitive), although both relationships are 

marginal (both about p = 0.09). Finally, reflective (intuitive) is positively 

(negatively) related to convergent (stronger for reflective; both p < 0.01). 
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These relationships follow expectations according to the previous literature 

(Bosch-Domènech et al. 2014; Frederick 2005; Corgnet et al. 2016). In sum, 

our CAbs measures are all correlated in the expected direction, but the 

correlations are low enough to conclude that they capture different constructs. 
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Table 2. Zero-order Pearson correlations for DMU and inconsistent DMU variables (computed using sampling weights) 

 

risk 
aversion 

loss 
aversion 

risk 
averse 

risk 
neutral 

risk 
lover CRRA CRLA Rinconsistent Linconsistent 

loss aversion 0.090         

 (0.034)         

risk averse 0.776 0.104        

 (0.000) (0.026)        

risk neutral -0.434 -0.040 -0.758       

 (0.000) (0.394) (0.000)       

risk lover -0.586 -0.103 -0.492 -0.196      

 (0.000) (0.027) (0.000) (0.000)      

CRRA 0.989 0.109 0.718 -0.374 -0.580     

 (0.000) (0.020) (0.000) (0.000) (0.000)     

CRLA 0.144 0.899 0.099 -0.030 -0.108 0.149    

 (0.002) (0.000) (0.045) (0.544) (0.029) (0.003)    

Rinconsistent 0.130 -0.003     0.062   

 (0.002) (0.951)     (0.177)   

Linconsistent -0.073 -0.137 -0.119 0.135 -0.001 -0.111  0.156  

 (0.086) (0.001) (0.011) (0.004) (0.976) (0.018)  (0.000)  

RLinconsistent 0.045 -0.085      0.469 0.542 

 (0.290) (0.045)      (0.000) (0.000) 

Note: p-values in parentheses 
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Table 3. Zero-order Pearson correlations for CAbs variables 

 sums 
expect 
sums 

overconfidence reflective intuitive 

expect sums 0.621     
 (0.000)     

overconfidence -0.594 0.262    
 (0.000) (0.000)    

reflective 0.220 0.202 -0.073   
 (0.000) (0.000) (0.085)   

intuitive -0.202 -0.179 0.071 -0.763  
 (0.000) (0.000) (0.097) (0.000)  

convergent 0.138 0.167 -0.000 0.216 -0.132 

 (0.001) (0.000) (0.996) (0.000) (0.002) 

 Note: p-values in parentheses. Correlations computed using sampling weights. 

 

III-b The impact of CAbs on inconsistent choices 

Before analyzing the relationship between the CAbs measures and the risk 

preferences measures, we explore the impact of CAbs on inconsistent 

choices. We have six explanatory variables and three dependent variables. 

This means that we have 18 models to test.  

Table 4 shows the estimated impact of our set of CAbs on inconsistent DMU 

using logit regression models. Each column focuses on a particular 

measurement of inconsistency, whereas rows refer to the different CAbs 

measures (each cell shows estimates obtained from a different model; the 

constant is not shown). We use sampling weights in all regressions.  

We find that more reflective individuals are less likely to make inconsistent 

choices in both tasks (Rinconsistent, p = 0.01, Linconsistent and 

RLinconsistent, p < 0.01; the opposite is observed for intuitive, but only 

significant for Linconsistent, p = 0.04 and RLinconsistent, p = 0.05). The 

individuals displaying better convergent thinking are also less likely to make 

inconsistent choices in the risk aversion task (p = 0.02; not significant for 

Linconsistent, p = 0.12 or RLinconsistent, p = 0.10).  

All the regressions are replicated controlling for gender, age and income in 

Table A.1 of Appendix 1.12 The results remain qualitatively unchanged.  

                                                 
12 Income information is only defined for 507 individuals, the rest is missing. 
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Table 4. The impact of CAbs on inconsistent DMU 

 Rinconsistent Linconsistent RLinconsistent 

sums -0.00 0.00 -0.03 

 (0.03) (0.05)  (0.05) 

expect sums -0.03 -0.05 -0.08 
 (0.04) (0.06) (0.07) 

overconfidence -0.02 -0.05 -0.04 
 (0.04) (0.07) (0.05) 

reflective -0.22** -0.37*** -0.56*** 
 (0.09) (0.10) (0.17) 

intuitive 0.09 0.21** 0.25* 
 (0.09) (0.10) (0.13) 

convergent -0.14** -0.12 -0.18 
 (0.06) (0.07) (0.11) 

N 556 556 556 

Notes: Each cell corresponds to a different regression. Robust 
standard errors in parentheses. Regressions using expect sums or 
overconfidence also exclude the three outliers detected. Sampling 
weights are enabled in all regressions. *** p < 0.01, ** p < 0.05, * 
p < 0.10. 

 

A second robustness check is implemented in Table A.2 (Appendix 1) in 

which the main explanatory variables (i.e., sums, expect sums, reflective and 

convergent) are all included together (since overconfidence is determined by 

sums and expect sums, we only enable reflective for the CRT since also 

including intuitive would yield collinearity).  

From this analysis, we observe that both reflective and convergent remain 

significant or marginally significant in predicting inconsistent risk choices 

(Rinconsistent) when included together, which means that they operate 

independently to some extent. Reflective is still also significant in predicting 

inconsistent choices in the loss aversion task and in both tasks together. 

Adding controls does not substantially change the results (not reported). 

We repeated the previous 18 models including the squared term of the 

explanatory variables (Mandal and Roe 2014). We can state that the 

quadratic model is better than the linear model if the following three conditions 

are verified: the quadratic term is significant, the linear and quadratic terms 

are jointly significant and the Bayesian information criterion for the quadratic 
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model is lower than for the linear model. Taking into account the above 

conditions, quadratic models are better than their linear counterparts in the 

following cases: Rinconsistent explained by sums, Linconsistent explained by 

overconfidence and Rinconsistent explained by overconfidence (see 

Appendix 2 for details). 

In sum, our data show that subjects who score high in the CRT and the RAT 

are less likely to be inconsistent. The latter implies that restricting the sample 

to participants who make consistent MPL choices implies selecting those 

endowed with better cognitive abilities. 

 

III-c The impact of CAbs on DMU 

Finally, we explore the impact of the different CAbs measures on our DMU 

dependent variables. In this case we have six explanatory variables and 

seven dependent variables. This means that we have 42 models to test.  

Table 5 shows the estimated impact of our set of CAbs on DMU using 

regression models. As in Table 4, each column focuses on a particular 

measurement of DMU, whereas rows refer to the different CAbs measures 

(each cell shows estimates obtained from a different model; the constant is 

not shown). OLS estimations are used for the continuous dependent variables 

and logit for the binary ones. We use sampling weights in all regressions. 

The results are quite straightforward. We do not find any robust link between 

our cognitive measures and DMU. We only observe a marginally positive 

effect of reflective on loss aversion (p = 0.09) and CRLA (p = 0.06). Thus, 

more analytic individuals are more loss averse, in line with previous studies 

(see Dohmen et al. 2018), albeit the relationship is rather weak. 

A second robustness check is implemented in Table A.4 in which the main 

explanatory variables (i.e., sums, expect sums, reflective and convergent) are 

included together (see above). From this analysis, we observe that the 

marginally significant positive effects of reflective on loss aversion and CRLA 

now become significant at 5%. The remaining results remain qualitatively 

similar except, again, for a marginal positive effect of expect sums on risk 
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loving. Adding controls does not substantially change the results (not 

reported). 

The models reported in Table 5 were repeated including the squared term of 

the explanatory variables. Using the same three conditions as above, we find 

that the quadratic model is better than linear model for risk averse and risk 

neutral, as explained by sums. The coefficients associated to sums and sums 

squared are, respectively, 0.13 (p = 0.20) and -0.01 (p = 0.06) for risk neutral 

and -0.17 (p = 0.13) and 0.01 (p = 0.03) for risk averse. In both cases, 

however, the power of fit of the quadratic model is rather poor and the joint 

significance test only yields marginal significance. 

Table 5. The impact of CAbs on DMU 

 
 

risk 
aversion 

loss 
aversion 

risk 
averse 

risk 
neutral 

risk 
lover CRRA CRLA 

 OLS OLS Logit Logit Logit OLS OLS 

sums -0.02 -0.01 -0.05 0.04 0.03 -0.01 -0.00 

 (0.02) (0.02) (0.03) (0.04) (0.04) (0.01) (0.01) 

expect sums -0.02 -0.02 -0.05 0.02 0.07 -0.01 -0.00 

 (0.03) (0.02) (0.04) (0.04) (0.05) (0.01) (0.01) 

overconfidence 0.01 -0.01 0.01 -0.04 0.04 -0.00 0.00 

 (0.04) (0.02) (0.04) (0.04)  (0.05) (0.02) (0.01) 

reflective 0.00 0.07* 0.03 -0.06 0.04 0.01 0.03* 

 (0.05) (0.04)  (0.06) (0.07) (0.08) (0.02) (0.02) 

intuitive 0.00 -0.07 -0.07 0.10 -0.01 0.00 -0.03 

 (0.06) (0.04) (0.07) (0.08) (0.10) (0.02) (0.02) 

convergent -0.06 -0.03 -0.05 0.04 0.05 -0.02 -0.01 

 (0.04) (0.03) (0.05) (0.06) (0.08) (0.02) (0.01) 

N 556 556 457 457 457 457 483 

Notes: Each cell corresponds to a different regression. Robust standard errors in 
parentheses. The differences in sample sizes across regressions stem from the fact that, 
except for non-parametric measures such as risk aversion and loss aversion, values cannot 
be calculated for individuals with inconsistent choices and are therefore excluded. The 
regressions using expect sums or overconfidence also exclude the three outliers detected. 
Sampling weights are enabled in all regressions. *** p < 0.01, ** p < 0.05, * p < 0.10. 

 

All the regressions are replicated controlling for gender, age and income in 

Table A.3 in the Appendix. The results remain qualitatively unchanged, except 

for a marginal negative (positive) relationship between expect sums and loss 

aversion (risk loving). Moreover, the effect of reflective on loss aversion loses 

its (marginal) significance. 
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All in all, our results show that there is not a robust link between our measures 

of cognitive abilities and DMU.  

 

V Conclusions 

Using a large, nationally representative sample of participants comprising 

Business Economics students, our study yields two important results.  

First, the study supports the hypothesis that risk preferences are not 

correlated to individuals’ math proficiency, analytical (reflective) thinking or 

convergent thinking.  

Second, we find that individuals who rely more on reflection than intuition and 

those displaying better convergent thinking are less likely to make 

inconsistent choices in the risk-related tasks. 

Therefore, our results indicate that preferences for risk in either the gain or the 

loss domain are not driven by cognitive abilities. Although we find weak 

evidence that more analytical/reflective individuals are more loss averse (in 

line with previous literature; see Dohmen et al. 2018), taken together, our 

results instead support the notion that low CAbs are related to noisy, 

inconsistent decision making. This result is particularly salient when CAbs are 

measured as analytical/reflective (vs. intuitive) thinking and, to a lesser extent, 

as convergent thinking. 

An important contribution of this paper is related to selection. If subjects who 

fail to pass the consistency requirement are dropped from the sample and 

these subjects are those with lower cognitive abilities, then the restricted 

sample selects participants who have higher cognitive abilities. Since being 

inconsistent is found to be associated with less risk taking in the gains domain 

(i.e., more risk aversion) and more risk taking in the loss domain (i.e., less 

loss aversion), our results suggest that failing to detect inconsistent choices 

might lead to a spurious negative (positive) relationship between CAbs and 

risk (loss) aversion (although in contrast to the suggestion of Chapman et al. 

2018). 
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Still there is a more intricate problem related to the potential number of 

individuals whose choices are labeled as consistent by chance. This is the 

case, for instance, of subjects who never switch (which might be related to 

inattention) or those who make consistent choices by chance although they 

do not understand the decisions. Detecting these individuals does not seem to 

be an easy endeavor. A potential solution might be to ask subjects about the 

procedure they follow to make the choices.  

All in all, the effects and magnitudes are highly sensitive to the task itself and 

the statistical analysis of inconsistent choices. The latter might explain why 

previous results are mixed and somewhat weak (Andersson et al. 2016, 

Dohmen et al. 2018, Lilleholt 2019). 
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APPENDIX 1: Additional regressions 
 

Table A.1. Regression analysis with controls. The impact of CAbs on 
inconsistent DMU 

 Rinconsistent Linconsistent RLinconsistent 

sums 0.02 
(0.03) 

0.02 
(0.05) 

0.01 
(0.06) 

expect sums -0.00 
(0.04) 

-0.05 
(0.06) 

-0.05 
(0.08) 

overconfidence -0.03 
(0.05) 

-0.08 
(0.08) 

-0.05 
(0.05) 

reflective -0.18** 
(0.09) 

-0.34*** 
(0.11) 

-0.49*** 
(0.17) 

intuitive 0.08 
(0.10) 

0.22* 
(0.12) 

0.27* 
(0.14) 

convergent -0.14** 
(0.06) 

-0.08 
(0.07) 

-0.13 
(0.11) 

N 507 507 507 

Notes: Each cell corresponds to a different regression. Robust standard 
errors in parentheses. The regressions using expect sums or 
overconfidence also exclude the three outliers detected. Sampling weights 
are enabled in all regressions. *** p < 0.01, ** p < 0.05, * p < 0.10. 

 

Table A.2. Regression analysis with all explanatory variables simultaneously. 
The impact of CAbs on inconsistent DMU 

 Rinconsistent Linconsistent RLinconsistent 

sums 0.03 0.07 0.05 

 (0.04) (0.06) (0.05) 

expect sums -0.01 -0.04 -0.04 

 (0.06) (0.09) (0.09) 

reflective -0.20** -0.36*** -0.54*** 

 (0.09) (0.10) (0.20) 

convergent -0.11* -0.06 -0.10 

 (0.06) (0.07) (0.11) 

N 553 553 553 

Notes: Robust standard errors in parentheses. Sampling weights are 
enabled in all regressions. *** p < 0.01, ** p < 0.05, * p < 0.10 
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Table A.3. Regression analysis with controls. The impact of CAbs on DMU 

 

risk 
aversion 

loss 
aversion 

risk 
averse 

risk 
neutral 

risk 
lover CRRA CRLA 

 OLS OLS Logit Logit Logit OLS OLS 

sums -0.02 
(0.02) 

-0.01 
(0.02) 

-0.04 
(0.03) 

0.03 
(0.04) 

0.04 
(0.04) 

-0.01 
(0.01) 

-0.01 
(0.01) 

expect sums -0.01 
(0.04) 

-0.04* 
(0.02) 

-0.04 
(0.04) 

-0.00 
(0.05) 

0.08* 
(0.04) 

-0.01 
(0.01) 

-0.01 
(0.01) 

overconfidence 0.02 
(0.04) 

-0.02 
(0.03) 

0.01 
(0.04) 

-0.04 
(0.05) 

0.03 
(0.05) 

0.00 
(0.02) 

0.00 
(0.01) 

reflective 0.04 
(0.05) 

0.07 
(0.04) 

0.08 
(0.07) 

-0.09 
(0.08) 

-0.02 
(0.09) 

0.02 
(0.02) 

0.03* 
(0.02) 

intuitive -0.02 
(0.06) 

-0.07 
(0.05) 

-0.12 
(0.08) 

0.10 
(0.09) 

0.08 
(0.09) 

-0.01 
(0.02) 

-0.03 
(0.02) 

convergent -0.06 
(0.05) 

-0.05 
(0.03) 

-0.06 
(0.06) 

0.04 
(0.06) 

0.07 
(0.09) 

-0.02 
(0.02) 

-0.01 
(0.01) 

N 507 507 417 417 417 417 440 

 

Table A.4. Regression analysis with all explanatory variables simultaneously. The 
impact of CAbs on DMU 

 

risk 
aversion 

loss 
aversion 

risk 
averse 

risk 
neutral 

risk 
lover CRRA CRLA 

 OLS OLS Logit Logit Logit OLS OLS 

sums -0.01 -0.00 -0.03 0.05 -0.02 -0.00 -0.01 

 (0.04) (0.02) (0.04) (0.04) (0.05) (0.01) (0.01) 

expect sums -0.00 -0.02 -0.03 -0.01 0.08* -0.01 -0.00 

 (0.05) (0.03) (0.04) (0.05) (0.05) (0.02) (0.01) 

reflective 0.02 0.09** 0.06 -0.08 0.03 0.01 0.04** 

 (0.05) (0.04) (0.06) (0.07) (0.09) (0.02) (0.02) 

convergent -0.06 -0.04 -0.05 0.05 0.03 -0.02 -0.01 

 (0.05) (0.03) (0.05) (0.06) (0.09) (0.02) (0.01) 

N 553 553 454 454 454 454 480 
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APPENDIX 2: Quadratic models for Inconsistency 
 

As explained throughout the paper, we can say that the quadratic model is 

better than the linear model if three conditions are verified: the quadratic term 

is significant, the linear and quadratic terms are jointly significant and the 

Bayesian information criterion for the quadratic model is lower than for the 

linear model.  

Only three models verify the three conditions: 

• Rinconsistent explained by sums. The coefficients associated to sums 

and sums squared are, respectively, 0.32 (p = 0.02) and -0.02 

(p = 0.01). This means that individuals with about eight correct sums 

are the most likely to make inconsistent choices in the risk aversion 

task. Individuals with more or less than eight correct answers were less 

likely to make inconsistent choices. A possible explanation is the lack 

of motivation: those with less than eight correct answers do not really 

care about this task or find it too tiresome (note that for BusEc 

students, having at least eight correct answers in 60 seconds should 

be very easy), hence low math proficiency should not be the 

determinant of extremely low values of sums. If this is the case, this 

result would be indicating that math proficiency is also (just as 

reflective and convergent) negatively related to inconsistent risk 

choices.  

• Linconsistent explained by overconfidence. The coefficients associated 

to overconfidence and its square are, respectively, -0.50 (p = 0.22) and 

0.01 (p = 0.01). However, this result is uniquely due to two individuals 

with overconfidence higher than 10 (i.e., they expected > 10 correct 

answers more than they actually had). In excluding these two 

observations, the significance completely vanishes. 

• RLinconsistent explained by overconfidence. The coefficients 

associated to overconfidence and its square are, respectively, -0.40 

(p = 0.11) and -0.08 (p = 0.03). Yet, again, this result vanishes after 

excluding the two observations with overconfidence > 10. 
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APPENDIX 3: Instructions for risk and loss aversion tasks 
 
Risk aversion: 

You are now going to make 10 decisions about a certain amount of money 
associated with different probabilities. In each scenario you will have to 
choose between two lotteries that assign a probability to two possible 
monetary gains (prizes). Note that choosing a lottery implies playing it. 

The 10 decisions are totally independent of each other. There are no right or 
wrong answers. Make the decision that you feel matches with your own 
preferences. Do not take into account what you decided previously or will 
decide later. 

Payment: For real payments we will randomly select 1 out of 10 decisions. 
Then you will play the lottery you chose in that scenario. So, think carefully 
about your decisions because this will determine the amount of money you 
will earn (if you are selected).  

Please, press START to begin the task 

Start 

 

Choose between the two options for each decision, the one you prefer 

1.  
€40 with 10% probability 

 
€77 with 10% probability 

€32 with 90% probability €2 with 90% probability 
     

2.  
€40 with 20% probability 

 
€77 with 20% probability 

€32 with 80% probability €2 with 80% probability 
     

3.  
€40 with 30% probability 

 
€77 with 30% probability 

€32 with 70% probability €2 with 70% probability 
     

4.  
€40 with 40% probability 

 
€77 with 40% probability 

€32 with 60% probability €2 with 60% probability 
     

5.  
€40 with 50% probability 

 
€77 with 50% probability 

€32 with 50% probability €2 with 50% probability 
     

6.  
€40 with 60% probability 

 
€77 with 60% probability 

€32 with 40% probability €2 with 40% probability 
     

7.  
€40 with 70% probability 

 
€77 with 70% probability 

€32 with 30% probability €2 with 30% probability 
     

8.  
€40 with 80% probability 

 
€77 with 80% probability 

€32 with 20% probability €2 with 20% probability 
     

9.  
€40 with 90% probability 

 
€77 with 90% probability 

€32 with 10% probability €2 with 10% probability 
     

10.  
€40 with 100% probability 

 
€77 with 100% probability 

€32 with 0% probability €2 with 0% probability 
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Loss aversion: 

Just for starting you will receive a €35 endowment. During this task you will 
have to make 6 decisions about negative (losses) or positive (gains) amounts 
of money. In each decision you will be asked to accept or refuse to play a 
lottery. The lottery is extremely simple: we flip a virtual coin and if it comes up 
heads, you can win money, otherwise you lose. The lottery is always the 
same, but from scenario to scenario the amount you lose increases. Note that 
choosing a lottery implies playing it (you may either win or lose). 

The 6 decisions are totally independent of each other. There are no right or 
wrong answers. Make the decision that you feel matches with your own 
preferences. Do not take into account what you decided previously or will 
decide later. 

The amount of money you earn here by playing the lottery will be added to the 
initial endowment of €35. 

Payment: One of your 6 decisions will be chosen randomly for real payments. 
Then we will check whether you decided to play the lottery or not. If you did, 
we will toss the coin to determine whether you earn or lose the prize. If you 
have refused to play, then you will earn €0 plus €35. The €35 endowment is to 
cover potential losses. 

 

Please press START to begin the task 

Start 

 

For each decision, choose if you accept or reject playing the lottery. 
If you reject it, you do not gain or lose anything. 

1. If it's tails, you lose €10 and if it's heads you win €30  Accept  Reject 

2. If it's tails, you lose €15 and if it's heads you win €30  Accept  Reject 

3. If it's tails, you lose €20 and if it's heads you win €30  Accept  Reject 

4. If it's tails, you lose €25 and if it's heads you win €30  Accept  Reject 

5. If it's tails, you lose €30 and if it's heads you win €30  Accept  Reject 

6. If it's tails, you lose €35 and if it's heads you win €30  Accept  Reject 

 
 


