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Abstract

This paper re-examines the conditions under which endogenous economic growth can

emerge in neoclassical models with non-renewable resources. Unlike most of the existing

studies which focus exclusively on Cobb-Douglas production function, our analysis is based

on a general speci�cation. We formally prove that endogenous growth can emerge only under

the �knife-edge� condition of a unitary elasticity of substitution between labour input and

resource input. If this elasticity is not equal to one (as suggested by empirical evidence), then

long-term economic growth is entirely driven by an exogenous technological factor. We also

explore the implications of this on resource taxation.
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1 Introduction

Economists have long been concerned with natural resource scarcity and its implications on

long-term economic growth. In a seminal paper, Stiglitz (1974) examines these issues using the

now-familiar neoclassical growth model with in�nitely-lived consumers. It is shown that long-term

growth in per-capita output is sustainable even when natural resources are limited in quantity

but essential for production.1 Most importantly for the present study, Stiglitz�s model is one of

endogenous growth. This means the long-term economic growth rate in this model is not a priori

determined by some exogenous technological factors, but rather it is derived within the model and

can potentially be in�uenced by the choices of the consumers, �rms, as well as the government. In

a more recent study, Agnani, Gutiérrez and Iza (2005, henceforth AGI) show that the endogenous

growth result can also be obtained in a similar neoclassical framework but with overlapping

generations of �nitely-lived consumers. These �ndings have far-reaching implications for both

resource economics and economic growth theory, as they suggest that practices and policies in

natural resource management can in�uence the long-term growth prospect of an economy. One

such policy is resource taxation.2 Existing studies typically focus on the e¤ects of resource tax

on a mining �rm�s exploration and extraction decisions.3 Very few have examined the impact of

such tax on the wider economy and economic growth.4 For most resource-producing countries,

resource taxation is a signi�cant part of the economy. For instance, Bornhorst et al. (2009)

report that for a sample of 30 resource-producing countries (with various degrees of economic

development), resource taxation on average accounts for 49.1% of total government revenues and

16.2% of GDP over the period 1992-2005. The sheer scale of this type of taxation warrants a

thorough understanding about the factors that will determine its impact on the wider economy.

The aim of the present study is twofold. First, to re-examine the conditions under which

endogenous economic growth can emerge in neoclassical models with non-renewable resources.5

1More speci�cally, perpetual growth in per-capita output is possible in the presence of (resource-augmenting)
technological improvements and a high degree of substitutability between capital input and resource input. This
result is also mentioned in Jones and Manuelli (1997, p.91).

2Similar to Boadway and Keen (2010), we use the terms �resource taxation� and �resource tax� broadly to
include also other types of revenues that governments collect from the extraction and utilisation of natural resources
(such as royalties and equity sharing arrangements).

3See, for instance, Gaudet and Lasserre (2015) for a review of the theoretical literature.
4An exception is Groth and Schou (2007), which examine the growth e¤ects of capital income tax and resouce

tax in a model with in�nitely-lived consumers. Obviously, there is a large literature that examines how pollution
tax or carbon tax can curb the negative externalities (pollution) generated by resource-related economic activities.
We do not consider this type of externality in the present study.

5More speci�cally, we focus on a decentralised, competitive economy that features one single production sector
without any externalities as in Stiglitz (1974) and AGI. Other studies in resource economics have shown that
endogenous economic growth can emerge in the presence of production externalities [e.g., Groth and Schou (2007)]
and R&D activities [see, for instance, Barbier (1999), Scholz and Ziemes (1999), and Grimaud and Rougé (2003)].

2



Second, to examine the implications of these conditions on the e¤ects of resource taxation. The

present study is motivated by the following observations: Both Stiglitz (1974) and AGI have relied

on a speci�c form of production function, which is a Cobb-Douglas production function with three

productive inputs (physical capital, labour and natural resources).6 This is equivalent to assuming

that the elasticity of substitution between any two of these inputs is always equal to one. This

assumption, however, is at odds with many empirical �ndings.7 While the estimates produced by

the empirical literature may vary across datasets and estimation methods, the general consensus

is that the Cobb-Douglas speci�cation is not consistent with the data. This raises the question of

whether the endogenous growth result in Stiglitz (1974) and AGI will remain valid without the

Cobb-Douglas assumption. The present study not only provides an answer to this question, we

also go one step further and show that this has important implications on the e¤ects of resource

taxation.

Our analysis is conducted within the same theoretical framework as in AGI, except for two

changes: First, the Cobb-Douglas production function is replaced by some more general speci-

�cations that are in line with empirical evidence. Second, a constant �at tax on resource input

is introduced.8 In our benchmark model, we begin with a general class of production functions

that exhibit constant returns to scale in all inputs and in which capital input is functionally

separable from labour input and resource input.9 Similar to AGI, we focus on characterising bal-

anced growth equilibria, i.e., competitive equilibria in which (i) all major economic variables are

growing at some constant rate and (ii) factor income shares are all strictly positive and constant

over time. We show that two types of balanced growth equilibria are possible, depending on the

elasticity of substitution between e¤ective labour input and e¤ective resource input.10 On the

one hand, if this elasticity is constant and equal to one (henceforth referred to as the unitary

elasticity assumption), then the long-term economic growth rate is endogenously determined as

in AGI. This result holds regardless of the elasticity of substitution between capital input and the

These other sources of endogenous growth are not the subject of the present study.
6A Cobb-Douglas production function is one that is multiplicatively separable in all inputs and has constant

elasticities. This speci�cation is commonly used in resource economics. See, for instance, Solow (1974), Mitra
(1983), Barbier (1999) and Groth and Schou (2002) among others.

7See, for instance, Kemfert (1998), Kemfert and Welsch (2000), van der Werf (2008), Henningsen, Henningsen
and van der Werf (2018).

8 In resource economics, this is often referred to as an ad valorem severence tax. As explained in Groth and
Schou (2007, p.83), this type of tax is closely related to the royalties collected by the government from resource
extraction.

9The terminology and de�nition of �functional separability� are taken from Leontief (1947) and Blackorby and
Russell (1976). Further details are provided in Section 2.
10E¤ective labour input is de�ned as (raw) labour input multiplied by a labour-augmenting technological fac-

tor. Similarly, e¤ective resource input is de�ned as (raw) resource input multiplied by a resource-augmenting
technological factor.
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other two inputs. Thus, this can be viewed as a partial generalisation of the endogenous growth

result in AGI. But, on the other hand, if the elasticity of substitution between e¤ective labour

input and e¤ective resource input is bounded above or below by one, then long-term economic

growth is solely driven by an exogenous labour-augmenting technological factor as in the standard

neoclassical growth model. Taken together, our benchmark results underscore the pivotal role of

the unitary elasticity assumption in generating endogenous economic growth.11

The intuition behind these results is as follows: As is well-known in the economic growth

literature, perpetual growth in per-capita output requires certain factor (either exogenous or

endogenous) that can counteract the diminishing marginal return of physical capital.12 Such

a factor is dubbed as the �engine of growth.� In our benchmark model, if the unitary elasticity

assumption is satis�ed, then total factor productivity (TFP) and resource input jointly serve as the

engine of growth. While the growth rate of TFP is taken as exogenously given, the depletion rate

of resource input (which is determined by the utilisation rate of natural resources) is endogenously

determined. This opens up a door through which other factors (such as consumers� preferences

and government policies) can a¤ect the utilisation of natural resources and, in turn, the engine

of growth. But if the elasticity at issue is not equal to one, then balanced growth equilibria are

possible only if e¤ective resource input and e¤ective labour input are growing at the same rate.

This imposes a restriction on the utilisation rate of natural resources. In particular, this rate is

now pinned down by the exogenous growth rate of labour input and technological factors. As a

result, the engine of growth is solely determined by exogenous factors.

The present study is also related a growing literature which show that, in most (if not all) of

the existing economic growth models, balanced growth equilibria are possible only under some

�knife-edge� conditions.13 These existing studies are primarily concerned about balanced growth

equilibria in general, without distinguishing between exogenous and endogenous growth. This

distinction, however, is the subject of our analysis. In particular, our results suggest that even if

the conditions for balanced growth equilibria are met, endogenous growth will require yet another

�knife-edge� condition.

Despite the simplicity of our benchmark model, it is able to produce a rich set of predictions

11Our benchmark results are robust to several changes in the benchmark model. For instance, in Section 4.2 we
show that the exogenous growth result will prevail under several other speci�cations of the production function. In
Appendix C, we show that our benchmark results can be easily extended to an environment with in�nitely-lived
consumers as in Stiglitz (1974). This suggests that the �knife-edge� condition of unitary elasticity of substitution
also plays a crucial role in Stiglitz�s results.
12See Jones and Manuelli (1997, Section 2) for more elaboration on this point.
13See, for instance, Groth and Schou (2002), Growiec (2007), Bugajewski and Maćkowiak (2015) and the refer-

ences therein.
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regarding the e¤ects of resource taxation. The elasticities of substitution among the three inputs

again play a critical role in this matter. To sharpen our results, we adopt a two-stage constant-

elasticity-of-substitution (CES) production function in this part of the analysis. In the benchmark

speci�cation, e¤ective labour input and e¤ective resource input are placed in the inner CES

function. The elasticity of substitution is, for now, denoted by �G: Hence, the endogenous

growth result will emerge if �G is equal to one. The elasticity of substitution of the outer CES

function is denoted by �F : Our �rst major �nding is that if �G is one and �F is no less than one,

then a unique balanced growth equilibrium exists under some additional conditions and resource

tax is growth-enhancing. This scenario can be viewed as a direct extension of the analysis in

AGI. The intuition behind a growth-enhancing resource tax can be explained as follows: When

the resource tax rate goes up, resource input will become more costly and this will defer the

utilisation of natural resources. As a result, a larger stock of resources is available for future use.

By the complementarity between capital input and resource input in the production function,

this will raise the marginal product of capital (and the rate of return from investment), and in

turn promote capital accumulation and long-term economic growth. But if �G is one and �F is

strictly less than one, then multiple balanced growth equilibria may emerge and resource tax is

either growth-enhancing or growth-prohibiting depending on the equilibrium in question. Our

second major �nding is that if �G is not equal to one, then any changes in resource tax will only

a¤ect the level of per-capita variables but not their growth rate. In particular, an increase in

resource tax will promote (or depress) capital formation and output if �G is strictly greater (or

less) than one.

Whether the elasticity of substitution between labour input and resource input is equal to one

is ultimately an empirical question. A number of existing studies have estimated the elasticity

of substitution between physical capital, labour and commercial energy consumption.14 The last

one is used as a proxy for resource input. These studies usually report a less-than-unity elasticity

of substitution between labour and energy [Kemfert (1998), Kemfert and Welsch (2000) and van

der Werf (2008)]. When combining with these estimates, our benchmark model suggests that (i)

introducing resource input into an otherwise standard neoclassical growth model will not change

its fundamental nature (i.e., an exogenous growth model), and (ii) a higher tax rate on resource

input will have a negative impact on capital formation and aggregate output. These predictions

are in stark contrast to those produced under the unitary elasticity assumption.

14See van der Werf (2008) and Henningsen et al. (2018) for literature review and discussions on di¤erent
estimation strategies.
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The rest of the paper is organised as follows: Section 2 describes the setup of the benchmark

model. Section 3 presents the main results concerning the balanced growth equilibria of the

model. Section 4 provides some discussions and robustness checks on our baseline results. Section

5 concludes.

2 The Benchmark Model

2.1 Consumers

Our benchmark model is built upon the two-period overlapping-generation model in AGI, but

with a more general speci�cation of production function and a �at tax on resource input. Unless

otherwise stated, we will adopt the same notations as in AGI to facilitate comparison between

the two work.

Time is discrete and is indexed by t 2 f0; 1; 2; :::g : In each time period, a new generation of

identical consumers is born. The size of generation t is given by Nt = (1 + n)
t ; where n � 0 is

the population growth rate. Each consumer lives two periods, which we will refer to as the young

age and the old age. All young consumers have one unit of time which is supplied inelastically

to work. The market wage rate at time t is denoted by wt: All consumers are retired when old.

There are two types of commodities in this economy: a composite good which can be used for

consumption and capital accumulation, and non-renewable natural resources which are primarily

used as input of production. All prices are expressed in units of the composite good.

Consider a consumer who is born at time t � 0: Let c1;t and c2;t+1 denote his young-age and

old-age consumption, respectively. The consumer�s lifetime utility is given by

U (c1;t; c2;t+1) � ln c1;t +
1

1 + �
ln c2;t+1; (1)

where � > 0 is the rate of time preference. The consumer can accumulate wealth by investing

in physical capital and natural resources. Let st and mt denote, respectively, the consumer�s

holdings of physical capital and natural resources. The rate of return from physical capital is

denoted by rt+1; and the spot price of natural resources at time t is pt:

Taking fwt; rt+1; pt; pt+1g as given, the consumer�s problem is to choose a consumption pro�le

fc1;t; c2;t+1g and an investment portfolio fst;mtg so as to maximise his lifetime utility in (1),

6



subject to the budget constraints:

c1;t + st + ptmt = wt; and c2;t+1 = (1 + rt+1) st + pt+1mt: (2)

The �rst-order conditions of this problem can be expressed as

c2;t+1 =

�
1 + rt+1
1 + �

�
c1;t; (3)

pt+1
pt

= 1 + rt+1: (4)

Equation (3) is the familiar Euler equation of consumption, which determines the growth rate of

individual consumption between young and old ages. Equation (4) is the Hotelling rule, which

is essentially a no-arbitrage condition. It states that in order for the consumer to invest in both

types of assets, the capital gain from natural resources must be equal to the gross return from

physical capital. Using (2)-(4), we can derive the optimal level of consumption,

c1;t =

�
1 + �

2 + �

�
wt and c2;t+1 =

�
1 + rt+1
2 + �

�
wt; (5)

and the optimal level of investment in physical capital,

st =
wt
2 + �

� ptmt: (6)

2.2 Production

On the supply side of the economy, there is a large number of identical �rms that produce the

composite good. In every period t � 0; each �rm hires labour (Nt) ; rents physical capital (Kt) and

purchases extracts of natural resources (Xt) from the competitive factor markets, and produces

output (Yt) according to the production technology

Yt = F (Kt; G (QtXt; AtNt)) : (7)

In the above expression, Qt is a resource-augmenting technological factor and At is a labour-

augmenting technological factor. Both are assumed to grow at some constant exogenous rate, so

that Qt = (1 + q)
t and At = (1 + a)

t ; with q > 0 and a � 0; for all t � 0:

The production function in (7) is a composition of two functions, F (�) and G (�) : Intuitively,
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one can interpret this as a two-stage production process: In the �rst stage, e¤ective units of

labour and natural resources are combined using an aggregator function G (�) : The resultant is

then combined with physical capital using another aggregator function F (�) to produce the �nal

output. To use the terminology of Leontief (1947) and Blackorby and Russell (1976, p.286),

the subset of inputs fQtXt; AtNtg is functionally separable from Kt. There is more than one

way to de�ne functional separability with three inputs. Another possibility is to assume that

fKt; QtXtg is functionally separable from AtNt: A third possibility is to assume that fKt; AtNtg

is functionally separable from QtXt:We will tackle these alternative speci�cations in Section 4.2.

The main properties of F (�) and G (�) are summarised in Assumptions A1 and A2. Recall

that an input is deemed essential for production if output cannot be produced without this input

[Dasgupta and Heal (1974) and Solow (1974, p.34)]. Throughout this paper, we will use Fi (�)

to denote the partial derivative of F (�) with respect to its ith argument, i 2 f1; 2g : The partial

derivatives of G (�) are similarly represented.

Assumption A1 Both F : R2+ ! R+ and G : R2+ ! R+ are twice continuously di¤eren-

tiable, strictly increasing, strictly concave and exhibit constant returns to scale (CRTS) in their

arguments.

Assumption A2 Each input I 2 fK;X;Ng is either essential for production or its marginal

product is unbounded when I is arbitrarily close to zero.

Assumption A1 is a list of conditions that are commonly used in the economic growth lit-

erature. These conditions imply that the composite function in (7) is also twice continuously

di¤erentiable, strictly increasing, strictly concave and exhibits CRTS in all three inputs. In

neoclassical growth models (without natural resources), it is also common to impose two other

assumptions on the production function: First, both physical capital and labour are essential

for production. Second, the marginal product of these inputs are unbounded as their quantity

approach zero. These assumptions, however, are rather restrictive. For instance, within the class

of constant-elasticity-of-substitution (CES) production functions, only Cobb-Douglas production

functions satisfy both of these assumptions.15 Our Assumption A2 gets around this problem by

requiring only one of these properties to hold. This is su¢cient to ensure that in equilibrium all

three inputs are used in every time period. The argument goes as follows: As suggested by Solow

15The same point has been made by Dasgupta and Heal (1974, p.14) and Solow (1974, p.34) in natural resource
economics. Solow (1974) cites this as the main reason for using the Cobb-Douglas production function in his work.
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(1974), it is natural and reasonable to focus on equilibria that have a strictly positive amount of

�nal output in every period. If an input is deemed essential for production, then a strictly posi-

tive amount must always be used in this kind of equilibria. On the other hand, since both factor

markets and goods markets are perfectly competitive, the price of any input must be equated

to its marginal product in equilibrium. If the marginal product of an input is unbounded at or

around zero, then the marginal bene�t of using an in�nitesimal amount will certainly outweigh

the marginal cost. Hence, it is never optimal to use a zero quantity of this input.

Assumptions A1 and A2 are compatible with the two-stage CES production functions pro-

posed by Sato (1967).16 This class of functions can be obtained by setting

F (Kt; Zt) = [�K
�
t + (1� �)Z

�
t ]

1
� ; with � 2 (0; 1) and � < 1; (8)

G (QtXt; AtNt) �
h
' (QtXt)

 + (1� ') (AtNt)
 
i 1
 
; with ' 2 (0; 1) and  < 1: (9)

The production function in AGI corresponds to the special case in which � =  = 0: Under this

�double Cobb-Douglas� speci�cation, the two technological factors At and Qt are observationally

equivalent to a single Hicks neutral technological factor (or total factor productivity). For this

reason, the separate e¤ects of At and Qt are not considered in AGI.

Since the production function exhibits CRTS in all three inputs, we can focus on the pro�t-

maximisation problem faced by a single representative �rm. Let Rt be the rental price of physical

capital at time t and � 2 (0; 1) be the depreciation rate. Expenditures on natural resource input

are subject to a constant �at tax � � 0: Taking fRt; wt; pt; �g as given, the representative �rm

solves the following problem:

max
Kt;Xt;Nt

fF (Kt; G (QtXt; AtNt))�RtKt � (1 + �) ptXt � wtNtg :

The �rst-order conditions are given by

Rt = rt + � = F1 (Kt; G (QtXt; AtNt)) ; (10)

(1 + �) pt = QtF2 (Kt; G (QtXt; AtNt))G1 (QtXt; AtNt) ; (11)

wt = AtF2 (Kt; G (QtXt; AtNt))G2 (QtXt; AtNt) : (12)

16 In Appendix A, we verify that Assumption A2 is satis�ed by various forms of nested CES production functions.
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Equation (11) states that the representative �rm will choose a level of Xt so that its marginal

product equals the after-tax price. The tax rate � thus drives a wedge between the marginal

product of Xt and the price received by the owners of natural resources (i.e., the consumers).

2.3 Natural Resources

The economy has a �xed and known stock of non-renewable natural resources which can be

costlessly extracted in each time period. The initial size of the stock is denoted by M0 > 0:17

Let Mt be the stock available at the beginning of time t, and Xt be the quantity extracted and

sold in the factor market at time t:18 De�ne the extraction rate (or utilisation rate) at time t as

� t � Xt=Mt: The stock of natural resources then evolves according to

Mt+1 =Mt �Xt = (1� � t)Mt: (13)

2.4 Competitive Equilibrium

All the tax revenues collected from the resource tax are spent on some �unproductive� government

purchases.19 The government�s budget is balanced in every period.

Given the initial conditions, K0 > 0 and M0 > 0; and the constant tax rate � � 0; a

competitive equilibrium of this economy includes sequences of allocation fc1;t; c2;t+1; st;mtg
1
t=0 ;

aggregate inputs fKt; Nt; Xtg
1
t=0 ; natural resources fMtg

1
t=0 and prices fwt; Rt; pt; rt+1g

1
t=0 such

that,

(i) Given prices, fc1;t; c2;t+1; st;mtg solves the consumer�s problem at any time t � 0.

(ii) Given prices and the tax rate, fKt; Nt; Xtg solves the representative �rm�s problem at any

time t � 0.

(iii) The stock of natural resources evolves according to (13).

(iv) All markets clear in every period, which means Kt+1 = Ntst andMt+1 = Ntmt for all t � 0:

17At time 0; the initial stock of physical capital and natural resources are owned by a group of �initial old�
consumers. The decision problem of these consumers is trivial and does not play any role in our main results.
18This notation is slightly di¤erent from the one in AGI. Speci�cally, these authors de�ne Mt as the stock

remaining at the end of time t (after extraction). This di¤erence is immaterial since we both focus on balanced
growth paths along which Mt depletes at a constant rate.
19These purchases are deemed unproductive because they have no direct impact on the consumers� utility and

the production of goods. Our main results remain valid if the tax revenues are redistributed evenly to the young
consumers through a lump-sum transfer. The details of this are shown in Section 4.1.
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Using (6) and Mt+1 = Ntmt; we can write the capital market clearing condition as

Kt+1 =
wtNt

2 + �
� ptMt+1: (14)

This shows that capital accumulation (i.e., Kt+1 > 0) is possible only if wtNt > (2 + �) ptMt+1 �

0: Using (13) and the de�nition of � t, we can get

Mt+1 = (1� � t)
Mt

Xt
�Xt =

�
1� � t
� t

�
Xt:

Substituting this, (11) and (12) into (14) gives

Kt+1 = F2 (Kt; G (QtXt; AtNt))

�
1

2 + �
AtNtG2 (QtXt; AtNt)�

1

1 + �

�
1� � t
� t

�
QtXtG1 (QtXt; AtNt)

�
:

(15)

We will use this version of the capital market clearing condition repeatedly in the proof of our

results.

3 Baseline Results

Our baseline results focus on equilibria that display the following additional properties:

(v) Per-worker output (Yt=Nt) grows at a constant rate 
� � 1; for some � > 0; in every

period.20

(vi) The rate of return from physical capital is constant over time, i.e., rt = r�; for some r� > ��:

(vii) The utilisation rate of non-renewable resources is strictly positive and constant over time,

i.e., � t = ��; for some �� 2 (0; 1) :

Conditions (v) and (vi) are consistent with the empirical observations made by Kaldor (1963)

and many subsequent studies in the economic growth literature. Condition (vii) is commonly

used in economic growth models with natural resources.21 Note that a constant interest rate

is consistent with both �balanced� and �unbalanced� growth paths. Balanced growth paths are

competitive equilibria in which all major economic variables grow at some constant rate and all the

20The size of population at time t is given by Nt +Nt�1 =
�

1 + (1 + n)�1
�

Nt: Hence, every per-capita variable
is directly proportional to its per-worker counterpart, and the two will always grow at the same rate.
21Stiglitz (1974) and Groth and Shou (2007) are among the studies that consider equilibria with a constant

extraction rate. Scholz and Ziemes (1999) and Grimaud and Rougé (2003) are two examples that consider equilibria
with a constant growth rate of Xt: These two conditions are equivalent given (13).
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factor income shares are strictly positive and constant over time. By �unbalanced� growth, we are

referring to equilibria in which the income share of a subset of productive factors is asymptotically

zero. To explain this further, we �rst recall some of the results in Palivos and Karagiannis (2010):

Let �F (k) be the elasticity of substitution of f (k) � F (k; 1) : If lim
k!1

�F (k) > 1; then the marginal

product of capital f 0 (k) will converge to a strictly positive constant as k approaches in�nity. At

the same time, the production function f (k) will converge to a linear function and all the income

will be distributed as capital income. When applied to the current context, this means condition

(vi) is satis�ed if lim
k!1

�F (k) > 1 and Kt grows at a faster rate than G (QtXt; AtNt) so that

Kt

G (QtXt; AtNt)
!1; as t!1:

But this also means that total labour income (wtNt) will converge to zero, which violates the

necessary condition for capital accumulation, i.e., wtNt > (2 + �) ptMt+1 � 0: Hence, this type

of unbalanced growth paths are not sustainable in equilibrium. For this reason, we will focus on

balanced growth paths.22 This type of equilibria can be characterised as follows: First, given the

simple linear structure of (13), condition (vii) implies that Xt and Mt must be decreasing at the

same constant rate, i.e.,

Xt+1

Xt
=
Mt+1

Mt
= 1� ��:

Second, a constant growth rate of pt is implied by the Hotelling rule in (4) and a constant r
�:

Lastly, under Assumptions A1 and A2, a constant interest rate will imply a constant ratio between

Kt and Yt: This result is formally established in Lemma 1.
23 All proofs are given in Appendix

B. The remaining variables, such as wage rate and individual consumption, will also grow at a

constant rate. This will be established in our baseline results.

Lemma 1 Suppose the production function in (7) satis�es Assumptions A1 and A2. Then con-

dition (vi) implies the existence of a positive constant �� such that Kt = ��Yt for all t: This

means Yt and Kt must be growing at the same rate over time.

Before proceeding further, we �rst review the fundamental results in AGI, where government

intervention is absent (i.e., � = 0). According to their Lemma 1 and Proposition 1, if the

22Our approach to characterising balanced growth equilibria is di¤erent from AGI�s approach. Instead of imposing
a constant growth rate on all variables at the onset, we show that such an equilibrium can be obtained from
conditions (v)-(vii) and the assumptions on F (�) and G (�) :
23The proof of Lemma 1 is speci�c for the production function in (7). For the alternative speci�cations considered

in Section 4.2, we need all three conditions (v)-(vii) to obtain a constant capital-output ratio. The details of this
are shown in the proof of Theorem 3.
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production function is given by

Yt = BtK
�
t N

�
t X

v
t ;

where � > 0; � > 0; v > 0; � + � + v = 1, and Bt is a measure of total factor productivity

(TFP) that grows exogenously at a constant positive rate b > 0; then a unique balanced growth

equilibrium exists in which per-worker output, per-worker capital, individual consumption and

wage rate all grow at the same rate. The common growth factor � and the utilisation rate ��

are jointly determined by

� (1 + n)

(1� ��)
=

� (1 + n) (2 + �) �

� � (2 + �) v (1� ��) =��
+ 1� �; (16)

� = (1 + b)
1

1��

�
1� ��

1 + n

� v
1��

: (17)

Once �� and � are known, the value of r� and �� are given by

1 + r� =
� (1 + n)

1� ��
and �� =

�

r� + �
: (18)

In the sequel, we will refer to this as the AGI solution or the endogenous growth solution.

The main implication of the AGI solution is that both �� and � are jointly determined by

a host of factors, including the TFP growth rate (b) ; population growth rate (n) ; depreciation

rate (�) ; the share of factor incomes in total output (�; � and v), and the consumers� rate of

time preference (�) : If we decompose Bt according to Bt � QvtA
�
t and de�ne

bkt � Kt= (AtNt)

and bxt � (QtXt) = (AtNt), then the AGI solution also implies

bkt+1
bkt

=

�bxt+1
bxt

� v
1��

=

�
(1 + q) (1� ��)

(1 + a) (1 + n)

� v
1��

: (19)

Thus, depending on the solution of (16)-(17), bkt and bxt can be monotonically increasing, monoton-

ically decreasing or constant over time in the unique balanced growth equilibrium.

To highlight the signi�cance of these �ndings, consider an alternate economy with v = 0 in

AGI�s production function. This means natural resources are no longer needed in the production

process and, as a result, Bt � A1��t :24 In this case, a constant rt immediately implies a constant

bkt: This in turn implies that per-worker capital and per-worker output must be growing at the
24 It follows immediately that � t = �� = 0 for all t: In this alternate economy, natural resources play the same

role as the intrinsically worthless asset in the rational bubble model of Tirole (1983).
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same rate as At; so that 
� = (1 + a) :25 This is no more than a restatement of a well-known

result: In the standard neoclassical growth model where production function exhibits CRTS

in Kt and AtNt; long-term growth in per-capita variables is entirely driven by the exogenous

labour-augmenting technological factor.26

When compared to this alternative economy, the AGI solution shows that introducing produc-

tive natural resources can transform an otherwise exogenous growth model into one with endoge-

nous growth. If, in addition, the solution of (16)-(17) satis�es (1 + q) (1� ��) > (1 + a) (1 + n) ;

then the per-capita variables will grow at a faster rate than the technological factor At; i.e.,

� > 1 + a: Also note that equation (17) dictates an inverse relationship between � and ��:

This can be explained as follows: Lowering the utilisation rate of natural resources means that

the resource stock will deplete at a slower pace. Thus, a larger stock of natural resources will

remain in each time period. By the complementarity between physical capital and resource input

in the production function, such a change will raise the marginal product of capital (and hence

the rate of return from investment) in all future time periods. This will in turn promote capital

accumulation and economic growth. As we will see below, this inverse relationship is speci�c to

the endogenous growth solution and it is also useful in understanding the growth e¤ects of the

resource tax.

We now return to the question of whether the AGI solution remains valid under a more

general production function. Our baseline results provide an answer to this question based on the

composite function in (7). At the core of the analysis is the elasticity of substitution between the

two inputs of G (�) : This elasticity can be de�ned using the function g (bx) � G (bx; 1) for bx � 0:

By the CRTS property of G (�) ; we can write

G (QX;AN) = AN � g (bx) ;

where bx � QX= (AN) : Under Assumption A1, g (�) is twice continuously di¤erentiable with

g0 (�) > 0 and g00 (�) < 0: As shown in Arrow et al. (1961) and Palivos and Karagiannis (2010),

the elasticity of substitution of G (�) can be expressed as27

�G (bx) = �
g0 (bx)
bxg (bx)

g (bx)� bxg0 (bx)
g00 (bx) > 0; for all bx > 0: (20)

25This can also be seen by setting �� = 0 and v = 0 in equations (17) and (19).
26This result holds in both overlapping-generation models and models with in�nitely-lived consumers.
27The derivation of (20) rests upon two assumptions: (i) the factor markets and goods markets are perfectly

competitive and (ii) G (�) exhibits CRTS [see Arrow et al. (1961, p.228-229)]. Both assumptions are satis�ed in
our model.
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In particular, G (�) is Cobb-Douglas if and only if �G (�) is identical to one.

Given that Yt and Kt are growing at the same rate (Lemma 1), the homogeneity of F (�)

implies that Zt � G (QtXt; AtNt) must be growing at the same rate as well, i.e.,

Yt+1
Yt

=
Kt+1

Kt
=
Zt+1
Zt

= � (1 + n) : (21)

If G (�) takes a Cobb-Douglas form as in

Zt = G (QtXt; AtNt) = (QtXt)
1�� (AtNt)

� ; with � 2 (0; 1) ; (22)

then the growth factor of Zt is a weighted geometric average of the growth factor of QtXt and

AtNt; i.e.,

Zt+1
Zt

=

�
Qt+1Xt+1

QtXt

�1���At+1Nt+1

AtNt

��

) � (1 + n) = [(1 + q) (1� ��)]1�� [(1 + a) (1 + n)]� : (23)

Obviously this equation alone is not enough to pin down the two endogenous variables � and

��: The extra degree of freedom is what makes the endogenous growth solution possible. In the

current model, � and �� are jointly determined by equation (23) and the capital market clearing

condition in (15). Hence, any factors that appear in these two conditions (which include preference

parameters and the resource tax) will a¤ect economic growth. These are the main ideas of our

Theorem 1. Note that these results hold even if F (�) does not take the Cobb-Douglas form. Our

Theorem 1 thus provides a partial generalisation of the AGI solution. The policy implication of

this �nding is examined in Proposition 1.

On the other hand, if �G (�) is never equal to one (which means it is either uniformly bounded

above or uniformly bounded below by one), then condition (21) is satis�ed only if fZt; QtXt; AtNtg

all share the same growth rate, i.e.,

� (1 + n) = (1 + q) (1� ��) = (1 + a) (1 + n) : (24)

These equations uniquely pin down the value of � and ��: In particular, the growth rate of

per-worker output is now solely determined by the growth rate of At, i.e., 
� = 1+ a: Hence, the

endogenous growth solution is no longer valid. This also means that the tax rate � can only a¤ect

the level of economic variables in a balanced growth equilibrium, but not their growth rate. The
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exogenous growth solution is presented in Theorem 2.

Theorem 1 Suppose F (�) satis�es Assumptions A1 and A2 and G (�) takes the Cobb-Douglas

form in (22). De�ne b � (1 + a)� (1 + q)1�� � 1: Then any equilibrium that satis�es conditions

(v)-(vii), if exists, must also satisfy

� = (1 + b)

�
1� ��

1 + n

�1��
; (25)

(1 + r�) (1� ��) = � (1 + n) ; (26)

� (1 + n) = ��F2 (1; �
�)

�
�

2 + �
�

�
1� ��

��

��
1� �

1 + �

��
; (27)

F1 (1; �
�) = r� + �: (28)

In addition, wage rate and individual consumption must grow at the same rate as per-worker

output.

Theorem 1 describes a balanced growth equilibrium that is similar in spirit to the AGI solution.

This equilibrium is characterised by four key variables, namely the growth factor of per-worker

output (�) ; the utilisation rate of natural resources (��) ; the rate of return from physical capital

(r�) and the ratio between (bxt)1�� and bkt (denoted by ��). All other variables can be uniquely

determined using these four values. Similar to the AGI solution, the utilisation rate �� must be

greater than a certain threshold � (�) 2 (0; 1) which depends on �: To see this, note that both

� (1 + n) and ��F2 (1; �
�) are strictly positive, thus it follows from (27) that

�

2 + �
�

�
1� ��

��

��
1� �

1 + �

�
> 0

) �� > � (�) �
(2 + �) (1� �)

� (1 + �) + (2 + �) (1� �)
2 (0; 1) : (29)

It is obvious from (29) that � (�) is strictly decreasing in �:

The original AGI result can be recovered as follows: By setting � = 0 and F (Kt; Zt) =

K�
t Z

1��
t ; with � 2 (0; 1) ; we can get

�� =

�
r� + �

�

� 1
1��

and ��F2 (1; �
�) =

1� �

�
(r� + �) :
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Upon substituting these into (27) and setting � = �= (1� �) and (1� �) = v= (1� �) ; we get

� (1 + n) =
1

�
(r� + �)

�
� � (2 + �) v (1� ��) =��

2 + �

�
:

This, together with (26), gives us

� (2 + �) (1 + n) �

� � (2 + �) v (1� ��) =��
= r� + � =

� (1 + n)

1� ��
� (1� �) ;

which is the same equation that appears in AGI�s Lemma 1 part (i). According to their Proposi-

tion 1, a unique balanced growth equilibrium exists when both F (�) and G (�) are Cobb-Douglas.

We now show that similar results can be obtained if F (�) is a CES function with elasticity of

substitution strictly greater than one and � � 0:

Proposition 1 Suppose F (�) takes the CES form in (8) with elasticity of substitution �F �

(1� �)�1 � 1 and G (�) takes the Cobb-Douglas form in (22). Then the economy has at least one

balanced growth equilibrium that satis�es (25)-(28). If, in addition,

(
(1 + b)

�
1 + n

1� � (�)

��
� (1� �)

)�
> � (1� �)1�� ; (30)

where � (�) is the threshold level de�ned in (29), then a unique balanced growth equilibrium exists.

To better understand the e¤ects of �; let�s consider two economies that are otherwise identical

except for the tax rate on resource input, denoted by �2 > �1 � 0: In both economies, F (�) takes

the CES form in (8) with elasticity of substitution �F � 1 and G (�) takes the Cobb-Douglas

form in (22). Suppose a unique balanced growth equilibrium exists in both economies.28 Let ��i

and �i denote, respectively, the equilibrium utilisation rate and common growth factor in the

economy with tax rate �i; for i 2 f1; 2g : Then the economy with a higher tax rate will also have

a faster growth rate, i.e., �2 > �1 for any �2 > �1 � 0: In other words, resource taxation is

growth-enhancing. This result is formally stated in Proposition 2. The intuition behind this is

straight-forward: Increasing the tax rate � will raise the cost of resource input and discourage

utilisation, i.e., ��2 < ��1 for any �2 > �1 � 0: A higher growth rate then follows from the inverse

relationship between �� and � described earlier.

28 It su¢ce to assume that condition (30) is satis�ed under the higher tax rate, i.e., �2 > 0: The details of this
are shown in the proof of Proposition 2.
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Proposition 2 Suppose F (�) takes the CES form in (8) with elasticity of substitution �F �

(1� �)�1 � 1 and G (�) takes the Cobb-Douglas form in (22). Suppose the condition in (30) is

satis�ed under �2 > 0: Then �
�
2 < ��1 and 

�
2 > �1; for any �2 > �1 � 0:

Next, we turn to the case when �F < 1 (or equivalently, � < 0). It turns out to be more

di¢cult to ensure the existence and uniqueness of balanced growth equilibrium in this case.

This is because slight changes in �F within this range can potentially lead to drastic changes in

equilibrium outcomes. The following numerical example is intended to demonstrate this. First,

we combine equations (25)-(28) to form a single equation in ��; which is

(2 + �) (1 + b) (1 + n)� (1� ��)1��

��
�
1���

��

�
(2 + �) (1� �) (1 + �)�1

=
r (��) + �

�

(�
r (��) + �

�

� �
1��

� �

)
; (31)

where r (��) � (1 + b) (1 + n)� (1� ��)�� � 1. We then evaluate both sides of this equation over

a range of � using the following parameterisation: Suppose one model period takes 25 years. We

set � = 1:775 so that the annual subjective discount factor is 0:96:We set the annual employment

growth rate to 1.6%, which matches the average annual growth rate of U.S. employment over

the period 1953-2008. This implies n = (1:0160)25 � 1 = 0:4871: The annual TFP growth rate is

taken to be 1.05%, which is in line with the estimates reported by Feng and Serletis (2008, p.300).

The implied value of b is 0.2984 over a 25-year period. We also set � = 0; � = 1; � = 0:38 and

� = 0:24: Figure 1 plots the left-hand side (LHS) and the right-hand side (RHS) of equation (31)

under two di¤erent values of �F ; namely 0.62 and 0.65. Both fall within the range of estimates

reported by Henningsen et al. (2019, Table 4).29 As shown in the diagram, equation (31) has

no solution when �F = 0:62 (� = �0:613) ; which means there is no equilibrium that satis�es

conditions (v)-(vii). But when �F is raised to 0.65 (� = �0:538), the same equation has at least

two solutions, which are �� = 0:9695 and �� = 0:9964: The possibility of multiple equilibria,

however, does not alter the fundamental nature of the AGI solution � in each of these equilibria,

the common growth factor � is determined by a host of factors.

When there are more than one balanced growth equilibria, the e¤ects of reource tax may

di¤er across equilibria. For instance, consider the case when �F = 0:65 in the above example.

Let (��1; 
�
1) and (�

�
2; 

�
2) denote the two balanced growth equilibria, with �

�
1 < ��2: It follows from

(25) that �1 > �2: Note that the resource tax � only appears on the left-hand side of (31). In

29 In Henningsen et al. (2019, Table 4), the elasticity of substitution between the inputs of F (�) is denoted by
�(LE)K : In the existing empirical studies, it is conventional to use commerical energy consumption as a proxy for
natural resource input.
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particular, any increase in � will lower its value. This will shift the LHS curve in Figure 1 down

but leave the RHS curve una¤ected. It follows that a small increase in � will lower the value of

��1 and raise the value of 
�
1; but have the opposite e¤ects on (�

�
2; 

�
2) :

Figure 1 Numerical Example

The rest of this section is devoted to the case when �G (bx) 6= 1 for all bx > 0: The main results

are summarised in Theorem 2.

Theorem 2 Suppose the production function in (7) satis�es Assumptions A1 and A2. Suppose

the elasticity of substitution of G (�) is never equal to one. Then any equilibrium that satis�es

conditions (v)-(vii), if exists, must also satisfy � = 1 + a; r� = q; and

1� �� =
(1 + a) (1 + n)

1 + q
: (32)

Such an equilibrium will have bkt = bk� and bxt = bx� for all t; where bk� and bx� are determined by

F1

�
bk�; G (bx�; 1)

�
= q + �; (33)
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(1 + a) (1 + n)bk� = F2

�
bk�; G (bx�; 1)

��G2 (bx�; 1)
2 + �

�

�
1� ��

��

� bx�G1 (bx�; 1)
1 + �

�
: (34)

In addition, wage rate and individual consumption must grow at the same rate as per-worker

output.

Theorem 2 presents a balanced growth equilibrium that is in stark contrast to the AGI so-

lution. Speci�cally, if �G (�) is bounded away from one, then either there is no equilibrium that

satis�es conditions (v)-(vii) or any such equilibrium will have a common growth rate in per-capita

variables that is solely determined by the exogenous growth factor At: Thus, there is no room

for endogenous growth. It follows that the tax rate � can only a¤ect the level of major economic

variables but not their growth rate. The above theorem also highlights two important di¤erences

between the two technological factors At and Qt: First, the growth rate of At determines the com-

mon growth factor (�), while the growth rate of Qt determines the rate of return from physical

capital (r�) : This follows from the fact that, along any balanced growth path, any changes in

Qt will be absorbed by the resource price pt: This, together with the Hotelling rule, then implies

that r� = q: The second di¤erence is that, holding other factors constant, a higher growth rate

of At will suppress the utilisation rate �
� while a higher growth rate of Qt will promote it. This

can be explained as follows: By the complementarity between QtXt and AtNt in G (�), a higher

growth rate of At will raise the marginal product of resource input in all future time periods

(when other things are kept constant). This will induce an intertemporal substitution in resource

utilisation by shifting the demand from the current period to the future periods. Such a shift will

slow down the depletion of the resource stock, which is equivalent to lowering the value of ��. A

higher growth rate of Qt will have the opposite e¤ect.

Since �� must be con�ned between zero and one, it is necessary to impose the restriction

1 + q > (1 + a) (1 + n) : This means the growth rate of resource-augmenting technological factor

must be strictly positive, even when there is no population growth (i.e., n = 0) and no labour-

augmenting technological progress (i.e., a = 0). Intuitively, this is saying that a minimum degree

of resource-augmenting technological progress is necessary in order to compensate for the decline

in Xt over time and make perpetual economic growth possible.

To sharpen our understanding of the exogenous growth solution, we focus on the case when

F (�) and G (�) take the CES form in (8) and (9). De�ne an auxiliary notation � according to

� �
q + �

� (2 + �)

"�
q + �

�

� �
1��

� �

#
:
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The �rst part of Proposition 3 establishes the existence and uniqueness of balanced growth equi-

librium under the stated conditions. Since f��; �; r�g are all independent of �; any changes

in this tax rate will only a¤ect the level of bx� and bk�: The second part of Proposition 3 states

that these e¤ects depend crucially on the value of �G: If this elasticity is greater than one [or

equivalently,  2 (0; 1)], then a higher tax rate on resource input will raise the value of bx�: The

e¤ect is opposite if �G is less than one (or equivalently,  < 0). By the homogeneity property of

F1 (�) and (33), bx� and bk� will move in the same direction in light of any changes in �:

Proposition 3 Suppose F (�) and G (�) take the CES form in (8) and (9), respectively. Suppose

further that min f�; 1 + qg > (1 + a) (1 + n) : Then the following results hold.

(i) There exists a unique balanced growth equilibrium that satis�es � = 1 + a; r� = q; and

(32)-(34).

(ii) An increase in � will raise the value of bx� and bk� if �G � (1�  )�1 > 1 and lower their

value if �G � (1�  )
�1 < 1:

Two �nal remarks are in order. First, Proposition 3 covers the special case in which F (�) and

G (�) have the same constant elasticity of substitution, i.e., � =  : In this case, the production

function in (7) becomes

Yt = [�K
�
t + (1� �)' (QtXt)

� + (1� �) (1� ') (AtNt)
�]

1
� ;

which is the familiar Dixit�Stiglitz aggregator function. Second, the main results in Theorem 1

and Theorem 2 can be readily extended to an environment with in�nitely-lived consumers. The

details are shown in Appendix C.

4 Further Results and Discussions

4.1 Alternative Use of Tax Revenues

Most of the theoretical results in Section 3 will remain valid if all the tax revenues collected

from the resource tax are redistributed evenly among the young consumers through a lump-sum

transfer.30 Under this alternative arrangement, a young consumer at time t will face the following

30Due to page limitations, we can only highlight the key points here. Further details are available from the
authors upon request.
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budget constraint:

c1;t + st + ptmt = wt + �t;

where �t is the transfer at time t: The consumer�s optimal choices are now given by

c1;t =

�
1 + �

2 + �

�
(wt + �t) ; c2;t+1 =

�
1 + rt+1
2 + �

�
(wt + �t)

st =
wt + �t
2 + �

� ptmt: (35)

The government�s budget is balanced in every time period, so that

�ptXt = Nt�t; for all t � 0: (36)

The rest of the economy is the same as in the benchmark model.

Since the policy variables � and �t do not a¤ect the production technology directly, most of

the results in Theorem 1 and Theorem 2 will remain valid. Speci�cally, it remains the case that

if the elasticity of substitution of G (�) is constant and equal to one, then the endogenous growth

solution will prevail; but if this elasticity is bounded away from one, then � and �� are again

determined by (24).31 The only parts that need to be modi�ed are (27) and (34), both of which

are derived from the capital-market-clearing condition. In particular, equation (27) in Theorem

1 will now be replaced by

� (1 + n) = ��F2 (1; �
�)

�
�

2 + �
+

�
�

2 + �
�
1� ��

��

�
1� �

1 + �

�
: (37)

This equation also implies that �� must be greater than the threshold

e� (�) � (1� �) (2 + �)

�+ �+ (1� �) (2 + �)
; (38)

which is strictly decreasing in �: Similarly, equation (34) in Theorem 2 will be replaced by

(1 + a) (1 + n)bk� = F2

�
bk�; G (bx�; 1)

��G2 (bx�; 1)
2 + �

+

�
�

2 + �
�
1� ��

��

� bx�G1 (bx�; 1)
1 + �

�
:

The results of Propositions 1-3 also remain valid, except for some minor changes. First,

consider the case whenG (�) is Cobb-Douglas and F (�) is a CES function with �F � (1� �)
�1 � 1:

31The proof of these statements are essentially the same as in the proof of Theorem 1 and Theorem 2, hence
they are not repeated here.
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Then it can be shown that (i) a balanced growth equilibrium that satis�es (25), (26), (28) and (37)

always exists; (ii) if the following condition is satis�ed, then a unique balanced growth equilibrium

exists, (
(1 + b)

�
1 + n

1� e� (�)

��
� (1� �)

)�
> � (1� �)1�� ;

where e� (�) is the same threshold de�ned in (38); and (iii) an increase in � will lower the value

of �� but increase the common growth factor �:

Finally, consider the case when both F (�) and G (�) take the CES form as in Proposition 3.

In the benchmark model, the value of bx� is uniquely determined by32

(bx�) = 1� '

'

�� (1 + a) (1 + n)

(1 + a) (1 + n) +
�
1���

��

� �
2+�
1+�

�
�
: (39)

When the tax revenues are refunded to the consumers, the value of bx� is determined by

(bx�) = 1� '

'

�� (1 + a) (1 + n)

(1 + a) (1 + n) +
h�
1���

��

� �
2+�
1+�

�
� �

1+�

i
�
: (40)

In both settings, the utilisation rate �� is determined by (32). Note that the right-hand side of

both (39) and (40) are strictly increasing in �: Thus, an increase in � will raise (or lower) the

value of bx� if  > 0 (or  < 0).

4.2 Alternative Speci�cations of Production Function

In this subsection, we will consider two alternative speci�cations of the production function.

These are given by

Yt = F (AtNt; G (Kt; QtXt)) ; (41)

Yt = F (QtXt; G (Kt; AtNt)) : (42)

To maintain consistency across all three speci�cations, we use G (�) to represent the �inner�

aggregator function and F (�) to represent the �outer� aggregator function in (7), (41) and (42).

All three speci�cations will coincide with AGI�s production function if both G (�) and F (�) have

the Cobb-Douglas form. Our main interest here is to examine the properties of balanced growth

equilibrium when one of the aggregator functions in (41) and (42) does not take the Cobb-Douglas

form. To this end, we consider four di¤erent parametric production functions based on (41) and

32The derivation of this is shown in the proof of Proposition 3.
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(42). In the �rst two speci�cations, the inner aggregator function is Cobb-Douglas but the outer

one has a CES form, so that

Yt =

�
' (AtNt)

 + (1� ')
h
K�
t (QtXt)

1��
i � 1

 

; (43)

Yt =

�
' (QtXt)

 + (1� ')
h
K�
t (AtNt)

1��
i � 1

 

; (44)

with � 2 (0; 1) ; ' 2 (0; 1) and  < 1: In the second group, the inner aggregator function is a

CES function and the outer one is Cobb-Douglas, so that

Yt =
h
'K 

t + (1� ') (QtXt)
 
i 1��

 
(AtNt)

� (45)

Yt = (QtXt)
v
h
'K 

t + (1� ') (AtNt)
 
i 1�v

 
; (46)

with � 2 (0; 1) ; v 2 (0; 1) ; ' 2 (0; 1) and  < 1:33 The rest of the economy is the same as in the

benchmark model. The main result of this subsection is summarised in Theorem 3.

Theorem 3 Suppose the production function takes one of the forms in (43)-(46). Then any

balanced growth equilibrium (if exists) must satisfy � = 1 + a; r� = q; and

1� �� =
(1 + a) (1 + n)

1 + q
:

The main message of Theorem 3 is clear: despite the di¤erences in appearance, all the

production functions in (43)-(46) have the same implications for balanced growth equilibrium.

Speci�cally, any balanced growth equilibrium (if exists) must satisfy � = 1 + a; r� = q; and

(1� ��) = (1 + a) (1 + n) = (1 + q). It follows that the two transformed variables bkt and bxt must

be time-invariant, and so there is no room for endogenous growth.

4.3 Discussions

The results in the previous sections suggest that the AGI solution is valid only under the �knife-

edge� condition of a unitary elasticity of substitution between labour input and resource input.

If we rewrite (22) as

G (QtXt; AtNt) =
h
At (QtXt)

1��
� Nt

i�
;

33The parameters � and v have the same economic meaning as in AGI. Speci�cally, they represent the share of
total output distributed as labour income and expenses on natural resource input.
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then the expression eXt � At (QtXt)
1��
� can be viewed as a labour-augmenting factor and serves

as the engine of growth. When viewed through this lens, our results suggest that the AGI solution

is valid only when e¤ective resource input is labour-augmenting in the production function, i.e.,

Yt = F

�
Kt;

�
eXtNt

���
:

This result may remind one of the celebrated Uzawa Growth Theorem [Uzawa (1961)]. But there

are at least two important di¤erences between the two. First, the Uzawa Growth Theorem and

its variants are typically derived from a CRTS production function with only two inputs, namely

physical capital and labour [see, for instance, Uzawa (1961), Schlicht (2006), Jones and Scrimgeour

(2008) and Grossman et al. (2017)]. It is not immediately clear how the Uzawa Growth Theorem

can be extended to a general CRTS production function with more than two inputs, such as

the one considered here. Second, and more importantly, the Uzawa Growth Theorem states the

conditions under which a balanced growth equilibrium can emerge, without explicitly mentioning

whether the �engine of growth� is exogenous or endogenous. The distinction between exogenous

and endogenous growth, however, is the main focus of our analysis.

5 Conclusions

In this paper, we re-examine the conditions required for endogenous long-term economic growth

in neoclassical models with non-renewable resources. Unlike most of the existing studies which

focus exclusively on Cobb-Douglas production function, we adopt a general speci�cation and

seek general conditions under which endogenous economic growth can emerge. Our benchmark

results show that this type of growth is possible only under the �knife-edge� condition of a

unitary elasticity of substitution between e¤ective labour input and e¤ective resource input. This

condition, however, has found little support in empirical studies. For all other speci�cations

that we have considered, including those that are in line with empirical evidence, the model

predicts that long-term economic growth is entirely driven by the exogenous labour-augmenting

technological factor. One possible direction of future research is to examine whether unitary

elasticity assumption plays a similar role in other endogenous growth models (e.g., those that

involve R&D activities). Our model also produces a rich set of predictions regarding the e¤ects

of resource taxation. In particular, depending on the elasticities of substution among the three

inputs, an increase in resource tax can be either bene�cial or adverse to capital accumulation.
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When combined with the estimates produced by the empirical literature, our benchmark model

suggests that increasing the resource tax will have a negative impact on capital formation and

aggregate output. This is in stark contrast to the prediction produced by the endogenous growth

solution.
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Appendix A: Nested CES Production Functions

In this appendix, we will verify that Assumption A2 is satis�ed by all the nested CES production

functions considered in Sections 3 and 4. We begin with the speci�cation considered in Section

3, which is

F (Kt; Zt) = [�K
�
t + (1� �)Z

�
t ]

1
� ; with � 2 (0; 1) and � < 1;

G (QtXt; AtNt) �
h
' (QtXt)

 + (1� ') (AtNt)
 
i 1
 
; with ' 2 (0; 1) and  < 1:

First, consider capital input. If � � 0; then

lim
Kt!0

F (Kt; G (QtXt; AtNt)) = 0;

for any QtXt > 0 and AtNt > 0; regardless of the value of  : Thus, physical capital is essential

for production when � � 0: If � 2 (0; 1) ; then

lim
Kt!0

F1 (Kt; G (QtXt; AtNt)) =1;

regardless of the value of  : Next, consider the inputs of G (�) : When  � 0; we have

lim
Xt!0

G (QtXt; AtNt) = lim
Nt!0

G (QtXt; AtNt) = 0;

lim
Xt!0

G1 (QtXt; AtNt) = '
1
 and lim

Nt!0
G2 (QtXt; AtNt) = (1� ')

1
 :

There are now two subcases to consider: If  � 0 and � � 0; then both natural resources and

labour are essential for production, i.e.,

lim
Xt!0

F (Kt; G (QtXt; AtNt)) = lim
Nt!0

F (Kt; G (QtXt; AtNt)) = 0:

If  � 0 and � 2 (0; 1) ; then we can show that

lim
Xt!0

@Yt
@Xt

= (1� �)

(
� lim
Xt!0

�
G (QtXt; AtNt)

Kt

���
+ 1� �

) 1
�
�1

� lim
Xt!0

G1 (QtXt; AtNt) �Qt

= (1� �) � 1 � '
1
 Qt =1:
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Likewise,

lim
Nt!0

@Yt
@Nt

= (1� �)

(
� lim
Nt!0

�
G (QtXt; AtNt)

Kt

���
+ 1� �

) 1
�
�1

� lim
Nt!0

G2 (QtXt; AtNt) �At

= (1� �) � 1 � (1� ')
1
 At =1:

If  2 (0; 1) ; then we have

lim
Xt!0

G (QtXt; AtNt) = (1� ')
1
 (AtNt) and lim

Nt!0
G (QtXt; AtNt) = '

1
 (QtXt) ;

lim
Xt!0

G1 (QtXt; AtNt) = lim
Nt!0

G2 (QtXt; AtNt) =1:

Using these we can obtain

lim
Xt!0

@Yt
@Xt

= F2

�
Kt; (1� ')

1
 AtNt

��
lim
Xt!0

G1 (QtXt; AtNt)

�
=1;

lim
Nt!0

@Yt
@Nt

= F2

�
Kt; '

1
 QtXt

��
lim
Nt!0

G2 (QtXt; AtNt)

�
=1:

Note that these results hold regardless of the value of �:

Next, we turn to the production function in (43). There are now only two possible cases: If

 � 0; then all three inputs are essential for production. If  2 (0; 1) ; then we can obtain

lim
Nt!0

@Yt
@Nt

= 'At

8
<
:'+ (1� ') limNt!0

"
AtNt

K�
t (QtXt)

1��

#� 9=
;

1
 
�1

=1;

lim
Kt!0

@Yt
@Kt

= � (1� ')

8
<
:' limNt!0

"
K�
t (QtXt)

1��

AtNt

#� 
+ 1� '

9
=
;

1
 
�1 "

lim
Kt!0

�
Kt

QtXt

���1#
=1;

lim
Xt!0

@Yt
@Xt

= (1� �) (1� ')

8
<
:' limXt!0

"
K�
t (QtXt)

1��

AtNt

#� 
+ 1� '

9
=
;

1
 
�1 �

lim
Xt!0

�
Kt

QtXt

���
Qt

= 1:

Note that the production functions in (43) and (44) are essentially identical, except that AtNt

and QtXt have switched place. Thus, using the same line of argument we can show that (44)

satis�es Assumption A2.
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We now consider the production function in (45). The �rst thing to note is that labour input

is essential for production regardless of the value of  : If  � 0; then both physical capital and

natural resources are essential for production. What remains is to consider the marginal product

of these inputs when  2 (0; 1) : Straightforward di¤erentiation gives

@Yt
@Kt

= (1� �)'

�
AtNt

QtXt

�� "
'+ (1� ')

�
Kt

QtXt

�� # 1
 
�1 "

'

�
Kt

QtXt

� 
+ 1� '

#� �
 

;

@Yt
@Xt

= (1� �) (1� ')

�
AtNt

Kt

�� "
'

�
QtXt

Kt

�� 
+ (1� ')

# 1
 
�1 "

'+ (1� ')

�
QtXt

Kt

� #� �
 

:

Using these and the following properties,

lim
Kt!0

"
'+ (1� ')

�
Kt

QtXt

�� # 1
 
�1

= lim
Xt!0

"
'

�
QtXt

Kt

�� 
+ (1� ')

# 1
 
�1

=1;

lim
Kt!0

"
'

�
Kt

QtXt

� 
+ 1� '

#� �
 

= (1� ')
� �
 ;

lim
Xt!0

"
'+ (1� ')

�
QtXt

Kt

� #� �
 

= '
� �
 ;

we can get

lim
Kt!0

@Yt
@Kt

= lim
Xt!0

@Yt
@Xt

=1:

Since (45) and (46) are symmetric, the same line of argument can be used to show the desired

properties for (46).
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Appendix B: Proofs

Proof of Lemma 1

Suppose there exists a real number r� > �� such that

F1 [Kt; G (QtXt; AtNt)] = F1

�
1;
G (QtXt; AtNt)

Kt

�
= r� + � > 0:

The �rst equality follows from the homogeneity property of F1 (�) : Since F1 (1; �) is continuous

and strictly decreasing under Assumption A1, this implies the existence of a non-negative real

number �� such that

G (QtXt; AtNt)

Kt
= �� � 0:

Note that there are two possible cases: In this �rst one, �� = 0 which can happen if lim
k!1

�F (k) >

1: A formal proof of this can be found in Palivos and Karagiannis (2010). Under this scenario,

Kt is persistently growing at a higher rate than G (QtXt; AtNt) : But as we have explained in

the main text, this scenario cannot be supported as an equilibrium. In this second case, we have

�� > 0: By the homogeneity property of F (�) ; we can write

Yt = F (Kt; G (QtXt; AtNt)) = KtF (1; �
�) ; for all t;

) Kt = [F (1; �
�)]�1 Yt:

The desired results follow by setting �� � [F (1; ��)]�1 > 0:

This completes the proof of Lemma 1.

Proof of Theorem 1

The proof is divided into a number of steps:

Step 1 This part of the proof uses the same line of argument as in Schlicht (2006) and Jones

and Scrimgeour (2008). First, condition (v) implies that aggregate output Yt grows at a constant

rate b � � (1 + n) in every period, i.e., Yt+1 = bYt; for all t: Rearranging terms and applying

the CRTS property of F (�) gives

Yt = F
�
b�1Kt+1; b�1G (Qt+1Xt+1; At+1Nt+1)

�

= F
�
Kt; b�1G (Qt+1Xt+1; At+1Nt+1)

�
:
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The second line uses the fact that Kt and Yt must grow at the same rate, as per Lemma 1. For

any given Kt > 0; F (Kt; Zt) is strictly increasing in Zt. Hence, the following equality must hold

in any equilibrium that satis�es condition (v),

G (QtXt; AtNt) = b�1G (Qt+1Xt+1; At+1Nt+1) : (47)

Note that (47) holds regardless of whether G (�) is Cobb-Douglas.

Suppose now G (�) is given by

G (QtXt; AtNt) = (QtXt)
1�� (AtNt)

� ; for some � 2 (0; 1) :

Using this, together with At+1 = (1 + a)At; Qt+1 = (1 + q)Qt; Xt+1 = (1� �
�)Xt and Nt+1 =

(1 + n)Nt; we can rewrite (47) as

(QtXt)
1�� (AtNt)

� = b�1 [(1 + q) (1� ��)] [(1 + a) (1 + n)]� (QtXt)
1�� (AtNt)

� : (48)

Since (QtXt)
1�� (AtNt)

� > 0; (48) is valid if and only if

[(1 + q) (1� ��)]1�� [(1 + a) (1 + n)]� = b � � (1 + n)

) � = (1 + a)�
�
(1 + q) (1� ��)

1 + n

�1��
:

This is equation (25) in the theorem.

Step 2 Next, we will show that given condition (vi), the ratio ptXt=Yt must be time-invariant

and strictly positive. This can then be used to derive equation (26). Suppose rt = r� > ��: Then

by (10), we have

F1

�
1;
G (QtXt; AtNt)

Kt

�
= F1

 
1;
bx1��t

bkt

!
= r� + � > 0:

Since F1 (1; �) is strictly decreasing, it follows that the ratio between bx1��t and bkt must be constant

in any equilibrium that satis�es condition (vi). Hence, we can write

G (QtXt; AtNt)

Kt
=
bx1��t

bkt
= �� > 0: (49)
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By the homogeneity properties of F (�) and F2 (�) ; we can write

F2 (Kt; G (QtXt; AtNt)) = F2 (1; �
�) ;

F (Kt; G (QtXt; AtNt)) = KtF (1; �
�) :

Using these and (11), we can get

ptXt

Yt
=

1

1 + �

QtXt

Kt

F2 (1; �
�)G1 (QtXt; AtNt)

F (1; ��)

=
1

1 + �

F2 (1; �
�)

F (1; ��)

G (QtXt; AtNt)

Kt

QtXtG1 (QtXt; AtNt)

G (QtXt; AtNt)

=

�
1� �

1 + �

�
��F2 (1; �

�)

F (1; ��)
:

The last equality follows from the Cobb-Douglas speci�cation of G (�) : Hence, ptXt=Yt must be

strictly positive and time-invariant. This in turn implies

pt+1
pt

Xt+1

Xt
= (1 + r�) (1� ��) =

Yt+1
Yt

= � (1 + n) :

Step 3 We now derive equation (27), which is based on the capital market clearing condition

in (15). As shown in Step 2, we can rewrite F2 (Kt; G (QtXt; AtNt)) as F2 (1; �
�) : Substituting

this and � t = �� into (15) gives

Kt+1 = F2 (1; �
�)

�
1

2 + �
AtNtG2 (QtXt; AtNt)�

1

1 + �

�
1� ��

��

�
QtXtG1 (QtXt; AtNt)

�
:

Using the Cobb-Douglas speci�cation for G (�) ; we can simplify this to become

Kt+1 = F2 (1; �
�)

�
�

2 + �
�

�
1� ��

��

��
1� �

1 + �

��
G (QtXt; AtNt) :

Dividing both sides by Kt and using (49) gives

Kt+1

Kt
= � (1 + n) = ��F2 (1; �

�)

�
�

2 + �
�

�
1� ��

��

��
1� �

1 + �

��
:
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Step 4 Equation (5) implies that both c1;t and c2;t will grow at the same rate as wt when rt is

time-invariant. Using the de�nition of �� and (12), we can express the equilibrium wage rate as

wt = �Atbkt��F2 (1; ��) = ���F2 (1; �
�)
Kt

Nt
:

Hence, wt will grow at the same rate as per-worker capital and per-worker output. This completes

the proof of Theorem 1.

Proof of Proposition 1

Using (25) and (26), we can get

� (1 + n) = (1 + b) (1 + n)� (1� ��)1�� ;

r� = (1 + b) (1 + n)� (1� ��)�� � 1 � r (��) :

The CES function in (8) implies

F1 (1; �
�) = � [�+ (1� �) (��)�]

1��
� ; (50)

F2 (1; �
�) = (1� �) (��)��1 [�+ (1� �) (��)�]

1��
� : (51)

Combining (28) and (50) gives

(1� �) (��)� =

�
r (��) + �

�

� �
1��

� �: (52)

Substituting (52) into (51) gives

��F2 (1; �
�) = (1� �) (��)� [�+ (1� �) (��)�]

1��
�

=
r (��) + �

�

(�
r (��) + �

�

� �
1��

� �

)
:

Using these expressions, we can rewrite (27) as

(2 + �) (1 + b) (1 + n)� (1� ��)1��

��
�
1���

��

�
(2 + �) (1� �) (1 + �)�1

=
r (��) + �

�

(�
r (��) + �

�

� �
1��

� �

)
:
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A unique balanced growth equilibrium exists if there is a unique solution for this equation. Fix

� � 0 and de�ne two auxiliary functions � (�) and � (�) according to

� (� ;�) �
(2 + �) (1 + b) (1 + n)� (1� �)1��

��
�
1��
�

�
(2 + �) (1� �) (1 + �)�1

; (53)

� (�) �
r (�) + �

�

(�
r (�) + �

�

� �
1��

� �

)
: (54)

The following properties of � (�) can be easily veri�ed: � (1;�) = 0; � (� ;�)!1 as � approaches

� (�) from the right, where � (�) 2 (0; 1) is the threshold value de�ned in (29); � (� ;�) < 0 for

all � < � (�) ; and � (� ;�) is strictly decreasing in � over the range (� (�) ; 1] : Similarly, one can

show that � [� (�)] < 1 and � (�) ! 1 as � ! 1 if � 2 (0; 1) : Since both � (�;�) and � (�)

are continuous functions in � over the range between � (�) and one; these properties ensure the

existence of at least one value �� 2 (� (�) ; 1) such that � (��;�) = � (��) :

If, in addition, � (�) is strictly increasing between � (�) and one; then a unique solution exists.

Straightforward di¤erentiation gives

�0 (�) =
1

�

(
1

1� �

�
r (�) + �

�

� �
1��

� �

)
(1 + b) (1 + n)� � (1� �)�(1+�) :

Hence, �0 (�) ? 0 if and only if

�
r (�) + �

�

� �
1��

? � (1� �), r (�) + � ? �
1
� (1� �)

1
�
�1
:

Since r (�) is a strictly increasing function, it follows that � (�) is strictly increasing between � (�)

and one if and only if

r [� (�)] + � > �
1
� (1� �)

1
�
�1
:

This condition can be rewritten as (30). A graphical illustration of the existence and uniqueness

result is shown in Figure A1. This completes the proof of Proposition 1.
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Figure A1: Existence and Uniqueness of Balanced Growth Equilibrium.

Proof of Proposition 2

Suppose condition (30) is satis�ed under �2 > 0; i.e.,

(
(1 + b)

�
1 + n

1� � (�2)

��
� (1� �)

)�
> � (1� �)1�� :

As shown in the proof of Proposition 1, this condition is su¢cient to ensure the existence of

a uniqueness balanced growth equilibrium in the economy with tax rate �2: Rewrite the above

condition as

r [� (�2)] + � > �
1
� (1� �)

1
�
�1
;

where r (�) � (1 + b) (1 + n)� (1� ��)�� � 1: Since r (�) is a strictly increasing function and � (�)

is strictly decreasing, it follows that

r [� (�1)] + � > r [� (�2)] + � > �
1
� (1� �)

1
�
�1
;

for any �2 > �1 � 0: Hence, (30) is also satis�ed under �1; which ensures the existence of a

unique balanced growth equilibrium in the economy with �1:

To establish the comparative statics result, �rst recall the auxiliary function � (� ;�) de�ned
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in (53). It is straightforward to verify that

� (� ;�2) < � (� ;�1) ;

over the range � (�1) � � < 1: In addition, � (1;�2) = � (1;�1) = 0 and � (� ;�1) ! 1 as

� ! � (�1) : These conditions ensure that �
�
2 < ��1 [see Figure A1]. Finally using (25), we can

write

�2 = (1 + b)

�
1� ��2
1 + n

�1��
> (1 + b)

�
1� ��1
1 + n

�1��
= �1:

This concludes the proof of Proposition 2.

Proof of Theorem 2

Step 1 First, we will show that � = 1 + a if the elasticity of substitution of G (�) is never

equal to one. Recall that equation (47) in the proof of Theorem 1 is valid even if G (�) is not

Cobb-Douglas. De�ne bxt � QtXt= (AtNt) : Then by the CRTS property of G (�) ; equation (47)

can be equivalently stated as

G (QtXt; AtNt) = G

�
(1 + q) (1� ��)

b QtXt;
(1 + a) (1 + n)

b AtNt;

�
: (55)

De�ne the following notations

& �
(1 + a) (1 + n)

b and $ �
(1 + q) (1� ��)

b :

Dividing both sides of (55) by &AtNt and using g (bx) � G (bx; 1) give

g (bxt) = &g

�
$

&
bxt
�
; for all bxt > 0: (56)

Equation (56) is trivially satis�ed if & = $ = 1; which immediately implies

� = 1 + a and 1� �� =
(1 + a) (1 + n)

1 + q
:

We now show that if �G (�) 6= 1; then equation (56) holds if and only if & = $ = 1.

We �rst establish an intermediate result: For any bx > 0;

d

dbx

�bxg0 (bx)
g (bx)

�
? 0 if and only if �G (bx) ? 1:
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To start, straightforward di¤erentiation gives

d

dbx

�bxg0 (bx)
g (bx)

�
=
g0 (bx)
g (bx) �

bx [g0 (bx)]2

[g (bx)]2
+
bxg00 (bx)
g (bx) : (57)

Next, using the expression in (20), �G (bx) ? 1 if and only if

g0 (bx) [g (bx)� bxg0 (bx)]
g (bx) ? �bxg00 (bx)

,
g0 (bx)
g (bx)

�
1�

bxg0 (bx)
g (bx)

�
?
�bxg00 (bx)
g (bx)

,
g0 (bx)
g (bx) �

bx [g0 (bx)]2

[g (bx)]2
�
bxg00 (bx)
g (bx) =

d

dbx

�bxg0 (bx)
g (bx)

�
? 0: (58)

This intermediate result says that if �G (�) is never equal to one, then bxg0 (bx) =g (bx) must be either

strictly increasing or strictly decreasing for all bx > 0: We will now apply this result on (56).

Since g (�) is continuously di¤erentiable and (56) holds for all bxt > 0; we can di¤erentiate both

sides of (56) with respect to bxt and get

g0 (bxt) = $g0
�
$

&
bxt
�
:

Combining this and (56) gives

bxtg0 (bxt)
g (bxt)

=
$
&
bxtg0

�
$
&
bxt
�

g
�
$
&
bxt
� : (59)

As mentioned above, if �G (�) is never equal to one, then bxg0 (bx) =g (bx) must be either strictly

increasing or strictly decreasing for all bx > 0: Hence, the equality in (59) holds if and only if

$ = &: Using this, we can rewrite (56) as g0 (bxt) = $g0 (bxt) ; which implies that $ = 1:

Step 2 The equalities & = $ = 1 imply that bkt and bxt are time-invariant in any balanced

growth equilibrium, i.e., bkt = bk� and bxt = bx�: Using these, we can rewrite (10) and (11) as

r� + � = F1

�
bk�; G (bx�; 1)

�

(1 + �) pt = QtF2

�
bk�; G (bx�; 1)

�
G1 (bx�; 1) :

Equation (4) can now be used to obtain r� = q: Equation (33) then follows.
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Step 3 Dividing both sides of (15) by AtNt gives

(1 + a) (1 + n)bkt+1 = F2

�
bkt; G (bxt; 1)

�� 1

2 + �
G2 (bxt; 1)�

�
1� ��

��

� bxtG1 (bxt; 1)
1 + �

�
:

Equation (34) can be obtained by setting bkt+1 = bkt = bk� and bxt = bx�:

Step 4 Equation (5) implies that both c1;t and c2;t will grow at the same rate as wt when rt is

time-invariant. By the homogeneity property of F2 (�) and G2 (�) ; we can rewrite (12) as

wt = AtF2

�
bkt; G (bxt; 1)

�
G2 (bxt; 1) :

Since bkt and bxt are both constant over time, it follows that wt will grow at the same rate as At.

This completes the proof of Theorem 2.

Proof of Proposition 3

Part (i) Fix � � 0: Suppose F (�) takes the CES form in (8), with � 2 (0; 1) and � < 1: Then

(33) can be rewritten as

�

�
�+ (1� �)

�
G (bx�; 1)
bk�

��� 1��
�

= q + �

) (1� �)

�
G (bx�; 1)
bk�

��
=

�
q + �

�

� �
1��

� � (60)

Using these, we can write

G (bx�; 1)
bk�

F2

�
bk�; G (bx�; 1)

�
=
q + �

�

"�
q + �

�

� �
1��

� �

#
� (2 + �)�

Similarly, if G (�) takes the CES form in (9), then we can get

G2 (bx�; 1) = (1� ')
h
' (bx�) + 1� '

i 1
 
�1
=
(1� ')G (bx�; 1)
' (bx�) + 1� '

;

G1 (bx�; 1) =
' (bx�) �1G (bx�; 1)
' (bx�) + 1� '

:
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Based on these observations, we can rewrite (34) as

(1 + a) (1 + n)
h
' (bx�) + 1� '

i
=

G (bx�; 1)
bk�

F2

�
bk�; G (bx�; 1)

��1� '
2 + �

�

�
1� ��

��

�
'

1 + �
(bx�) 

�

= �

�
1� '�

�
1� ��

��

��
2 + �

1 + �

�
' (bx�) 

�
;

which can be simpli�ed to become

(bx�) = 1� '

'

�� (1 + a) (1 + n)

(1 + a) (1 + n) +
�
1���

��

� �
2+�
1+�

�
�
: (61)

The purpose of the additional condition min f�; 1 + qg > (1 + a) (1 + n) is twofold: First, it

ensures that a unique, strictly positive value of bx� can be obtained from the above equation.

Second, it ensures that �� 2 (0; 1) :

Part (ii) Di¤erentiating both sides of (61) with respect to bx� and � gives

 (bx�) �1 dbx
�

d�
=
1� '

'

�� (1 + a) (1 + n)
h
(1 + a) (1 + n) +

�
1���

��

� �
2+�
1+�

�
�
i2
�
1� ��

��

�
2 + �

(1 + �)2
�:

Since the right-hand side of the above equation is always strictly positive, it follows that

dbx�
d�

? 0 i¤  ? 0:

Using (60), we can get

G1 (bx�; 1)
dbx�
d�

=

(
1

1� �

"�
q + �

�

� �
1��

� �

#) 1
� dbk�
d�

:

This equation shows that bx� and bk� will move in the same direction whenever there is a change

in �: This completes the proof of Proposition 3.

Proof of Theorem 3

We will consider each of the speci�cations in (43)-(46) separately. For each speci�cation we will

�rst verify the existence of a positive constant �� such that Kt = ��Yt for all t under conditions

(v)-(vii) in Section 3.
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Speci�cation 1 We begin with the production function in (43). Under this speci�cation, the

�rst-order conditions for the representative �rm�s problem are given by

(1� ')�Y 1� t K� �1
t (QtXt)

(1��) = rt + �; (62)

(1� ') (1� �)Y 1� t K� 
t (QtXt)

(1��) �1Qt = (1 + �) pt; (63)

'Y 1� t (AtNt)
 �1At = wt: (64)

Combining (62) and (63) gives

ptXt

Kt
=
(1� �) (rt + �)

� (1 + �)
: (65)

Suppose conditions (vi) and (vii) are satis�ed, i.e., rt = r� > �� and � t = �� for all t: Then both

pt and Xt are growing at some constant rate. It follows from (65) that Kt must also be growing

at a constant rate. Next, dividing both sides of (14) by Kt gives

Kt+1

Kt
=

1

2 + �

wtNt

Kt
�
1� � t
� t

ptXt

Kt
: (66)

If conditions (vi) and (vii) are satis�ed, then � t; ptXt=Kt and Kt+1=Kt are all constant over time.

Hence, wtNt=Kt must be constant over time as well. Finally, rewrite the production function in

(43) as

Y  
t = ' (AtNt)

 + (1� ')
h
K�
t (QtXt)

1��
i 
:

Substituting (63) and (64) into this expression gives

Y  
t = wtNtY

 �1
t +

1 + �

1� �
ptXtY

 �1
t =)

Yt
Kt

=
wtNt

Kt
+
1 + �

1� �

ptXt

Kt
:

This shows that Yt=Kt is constant over time under conditions (vi) and (vii).

Substituting rt = r� and Kt = ��Yt into (62) gives

(1� ')� (��) �1
�

Kt

QtXt

�(��1) 
= (1� ')� (��) �1

 
bkt
bxt

!(��1) 
= r� + �:

This shows that the ratio between bkt and bxt must be constant over time, or equivalently,

bxt+1
bxt

=
bkt+1
bkt

=
�

1 + a
=
(1 + q) (1� ��)

(1 + a) (1 + n)
:
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By the same token, we can also rewrite (63) and (64) as

(1 + �) pt = (1� ') (1� �) (�
�) �1

 
bkt
bxt

!(��1) +1
Qt; (67)

wt = ' (��) �1 bk1� t At: (68)

Since the ratio between bkt and bxt is constant over time, it follows from (67) that pt must be

growing at the same rate as Qt: By (4), we can write

pt+1
pt

= 1 + r� =
Qt+1
Qt

= 1 + q:

The last step is to substitute (67) and (68) into (15). This will give

(1 + a) (1 + n)bkt+1 = (��) �1
2
4 '

2 + �
bk1� t �

�
1� ��

��

�
(1� ') (1� �)

1 + �

 
bkt
bxt

!(��1) 
bkt

3
5

) (1 + a) (1 + n)
bkt+1
bkt

= (��) �1

2
4 '

2 + �
bk� t �

�
1� ��

��

�
(1� ') (1� �)

1 + �

 
bkt
bxt

!(��1) 3
5 :

Since both bkt+1=bkt and bkt=bxt are constant over time, it follows that the level of bkt must be constant

over time in any equilibrium that satis�es conditions (v)-(vii). Hence, we have � = 1+a; r� = q;

and (1� ��) = (1 + a) (1 + n) = (1 + q).

Speci�cation 2 Consider the production function in (44). The �rst-order conditions for the

�rm�s problem are now given by

(1� ')�Y 1� t K� �1
t (AtNt)

(1��) = rt + �; (69)

'Y 1� t (QtXt)
 �1Qt = (1 + �) pt; (70)

(1� ') (1� �)Y 1� t K� 
t (AtNt)

 (1��)�1At = wt: (71)

Combining (69) and (71) gives

wtNt

Kt
=
1� �

�
(rt + �) ;

which is constant over time under condition (vi). By assumption, both At and Nt grow at some

exogenous constant rate. Condition (v) implies that Yt is growing at a constant rate, while
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condition (vi) states that rt is time-invariant. Thus, it follows immediately from (69) that Kt

must be growing at a constant rate. Equation (66) then implies that ptXt=Kt.must also be

constant over time under conditions (v)-(vii). Finally, rewrite the production function in (44) as

Y  
t = ' (QtXt)

 + (1� ')
h
K�
t (AtNt)

1��
i 
:

Substituting (69) and (70) into the above expression and rearranging terms gives

Yt
Kt

= (1 + �)
ptXt

Kt
+

�
1� '

�

�
(rt + �) :

Thus, a constant rt and a constant ratio ptXt=Kt will imply a constant capital-output ratio.

Using the two conditions: Kt = ��Yt and rt = r�; we can rewrite the �rst-order conditions

(69)-(71) as

(1� ') (��) �1 �bk(��1) t = r� + �;

' (��) �1
 
bkt
bxt

!1� 
Qt = (1 + �) pt; (72)

(1� ') (1� �) (��) �1 bk(��1) +1t At = wt:

The �rst one of these equations immediately implies that bkt is constant over time, so that � =

1 + a: Substituting the last two equations into (15) gives

Kt+1 = AtNt (�
�) �1

2
4(1� ') (1� �)

2 + �
bk(��1) +1t �

�
1� ��

��

�
'

1 + �

 
bkt
bxt

!1� 
bxt

3
5

) (1 + a) (1 + n)bkt+1 = (��) �1
�
(1� ') (1� �)

2 + �
bk(��1) +1t �

�
1� ��

��

�
'

1 + �
bk1� t bxt 

�
:

Since bkt is constant over time, the above equation implies that bxt must be constant over time as

well. Finally, (72) implies that pt must be growing at the same rate as Qt in any equilibrium that

satis�es conditions (v)-(vii), so that r� = q:

Speci�cation 3 Next, we consider the production function in (45). The equilibrium factor

prices are now characterised by

(1� �)'
h
'K 

t + (1� ') (QtXt)
 
i 1��

 
�1
(AtNt)

�K �1
t = rt + �; (73)
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(1� �) (1� ')
h
'K 

t + (1� ') (QtXt)
 
i 1��

 
�1
(AtNt)

� (QtXt)
 �1Qt = (1 + �) pt; (74)

h
'K 

t + (1� ') (QtXt)
 
i 1��

 
� (AtNt)

��1At = wt: (75)

Combining (73) and (74) gives

ptXt

Kt
=
1� '

'

(rt + �)

(1 + �)

�
QtXt

Kt

� 
: (76)

Suppose both rt and � t are constant over time. Then the above expression implies that Kt must

be growing at a constant rate over time. From (75), we can get �Yt = wtNt: Substituting this

into (66) gives

Kt+1

Kt
=

�

2 + �

Yt
Kt

�
1� � t
� t

ptXt

Kt
: (77)

Finally, rewrite (73) to become

(1� �)

�
Yt
Kt

�"
'K 

t

'K 
t + (1� ') (QtXt)

 

#
= (rt + �)

=)
Yt
Kt

=
(rt + �)

1 + �

"
1 +

1� '

'

�
QtXt

Kt

� #
=
rt + �

1 + �
+
1 + �

1 + �

ptXt

Kt
: (78)

The second equality is obtained by using (76). Equations (77) and (78) now form a system of

linear equations that can be used to solve for the value of Yt=Kt and ptXt=Kt in terms ofKt+1=Kt;

� t and rt: Since Kt+1=Kt; � t and rt are all time-invariant under conditions (v)-(vii), it follows

that Yt=Kt and ptXt=Kt are also time-invariant.

Note that the condition Yt =
1
��
Kt can be rewritten as

h
'bk t + (1� ') bx

 
t

i 1��
 
=
1

��
bkt

Using this, we can rewrite (73)-(75) as

(1� �)' (��)
 
1��

�1 bk�
� 
1��

t = rt + �;

(1� �) (1� ') (��)
 
1��

�1 bk1�
 
1��

t bx �1t Qt = (1 + �) pt;

1

��
�Atbkt = wt:

The �rst of these three equations, together with rt = r�; implies that bkt must be constant over
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time. Hence, � = 1 + a: Substituting the last two equations into (15) gives

Kt+1 = AtNt

"
�bkt

(2 + �)��
�

�
1� ��

��

�
(1� �) (1� ')

1 + �
(��)

 
1��

�1 bk1�
 
1��

t bx t

#

) (1 + a) (1 + n)bkt+1 =
�bkt

(2 + �)��
�

�
1� ��

��

�
(1� �) (1� ')

1 + �
(��)

 
1��

�1 bk1�
 
1��

t bx t :

Since bkt is constant over time, the above equation implies that bxt must be constant over time as

well. The remaining results follow by the same line argument as in Speci�cation 2.

Speci�cation 4 Finally, we consider the production function in (46). The �rst-order conditions

for the �rm�s problem are now given by

(1� v)' (QtXt)
v
h
'K 

t + (1� ') (AtNt)
 
i 1�v

 
�1
K �1
t = rt + �; (79)

� (QtXt)
v�1Qt

h
'K 

t + (1� ') (AtNt)
 
i 1�v

 
= (1 + �) pt; (80)

(1� v) (1� ') (QtXt)
v
h
'K 

t + (1� ') (AtNt)
 
i 1�v

 
�1
(AtNt)

 �1At = wt: (81)

To start, using (46) and (80) we can obtain

ptXt

Kt
=

�

1 + �

Yt
Kt
:

Next, combining (79) and (81) gives

wtNt

Kt
=
(1� ') (rt + �)

'

�
AtNt

Kt

� 
: (82)

Substituting these into (66) gives

Kt+1

Kt
=
(1� ') (rt + �)

' (2 + �)

�
AtNt

Kt

� 
�

�

1 + �

�
1� � t
� t

�
Yt
Kt
: (83)

We then use (79) to derive

Yt
Kt

=

�
rt + �

1� v

�"
1 +

1� '

'

�
AtNt

Kt

� #
: (84)

Equations (83) and (84) form a system of linear equations which can be used to solve for Yt=Kt

and (AtNt=Kt)
 in terms of Kt+1=Kt, rt and � t: By conditions (vi) and (vii), both rt and � t
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are time-invariant. Thus, what remains is to show that Kt+1=Kt is a constant under conditions

(v)-(vii). To this end, rewrite (80) as

'K 
t + (1� ') (AtNt)

 =

��
1 + �

�

�
pt
Qt

�  
1��

(QtXt)
 

and substitutes the above expression into (79) to get

(1� v)'

��
1 + �

�

�
pt
Qt

� 1��� 
1��

(QtXt)
1� K �1

t = rt + �:

The desired result follows from the fact that rt is time-invariant and fpt; Xtg are growing at

a constant rate under conditions (vi) and (vii). This proves that Yt=Kt is a constant under

conditions (v)-(vii).

Next, we rewrite equations (79) and (80) as

(1� v)'bxvt
�
'bk t + 1� '

� 1�v� 
 bk �1t = rt + � (85)

v
Yt
Xt

= vbxv�1t

�
'bk t + 1� '

� 1�v
 
Qt = (1 + �) pt: (86)

The condition Yt =
1
��
Kt can be rewritten as

bxvt
�
'bk t + 1� '

� 1�v
 
=
1

��
bkt: (87)

Combining (85), (87) and rt = r� gives

1

��
(1� v)'bk t
'bk t + 1� '

= r� + �

) (1� v)'bk t = (r� + �)��
�
'bk t + 1� '

�
:

This can be used to derive a unique solution for bkt which depends only on r� and some parameters.

Hence, � = 1+a: Equation (87) then implies that bxt is also constant over time. Hence, 1� �� =

(1 + a) (1 + n) = (1 + q) : Finally, given bkt = bk� and bxt = bx�; equation (86) implies that pt and Qt
must be growing at the same rate. Hence, r� = q:

This concludes the proof of Theorem 3.
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Appendix C: In�nitely-Lived Consumers

In this appendix, we will show that the �knife-edge� condition of a unitary elasticity of substi-

tution between e¤ective labour input and e¤ective resource input plays the same critical role

in generating endogenous economic growth in an environment with in�nitely-lived consumers.

Speci�cally, an endogenous growth solution similar to the one in Agnani, Gutiérrez and Iza

(2005) can be obtained when the elasticity of substitution of G (�) is identical to one. But if this

elasticity is bounded away from one, then the common growth factor � and interest rate r� are

solely determined by the growth rates of the exogenous technological factors (i.e., At and Qt).

Consider an economy that is populated by H > 0 identical households. Each household

contains a growing number of identical, in�nitely-lived consumers. The size of each household at

time t is given by Nt = (1 + n)
t ; with n > 0: Since all households are identical, we can focus on

the choices made by a representative household and normalise H (which is just a scaling factor)

to one. The representative household solves the following problem:

max
fct;Kt+1;Mt+1g

1
t=0

1X

t=0

�tNt
c1��t

1� �

subject to the sequential budget constraint

Ntct +Kt+1 + ptMt+1 = wtNt + (1 + rt)Kt + ptMt;

where � 2 (0; 1) is the subjective discount factor; � > 0 is the reciprocal of the elasticity of

intertemporal substitution (EIS); ct denotes individual consumption at time t; Kt and Mt are;

respectively, the household�s holding of physical capital and non-renewable resources; pt; wt and rt

are as de�ned in Section 2.1. The �rst-order conditions of this problem imply the Euler equation

for consumption,

ct+1
ct

= [� (1 + rt+1)]
1
� ; (88)

and the Hotelling rule,

pt+1
pt

= 1 + rt+1:

We do not consider the resource tax in this setting (i.e., � = 0). The rest of the economy

is the same as in Sections 2.2 and 2.3. In particular, the �rst-order conditions for the �rm�s

problem, (8)-(9), and the dynamic equation for natural resources, (11), remain unchanged. In
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any competitive equilibrium, goods market clear in every period so that

Ntct +Kt+1 � (1� �)Kt = F (Kt; G (QtXt; AtNt)) ; for all t � 0: (89)

This replaces the capital market clearing condition in (15).

When characterising a balanced growth equilibrium, we maintain the three conditions (v)-

(vii) listed in Section 3. Note that Lemma 1 is also valid in this environment. First, consider the

case when G (�) takes the Cobb-Douglas form, or equivalently, �G (�) is identical to one. Dividing

both sides of (89) gives

Ntct
Kt

+
Kt+1

Kt
� (1� �) =

F (Kt; G (QtXt; AtNt))

Kt
:

Hence, in any balanced growth equilibrium, aggregate consumption Ntct must be growing at the

same rate as Kt and Yt: This, together with the Euler equation in (88) implies

� = [� (1 + r�)]
1
� ;

where � is again the growth factor of per-capita output in a balanced growth equilibrium.

Next, note that the arguments in Step 1 and Step 2 of the proof of Theorem 1 are built upon

the properties of the production function and the characterising properties of balanced growth

equilibrium. In particular, these arguments do not rely on the consumer side of the economy.

Hence, they remain valid in this environment. Consequently, we have

� = (1 + b)

�
1� ��

1 + n

�1��
;

(1 + r�) (1� ��) = � (1 + n) ;

where 1 + b � (1 + a)� (1 + q)1�� : Using these three equations, we can derive

1 + r� = ��
�
$ (1 + b)

�
$ ;

1� �� = �
1
$ (1 + b)

1��
$ (1 + n) ;

� = �
1��
$ (1 + b)

�
$ ;
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where $ � 1� (1� �) (1� �) : Thus, a unique balanced growth equilibrium exists if

�
1
$ (1 + b)

1��
$ (1 + n) 2 (0; 1) ;

which ensures that �� 2 (0; 1) : Notice that both � and �� are endogenously determined by a

host of factors as in the AGI solution.

Suppose now �G (�) is never equal to one. Since the arguments in Step 1 and Step 2 of the

proof of Theorem 2 remain valid in this environment, we have � = 1 + a; r� = q, bkt = bk� and

bxt = bx�: These in turn imply that

1� �� =
(1 + a) (1 + n)

1 + q
:
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