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Abstract

This paper re-examines the conditions under which endogenous economic growth can
emerge in neoclassical models with non-renewable resources. Unlike most of the existing
studies which focus exclusively on Cobb-Douglas production function, our analysis is based
on a general specification. We formally prove that endogenous growth can emerge only under
the “knife-edge” condition of a unitary elasticity of substitution between labour input and
resource input. If this elasticity is not equal to one (as suggested by empirical evidence), then
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1 Introduction

Economists have long been concerned with natural resource scarcity and its implications on
long-term economic growth. In a seminal paper, Stiglitz (1974) examines these issues using the
now-familiar neoclassical growth model with infinitely-lived consumers. It is shown that long-term
growth in per-capita output is sustainable even when natural resources are limited in quantity
but essential for production.! Most importantly for the present study, Stiglitz’s model is one of
endogenous growth. This means the long-term economic growth rate in this model is not a priori
determined by some exogenous technological factors, but rather it is derived within the model and
can potentially be influenced by the choices of the consumers, firms, as well as the government. In
a more recent study, Agnani, Gutiérrez and Iza (2005, henceforth AGI) show that the endogenous
growth result can also be obtained in a similar neoclassical framework but with overlapping
generations of finitely-lived consumers. These findings have far-reaching implications for both
resource economics and economic growth theory, as they suggest that practices and policies in
natural resource management can influence the long-term growth prospect of an economy. One
such policy is resource taxation.? Existing studies typically focus on the effects of resource tax
on a mining firm’s exploration and extraction decisions.? Very few have examined the impact of
such tax on the wider economy and economic growth.* For most resource-producing countries,
resource taxation is a significant part of the economy. For instance, Bornhorst et al. (2009)
report that for a sample of 30 resource-producing countries (with various degrees of economic
development), resource taxation on average accounts for 49.1% of total government revenues and
16.2% of GDP over the period 1992-2005. The sheer scale of this type of taxation warrants a
thorough understanding about the factors that will determine its impact on the wider economy.

The aim of the present study is twofold. First, to re-examine the conditions under which

. . . . =4
endogenous economic growth can emerge in neoclassical models with non-renewable resources.”

"More specifically, perpetual growth in per-capita output is possible in the presence of (resource-augmenting)
technological improvements and a high degree of substitutability between capital input and resource input. This
result is also mentioned in Jones and Manuelli (1997, p.91).

*Similar to Boadway and Keen (2010), we use the terms “resource taxation” and “resource tax” broadly to
include also other types of revenues that governments collect from the extraction and utilisation of natural resources
(such as royalties and equity sharing arrangements).

3See, for instance, Gaudet and Lasserre (2015) for a review of the theoretical literature.

* An exception is Groth and Schou (2007), which examine the growth effects of capital income tax and resouce
tax in a model with infinitely-lived consumers. Obviously, there is a large literature that examines how pollution
tax or carbon tax can curb the negative externalities (pollution) generated by resource-related economic activities.
We do not consider this type of externality in the present study.

>More specifically, we focus on a decentralised, competitive economy that features one single production sector
without any externalities as in Stiglitz (1974) and AGI. Other studies in resource economics have shown that
endogenous economic growth can emerge in the presence of production externalities [e.g., Groth and Schou (2007)]
and R&D activities [see, for instance, Barbier (1999), Scholz and Ziemes (1999), and Grimaud and Rougé (2003)].



Second, to examine the implications of these conditions on the effects of resource taxation. The
present study is motivated by the following observations: Both Stiglitz (1974) and AGI have relied
on a specific form of production function, which is a Cobb-Douglas production function with three
productive inputs (physical capital, labour and natural resources).® This is equivalent to assuming
that the elasticity of substitution between any two of these inputs is always equal to one. This
assumption, however, is at odds with many empirical findings.” While the estimates produced by
the empirical literature may vary across datasets and estimation methods, the general consensus
is that the Cobb-Douglas specification is not consistent with the data. This raises the question of
whether the endogenous growth result in Stiglitz (1974) and AGI will remain valid without the
Cobb-Douglas assumption. The present study not only provides an answer to this question, we
also go one step further and show that this has important implications on the effects of resource
taxation.

Our analysis is conducted within the same theoretical framework as in AGI, except for two
changes: First, the Cobb-Douglas production function is replaced by some more general speci-
fications that are in line with empirical evidence. Second, a constant flat tax on resource input
is introduced.® In our benchmark model, we begin with a general class of production functions
that exhibit constant returns to scale in all inputs and in which capital input is functionally
separable from labour input and resource input.? Similar to AGI, we focus on characterising bal-
anced growth equilibria, i.e., competitive equilibria in which (i) all major economic variables are
growing at some constant rate and (ii) factor income shares are all strictly positive and constant
over time. We show that two types of balanced growth equilibria are possible, depending on the
elasticity of substitution between effective labour input and effective resource input.'® On the
one hand, if this elasticity is constant and equal to one (henceforth referred to as the unitary
elasticity assumption), then the long-term economic growth rate is endogenously determined as

in AGI. This result holds regardless of the elasticity of substitution between capital input and the

These other sources of endogenous growth are not the subject of the present study.

%A Cobb-Douglas production function is one that is multiplicatively separable in all inputs and has constant
elasticities. This specification is commonly used in resource economics. See, for instance, Solow (1974), Mitra
(1983), Barbier (1999) and Groth and Schou (2002) among others.

"See, for instance, Kemfert (1998), Kemfert and Welsch (2000), van der Werf (2008), Henningsen, Henningsen
and van der Werf (2018).

81n resource economics, this is often referred to as an ad valorem severence tax. As explained in Groth and
Schou (2007, p.83), this type of tax is closely related to the royalties collected by the government from resource
extraction.

9The terminology and definition of “functional separability” are taken from Leontief (1947) and Blackorby and
Russell (1976). Further details are provided in Section 2.

Y Effective labour input is defined as (raw) labour input multiplied by a labour-augmenting technological fac-
tor. Similarly, effective resource input is defined as (raw) resource input multiplied by a resource-augmenting
technological factor.



other two inputs. Thus, this can be viewed as a partial generalisation of the endogenous growth
result in AGI. But, on the other hand, if the elasticity of substitution between effective labour
input and effective resource input is bounded above or below by one, then long-term economic
growth is solely driven by an exogenous labour-augmenting technological factor as in the standard
neoclassical growth model. Taken together, our benchmark results underscore the pivotal role of
the unitary elasticity assumption in generating endogenous economic growth.!!

The intuition behind these results is as follows: As is well-known in the economic growth
literature, perpetual growth in per-capita output requires certain factor (either exogenous or
endogenous) that can counteract the diminishing marginal return of physical capital.!? Such
a factor is dubbed as the “engine of growth.” In our benchmark model, if the unitary elasticity
assumption is satisfied, then total factor productivity (TFP) and resource input jointly serve as the
engine of growth. While the growth rate of TFP is taken as exogenously given, the depletion rate
of resource input (which is determined by the utilisation rate of natural resources) is endogenously
determined. This opens up a door through which other factors (such as consumers’ preferences
and government policies) can affect the utilisation of natural resources and, in turn, the engine
of growth. But if the elasticity at issue is not equal to one, then balanced growth equilibria are
possible only if effective resource input and effective labour input are growing at the same rate.
This imposes a restriction on the utilisation rate of natural resources. In particular, this rate is
now pinned down by the exogenous growth rate of labour input and technological factors. As a
result, the engine of growth is solely determined by exogenous factors.

The present study is also related a growing literature which show that, in most (if not all) of
the existing economic growth models, balanced growth equilibria are possible only under some
“knife-edge” conditions.'® These existing studies are primarily concerned about balanced growth
equilibria in general, without distinguishing between exogenous and endogenous growth. This
distinction, however, is the subject of our analysis. In particular, our results suggest that even if
the conditions for balanced growth equilibria are met, endogenous growth will require yet another
“knife-edge” condition.

Despite the simplicity of our benchmark model, it is able to produce a rich set of predictions

"Our benchmark results are robust to several changes in the benchmark model. For instance, in Section 4.2 we
show that the exogenous growth result will prevail under several other specifications of the production function. In
Appendix C, we show that our benchmark results can be easily extended to an environment with infinitely-lived
consumers as in Stiglitz (1974). This suggests that the “knife-edge” condition of unitary elasticity of substitution
also plays a crucial role in Stiglitz’s results.

12See Jones and Manuelli (1997, Section 2) for more elaboration on this point.

3See, for instance, Groth and Schou (2002), Growiec (2007), Bugajewski and Mac¢kowiak (2015) and the refer-
ences therein.



regarding the effects of resource taxation. The elasticities of substitution among the three inputs
again play a critical role in this matter. To sharpen our results, we adopt a two-stage constant-
elasticity-of-substitution (CES) production function in this part of the analysis. In the benchmark
specification, effective labour input and effective resource input are placed in the inner CES
function. The elasticity of substitution is, for now, denoted by og. Hence, the endogenous
growth result will emerge if og is equal to one. The elasticity of substitution of the outer CES
function is denoted by op. Our first major finding is that if o is one and o is no less than one,
then a unique balanced growth equilibrium exists under some additional conditions and resource
tax is growth-enhancing. This scenario can be viewed as a direct extension of the analysis in
AGI. The intuition behind a growth-enhancing resource tax can be explained as follows: When
the resource tax rate goes up, resource input will become more costly and this will defer the
utilisation of natural resources. As a result, a larger stock of resources is available for future use.
By the complementarity between capital input and resource input in the production function,
this will raise the marginal product of capital (and the rate of return from investment), and in
turn promote capital accumulation and long-term economic growth. But if o is one and op is
strictly less than one, then multiple balanced growth equilibria may emerge and resource tax is
either growth-enhancing or growth-prohibiting depending on the equilibrium in question. Our
second major finding is that if o is not equal to one, then any changes in resource tax will only
affect the level of per-capita variables but not their growth rate. In particular, an increase in
resource tax will promote (or depress) capital formation and output if o is strictly greater (or
less) than one.

Whether the elasticity of substitution between labour input and resource input is equal to one
is ultimately an empirical question. A number of existing studies have estimated the elasticity
of substitution between physical capital, labour and commercial energy consumption.'* The last
one is used as a proxy for resource input. These studies usually report a less-than-unity elasticity
of substitution between labour and energy [Kemfert (1998), Kemfert and Welsch (2000) and van
der Werf (2008)]. When combining with these estimates, our benchmark model suggests that (i)
introducing resource input into an otherwise standard neoclassical growth model will not change
its fundamental nature (i.e., an exogenous growth model), and (ii) a higher tax rate on resource
input will have a negative impact on capital formation and aggregate output. These predictions

are in stark contrast to those produced under the unitary elasticity assumption.

Gee van der Werf (2008) and Henningsen et al. (2018) for literature review and discussions on different
estimation strategies.



The rest of the paper is organised as follows: Section 2 describes the setup of the benchmark
model. Section 3 presents the main results concerning the balanced growth equilibria of the
model. Section 4 provides some discussions and robustness checks on our baseline results. Section

5 concludes.

2 The Benchmark Model

2.1 Consumers

Our benchmark model is built upon the two-period overlapping-generation model in AGI, but
with a more general specification of production function and a flat tax on resource input. Unless
otherwise stated, we will adopt the same notations as in AGI to facilitate comparison between
the two work.

Time is discrete and is indexed by ¢ € {0,1,2,...} . In each time period, a new generation of
identical consumers is born. The size of generation ¢ is given by Ny = (1 + n)t, where n > 0 is
the population growth rate. Each consumer lives two periods, which we will refer to as the young
age and the old age. All young consumers have one unit of time which is supplied inelastically
to work. The market wage rate at time ¢ is denoted by w;. All consumers are retired when old.
There are two types of commodities in this economy: a composite good which can be used for
consumption and capital accumulation, and non-renewable natural resources which are primarily
used as input of production. All prices are expressed in units of the composite good.

Consider a consumer who is born at time ¢ > 0. Let ¢1; and cz¢41 denote his young-age and

old-age consumption, respectively. The consumer’s lifetime utility is given by

U (crscau41) =Ineyy + Ineco i1, (1)

1
1446
where 6 > 0 is the rate of time preference. The consumer can accumulate wealth by investing
in physical capital and natural resources. Let s; and m; denote, respectively, the consumer’s
holdings of physical capital and natural resources. The rate of return from physical capital is
denoted by r:y1, and the spot price of natural resources at time ¢ is p;.

Taking {wy, 441, pt, Pe+1} as given, the consumer’s problem is to choose a consumption profile

{c14,c2441} and an investment portfolio {s;,m;} so as to maximise his lifetime utility in (1),



subject to the budget constraints:

c1t + St + prmy = wy, and 2441 = (L 4+ re1) 8¢ + Py (2)

The first-order conditions of this problem can be expressed as

14+ 7re
Cot41 = (H_t;> C1ts (3)
DPt+1
L (4)
bt

Equation (3) is the familiar Euler equation of consumption, which determines the growth rate of
individual consumption between young and old ages. Equation (4) is the Hotelling rule, which
is essentially a no-arbitrage condition. It states that in order for the consumer to invest in both
types of assets, the capital gain from natural resources must be equal to the gross return from

physical capital. Using (2)-(4), we can derive the optimal level of consumption,

o= (L0, and c _ (Lt (5)
1=\ 5g ) 2041 = 5 g t

and the optimal level of investment in physical capital,

Wt
240

S = — pymy. (6)

2.2 Production

On the supply side of the economy, there is a large number of identical firms that produce the
composite good. In every period ¢ > 0, each firm hires labour (V) , rents physical capital (K;) and
purchases extracts of natural resources (X;) from the competitive factor markets, and produces

output (Y;) according to the production technology

Yy = F (K, G (QiXt, AtlNy)) - (7)

In the above expression, (J; is a resource-augmenting technological factor and A; is a labour-
augmenting technological factor. Both are assumed to grow at some constant exogenous rate, so
that Q; = (1+¢)" and A, = (1 4+ a)", with ¢ > 0 and a > 0, for all ¢ > 0.

The production function in (7) is a composition of two functions, F'(-) and G (-) . Intuitively,



one can interpret this as a two-stage production process: In the first stage, effective units of
labour and natural resources are combined using an aggregator function G (-). The resultant is
then combined with physical capital using another aggregator function F (-) to produce the final
output. To use the terminology of Leontief (1947) and Blackorby and Russell (1976, p.286),
the subset of inputs {Q¢X;, A¢N¢} is functionally separable from K;. There is more than one
way to define functional separability with three inputs. Another possibility is to assume that
{Ky, Q¢ X} is functionally separable from A;N;. A third possibility is to assume that {K;, A;N;}
is functionally separable from Q;X;. We will tackle these alternative specifications in Section 4.2.

The main properties of F'(-) and G () are summarised in Assumptions Al and A2. Recall
that an input is deemed essential for production if output cannot be produced without this input
[Dasgupta and Heal (1974) and Solow (1974, p.34)]. Throughout this paper, we will use F; (-)
to denote the partial derivative of F'(-) with respect to its ith argument, i € {1,2}. The partial

derivatives of G (-) are similarly represented.

Assumption A1 Both F : Ri — Ry and G : Ri — R, are twice continuously differen-
tiable, strictly increasing, strictly concave and exhibit constant returns to scale (CRTS) in their

arguments.

Assumption A2 Each input I € {K, X, N} is either essential for production or its marginal

product is unbounded when I is arbitrarily close to zero.

Assumption Al is a list of conditions that are commonly used in the economic growth lit-
erature. These conditions imply that the composite function in (7) is also twice continuously
differentiable, strictly increasing, strictly concave and exhibits CRTS in all three inputs. In
neoclassical growth models (without natural resources), it is also common to impose two other
assumptions on the production function: First, both physical capital and labour are essential
for production. Second, the marginal product of these inputs are unbounded as their quantity
approach zero. These assumptions, however, are rather restrictive. For instance, within the class
of constant-elasticity-of-substitution (CES) production functions, only Cobb-Douglas production
functions satisfy both of these assumptions.'®> Our Assumption A2 gets around this problem by
requiring only one of these properties to hold. This is sufficient to ensure that in equilibrium all

three inputs are used in every time period. The argument goes as follows: As suggested by Solow

!5The same point has been made by Dasgupta and Heal (1974, p.14) and Solow (1974, p.34) in natural resource
economics. Solow (1974) cites this as the main reason for using the Cobb-Douglas production function in his work.



(1974), it is natural and reasonable to focus on equilibria that have a strictly positive amount of
final output in every period. If an input is deemed essential for production, then a strictly posi-
tive amount must always be used in this kind of equilibria. On the other hand, since both factor
markets and goods markets are perfectly competitive, the price of any input must be equated
to its marginal product in equilibrium. If the marginal product of an input is unbounded at or
around zero, then the marginal benefit of using an infinitesimal amount will certainly outweigh
the marginal cost. Hence, it is never optimal to use a zero quantity of this input.

Assumptions Al and A2 are compatible with the two-stage CES production functions pro-

posed by Sato (1967).16 This class of functions can be obtained by setting
1
F (K, Zy) = [aK) + (1 —a)Z]",  with @€ (0,1) and n < 1, (8)

G (QuX1, ANy) = 0 (@i X)) + (1 - 9) (AtNt)¢] Y, withpe(0,1) andyp <1 (9)

The production function in AGI corresponds to the special case in which n = 4 = 0. Under this
“double Cobb-Douglas” specification, the two technological factors A; and @) are observationally
equivalent to a single Hicks neutral technological factor (or total factor productivity). For this
reason, the separate effects of A; and (); are not considered in AGI.

Since the production function exhibits CRTS in all three inputs, we can focus on the profit-
maximisation problem faced by a single representative firm. Let R; be the rental price of physical
capital at time ¢ and § € (0, 1) be the depreciation rate. Expenditures on natural resource input
are subject to a constant flat tax pu > 0. Taking { Ry, w, pt, p} as given, the representative firm

solves the following problem:

max {F (Kt, G (QtXta AtNt)) — Rth — (1 + /J,) tht — tht} .
K,X¢,Nt

The first-order conditions are given by

Ry =1 +6 = F1 (K, G(Qe Xy, ANy)) (10)
(14 p) pr = Qe Fo (K¢, G (Qe Xy, ArNy)) G (Qi Xy, AtNy) (11)
wy = AtF2 (Kt, G (QtXt7 AtNt)) G2 (QtXt; AtNt) . (12)

1Tn Appendix A, we verify that Assumption A2 is satisfied by various forms of nested CES production functions.



Equation (11) states that the representative firm will choose a level of X; so that its marginal
product equals the after-tax price. The tax rate p thus drives a wedge between the marginal

product of X; and the price received by the owners of natural resources (i.e., the consumers).

2.3 Natural Resources

The economy has a fixed and known stock of non-renewable natural resources which can be
costlessly extracted in each time period. The initial size of the stock is denoted by My > 0.7
Let M; be the stock available at the beginning of time ¢, and X; be the quantity extracted and
sold in the factor market at time ¢.!® Define the extraction rate (or utilisation rate) at time t as

7+ = Xi/M;. The stock of natural resources then evolves according to

Mt+1 = Mt — Xt = (1 — Tt) Mt. (13)

2.4 Competitive Equilibrium

All the tax revenues collected from the resource tax are spent on some “unproductive” government
purchases.!? The government’s budget is balanced in every period.

Given the initial conditions, Ky > 0 and My > 0, and the constant tax rate p > 0, a
competitive equilibrium of this economy includes sequences of allocation {c1 ¢, c2¢41, St, mt}fio,
aggregate inputs { Ky, Ny, X;};°, natural resources {M;};°, and prices {wy, Ry, pt, Te41 } o Such

that,

(i) Given prices, {c14, c2,t4+1, St,m¢} solves the consumer’s problem at any time ¢ > 0.

(ii) Given prices and the tax rate, { K;, Ny, X;} solves the representative firm’s problem at any

time t > 0.
(iii) The stock of natural resources evolves according to (13).

(iv) All markets clear in every period, which means K;11 = Nysy and My = Nymy for all t > 0.

17At time 0, the initial stock of physical capital and natural resources are owned by a group of “initial old”
consumers. The decision problem of these consumers is trivial and does not play any role in our main results.

'8 This notation is slightly different from the one in AGI. Specifically, these authors define M; as the stock
remaining at the end of time ¢ (after extraction). This difference is immaterial since we both focus on balanced
growth paths along which M, depletes at a constant rate.

9These purchases are deemed unproductive because they have no direct impact on the consumers’ utility and
the production of goods. Our main results remain valid if the tax revenues are redistributed evenly to the young
consumers through a lump-sum transfer. The details of this are shown in Section 4.1.

10



Using (6) and M1 = Nymy, we can write the capital market clearing condition as

w Ny
= — e M. 14
H1= 5 g ~ M (14)

This shows that capital accumulation (i.e., K41 > 0) is possible only if wy Ny > (2 + 0) peMyy1 >

0. Using (13) and the definition of 74, we can get

M 1—7
Mt+1:(1—7't)Xt'Xt=< t>Xt-
t Tt

Substituting this, (11) and (12) into (14) gives

1 1
Kt+1 = F2 (Kt; G (QtXh AtNt)) mAtNtGQ (QtXt, AtNt) - m (

].*Tt

> QtXtGl (QtXt7 AtNt)
(15)

Tt

We will use this version of the capital market clearing condition repeatedly in the proof of our

results.

3 Baseline Results

Our baseline results focus on equilibria that display the following additional properties:

*

v) Per-worker output (Y;/N;) grows at a constant rate — 1, for some ~v* > 0, in ever
g Y Y y

period.?’
vi) The rate of return from physical capital is constant over time, i.e., r» = r*, for some r* > —4.
Y

(vii) The utilisation rate of non-renewable resources is strictly positive and constant over time,

ie., 1y = 7%, for some 7* € (0,1).

Conditions (v) and (vi) are consistent with the empirical observations made by Kaldor (1963)
and many subsequent studies in the economic growth literature. Condition (vii) is commonly

2l Note that a constant interest rate

used in economic growth models with natural resources.
is consistent with both “balanced” and “unbalanced” growth paths. Balanced growth paths are

competitive equilibria in which all major economic variables grow at some constant rate and all the

20The size of population at time ¢ is given by N + N;_; = [1 +(1+ n)fl] N;. Hence, every per-capita variable
is directly proportional to its per-worker counterpart, and the two will always grow at the same rate.

21Gtiglitz (1974) and Groth and Shou (2007) are among the studies that consider equilibria with a constant
extraction rate. Scholz and Ziemes (1999) and Grimaud and Rougé (2003) are two examples that consider equilibria
with a constant growth rate of X;. These two conditions are equivalent given (13).

11



factor income shares are strictly positive and constant over time. By “unbalanced” growth, we are
referring to equilibria in which the income share of a subset of productive factors is asymptotically
zero. To explain this further, we first recall some of the results in Palivos and Karagiannis (2010):
Let o (k) be the elasticity of substitution of f (k) = F' (k,1) . If leIEOO'F (k) > 1, then the marginal
product of capital f’ (k) will converge to a strictly positive constant as k approaches infinity. At
the same time, the production function f (k) will converge to a linear function and all the income
will be distributed as capital income. When applied to the current context, this means condition

(vi) is satisfied if klim op (k) > 1 and K; grows at a faster rate than G (Q:X¢, A¢+N¢) so that
—00

Ky
G (Qi X, A Ny)

— 00, as t — oo.

But this also means that total labour income (w;N;) will converge to zero, which violates the
necessary condition for capital accumulation, i.e., weNy > (24 0) p:M;1 > 0. Hence, this type
of unbalanced growth paths are not sustainable in equilibrium. For this reason, we will focus on
balanced growth paths.?? This type of equilibria can be characterised as follows: First, given the
simple linear structure of (13), condition (vii) implies that X; and M; must be decreasing at the

same constant rate, i.e.,
Xey1 M
X M,

=1-7"

Second, a constant growth rate of p; is implied by the Hotelling rule in (4) and a constant r*.
Lastly, under Assumptions A1l and A2, a constant interest rate will imply a constant ratio between
K, and Y;. This result is formally established in Lemma 1.23 All proofs are given in Appendix
B. The remaining variables, such as wage rate and individual consumption, will also grow at a

constant rate. This will be established in our baseline results.

Lemma 1 Suppose the production function in (7) satisfies Assumptions A1 and A2. Then con-
dition (vi) implies the existence of a positive constant k* such that Ky = r*Y; for all t. This

means Y; and Ky must be growing at the same rate over time.

Before proceeding further, we first review the fundamental results in AGI, where government

intervention is absent (i.e., u = 0). According to their Lemma 1 and Proposition 1, if the

22Qur approach to characterising balanced growth equilibria is different from AGI’s approach. Instead of imposing
a constant growth rate on all variables at the onset, we show that such an equilibrium can be obtained from
conditions (v)-(vii) and the assumptions on F' (-) and G (-).

23 The proof of Lemma 1 is specific for the production function in (7). For the alternative specifications considered
in Section 4.2, we need all three conditions (v)-(vii) to obtain a constant capital-output ratio. The details of this
are shown in the proof of Theorem 3.

12



production function is given by

Y, = BIKONIXY,

where a > 0, 8 > 0, v >0, a+ 5+ v = 1, and B; is a measure of total factor productivity
(TFP) that grows exogenously at a constant positive rate b > 0, then a unique balanced growth
equilibrium exists in which per-worker output, per-worker capital, individual consumption and
wage rate all grow at the same rate. The common growth factor v* and the utilisation rate 7*

are jointly determined by

Y(14+n)  a(l+n)2+0)y"

A-7) B-@+ood_mj~ 170 (16)

1 1—7* =
*=(1+b)Te . 1
=y (50 (17)

Once 7" and v* are known, the value of r* and k* are given by

7 (1+n)
1—7* r* 445

147" =

In the sequel, we will refer to this as the AGI solution or the endogenous growth solution.

The main implication of the AGI solution is that both 7 and +* are jointly determined by
a host of factors, including the TFP growth rate (b), population growth rate (n), depreciation
rate (0), the share of factor incomes in total output (e, 5 and v), and the consumers’ rate of
time preference (6). If we decompose B; according to B; = QfAf and define k; = K; / (AeNy)
and Ty = (Q¢X:) / (A¢Ny), then the AGI solution also implies

%?:<%fy$:[%i%%liﬂﬁa 1

Thus, depending on the solution of (16)-(17), k; and 7 can be monotonically increasing, monoton-
ically decreasing or constant over time in the unique balanced growth equilibrium.

To highlight the significance of these findings, consider an alternate economy with v = 0 in
AGTI’s production function. This means natural resources are no longer needed in the production
process and, as a result, By = A%*Q.M In this case, a constant r; immediately implies a constant

%t- This in turn implies that per-worker capital and per-worker output must be growing at the

Tt follows immediately that 7. = 7% = 0 for all ¢. In this alternate economy, natural resources play the same
role as the intrinsically worthless asset in the rational bubble model of Tirole (1983).
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same rate as Az, so that v* = (14 a).?® This is no more than a restatement of a well-known
result: In the standard neoclassical growth model where production function exhibits CRTS
in K; and AN, long-term growth in per-capita variables is entirely driven by the exogenous
labour-augmenting technological factor.26

When compared to this alternative economy, the AGI solution shows that introducing produc-
tive natural resources can transform an otherwise exogenous growth model into one with endoge-
nous growth. If, in addition, the solution of (16)-(17) satisfies (1 +¢q) (1 —7*) > (14 a) (1 +n),
then the per-capita variables will grow at a faster rate than the technological factor A, i.e.,
v* > 1+ a. Also note that equation (17) dictates an inverse relationship between v* and 7*.
This can be explained as follows: Lowering the utilisation rate of natural resources means that
the resource stock will deplete at a slower pace. Thus, a larger stock of natural resources will
remain in each time period. By the complementarity between physical capital and resource input
in the production function, such a change will raise the marginal product of capital (and hence
the rate of return from investment) in all future time periods. This will in turn promote capital
accumulation and economic growth. As we will see below, this inverse relationship is specific to
the endogenous growth solution and it is also useful in understanding the growth effects of the
resource tax.

We now return to the question of whether the AGI solution remains valid under a more
general production function. Our baseline results provide an answer to this question based on the
composite function in (7). At the core of the analysis is the elasticity of substitution between the
two inputs of G (-). This elasticity can be defined using the function ¢ () = G (z, 1) for > 0.

By the CRTS property of G (), we can write
G(QX,AN) = AN -g(z),

where T = QX/(AN). Under Assumption Al, g(-) is twice continuously differentiable with
g () >0 and ¢"” (-) < 0. As shown in Arrow et al. (1961) and Palivos and Karagiannis (2010),

the elasticity of substitution of G (-) can be expressed as?”

oo (@) =9 @) 9@~ 5 @)
9@ 9@

25 This can also be seen by setting 7* = 0 and v = 0 in equations (17) and (19).

20This result holds in both overlapping-generation models and models with infinitely-lived consumers.

2"The derivation of (20) rests upon two assumptions: (i) the factor markets and goods markets are perfectly
competitive and (ii) G (-) exhibits CRTS [see Arrow et al. (1961, p.228-229)]. Both assumptions are satisfied in
our model.

>0, forall z>0. (20)

14



In particular, G (-) is Cobb-Douglas if and only if ¢ (-) is identical to one.
Given that Y; and K; are growing at the same rate (Lemma 1), the homogeneity of F (-)

implies that Z; = G (Q Xy, Ay N;) must be growing at the same rate as well, i.e.,

Yiern Kiyv Ziaa

If G (-) takes a Cobb-Douglas form as in
Zt =@ (QtXt7 AtNt) = (QtXt)l_¢ (AtNt)(b, with (25 S (0, 1) s (22)

then the growth factor of Z; is a weighted geometric average of the growth factor of Q;X; and
AtNt, i.e.,

Zip1 _ (Qt+1Xt+1>1¢ (At+1Nt+1>¢
Zt QtXt AtNt

=" (L4+n) = [(1+q) (1L =m)""?[(1+a) (1+n)°. (23)

Obviously this equation alone is not enough to pin down the two endogenous variables v* and
7*. The extra degree of freedom is what makes the endogenous growth solution possible. In the
current model, v* and 7* are jointly determined by equation (23) and the capital market clearing
condition in (15). Hence, any factors that appear in these two conditions (which include preference
parameters and the resource tax) will affect economic growth. These are the main ideas of our
Theorem 1. Note that these results hold even if F () does not take the Cobb-Douglas form. Our
Theorem 1 thus provides a partial generalisation of the AGI solution. The policy implication of
this finding is examined in Proposition 1.

On the other hand, if o (+) is never equal to one (which means it is either uniformly bounded
above or uniformly bounded below by one), then condition (21) is satisfied only if { Z;, Q: X¢, A; N, }

all share the same growth rate, i.e.,
Y14+4n)=0+q¢q(1—-7)=(0+a)(1+mn). (24)

These equations uniquely pin down the value of v* and 7*. In particular, the growth rate of
per-worker output is now solely determined by the growth rate of A;, i.e., v* = 1+ a. Hence, the
endogenous growth solution is no longer valid. This also means that the tax rate y can only affect

the level of economic variables in a balanced growth equilibrium, but not their growth rate. The
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exogenous growth solution is presented in Theorem 2.

Theorem 1 Suppose F () satisfies Assumptions Al and A2 and G (-) takes the Cobb-Douglas
form in (22). Define b= (1+a)®(1+q)*"% — 1. Then any equilibrium that satisfies conditions

(v)-(vii), if exists, must also satisfy

7*=(1+b)<1_7*>1_¢, (25)

1+n
I+r)(1—-7")=~"(14n), (26)
vt =xvro (7255 - () (522)]. 7
Fi(1,x")=r"+4. (28)

In addition, wage rate and individual consumption must grow at the same rate as per-worker

output.

Theorem 1 describes a balanced growth equilibrium that is similar in spirit to the AGI solution.
This equilibrium is characterised by four key variables, namely the growth factor of per-worker
output (v*), the utilisation rate of natural resources (7), the rate of return from physical capital
(r*) and the ratio between (Z;)' % and Ky (denoted by x*). All other variables can be uniquely
determined using these four values. Similar to the AGI solution, the utilisation rate 7* must be
greater than a certain threshold 7 (u) € (0,1) which depends on p. To see this, note that both

¥ (1 +n) and x*F5 (1, x*) are strictly positive, thus it follows from (27) that

é 1—7\ [1—¢
2+0_< * ><1+u>>0

2+6)(1-9¢)
¢(L+p)+2+0)(1-9)

=7 >7 (W) € (0,1). (29)

It is obvious from (29) that 7 (u) is strictly decreasing in p.
The original AGI result can be recovered as follows: By setting p = 0 and F (K, Z;) =

K&Z!™*, with a € (0,1), we can get

1
* 5 11—« 1_
X" = <T + ) and X"Fay(1,x") = a (r*+9).
o «a
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Upon substituting these into (27) and setting ¢ = /(1 —a) and (1 — ¢) =v/ (1 — @), we get

B—2+0)v(—71") /7"

T (L) = < (0 +9)

2+46
This, together with (26), gives us
a(2+6)(L+n)y" 7 (1+n)
g = T g
F@ied e T e o)

which is the same equation that appears in AGI’s Lemma 1 part (i). According to their Proposi-
tion 1, a unique balanced growth equilibrium exists when both F' () and G (+) are Cobb-Douglas.
We now show that similar results can be obtained if F'(-) is a CES function with elasticity of

substitution strictly greater than one and p > 0.

Proposition 1 Suppose F (-) takes the CES form in (8) with elasticity of substitution op =
(1—n)"' >1 and G () takes the Cobb-Douglas form in (22). Then the economy has at least one

balanced growth equilibrium that satisfies (25)-(28). If, in addition,

n ¢ !
{(1+b) [ﬁ_tm)] —(1—5)} >a(l—n)' ", (30)

where T (u) is the threshold level defined in (29), then a unique balanced growth equilibrium exists.

To better understand the effects of u, let’s consider two economies that are otherwise identical
except for the tax rate on resource input, denoted by gy > p; > 0. In both economies, F'(-) takes
the CES form in (8) with elasticity of substitution or > 1 and G (-) takes the Cobb-Douglas
form in (22). Suppose a unique balanced growth equilibrium exists in both economies.?® Let 7}
and 7] denote, respectively, the equilibrium utilisation rate and common growth factor in the
economy with tax rate u;, for ¢ € {1,2}. Then the economy with a higher tax rate will also have
a faster growth rate, i.e., v5 > 77 for any puy > p; > 0. In other words, resource taxation is
growth-enhancing. This result is formally stated in Proposition 2. The intuition behind this is
straight-forward: Increasing the tax rate p will raise the cost of resource input and discourage
utilisation, i.e., 75 < 77 for any gy > gy > 0. A higher growth rate then follows from the inverse

relationship between 7% and ~* described earlier.

281t suffice to assume that condition (30) is satisfied under the higher tax rate, i.e., g, > 0. The details of this
are shown in the proof of Proposition 2.
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Proposition 2 Suppose F (-) takes the CES form in (8) with elasticity of substitution op =
(1—n)"' > 1 and G () takes the Cobb-Douglas form in (22). Suppose the condition in (30) is

satisfied under py > 0. Then 75 < 77 and v5 > 77, for any py > py > 0.

Next, we turn to the case when op < 1 (or equivalently, n < 0). It turns out to be more
difficult to ensure the existence and uniqueness of balanced growth equilibrium in this case.
This is because slight changes in o within this range can potentially lead to drastic changes in
equilibrium outcomes. The following numerical example is intended to demonstrate this. First,

we combine equations (25)-(28) to form a single equation in 7%, which is

(31)

@+ A+ (1+n)?A—79)"C r () +6 [[r() +d]T
- (ED)2+0)(1-0)(1+p) " a {[ a } _a}’
where r (7*) = (1 4+ b) (1 +n)? (1 — %)% — 1. We then evaluate both sides of this equation over
a range of 7 using the following parameterisation: Suppose one model period takes 25 years. We
set 6 = 1.775 so that the annual subjective discount factor is 0.96. We set the annual employment
growth rate to 1.6%, which matches the average annual growth rate of U.S. employment over
the period 1953-2008. This implies n = (1.0160)*® — 1 = 0.4871. The annual TFP growth rate is
taken to be 1.05%, which is in line with the estimates reported by Feng and Serletis (2008, p.300).
The implied value of b is 0.2984 over a 25-year period. We also set 4 =0, § = 1, ¢ = 0.38 and
a = 0.24. Figure 1 plots the left-hand side (LHS) and the right-hand side (RHS) of equation (31)
under two different values of o, namely 0.62 and 0.65. Both fall within the range of estimates
reported by Henningsen et al. (2019, Table 4).2 As shown in the diagram, equation (31) has
no solution when op = 0.62 (n = —0.613), which means there is no equilibrium that satisfies
conditions (v)-(vii). But when o is raised to 0.65 (n = —0.538), the same equation has at least
two solutions, which are 7* = 0.9695 and 7* = 0.9964. The possibility of multiple equilibria,
however, does not alter the fundamental nature of the AGI solution — in each of these equilibria,
the common growth factor v* is determined by a host of factors.
When there are more than one balanced growth equilibria, the effects of reource tax may
differ across equilibria. For instance, consider the case when op = 0.65 in the above example.
Let (77,77) and (75,73%) denote the two balanced growth equilibria, with 7§ < 75. It follows from

(25) that 7 > 73. Note that the resource tax p only appears on the left-hand side of (31). In

29Tn Henningsen et al. (2019, Table 4), the elasticity of substitution between the inputs of F'(-) is denoted by
oe)k- In the existing empirical studies, it is conventional to use commerical energy consumption as a proxy for
natural resource input.
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particular, any increase in y will lower its value. This will shift the LHS curve in Figure 1 down
but leave the RHS curve unaffected. It follows that a small increase in p will lower the value of

77 and raise the value of v}, but have the opposite effects on (73,v3) .

RHS (Sigma=065)

RHS (Sigma = 0.62) kY

K | | | | | | | | |
%‘9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Extraction Rate of Natural Resources

Figure 1 Numerical Example

The rest of this section is devoted to the case when o¢ (%) # 1 for all Z > 0. The main results

are summarised in Theorem 2.

Theorem 2 Suppose the production function in (7) satisfies Assumptions A1 and A2. Suppose
the elasticity of substitution of G (-) is never equal to one. Then any equilibrium that satisfies

conditions (v)-(vii), if exists, must also satisfy v* =1+ a, r* = q, and

. (1+a)(1+n)
1—-7 =T 114 (32)

Such an equilibrium will have ke = k* and 7, = 7* for all t, where k* and 7* are determined by

i) (E G (7, 1)) =g+, (33)
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(1+a)(1+n)5* = B (E*7G(§*71)) [G22(f_*é1) - (1 ;T> a*c,llfs‘;,l)] e

In addition, wage rate and individual consumption must grow at the same rate as per-worker

output.

Theorem 2 presents a balanced growth equilibrium that is in stark contrast to the AGI so-
lution. Specifically, if o¢ (+) is bounded away from one, then either there is no equilibrium that
satisfies conditions (v)-(vii) or any such equilibrium will have a common growth rate in per-capita
variables that is solely determined by the exogenous growth factor A;. Thus, there is no room
for endogenous growth. It follows that the tax rate u can only affect the level of major economic
variables but not their growth rate. The above theorem also highlights two important differences
between the two technological factors A; and Q;. First, the growth rate of A; determines the com-
mon growth factor (7*), while the growth rate of Q; determines the rate of return from physical
capital (r*). This follows from the fact that, along any balanced growth path, any changes in
Q@ will be absorbed by the resource price p;. This, together with the Hotelling rule, then implies
that r* = ¢. The second difference is that, holding other factors constant, a higher growth rate
of A; will suppress the utilisation rate 7* while a higher growth rate of @; will promote it. This
can be explained as follows: By the complementarity between Q;X; and A;N; in G (+), a higher
growth rate of A; will raise the marginal product of resource input in all future time periods
(when other things are kept constant). This will induce an intertemporal substitution in resource
utilisation by shifting the demand from the current period to the future periods. Such a shift will
slow down the depletion of the resource stock, which is equivalent to lowering the value of 7*. A
higher growth rate of (J; will have the opposite effect.

Since 7* must be confined between zero and one, it is necessary to impose the restriction
14+¢>(14a)(l+n). This means the growth rate of resource-augmenting technological factor
must be strictly positive, even when there is no population growth (i.e., n = 0) and no labour-
augmenting technological progress (i.e., a = 0). Intuitively, this is saying that a minimum degree
of resource-augmenting technological progress is necessary in order to compensate for the decline
in X; over time and make perpetual economic growth possible.

To sharpen our understanding of the exogenous growth solution, we focus on the case when

F () and G (-) take the CES form in (8) and (9). Define an auxiliary notation © according to

()]
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The first part of Proposition 3 establishes the existence and uniqueness of balanced growth equi-
librium under the stated conditions. Since {7*,v*,r*} are all independent of u, any changes
in this tax rate will only affect the level of Z* and k*. The second part of Proposition 3 states
that these effects depend crucially on the value of o¢. If this elasticity is greater than one [or
equivalently, ¢ € (0, 1)], then a higher tax rate on resource input will raise the value of z*. The
effect is opposite if o is less than one (or equivalently, ¢ < 0). By the homogeneity property of

F; (+) and (33), * and k* will move in the same direction in light of any changes in pu.

Proposition 3 Suppose F () and G (-) take the CES form in (8) and (9), respectively. Suppose

further that min {©,1+ ¢} > (14 a) (1 +n). Then the following results hold.

(i) There ezists a unique balanced growth equilibrium that satisfies v* = 1+ a, r* = q, and

(32)-(34)-

(ii) An increase in p will raise the value of T* and k* if og = (1 =)t > 1 and lower their

value if o= (1—) ' <1.

Two final remarks are in order. First, Proposition 3 covers the special case in which F' (-) and
G (-) have the same constant elasticity of substitution, i.e., n = v. In this case, the production

function in (7) becomes

3=

Vi = [aK + (1 —a) o (QuXy)" + (1 — ) (1 — @) (AN)"]7

which is the familiar Dixit—Stiglitz aggregator function. Second, the main results in Theorem 1
and Theorem 2 can be readily extended to an environment with infinitely-lived consumers. The

details are shown in Appendix C.

4 Further Results and Discussions

4.1 Alternative Use of Tax Revenues

Most of the theoretical results in Section 3 will remain valid if all the tax revenues collected
from the resource tax are redistributed evenly among the young consumers through a lump-sum

transfer.®’ Under this alternative arrangement, a young consumer at time ¢ will face the following

39Due to page limitations, we can only highlight the key points here. Further details are available from the
authors upon request.
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budget constraint:

cie + ¢+ pimy = wy + &,

where &, is the transfer at time ¢. The consumer’s optimal choices are now given by

1+0 1+7r
e = <2+9> (we + &), Cott1 = <2+tgl> (we + &)

wy + &,
240

s = — pemy. (35)

The government’s budget is balanced in every time period, so that

upe Xy = Ni&,,  for all t > 0. (36)

The rest of the economy is the same as in the benchmark model.

Since the policy variables p and &, do not affect the production technology directly, most of
the results in Theorem 1 and Theorem 2 will remain valid. Specifically, it remains the case that
if the elasticity of substitution of G (+) is constant and equal to one, then the endogenous growth
solution will prevail; but if this elasticity is bounded away from one, then v* and 7" are again
determined by (24).3! The only parts that need to be modified are (27) and (34), both of which
are derived from the capital-market-clearing condition. In particular, equation (27) in Theorem

1 will now be replaced by

1—7\1—
7*(1+n):x*Fz(1,x*)[2f0+<2i0— T*T>1+ﬂ- (37)

This equation also implies that 7* must be greater than the threshold

(-9 (2+0)
T e cEa)) (59)

which is strictly decreasing in u. Similarly, equation (34) in Theorem 2 will be replaced by

(o Tk ~x G f*yl 1 _T* &’.\*G /CC\*,l

The results of Propositions 1-3 also remain valid, except for some minor changes. First,

consider the case when G (-) is Cobb-Douglas and F (-) is a CES function with oy = (1 —n) "' > 1.

31The proof of these statements are essentially the same as in the proof of Theorem 1 and Theorem 2, hence
they are not repeated here.
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Then it can be shown that (i) a balanced growth equilibrium that satisfies (25), (26), (28) and (37)
always exists; (ii) if the following condition is satisfied, then a unique balanced growth equilibrium

exists,

n ¢ !
{<1+b> ] —<1—6>} >a(l—n,

where 7 () is the same threshold defined in (38); and (iii) an increase in p will lower the value
of 7* but increase the common growth factor v*.
Finally, consider the case when both F'(-) and G (-) take the CES form as in Proposition 3.

In the benchmark model, the value of Z* is uniquely determined by?3?

e 1—¢ O—(1+a)(l+n)
® (1+a)(1+n)+(71)(ﬁ)@
When the tax revenues are refunded to the consumers, the value of Z* is determined by
. 1—¢p ©—(1+a)(l+n)
(T )¢ - 5 T 72re - ) (40)
(L+a)(1+n)+ [(25) (B2) - &0

In both settings, the utilisation rate 7* is determined by (32). Note that the right-hand side of
both (39) and (40) are strictly increasing in p. Thus, an increase in g will raise (or lower) the

value of z* if ) > 0 (or ¢ < 0).

4.2 Alternative Specifications of Production Function

In this subsection, we will consider two alternative specifications of the production function.
These are given by

Y; = F(ANy, G (K, Qi Xy)) (41)
Y; = F (QiXe, G (Ki, AN)) . (42)

To maintain consistency across all three specifications, we use G (:) to represent the “inner”
aggregator function and F (-) to represent the “outer” aggregator function in (7), (41) and (42).
All three specifications will coincide with AGI’s production function if both G (-) and F (-) have
the Cobb-Douglas form. Our main interest here is to examine the properties of balanced growth
equilibrium when one of the aggregator functions in (41) and (42) does not take the Cobb-Douglas

form. To this end, we consider four different parametric production functions based on (41) and

32The derivation of this is shown in the proof of Proposition 3.
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(42). In the first two specifications, the inner aggregator function is Cobb-Douglas but the outer
one has a CES form, so that

Y= ey’ + (- o) [k <tht>1a}w}‘l”, (43)

S KR
= {o @0+ a- o [ a2} (a1)
with a € (0,1), ¢ € (0,1) and ¢ < 1. In the second group, the inner aggregator function is a

CES function and the outer one is Cobb-Douglas, so that

1-8
¥

Y: = [@th} +(1—¢) (QtXt)w] (ANy)? (45)

1—v

Yi= QX)) [k + (1= ) (4N)Y] 7 (46)

with 8 € (0,1), v € (0,1), ¢ € (0,1) and 1 < 1.33 The rest of the economy is the same as in the

benchmark model. The main result of this subsection is summarised in Theorem 3.

Theorem 3 Suppose the production function takes one of the forms in (43)-(46). Then any

balanced growth equilibrium (if exists) must satisfy v* =1+ a, r* = ¢q, and

(I+a)(l+n)
1+gq '

1—7%=

The main message of Theorem 3 is clear: despite the differences in appearance, all the
production functions in (43)-(46) have the same implications for balanced growth equilibrium.
Specifically, any balanced growth equilibrium (if exists) must satisfy v* = 1 4+ a, * = ¢, and
(I—-7)=(14a)(1+4+n)/(1+q). It follows that the two transformed variables %, and 7, must

be time-invariant, and so there is no room for endogenous growth.

4.3 Discussions

The results in the previous sections suggest that the AGI solution is valid only under the “knife-
edge” condition of a unitary elasticity of substitution between labour input and resource input.
If we rewrite (22) as

1—

1—¢ ]
G (Qe Xy, ALNy) = | A (QeXy) % Ny|

33The parameters 3 and v have the same economic meaning as in AGI. Specifically, they represent the share of
total output distributed as labour income and expenses on natural resource input.
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=~ 1-¢
then the expression X; = Ay (Q:X;) ¢ can be viewed as a labour-augmenting factor and serves
as the engine of growth. When viewed through this lens, our results suggest that the AGI solution

is valid only when effective resource input is labour-augmenting in the production function, i.e.,

Y, = F <Kt, (XtNt) ¢> .

This result may remind one of the celebrated Uzawa Growth Theorem [Uzawa (1961)]. But there
are at least two important differences between the two. First, the Uzawa Growth Theorem and
its variants are typically derived from a CRTS production function with only two inputs, namely
physical capital and labour [see, for instance, Uzawa (1961), Schlicht (2006), Jones and Scrimgeour
(2008) and Grossman et al. (2017)]. It is not immediately clear how the Uzawa Growth Theorem
can be extended to a general CRTS production function with more than two inputs, such as
the one considered here. Second, and more importantly, the Uzawa Growth Theorem states the
conditions under which a balanced growth equilibrium can emerge, without explicitly mentioning
whether the “engine of growth” is exogenous or endogenous. The distinction between exogenous

and endogenous growth, however, is the main focus of our analysis.

5 Conclusions

In this paper, we re-examine the conditions required for endogenous long-term economic growth
in neoclassical models with non-renewable resources. Unlike most of the existing studies which
focus exclusively on Cobb-Douglas production function, we adopt a general specification and
seek general conditions under which endogenous economic growth can emerge. Our benchmark
results show that this type of growth is possible only under the “knife-edge” condition of a
unitary elasticity of substitution between effective labour input and effective resource input. This
condition, however, has found little support in empirical studies. For all other specifications
that we have considered, including those that are in line with empirical evidence, the model
predicts that long-term economic growth is entirely driven by the exogenous labour-augmenting
technological factor. One possible direction of future research is to examine whether unitary
elasticity assumption plays a similar role in other endogenous growth models (e.g., those that
involve R&D activities). Our model also produces a rich set of predictions regarding the effects
of resource taxation. In particular, depending on the elasticities of substution among the three

inputs, an increase in resource tax can be either beneficial or adverse to capital accumulation.
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When combined with the estimates produced by the empirical literature, our benchmark model
suggests that increasing the resource tax will have a negative impact on capital formation and
aggregate output. This is in stark contrast to the prediction produced by the endogenous growth

solution.
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Appendix A: Nested CES Production Functions

In this appendix, we will verify that Assumption A2 is satisfied by all the nested CES production
functions considered in Sections 3 and 4. We begin with the specification considered in Section
3, which is

F (K, Z)=[aK!+(1—a)ZM)7, withae (0,1) and n < 1,

1

G (Q: Xy, ANy) = [0 (@i X)) + (1 - o) (AtNt)w] ", withp e (0,1) and ¢ < 1.

First, consider capital input. If n < 0, then

[}imOF (K, G (QeXt, ANy)) = 0,

for any Q; Xy > 0 and A;Ny; > 0, regardless of the value of 1. Thus, physical capital is essential

for production when n < 0. If n € (0,1), then
[}imoFl (K, G (Qi Xy, AyNy)) = o0,
t‘)
regardless of the value of 1. Next, consider the inputs of G (-). When ¢ < 0, we have

)}iT_I}OG (Qe Xy, AyNy) = ]\1[21_{10(; (Qi X1, AyNy) = 0,

lim G1 (QiXs, AN) = 9% and  lim Ga (QeXe, ANy) = (1 — )7 .
X¢—0 N:—0

There are now two subcases to consider: If ¢ < 0 and n < 0, then both natural resources and

labour are essential for production, i.e.,
Xl_imOF (K¢, G (Qi Xy, AtNy)) = ]\%imOF (K, G (Qe Xy, ANy)) = 0.
t— t—

If » <0 and n € (0,1), then we can show that

L_q

) T . G (QXt, ANy " " )
Ahax, ~ <1—a>{%}?ﬁo[ K, rloap O (@ A O

= (l—a)-oo-goiQt:oo.
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Likewise,

11
-1 n
lim % == (1 - a) {Oé lim |:G (QtXt,AtNt)] + 1-— Od} - lim G2 (QtXt7AtNt) . At
N¢—0 K; N;—0

= (1—a)-oo.(1—<p)iAt:oo.
If ¢» € (0,1), then we have

1 ) 1
)}imOG (QeXt, AtNy) = (1 — ) ¥ (AiNy) and ]\lflmOG (Qi Xy, AtNy) = @7 (QiXy),
t— t—

)}111106;1 (QtXt7 AtNt) = 1\17?30(;2 (QtXt7 AtNt) = 00.
Using these we can obtain

%—F(K 1- )iAN) lim Gy (QuXs, ANy) | =
XlIBOGXt_ 2 ts 2 tiVt Xif_f)lo 1 (tAt, AplVe) | = OO,

lim%—F(K iQX) lim G (Qe Xz, A Ny)| = oo
Nt—>08Nt_ 2 ty P tNt lo 2 (e, AgiVg) | = OCO.

Note that these results hold regardless of the value of 7.
Next, we turn to the production function in (43). There are now only two possible cases: If

1 < 0, then all three inputs are essential for production. If ¢) € (0,1), then we can obtain

YY) ®
Yy ANy
lim 28— oA ot (1) 1 = o0,
N}EO@Nt pALY Y ( SO) Niﬂo Kta (QtXt)l_a >
” vl
Y . K (QeXe) ™ @ s\t
lim S8 — (1 - 1 1 1 -
KiIEO 8Kt @ ( QO) SON:I—I}O AtNt + 14 KiIEO QtXt o
— 31
. oY, . K (QtXt)lfa Ky \*
lim — = (1-— 1-— 1 1-— 1
X?EU aXt ( CY) ( 80) SOX?E() AtNt + v Xlrilo QtXt Qt

Note that the production functions in (43) and (44) are essentially identical, except that A;N;
and @;X; have switched place. Thus, using the same line of argument we can show that (44)

satisfies Assumption A2.
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We now consider the production function in (45). The first thing to note is that labour input
is essential for production regardless of the value of 1. If ¢ < 0, then both physical capital and
natural resources are essential for production. What remains is to consider the marginal product

of these inputs when 9 € (0, 1) . Straightforward differentiation gives

1 8
K; i K, % Y
90+(1—90)(QtXt> ] [w(QtXt) +1—s0] :
0Y;

1= G- R W AT C=

Using these and the following properties,

oo\ v]E ! X\ Y v
¢+(1—¢)<Qt§t>] —)gigl()[w(%{tt) +(1—<p)] = oo,

oY, AN\
0K, SO (QtXt>

<l®

lim
Ki—0

_B
Kt 4 v _B
lim +1- —(1—y) v,
Jim [so <QtXt> w] (1-)
6]
. Qi Xt _B
1 1-— =p ¥
Sim A+ ( 90)<Kt v,
we can get
. oY .Y,
lim li = 00

Ki—00K; XtIEo(?Xt n

Since (45) and (46) are symmetric, the same line of argument can be used to show the desired

properties for (46).
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Appendix B: Proofs

Proof of Lemma 1

Suppose there exists a real number r* > —§ such that

G (Qe Xy, ALNy)

Fi [Ky, G (Qe Xy, AiNy)| = F1 |1, X,

=r*4+6>0.

The first equality follows from the homogeneity property of Fj (-). Since Fj (1,-) is continuous
and strictly decreasing under Assumption A1, this implies the existence of a non-negative real

number x* such that
G (Q Xy, ANy
K

=x">0.

Note that there are two possible cases: In this first one, x* = 0 which can happen if klir& or (k) >
1. A formal proof of this can be found in Palivos and Karagiannis (2010). Under this scenario,
K, is persistently growing at a higher rate than G (Q¢X;, A;Ny). But as we have explained in
the main text, this scenario cannot be supported as an equilibrium. In this second case, we have

x* > 0. By the homogeneity property of F'(-), we can write
}/t =F (Ktv G (QtXta AtNt)) = KtF (17X*) ) for all ta

= Ky =[F(L,x")] ' Y%
The desired results follow by setting £* = [F (1, x*)]"! > 0.
This completes the proof of Lemma 1.
Proof of Theorem 1
The proof is divided into a number of steps:
Step 1 This part of the proof uses the same line of argument as in Schlicht (2006) and Jones
and Scrimgeour (2008). First, condition (v) implies that aggregate output Y; grows at a constant

rate ¥ = v* (1 +n) in every period, i.e., Y;11 = 7Y}, for all t. Rearranging terms and applying
the CRTS property of F'(-) gives

i = F(ﬁithJrlﬁflG(Qt+1Xt+1,At+1Nt+1))

= F (K4, 7 'G Q31 X141, Arr1Nit1)) -
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The second line uses the fact that K; and Y; must grow at the same rate, as per Lemma 1. For
any given K; > 0, F (K3, Z;) is strictly increasing in Z;. Hence, the following equality must hold

in any equilibrium that satisfies condition (v),

G (QiXt, AtNy) =7 'G (Qr11 X141, Ars1 Nig1) - (47)

Note that (47) holds regardless of whether G (-) is Cobb-Douglas.

Suppose now G (-) is given by
G (QuXt, ANy) = (@i X)) ™7 (ANy)? for some ¢ € (0,1).

Using this, together with A;y1 = (14 a) Ay, Qi1 = (14 q) Qt, Xpy1 = (1 — 7°) Xy and Nyyq =

(14 n) Nt, we can rewrite (47) as
(Q:Xe) P (AN =77 [(1+q) (1= 79)][(1 + @) (1+n)]? (QeXy)' ™% (AN)? . (48)
Since (Q:X:)" ™ (4;Ny)? > 0, (48) is valid if and only if

[T+ A =m)"""[(L+a) (L +n)” =7 =7"(1+n)

(L+a) (1 —r*>]1‘¢_

é’y*_(l—‘,—a)qﬁ[ T+n

This is equation (25) in the theorem.
Step 2 Next, we will show that given condition (vi), the ratio p;X;/Y; must be time-invariant

and strictly positive. This can then be used to derive equation (26). Suppose r; = r* > —§. Then

by (10), we have

X,, AN, ¢
F1<1,G<Qt bt t)>:F1 L% ) =150
Kt kft

¢

Since F} (1,-) is strictly decreasing, it follows that the ratio between Z;~® and k; must be constant

in any equilibrium that satisfies condition (vi). Hence, we can write
~1—¢
G (Qe Xy, AtNy) oy

X, ) X (49)
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By the homogeneity properties of F () and Fs (-), we can write

F> (K, G (Qe Xy, AtNy)) = Fo (1,x7),

F (K, G (QiXt, AcNy)) = K F' (1, X7) .

Using these and (11), we can get

pXe I QX Fo (1,x%) Gy (Qe Xy, Ay Ny)
v, l+4p K F(1,x*)
L Fy(1,x%) G(Qe Xy, AtNy) Qe XiGr1 (Qe Xy, ApNy)
L+p F(1,x%) K G (Qi Xy, A¢Ny)
_ <1—¢> X F2 (1, x")
- \l+p/) F(Lx)

The last equality follows from the Cobb-Douglas specification of G (-). Hence, p; X;/Y; must be

strictly positive and time-invariant. This in turn implies

Pr1 Xig1 * o _ Vi1 «
=1+r)(1—-7")= = 1+mn).
LS (140 (1= ) = T =" (L)
Step 3 We now derive equation (27), which is based on the capital market clearing condition
n (15). As shown in Step 2, we can rewrite Fy (K, G (Q: Xy, AtNy)) as Fa (1, x*). Substituting
this and 74 = 7" into (15) gives
1 1

K1 =F(1,x) [MAtNth (Qe X4, AtNy) — 1o <

1—7*
*

> QtXtGl (QtXta AtNt)

Using the Cobb-Douglas specification for G (-), we can simplify this to become

K= Fa(1,x7) [2 f g <1 ;T*> <1 _T_ Z)] G (Qe X1, AtNy) .

Dividing both sides by K; and using (49) gives

K o . o  (l1-T" 1—¢
X, =7 (1—|—n)—XF2(17X)[2+0 < e ><1+N>}‘
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Step 4 Equation (5) implies that both ¢;; and cp; will grow at the same rate as w; when 7y is

time-invariant. Using the definition of x* and (12), we can express the equilibrium wage rate as

T * * * * K
wi = $AkFa (LX) = ox"Fa (LX) 57
t

Hence, w; will grow at the same rate as per-worker capital and per-worker output. This completes

the proof of Theorem 1.

Proof of Proposition 1

Using (25) and (26), we can get
V) = (40 (L) (- 7)1,

= (1+b)(1+n)?(1—-1)—1=7r(r").
The CES function in (8) implies

1—n

X)) =ala+1-a)X)T 7,

1-n

F(Lx)=1-a) ()" at+(1-a) ()7 .

Combining (28) and (50) gives

(-0 (= [T
Substituting (52) into (51) gives
N (LxY) = (1—a) () a+(1-a) ()] 7

Using these expressions, we can rewrite (27) as

() e+l -9) 1+ a

LG - e ([ ar]
¢_ —T
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A unique balanced growth equilibrium exists if there is a unique solution for this equation. Fix

p > 0 and define two auxiliary functions A () and I' (+) according to

(53)

P(T)ET(T)M{[T(T)M]&_a}' (54)

The following properties of A (-) can be easily verified: A (1; 1) = 0; A (7; ) — oo as T approaches
7 (p) from the right, where 7 (1) € (0,1) is the threshold value defined in (29); A (7;1) < 0 for
all 7 < 7 (p); and A (7; ) is strictly decreasing in 7 over the range (7 (p), 1] . Similarly, one can
show that I' [T (1)] < oo and I'(7) — o0 as 7 — 1 if n € (0,1). Since both A (-; ) and T'(-)
are continuous functions in 7 over the range between 7 (1) and one, these properties ensure the
existence of at least one value 7% € (7 (u), 1) such that A (7%;u) =T (7).

If, in addition, I" (+) is strictly increasing between 7 (1) and one, then a unique solution exists.

Straightforward differentiation gives

a 1—n «

I () = 1{ 1 [T(T)J”T_"—a}(1+b)(1+n)%(1—7)_(1+¢)-

Hence, IV (1) = 0 if and only if

Jun

}ln2aﬂ—nﬂiﬂﬂ+52aiﬂ—mf4-

Since r (1) is a strictly increasing function, it follows that I' (+) is strictly increasing between 7 ()

and one if and only if

-

r[F () + 6> an (1—n)a

This condition can be rewritten as (30). A graphical illustration of the existence and uniqueness

result is shown in Figure Al. This completes the proof of Proposition 1.
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Figure Al: Existence and Uniqueness of Balanced Growth Equilibrium.

Proof of Proposition 2

Suppose condition (30) is satisfied under py > 0, i.e.,

) n
{(1+b) [H”J - (1—5)} >a(l—n)".

1 —7 (g

As shown in the proof of Proposition 1, this condition is sufficient to ensure the existence of
a uniqueness balanced growth equilibrium in the economy with tax rate u,. Rewrite the above

condition as

1

r[F ()] +6 > an (1 =)

where 7 (7) = (1 +b) (1 +n)? (1 — 7%)~? — 1. Since 7 (-) is a strictly increasing function and 7 (-)

is strictly decreasing, it follows that
1 1
r[F ()] 46> 7 [F (ug)] + 6 > an (L—n)n ",

for any py > p; > 0. Hence, (30) is also satisfied under j;, which ensures the existence of a
unique balanced growth equilibrium in the economy with p;.

To establish the comparative statics result, first recall the auxiliary function A (7; ) defined
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in (53). It is straightforward to verify that

A (75 p9) < A(T519),

over the range 7 (1q) < 7 < 1. In addition, A (1;pu9) = A(L;py) = 0 and A(7;py) — o0 as
T — 7 (p1) . These conditions ensure that 75 < 77 [see Figure Al]. Finally using (25), we can

write

This concludes the proof of Proposition 2.

Proof of Theorem 2

Step 1 First, we will show that v* = 1 + a if the elasticity of substitution of G (-) is never
equal to one. Recall that equation (47) in the proof of Theorem 1 is valid even if G (-) is not
Cobb-Douglas. Define 7 = Q: X/ (A:N;) . Then by the CRTS property of G (-), equation (47)

can be equivalently stated as

G (QiXp, AN = G (1+q)$_7*>QtXt,WAtNt, . (55)

Define the following notations

. (1+a)A(1+n) and o (1+q)£177'*)'
Y Y

Dividing both sides of (55) by ¢A:N; and using ¢ () = G (7, 1) give

g9 (Z) =gg <w§t> , for all 7y > 0. (56)
S

Equation (56) is trivially satisfied if ¢ = w = 1, which immediately implies

(L+a)(1+n)

=1 d 1-7"=
Y +a an T 1 +4q

We now show that if og (-) # 1, then equation (56) holds if and only if ¢ = w = 1.

We first establish an intermediate result: For any = > 0,

d [zg (z
@ [a:g /(\:c)} =20 if and only if oc(z) 2 1.
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To start, straightforward differentiation gives

S - TR (57)

Next, using the expression in (20), og () 2 1 if and only if

g () lg @()5,5_ zg' (z)] > 34" (3)

s

‘@[, @) -5 @
[l ] )
/@ F@F @ _ d [ @
0@ 9@ [9@]20

TG o

)
This intermediate result says that if o (+) is never equal to one, then Zg' (Z) /g (Z) must be either
strictly increasing or strictly decreasing for all & > 0. We will now apply this result on (56).
Since g () is continuously differentiable and (56) holds for all z; > 0, we can differentiate both

sides of (56) with respect to Z; and get

Combining this and (56) gives

(59)

As mentioned above, if og (-) is never equal to one, then Z¢' (Z) /g (Z) must be either strictly
increasing or strictly decreasing for all Z > 0. Hence, the equality in (59) holds if and only if

w = ¢. Using this, we can rewrite (56) as ¢’ (z;) = wg’ (), which implies that w = 1.

Step 2 The equalities ¢ = w = 1 imply that Et and T; are time-invariant in any balanced

growth equilibrium, i.e., k = k* and #; = #*. Using these, we can rewrite (10) and (11) as
R ) (E*,G &, 1))

(1L+ ) pr = QuFs (B*,G (7,1)) Gy (37,1).

Equation (4) can now be used to obtain r* = ¢. Equation (33) then follows.
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Step 3 Dividing both sides of (15) by A;N; gives

~ ~ N 1 . 1—7*\ 7:Gy (74,1
(I+a)(1+n)ki = Fy (kt,G(xt,l)) I:MGQ (mt,l)—( T*T ) Ty 11_‘(_:6; )]

Equation (34) can be obtained by setting /k\?t-i-l = Et — %* and T = T*.

Step 4 Equation (5) implies that both ¢;; and ca+ will grow at the same rate as wy when 7y is

time-invariant. By the homogeneity property of F5 (-) and G (-), we can rewrite (12) as
Wy = AtFQ (7{3\15, G (.’/B\t, 1)) G2 (ZU\t, 1) .

Since Eg and Z; are both constant over time, it follows that w; will grow at the same rate as A;.

This completes the proof of Theorem 2.

Proof of Proposition 3

Part (i) Fix p > 0. Suppose F (-) takes the CES form in (8), with « € (0,1) and < 1. Then

(33) can be rewritten as

Using these, we can write

G (7*,1)

R (k.G @1) = a4+

(0% «

(Mﬂ_alzmme

Similarly, if G (-) takes the CES form in (9), then we can get

SN P Y

0 ()" G @)

e @, 1) = 2 .
p(E) +1-¢
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Based on these observations, we can rewrite (34) as

N G (z%,1) ~ N 1—¢p 1—-7* ®
1\ N _ T\ * * N 1\
(1+0)(1+n) [p @)’ +1- | = Fg(k,G(m,1)>[2+0 < - >1+M(x)
B 1—7'* 2+9 PN
- o[- () () re]
which can be simplified to become
o 1-— O—-1+a)(l+n
@ )¢: - ( )1(77* )2+9 ' (61)
P (1t tn)+(50) (20)e

The purpose of the additional condition min{©,1+ ¢} > (1+a)(1+n) is twofold: First, it
ensures that a unique, strictly positive value of Z* can be obtained from the above equation.

Second, it ensures that 7 € (0,1).

Part (ii) Differentiating both sides of (61) with respect to * and p gives

w(:,f*w_ldii‘\*:l—cp ©O—(1+a)(1+n) 2(1—7’*) 2+92
WP Jaraaen+ () (#2)e] N T /A

Since the right-hand side of the above equation is always strictly positive, it follows that

dz*

dp

>0 iff =0

Using (60), we can get

1y dTT 1
* 1 —

1
<q+5>13n ”’ dk
e — .

Q@ du

This equation shows that Z* and k* will move in the same direction whenever there is a change

in pu. This completes the proof of Proposition 3.

Proof of Theorem 3

We will consider each of the specifications in (43)-(46) separately. For each specification we will
first verify the existence of a positive constant £* such that K; = x*Y; for all ¢ under conditions

(v)-(vii) in Section 3.
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Specification 1 We begin with the production function in (43). Under this specification, the

first-order conditions for the representative firm’s problem are given by

(1 - )V VKM QX)) =1y 4 4, (62)
(1) (1—a) YK QX)) ™Y1 Q= (14 p) i, (63)
QD}/tliw (AtNt)wil At = Wt. (64)

Combining (62) and (63) gives
tht (1 —a) (Tt+5)
= . 65

Suppose conditions (vi) and (vii) are satisfied, i.e., 7, = r* > —§ and 7, = 7* for all ¢. Then both
pt and Xy are growing at some constant rate. It follows from (65) that K; must also be growing
at a constant rate. Next, dividing both sides of (14) by K gives

Kipn 1wy 1 —-7ipi Xy
Kt 2—|—0 Kt Tt Kt '

(66)

If conditions (vi) and (vii) are satisfied, then 74, p; X;/K; and K;1/K; are all constant over time.
Hence, wyN;/K; must be constant over time as well. Finally, rewrite the production function in

(43) as

_al?
Y =0 (AN)Y + (1 - @) | K8 (QeXe) ™| .

Substituting (63) and (64) into this expression gives

1+p

. _ Y, Ny | 1+ ppX
th=wszth¢1+1faPtXthw1:>—t—wt Ly TRRL

K, K, l—a K;

This shows that Y;/K; is constant over time under conditions (vi) and (vii).

Substituting r; = r* and K; = k*Y; into (62) gives

(a=1)y ~\ (a=1)y
-9 (G )~ - pa) (E) Ces
t<\t

This shows that the ratio between Et and Ty must be constant over time, or equivalently,

Tey1 [ 7 I+g (-7

Ty B l4+a (A+a)(l+n)
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By the same token, we can also rewrite (63) and (64) as

~\ (a—1)p+1
I+ mp=(1—9)(1—a) (k)" (Et> Q, (67)

Tt
wy = (,‘-i*)w*1 EtlfwAt. (68)

Since the ratio between Et and T; is constant over time, it follows from (67) that p; must be

growing at the same rate as ;. By (4), we can write

DPt+1 I Qi1

bt Q:

=1+4q.

The last step is to substitute (67) and (68) into (15). This will give

~\ (a=1)y
~ et | P 1y (1= (A—p)(1-a) [k A
(1+a)(1+n) k1 = (k") 2+9kt < T* > I+p Ty b

ki1

~\ (a=1)¢
e th— 0 o~ 1=\ 1—p)(1l—-a) [k
= () () B = ! | 2R - () BP0 )<33>

Since both Et+1 / Et and %t /T, are constant over time, it follows that the level of Et must be constant

ki

over time in any equilibrium that satisfies conditions (v)-(vii). Hence, we have v* = 1+4a, r* = g,

and (1 -7")=14+a)(1+n)/(1+q).

Specification 2 Consider the production function in (44). The first-order conditions for the

firm’s problem are now given by

(1— @)V YRV (AN) Y =1y 4, (69)
SOY;:l_w QX)) Qi = (1+ ) pr, (70)
(1—¢)(1—a) Y VK™ (A NI 4y = . (71)

Combining (69) and (71) gives

lUtNt l—«o
= 5
K, o e +9),

which is constant over time under condition (vi). By assumption, both A; and N; grow at some

exogenous constant rate. Condition (v) implies that Y; is growing at a constant rate, while
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condition (vi) states that r; is time-invariant. Thus, it follows immediately from (69) that K
must be growing at a constant rate. Equation (66) then implies that p;X;/K;.must also be

constant over time under conditions (v)-(vii). Finally, rewrite the production function in (44) as

v = p(@X)" + (- o) [Kp (aN) ]

Substituting (69) and (70) into the above expression and rearranging terms gives

i pe Xy -9
Kt—(l—i-,u) e —i—(a >(7°t+5).

Thus, a constant 7, and a constant ratio p;X;/K; will imply a constant capital-output ratio.
Using the two conditions: K; = k*Y; and r; = r*, we can rewrite the first-order conditions

(69)-(71) as
(1—¢) (") ak*™V = 1" 44,

o\ 1=t
p (k1) (Elt) Qt = (1 + p) pr, (72)

1— © 1— o) (k* P—1 7{;\(04—1)1[1+1At = w,.
t

The first one of these equations immediately implies that Et is constant over time, so that v* =

1 + a. Substituting the last two equations into (15) gives

N\ 1t
_ 1—p)(1- a)A(a_1)¢+1 1-7* % ki N
Ki1 = AN, (k¥)Y 1 (—k ) = [
rr1 = AeNe () 2+0 t ™ ) 14 p\ T o

e [0 = 9 0@ e (1= 9 e
> (L) (L b = (D7 | SR = (o ) ke

Since 7<:\t is constant over time, the above equation implies that Ty must be constant over time as
well. Finally, (72) implies that p; must be growing at the same rate as @Q; in any equilibrium that

satisfies conditions (v)-(vii), so that r* = q.
Specification 3 Next, we consider the production function in (45). The equilibrium factor
prices are now characterised by

-1

1-8
(1= 8)¢ ok + (1= @) (@QX)"] T (AN K™ =7 +6, (73)
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1-8_
o 1

(1=8) 1 -¢) [k + (1) @X)"] © (AN) @X)" " Q=+, (T4)

1-8
P

[@KZ/} +(1—9) (QtXt)w] B (AN Ay = wy. (75)

Combining (73) and (74) gives

mXi_]r—w0%+5)<Q?&)w, (76)

Ke ¢ (1+4p) K

Suppose both r; and 7, are constant over time. Then the above expression implies that K; must
be growing at a constant rate over time. From (75), we can get 8Y; = w;N;. Substituting this

into (66) gives
Kiywn B Y2 1-1ipXy

=——— - . 7
K 240Ky Tt Ky (77
Finally, rewrite (73) to become
Y, K}
-9 (1) | e ¢]=m+®
t) LpEy + (1= ¢) (QXa)
EZ(H-}—(S) 1+1—¢(QtXt>w :Tt+(5 14+ pupe Xy (78)

The second equality is obtained by using (76). Equations (77) and (78) now form a system of
linear equations that can be used to solve for the value of Y;/K; and p; X;/ K in terms of K41/ K,
7 and 7. Since Ky11/Ky, 7+ and 7 are all time-invariant under conditions (v)-(vii), it follows
that Y;/K,; and p;X; /K, are also time-invariant.

Note that the condition Y; = %Kt can be rewritten as
n 1-8
[k + (1 -0)3] T = R

Using this, we can rewrite (73)-(75) as

By

(1= B) o (k) TF % % =, + 6,

g
(1-B8)(1—9) ()T kP2 Qu = (1+ W) pi,

1 ~
TﬁAtkt = Wt.
K

The first of these three equations, together with r, = r*, implies that Et must be constant over
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time. Hence, v* = 1 + a. Substituting the last two equations into (15) gives

K1 = ANy

R (1N (=B (1) e
(2+9t)/<;*_< T* ) 1+p (K7)1=7 1kt 1B$?

:>(1+a)(1+n)kt+1:(2+0)ﬁ* - T

Bl <1 —7*) (L=B)(1=9) (o1 55

Since k; is constant over time, the above equation implies that Z; must be constant over time as

well. The remaining results follow by the same line argument as in Specification 2.

Specification 4 Finally, we consider the production function in (46). The first-order conditions

for the firm’s problem are now given by

1—wv

(1-0) 0 (QeXe)" [0K] + (1= ) (AN 7

-1
K;p_l =T +(5,

1—v

v (QuX)" ™ Qu [oKY + (1 - ) (AN)Y] T = (1+ ),

lvaJ

(1=v) (1 =) (QX0)" [K! + (1= ) (AN)Y| 7 (AN Ay = w.

To start, using (46) and (80) we can obtain

nXe v Y
Kt l—i—,uKt

Next, combining (79) and (81) gives

= X,

U}tNt . (]. — QD) (’r‘t + (5) <AtNt)w
Ky ¥ ‘

Substituting these into (66) gives

Kt+1 _ (l—go) (Tt—|—(5) <AtNt>1/}_ 14 (1—7}) Y;g
Ky 0 (2+0) K; 14+ p

We then use (79) to derive

E_ Tt+5
K, \1-—vw

1—¢ AN\
T @(tt)].
¥ K

(80)

(81)

(82)

(84)

Equations (83) and (84) form a system of linear equations which can be used to solve for Y;/K;

and (AtNt/Kt)w in terms of K;y1/Ky, r and 74. By conditions (vi) and (vii), both r, and 7,
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are time-invariant. Thus, what remains is to show that K;;;/K; is a constant under conditions
(v)-(vii). To this end, rewrite (80) as

Y

K]+ (1—¢) (AN,)" = K V QJ T (@ixy)?

and substitutes the above expression into (79) to get

1—v—1

(1_7))“0[(17) gﬂ QX TR = o,

The desired result follows from the fact that r; is time-invariant and {p;, X;} are growing at
a constant rate under conditions (vi) and (vii). This proves that Y;/K; is a constant under
conditions (v)-(vii).

Next, we rewrite equations (79) and (80) as

1—v—1

(1= o)t (k) +1-9) 7 R =rn+0 (85)
Yy ~v—1 X% %
UZ = v} (gok:t +1-— go) Qr = (1+ p) pt. (86)
The condition Y; = ,.%*Kt can be rewritten as
~ 1= 1~
& (wk;” +1- <,0> T =k (87)
Combining (85), (87) and ry = r* gives
1 (1—v) k!
1 A-v)ek _ . 15

K ok! +1—¢
j(l—v)gp@f:(r*—ké)m* (g@?{:\;pqu—go).

This can be used to derive a unique solution for Et which depends only on r* and some parameters.
Hence, v* = 1+ a. Equation (87) then implies that ¥; is also constant over time. Hence, 1 — 7% =
(1+a)(1+n)/(1+q). Finally, given k; = k* and @; = &*, equation (86) implies that p; and Q;
must be growing at the same rate. Hence, r* = q.

This concludes the proof of Theorem 3.
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Appendix C: Infinitely-Lived Consumers

In this appendix, we will show that the “knife-edge” condition of a unitary elasticity of substi-
tution between effective labour input and effective resource input plays the same critical role
in generating endogenous economic growth in an environment with infinitely-lived consumers.
Specifically, an endogenous growth solution similar to the one in Agnani, Gutiérrez and Iza
(2005) can be obtained when the elasticity of substitution of G (-) is identical to one. But if this
elasticity is bounded away from one, then the common growth factor v* and interest rate r* are
solely determined by the growth rates of the exogenous technological factors (i.e., A; and Q).
Consider an economy that is populated by H > 0 identical households. Each household
contains a growing number of identical, infinitely-lived consumers. The size of each household at
time ¢ is given by Ny = (1 +n)", with n > 0. Since all households are identical, we can focus on
the choices made by a representative household and normalise H (which is just a scaling factor)

to one. The representative household solves the following problem:

0 clfo
max /BtNt t

a.
{ct,Kty1,Mi11}50, =0 l1-0

subject to the sequential budget constraint
Nier + Ki1 + peMiy1 = wilNe + (1 + 1¢) Kt + peMy,

where 8 € (0,1) is the subjective discount factor; o > 0 is the reciprocal of the elasticity of
intertemporal substitution (EIS); ¢; denotes individual consumption at time t; Ky and M; are,
respectively, the household’s holding of physical capital and non-renewable resources; p;, wy and r¢
are as defined in Section 2.1. The first-order conditions of this problem imply the Euler equation

for consumption,

= B+ (88)
t

and the Hotelling rule,

Pl _ T+ 7.

bt
We do not consider the resource tax in this setting (i.e., 4 = 0). The rest of the economy
is the same as in Sections 2.2 and 2.3. In particular, the first-order conditions for the firm’s

problem, (8)-(9), and the dynamic equation for natural resources, (11), remain unchanged. In
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any competitive equilibrium, goods market clear in every period so that

NtCt + Kt+1 - (1 - 5)Kt =F (Kt7 G (QtXta AtNt)) ; for all ¢ Z 0. (89)

This replaces the capital market clearing condition in (15).

When characterising a balanced growth equilibrium, we maintain the three conditions (v)-
(vii) listed in Section 3. Note that Lemma 1 is also valid in this environment. First, consider the
case when G (-) takes the Cobb-Douglas form, or equivalently, o (+) is identical to one. Dividing

both sides of (89) gives

15— F(Kt,G(C,IQ(ftXt,AtNt)).

Nicy n K1
Ky Ky

Hence, in any balanced growth equilibrium, aggregate consumption Nyc; must be growing at the

same rate as K; and Y;. This, together with the Euler equation in (88) implies
* * 1
Y=+,

where 7* is again the growth factor of per-capita output in a balanced growth equilibrium.
Next, note that the arguments in Step 1 and Step 2 of the proof of Theorem 1 are built upon
the properties of the production function and the characterising properties of balanced growth
equilibrium. In particular, these arguments do not rely on the consumer side of the economy.
Hence, they remain valid in this environment. Consequently, we have

1—7\?
=(1+b
= ()

(L+) (1= 1) =7 (14 ),
where 1+ b= (14 a)? (14 ¢)* . Using these three equations, we can derive
* -2 z
l+r*=p"=(14+b)=,

1—0o
w

17 =B=(1+b) = (L+n),

* 1-9¢ -
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where w=1— (1 —0) (1 — ¢). Thus, a unique balanced growth equilibrium exists if

1—0o
w

B= (14+b) = (1+n)€(0,1),

which ensures that 7* € (0,1). Notice that both v* and 7* are endogenously determined by a
host of factors as in the AGI solution.

Suppose now o¢ (+) is never equal to one. Since the arguments in Step 1 and Step 2 of the
proof of Theorem 2 remain valid in this environment, we have v* = 1+ a, r* = ¢, /k\:t = k* and

Ty = T*. These in turn imply that

(1+a)(1+n).

1—7"=
1+4+4¢
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