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Abstract

Under a framework with a small number of clusters but large numbers of observations per cluster for
instrumental variable (IV) regression, we show that an unstudentized wild bootstrap test based on IV esti-
mators such as the two-stage least squares estimator is valid as long as the instruments are strong for at least
one cluster. This is different from alternative methods proposed in the literature for inference with a small
number of clusters, whose validity would require that the instruments be strong for all clusters. Moreover,
for the leading case in empirical applications with a single instrument, the unstudentized wild bootstrap test
generated by our procedure is fully robust to weak instrument in the sense that its limiting null rejection
probability is no greater than the nominal level even if all clusters are “weak”. However, such robustness is
not shared by its studentized version; the wild bootstrap test that is based on the t-test statistic can have
serious size distortion in this case. Furthermore, in the general case with multiple instruments, we show
that an unstudentized version of bootstrap Anderson-Rubin (AR) test is fully robust to weak instruments,
and is superior with regard to both size and power properties to alternative asymptotic and bootstrap AR
tests that employ cluster-robust variance estimators. By contrast, we find that bootstrapping other weak-
instrument-robust tests such as the Lagrange multiplier test and the conditional quasi-likelihood ratio test,
no matter studentized or unstudentized, does not guarantee correct limiting null rejection probability when
all clusters are “weak”.
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1 Introduction

It is well known that in instrumental variables (IV) regressions, if the correlation between

instruments and endogenous regressors is small, IV estimators such as two-stage least squares

(TSLS) can be badly biased, and Wald-type t-tests can have serious size distortion and the

coverage probability of conventional IV confidence intervals may be far lower than intended.

Various recent surveys on papers published in leading economic journals suggest that these

issues remain important concerns for empirical practice. For instance, Andrews, Stock, and

Sun (2019) survey a sample of 230 IV regressions from 17 papers published in the American

Economic Review (AER) from 2014 to 2018. They find that many of the first-stage F -statistics

(and their nonhomoskedastic generalizations) in these papers are in a range that raise the

concerns of weak instruments, and virtually all these papers reported at least one first-stage F

with value smaller than 10. Brodeur, Cook, and Heyes (2020) investigate over 21,000 hypothesis

tests published in 25 leading economic journals, and find that the extent of p-hacking and

publication bias varies greatly by empirical methods such as randomized control trial, difference-

in-differences, regression discontinuity design, and IV regressions. The authors highlight that

IV regressions are particularly problematic and a sizable over-representation of first-stage F

is documented just over the threshold of 10 (such pattern is also observed in Andrews et

al. (2019)). They also find that the degree of p-hacking in the second stage is related to

instrument strength in the first stage: IV regressions with relatively weak instruments have a

much higher proportion of second-stage t-statistics being barely significant around 1.65 and 1.96.

Furthermore, Young (2020) analyzes a sample of 1359 IV regressions in 31 papers published

in the American Economic Association (AEA), and highlights that heteroskedastic errors and

clustered data can significantly damage the quality of inference, so that normal approximations

become rather unreliable. To address these issues, Young (2020) suggests applying (cluster-

robust) bootstrap to IV estimates and Wald-type t statistics.

Although there are numerous evidences suggesting that appropriately designed bootstrap

procedures can substantially improve the quality of inference for IV estimates and Wald-type

t-tests (e.g., see also Davidson and MacKinnon (2008, 2010, 2014), Wang and Kaffo (2016),

Finlay and Magnusson (2019)), it is well known that such bootstrap procedures are generally
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invalid under weak instruments; e.g., see the discussions in Section 3.1 and p.750 of Andrews

et al. (2019). On the other hand, the econometric literature has developed various weak-

instrument-robust tests and confidence sets, and bootstrap for such test statistics may remain

valid regardless of instrument strength. Using the robust statistics may also help to alleviate

the aforementioned problem of screening on first-stage F (by either researchers or journals),

which can dramatically increase bias in published estimates and size distortion in published

tests (e.g., see Andrews et al. (2019), Section 4.1).1 In the case of homoskedastic errors,

Moreira, Porter, and Suarez (2009) show validity of bootstrapped Lagrange multiplier (LM;

Kleibergen, 2002) and Anderson-Rubin (1949, AR) tests under weak instruments. It is possible

to extend their result of bootstrap validity to the case with heteroskedasticity and clustered

data, under an asymptotic framework where the number of clusters goes to infinity. However,

as emphasized in Ibragimov and Müeller (2010, 2016), Bester, Conley, and Hansen (2011),

Cameron and Miller (2015), Canay, Romano, and Shaikh (2017), Canay, Santos, and Shaikh

(2020) and Young (2020), many empirical studies motivate the consideration of an alternative

framework in which the number of clusters is small, while the number of observations in each

cluster is relatively large. In such case with few clusters, a fundamentally different framework

is required to study the properties of bootstrap procedures for IV regressions. In particular, the

bootstrap distribution can no longer consistently estimate the distribution of the statistics of

interest, and it is thus not obvious what conditions are required to achieve bootstrap validity.

In this paper, we consider a linear IV model allowing for cluster heterogeneity in the strength

of instruments; i.e., we allow for the case that the instruments may be strong for some clusters

while weak for others. This setting is motivated by Young (2020)’s finding in his AEA samples

that with the removal of just one cluster/observation, in the average paper 49% of reported

0.01 significant TSLS results can be rendered insignificant at that level and the first-stage

F -statistics are also very sensitive to outlier clusters/observations. In terms of methodology,

we exploit the connection between the wild cluster bootstrap with Rademacher weights and a

1See also Andrews (2018), who proposed a two-step procedure for GMM with controlled coverage distortions that is

based on combining Wald-type and weak-identification-robust confidence sets. In addition, Andrews et al. (2019, Section

5.4) find that for the IV model with single endogenous regressor, a two-step procedure based on the effective F -statistic

of Olea and Pflueger (2013), which uses a t-test if the effective F is larger than 10 and uses an Anderson-Rubin test

otherwise, has at most mild size distortions in simulations calibrated to their AER data.
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randomization test based on the group of sign changes in a framework in which the number of

clusters is fixed, following the seminal study by Canay et al. (2020). First, under the condition

that the available instruments are strong for at least one cluster, we establish the asymptotic

validity results of the unstudentized and studentized wild bootstrap tests (i.e., percentile and

percentile-t) for IV regressions similar to those obtained in Canay et al. (2020) for ordinary least

squares. In particular, we notice that although having remarkable resemblance, the wild cluster

bootstrap for IV regressions can have properties very different from the Fama-Macbeth type

approach in Ibragimov and Müeller (2010, 2016) and the randomization test with sign changes

in Canay, Romano, and Shaikh (2017), both of which are based on cluster-level estimates and

would require strong instruments for all clusters to achieve validity in the current context. In

this sense, the wild bootstrap tests are more robust to cluster-level heterogeneity/outlier in

terms of instrument strength.

Second, we find that for the leading case in empirical applications of testing the value of the

coefficient of single endogenous regressor with single instrument (e.g., 101 out of 230 specifi-

cations in Andrews and al. (2019) and 1087 out of 1359 in Young (2020)), the unstudentized

wild bootstrap test generated by our particular procedure is fully robust to weak instrument in

the sense that its null limiting rejection probability is no greater than the nominal level even

when all clusters are “weak”, while such robustness is not shared by its studentized version

or bootstrap tests generated by alternative procedures such as the commonly employed pairs

cluster bootstrap. Therefore, although in the standard strong-instrument case with a large

number clusters, the studentized bootstrap test may achieve a higher order refinement as it is

based on an asymptotically pivotal statistic, from the viewpoint of robustness, it could be more

desirable to use the unstudentized bootstrap test with few clusters and single instrument.

Third, we find that in the general case with multiple instruments, an unstudentized version

of the wild bootstrap AR test is valid irrespective of instrument strength, and its studentized

version may only over-reject the null hypothesis by a small quantity that decreases exponentially

with the number of clusters. In terms of size properties under a small number of clusters, we

find that the wild bootstrap AR tests have substantial improvement, especially in the over-

identified case, upon two alternative AR tests that are based on (null-imposed) cluster-robust

variance estimators and conventional asymptotic critical values, one of which under-rejects or
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does not reject at all while the other can seriously over-reject. In addition, our simulation

results suggest that in the over-identified case, the unstudentized bootstrap AR test typically

has better power properties than its studentized version.

Furthermore, with regard to weak-instrument-robust tests other than the AR test, we are

only able to establish the validity result for bootstrapping the LM and conditional quasi-

likelihood ratio (CQLR) test when the instruments are strong for at least one cluster. This is

because the validity of LM and CQLR tests (and various other robust statistics proposed in

the literature) depends crucially on the asymptotic independence between sample moment and

orthogonalized sample Jacobian. Such independence property holds under the standard frame-

work where the number of observations/clusters is allowed to tend to infinity but no longer holds

with a fixed number of clusters. In the presence of strong instruments for at least one cluster,

we are still able to establish the connection between the wild bootstrap and randomization test

even without such asymptotic independence, while their connection cannot be established if

the instruments are weak for all clusters. Therefore, in the just-identified case bootstrapping

these test statistics is valid, irrespective of instrument strength, as they are equivalent to the

AR test in this case, while they could have large size distortions in the over-identified case, as

illustrated in our simulation results.

A variety of weak-instrument-robust methods have been developed in the literature. For the

case with homoskedastic errors, Kleibergen (2002) provides the LM test and Moreira (2003)

proposes a conditional likelihood ratio (CLR) test. For subvector inference, Guggenberger,

Kleibergen, Mavroeidis, and Chen (2012), Guggenberger, Kleibergen, and Mavroeidis (2019),

and Wang and Doko Tchatoka (2018) propose AR-based methods. For the general case with

non-homoskedastic errors, Kleibergen (2005) introduces LM and CQLR tests. Andrews (2016)

introduces conditional linear combination tests, which are based on a data-dependent convex

combination of the AR and LM statistics. Andrews and Mikusheva (2016) and Moreira and

Moreira (2019) introduce a direct generalization of the CLR test. Andrews and Guggenberger

(2019) introduce two alternative CQLR tests, which allow the variance matrix of the moments to

be near singular or singular. However, the literature on the properties of the weak-instrument-

robust tests with clustered data remains sparse, especially for the case with few clusters.

There is also a growing econometric literature studying the properties of wild bootstrap
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for clustered data, among them Cameron, Gelbach, and Miller (2008), MacKinnon and Webb

(2017), Djogbenou, MacKinnon, and Nielsen (2019), MacKinnon, Nielsen, and Webb (2019),

Roodman, Nielsen, MacKinnon, and Webb (2019), etc. Furthermore, the literature on boot-

strap for the IV model includes Davidson and MacKinnon (2008, 2010, 2014), Moreira et al.

(2004, 2009), Wang and Kaffo (2016), Kaffo and Wang (2017), Finlay and Magnusson (2019),

among others. In particular, under the setting of homoskedastic errors, Moreira et al. (2004,

2009) show the bootstrap validity of AR, LM and CLR tests even under weak instruments.

Wang and Kaffo (2016) show bootstrap inconsistency for estimating the distribution of IV es-

timators under the many/many weak instrument sequences of Bekker (1994) and Chao and

Swanson (2005), and propose valid modified bootstrap procedure, which significantly improves

upon asymptotic normal approximation. Davidson and MacKinnon (2010) and Finlay and

Magnusson (2019) document through extensive simulations that a variety of wild bootstrap

procedures have much better finite sample performance than asymptotic methods with het-

eroskedastic errors and clustered data, respectively.

The remainder of this paper is organized as follows. Section 2 presents the setting, test

statistics and assumptions. Section 3 presents the main results for the bootstrap tests with

few clusters. Section 4 investigates the finite sample size and power properties of the bootstrap

tests and alternative methods using simulations. Conclusions are drawn in Section 5.

2 Setup and assumptions

We consider a setup with clustered data, where the clusters are indexed by j ∈ J ≡ {1, ..., q}
and units in the j-th cluster are indexed by i ∈ In,j ≡ {1, ..., nj}. Our linear IV model can be

written as

yi,j = X ′
i,jβ +W ′

i,jγ + ǫi,j,

Xi,j = Z ′
i,jΠz,j +W ′

i,jΠw + vi,j, (1)

where yi,j ∈ R denotes an outcome of interest, while Xi,j ∈ Rdx , Wi,j ∈ Rdw , and Zi,j ∈ Rdz

denote endogenous regressors, exogenous regressors, and instrumental variables, respectively.

For example, Xi,j may be certain treatment intervention or policy change that is endogenous in
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the sense that Xi,j is correlated with the error ǫi,j, and Wi,j include exogenous control variables

such as unit-level characteristics or cluster-level fixed effects. β ∈ Rdx and γ ∈ Rdw are unknown

parameters of the structural form equation, while Πz,j ∈ Rdz×dx and Πw ∈ Rdz×dw are unknown

parameters of the first-stage equation.

We also allow for the existence of cluster heterogeneity with regard to instrument strength

in (1), by letting the first-stage coefficient Πz,j to vary across clusters. This setting is motivated

by the fact that in empirical studies instruments often turn out to be strong for some subgroups

and weak for some other subgroups, which can be determined by various factors such as ethnic

groups and geographic regions (see Abadie, Gu, and Shen (2019) and the references therein). In

experimental economics with clustered randomized trials, subjects’ compliance with treatment

assignment may also have substantial variations among clusters. For example, in Muralidharan,

Niehaus, and Sukhtankar (2016)’s evaluation of a smartcard payment system, their random

assignment was implemented at village level, and in some villages, 90% or more of the recipients

complied with the treatment, while in many villages less than 10% complied. Furthermore, the

setting is motivated by Young (2020)’s finding (e.g., see Figures I and II in his paper) that

with the removal of just one cluster/observation in the average paper of his AEA samples,

49% of reported 0.01 significant TSLS results can be rendered insignificant at that level and

the first-stage F -statistics are also very sensitive to outliers, e.g., the average paper F can be

lowered to 72% of its original value with the removal of one cluster/observation.

Now we introduce the test statistics considered in the paper. The first set of test statistics are

the ones based on the IV estimates and the standard Wald-type t-statistic with cluster-robust

variance estimator. Specifically, for testing the null hypothesis

Hc
0 : c

′β = λ vs. Hc
1 : c

′β 6= λ, (2)

where c ∈ Rdx and λ ∈ R, we consider the unstudentized test statistic

WU,n(λ) ≡ |
√
n(c′β̂n − λ)|, (3)

and the studentized test statistic

Wn(λ) ≡ |√n(c′β̂n − λ)|√
c′V̂n(β̂n)c

, (4)
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where

V̂n(β̂n) ≡
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n
Ω̂n(β̂n)Q̂

−1

Z̃Z̃,n
Q̂Z̃X,n

(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

,

Ω̂n(β̂n) = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j

Z̃i,jZ̃
′
k,j ǫ̂i,j ǫ̂k,j, Q̂Z̃Z̃,n = n−1

∑
j∈J
∑

i∈In,j
Z̃i,jZ̃

′
i,j, Q̂Z̃X,n =

n−1
∑

j∈J
∑

i∈In,j
Z̃i,jX

′
i,j, ǫ̂i,j = yi,j −X ′

i,jβ̂n −W ′
i,j γ̂n, β̂n and γ̂n are the TSLS estimators of β

and γ in (1), and Z̃i,j is the residuals from regressing Zi,j on Wi,j using full sample, i.e.,

Z̃i,j ≡ Zi,j − Γ̂′
nWi,j, (5)

where Γ̂n, a dw × dz-dimensional matrix, denotes the coefficients obtained from the regression

of Zi,j on Wi,j and satisfies the orthogonality conditions
∑

j∈J
∑

i∈In,j

(
Zi,j − Γ̂′

nWi,j

)
W ′

i,j = 0.

It is well known that the conventional Wald-type t-test and confidence intervals can have

serious distortion under weak instruments, thus we also consider the weak-instrument-robust

test statistics. Following the econometric literature on weak instruments, for testing the joint

null hypothesis

H0 : β = β0 vs. H1 : β 6= β0, (6)

we define the AR statistic (with null-imposed cluster-robust variance estimator) as

ARn(β0) ≡ nf̂n(β0)
′Ω̂−1

n (β0)f̂n(β0), (7)

with the sample moments and the estimator of their variance matrix denoted as

f̂n(β) ≡ n−1
∑

j∈J

∑

i∈In,j

fi,j(β),

Ω̂n(β) ≡ n−1
∑

j∈J

∑

i∈In,j

∑

k∈In,j

fi,j(β)fk,j(β)
′, (8)

where fi,j(β) = Z̃i,j

(
yi,j −X ′

i,jβ −Wi,j γ̄
r
n

)
, and γ̄r

n is the null-restricted least squares estimator

of γ, i.e., γ̄r
n =

(∑
j∈J
∑

i∈In,j
Wi,jW

′
i,j

)−1∑
j∈J
∑

i∈In,j
Wi,j(yi,j − X ′

i,jβ0). The asymptotic

critical value of the AR test rejects H0 : β = β0 if ARn(β0) > χ2
dz ,1−α, where χ2

dz ,1−α is the

1 − α quantile of the chi-square distribution with dz degree of freedom. We also consider an

unstudentized version of the AR statistic, which take the form

ARU,n(β0) ≡
∥∥√nf̂n(β0)

∥∥2. (9)

Another form of AR statistic widely applied in the literature (see, e.g., Chernozhukov and
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Hansen (2008a, 2008b), Finlay and Magnusson (2009), Andrews et al. (2019), Roodman et

al. (2019)) is based on the reduced form of the model in (1), which can be written as (under

homogeneity in instrument strength, i.e., Πz being the same for all clusters)

yi,j −X ′
i,jβ0 = Z ′

i,jδ +W ′
i,jθ + ui,j. (10)

where δ = Πz(β − β0), θ = Πw(β − β0) + γ, and ui,j = v′i,j(β − β0) + ǫi,j. Notice that in this

case testing β = β0 is equivalent to testing δ = 0, and this leads to a Wald-type AR statistic:

ARW,n(β0) ≡ nδ̂′n(β0)V̂
−1
W,n(β0)δ̂n(β0),

V̂W,n(β0) ≡ Q̂−1

Z̃Z̃,n
Ω̂W,n(β0)Q̂

−1

Z̃Z̃,n
, (11)

where Ω̂W,n(β0) = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j

Z̃i,jZ̃
′
k,jûi,j(β0)ûk,j(β0), with δ̂n(β0) and ûi,j(β0) be-

ing the least squares estimator and residual of regressing yi−X ′
iβ0 on Zi,j and Wi,j, respectively.

Different from (7), the procedure in (11) only requires conventional least squares-based estima-

tion and cluster-robust inference, and uses the same critical values as ARn(β0). We include the

three forms of the AR statistics in the paper as they can have very different properties in the

case with small number of clusters.

To introduce the other weak-instrument-robust statistics, we define the sample Jacobian as

Ĝn ≡
(
Ĝ1,n, ..., Ĝdx,n

)
∈ Rdz×dx ,

Ĝl,n ≡ n−1
∑

j∈J

∑

i∈In,j

Z̃i,jXi,j,l, for l = 1, ..., dx, (12)

and define the orthogonalized sample Jacobian as

D̂n(β) ≡
(
D̂1,n(β), ..., D̂dx,n(β)

)
∈ Rdz×dx , where

D̂l,n(β) ≡ Ĝl,n − Γ̂l,n(β)Ω̂
−1
n (β)f̂n(β) ∈ Rdz for l = 1, ..., dx,

Γ̂l,n(β) ≡ n−1
∑

j∈J

∑

i∈In,j

∑

k∈In,j

(
Z̃i,j v̂i,j,l

)
fk,j(β)

′, for l = 1, ..., dx, (13)

where v̂i,j,l is the residual of regressing Xi,j,l on Zi,j and Wi,j. Therefore, under the null hypothe-

sis in (6) and the standard asymptotic framework where the number of clusters tends to infinity,

D̂n(β) equals the sample Jacobian matrix Ĝn(β) adjusted to be asymptotically independent of

the sample moments f̂n(β).
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Then, the cluster-robust version of Kleibergen (2002, 2005)’s LM statistic is defined as

LMn(β0) ≡ nf̂n(β0)
′Ω̂−1/2

n (β0)PΩ̂
−1/2
n (β0)D̂n(β0)

Ω̂−1/2
n (β0)f̂n(β0), (14)

where PA = A(A′A)−A′ for any matrix A and (·)− denotes any generalized inverse. The nominal

size α asymptotic LM test rejects the null hypothesis when LMn(β0) > χ2
dx,1−α, where χ2

dx,1−α

is the 1− α quantile of the chi-square distribution with dx degree of freedom.

In addition, the CQLR statistic in Kleibergen (2005, 2007), Smith (2007), Newey and

Windmeijer (2009), and Guggenberger, Ramalho, and Smith (2012) are adapted from Moreria

(2003)’s CLR test, and its cluster-robust version takes the form

LRn(β0) ≡ 1

2

(
ARn(β0)− rkn(β0) +

√
(ARn(β0)− rkn(β0))

2 + 4LMn(β0) · rkn(β0)

)
,

(15)

where rkn(β0) is a conditioning statistic and the critical value of the CQLR test depends on

rkn(β0). Here, following Newey and Windmeijer (2009) and Guggenberger et al. (2012)2,

we let rkn(β) = nD̂′
n(β)Ω̂

−1
n (β)D̂n(β). The (conditional) asymptotic critical value of the

CQLR test is c(1 − α, rkn(β)), where c(1 − α, r) is the 1 − α quantile of the distribution

of 1
2

(
χ2
dx

+ χ2
dz−dx

− r +
√(

χ2
dx

+ χ2
dz−dx

− r
)2

+ 4χ2
dx
r

)
.

Similar to the bootstrap AR tests, we also study bootstrapping the unstudentized version

of LM and CQRL statistics, i.e.,

LMU,n(β0) ≡
∥∥√nD̂′

n(β0)Ω̂
−1/2
n (β0)f̂n(β0)

∥∥2,

LRU,n(β0) ≡ 1

2

(
ARU,n(β0)− rkn(β0) +

√
(ARU,n(β0)− rkn(β0))

2 + 4LMU,n(β0) · rkn(β0)

)
.

(16)

We next introduce the assumptions that will be used in our analysis of the asymptotic

properties of the bootstrap tests under a small number of clusters.

Assumption 1 The following statements hold:

2Kleibergen (2005) uses alternative formula for rkn(β), and Andrews and Guggenberger (2019) introduce alternative

CQLR test statistic. We can show similar result for these alternative CQLR tests under the framework with few clusters.
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(i) The quantity

1√
n

∑

j∈J

∑

i∈In,j


Zi,jǫi,j

Wi,jǫi,j




converges in distribution.

(ii) The quantities

1

n

∑

j∈J

∑

i∈In,j


Zi,jZ

′
i,j Zi,jW

′
i,j

Wi,jZ
′
i,j Wi,jW

′
i,j




and

1

n

∑

j∈J

∑

i∈In,j


Zi,jX

′
i,j

Wi,jX
′
i,j




converges in probability to a positive-definite matrix and a full rank matrix, respectively.

Assumption 1 requires that the within-cluster dependence is weak enough to allow for the

application of suitable law of large numbers and central limit theorems, and it ensures that the

two-stage least squares estimators β̂n and γ̂n are well behaved. Assumption 1 also ensures that

the restricted estimators β̂r
n and γ̂r

n are well behaved under Hc
0.

Assumption 2 The following statements hold:

(i) There exists a collection of independent random variables {Zj : j ∈ J}, where Zj ≡ [Zǫ,j :

Zv,j] with Zǫ,j ∈ R
dz and Zv,j ∈ R

dz×dx, and vec(Zj) ∼ N(0,Σj) with Σj positive definite for

all j ∈ J , such that





 1
√
nj

∑

i∈In,j

Z̃i,jǫi,j,
1

√
nj

∑

i∈In,j

Z̃i,jv
′
i,j


 : j ∈ J





d−−→ {Zj : j ∈ J} .

(ii) For each j ∈ J , nj/n → ξj > 0.

(iii) For each j ∈ J ,

1

nj

∑

i∈In,j

∥∥∥W ′
i,j

(
Γ̂n − Γ̂c

n,j

)∥∥∥
2 P−−→ 0,

where Γ̂n and Γ̂c
n,j denotes the coefficient from linearly regressing Zi,j on Wi,j by using the entire

sample and by only using the sample in the j-th cluster, respectively.

The assumptions are similar to those imposed in Canay et al. (2020). Assumption 2(i) is
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satisfied whenever the within-cluster dependence is sufficiently weak to permit applicaiton of

a suitable central limit theorem and the data are independent across clusters. The assump-

tion that Zj have full rank covariance matrices requires that the instruments Zi,j can not be

expressed as a linear combination of the exogenous regressrors Wi,j within each cluster j. As-

sumption 2(ii) gives the restriction on relative sizes of the clusters. Assumption 2(iii) gives the

condition on cluster homogeneity. As pointed out by Canay et al. (2020), this assumption is

satisfied whenever the distributions of (Z ′
i,j,W

′
i,j)

′ are the same across clusters. Furthermore, in

the case that Wi,j includes only cluster-level fixed effects, then the assumption is immediately

satisfied. It is also clear from the definition of Π̂c
n,j that it satisfies the cluster-level orthogonality

condition; i.e.,
∑

i∈In,j

(
Zi,j − Π̂c′

n,jWi,j

)
W ′

i,j = 0, for each j ∈ J .

The following assumption is with regard to the instrument strength, with Assumption 3(i)

being stronger than Assumption 3(ii).

Assumption 3 (i) There exists nonempty Js ⊆ J such that for each j ∈ Js,

1

nj

∑

i∈In,j

Z̃i,jXi,j
P−−→ QZ̃X,j,

where QZ̃X,j is a full rank matrix.

(ii) There exists nonempty Js ⊆ J such that for each j ∈ Js,

1

nj

∑

i∈In,j

Z̃i,jXi,j
P−−→ ajQZ̃X ,

where aj > 0 and QZ̃X is a full rank matrix.

Assumption 3(i) requires that the instruments are strong at least for one cluster, while As-

sumption 3(ii) further requires that the limits of the cluster-level sample Jacobian matrices
∑

i∈In,j
Z̃i,jXi,j/nj are proportional to each other for these “strong” clusters. The bootstrap

validity under few clusters requires different assumptions in terms of instrument strength, de-

pending on the test statistics, hypothesis of interest, and specific application. In particular,

Assumption 3(i) is needed for the bootstrap validity of testing H0 : β = β0 with the LM and

CQLR tests. By contrast, the bootstrapped AR test does not require this assumption as it is

fully robust to weak instruments even under few clusters. On the other hand, Assumption 3(ii)

is needed for the bootstrap validity of testing the more general hypothesis Hc
0 : c

′β = λ with the

IV estimate and t-test in (3)-(4). However, we also notice that this assumption is not required

12



for the bootstrapped IV estimate for testing H0 : β = β0 in the case with single instrument

(i.e., testing the coefficient of single endogenous regressor with single instrument), as it is fully

weak-instrument robust in this case (see Remark 3 in Section 3.1).

3 Main results

3.1 Wild bootstrap with IV estimate and t-statistic

In this section, we study the properties of the bootstrapped tests under the asymptotic frame-

work where the number of clusters is kept fixed. The bootstrapped tests for Hc
0 : c

′β = λ with

the t-statistic and its unstudentized version are implemented through the following procedure:

1. Compute the null-restricted residual

ǫ̂ri,j(λ) = yi,j −X ′
i,jβ̂

r
n(λ)−W ′

i,j γ̂
r
n(λ), (17)

where β̂r
n(λ) and γ̂r

n(λ) are Hc
0-restricted two-stage least squares estimators of β and γ.

2. Let G = {−1, 1}q and for any g = (g1, ..., gq) ∈ G generate

y∗i,j(g) = X ′
i,jβ̂

r
n(λ) +W ′

i,j γ̂
r
n(λ) + gj ǫ̂

r
i,j(λ). (18)

3. For each g = (g1, ..., gq) ∈ G compute β̂∗
n(g) and γ̂∗

n(g), the analogues of the two-stage least

squares estimators β̂n and γ̂n using y∗i,j(g) in place of yi,j and the same (Z ′
i,j, X

′
i,j,W

′
i,j)

′.

For the bootstrapped t-statistic, also compute

ǫ̂∗i,j(g) = y∗i,j(g)−X ′
i,jβ̂

∗
n(g)−W ′

i,j γ̂
∗
n(g). (19)

4. Compute the bootstrap analogues of test statistics:

W ∗
U,n(λ, g) = |

√
n(c′β̂∗

n(g)− λ)|,

W ∗
n(λ, g) = W ∗

U,n(λ, g)/

√
c′V̂ ∗

n (β̂
∗
n(g))c, (20)

where V̂ ∗
n (β̂

∗
n(g)) =

(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n
Ω̂∗

n(β̂
∗
n(g))Q̂

−1

Z̃Z̃,n
Q̂Z̃X,n

(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

,

and Ω̂∗
n(β̂

∗
n(g)) = n−1

∑
j∈J
∑

i∈In,j

∑
k∈In,j

Z̃i,jZ̃
′
k,j ǫ̂

∗
i,j(g)ǫ̂

∗
k,j(g).

5. To obtain the critical value for the bootstrapped t-test, we compute the 1− α quantile of
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{W ∗
n(λ, g) : g ∈ G}:

ĉwn (1− α) ≡ inf

{
u ∈ R :

1

|G|
∑

g∈G
I{W ∗

n(λ, g) ≤ u} ≥ 1− α

}
, (21)

where I{A} equals one whenever the event A is true and equals zero otherwise. φn (Wn(λ)),

the bootstrapped t-test for Hc
0 : c

′β = λ, rejects whenever Wn(λ) exceeds its critical value:

φn (Wn(λ)) ≡ I{Wn(λ) > ĉwn (1− α)}. (22)

The bootstrapped test with WU,n(λ) is defined in the same fashion.

Notice that the above procedure takes the form of randomization inference with a group

of sign change. Canay et al. (2020) point out the important connection between wild cluster

bootstrap and randomization inference; e.g., the critical values defined in (21) may also be

written as

inf
{
u ∈ R : P

{
W ∗

n(λ, ω) ≤ u|
(
y(n), X(n), Z(n),W (n)

)}
≥ 1− α

}
, (23)

where (y(n), X(n), Z(n),W (n)) denotes the full sample of observed data and ω is uniformly dis-

tributed on G independently of the observed data. As remarked by Canay et al. (2020), this

way of writing the critical values coincides with the existing literature on the wild cluster boot-

strap that sets ω = (ω1, ..., ωq) to be i.i.d. Rademacher random variables, which equals ±1 with

equal probability.

The following theorem gives the properties of the bootstrapped test based on the IV estimates

and t-statistic in the case with a small number of clusters.

Theorem 3.1 If Assumptions 1-2, Assumption 3(ii), and Hc
0 : c

′β = λ holds, then

α− 1

2q−1
≤ lim inf

n→∞
P{WU,n(λ) > ĉwu,n(1− α)} ≤ lim sup

n→∞
P{WU,n(λ) > ĉwu,n(1− α)} ≤ α,

and

α− 1

2q−1
≤ lim inf

n→∞
P{Wn(λ) > ĉwn (1− α)} ≤ lim sup

n→∞
P{Wn(λ) > ĉwn (1− α)} ≤ α +

1

2q−1
,

where ĉwu,n(1 − α) and ĉwn (1 − α) denote the critical values of the WU,n(λ) and Wn(λ)-based

bootstrap tests, respectively.

Theorem 3.1 states that as long as there exists at least one “strong” cluster, the bootstrap
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test with the unstudentized statistic WU,n is valid in the sense that its limiting null rejection

probability is no greater than the nominal level α. Furthermore, the limiting null rejection

probability of the bootstrap test with the studentized statistic Wn does not exceed the nominal

level by 1/2q−1, which decreases exponentially with the total number of clusters (instead of

the number of “strong” clusters). In addition, besides for the commonly used TSLS estimator,

these validity results can also be shown for other estimators proposed in the IV literature.3 We

omit details for brevity but notice that these alternative estimators typically have smaller bias

than TSLS in the overidentified case, and their corresponding bootstrap tests could therefore

have better finite-sample size control since a randomization test with sign changes requires

distributional symmetry around zero.

We also note that instead of applying the procedure described in (17)-(19), one might con-

sider to employ an alternative double-equation bootstrap procedure (e.g., see Moreira et al.

(2009), Davidson and MacKinnon (2010), Finlay and Magnusson (2019), Roodman et al. (2019)

and Young (2020)):

X∗
i,j(g) = Z ′

i,jΠ̂z +W ′
i,jΠ̂w + gj v̂i,j,

y∗i,j(g) = X∗′
i,j(g)β̂

r
n(λ) +W ′

i,j γ̂
r
n(λ) + gj ǫ̂i,j(λ), (24)

where Π̂z and Π̂w are the first-stage least squares estimators computed using the full sample,

v̂i,j is the corresponding residual4, and the bootstrap analogues of the TSLS estimator use
(
y∗i,j(g), X

∗′
i,j(g)

)
generated by (24) in place of (yi,j, X

′
i,j) with the same (Z ′

i,j,W
′
i,j). The results

in Theorem 3.1 also holds for this procedure as it is asymptotically equivalent to the procedure

in (17)-(19) in the case with at least one “strong” cluster.

Remark 1. The bootstrap tests with WU,n and Wn have remarkable resemblance to the

Fama-Macbeth type approach in Ibragimov and Müeller (2010, IM) and the randomization test

with sign changes in Canay et al. (2017, CRS), which are based on the asymptotic independence

3For example, the limited information maximum likelihood (LIML) estimator, Fuller (1977)’s modified LIML esti-

mator, the bias-adjusted TSLS estimator (e.g., Nagar (1959), Rothenberg (1984)), and various jackknife IV estimators

(JIVEs; e.g., Phillips and Hale (1977), Angrist, Imbens, and Krueger (1999), Chao, Swanson, Hausman, Newey, and

Woutersen (2012), Hausman, Newey, Woutersen, Chao, and Swanson (2012))
4Besides Π̂z and Π̂w, one might consider to generate the bootstrap samples by using more efficient estimators proposed

by Davidson and MacKinnon (2010, 2012, 2014).
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of cluster-level estimators (say, β̂n,1, ..., β̂n,q) when applied to the setting of clustered data. In

addition, IM’s approach requires the asymptotic normality of the q cluster-level estimators and

CRS’s approach requires that these estimators have limiting distributions that are symmetric

about zero (after an appropriate recentering). We notice that in the context of IV regressions,

the bootstrap tests can be very different from these two approaches with regard to the required

instrument strength. In particular, to achieve asymptotic validity, IM and CRS would require

the instruments being strong for all clusters; e.g., for all clusters one needs to rule out the

presence of weak instruments in the sense of Staiger and Stock (1997) (i.e., Πz,j = n
−1/2
j Cj,

where Cj has a fixed full rank value), as the cluster-level IV estimators of the “weak” clusters

would become inconsistent and have highly nonstandard limiting distributions, violating the

assumptions underlying IM and CRS’s approaches. By contrast, the results in Theorem 3.1

hold even with only one “strong” cluster, since the randomization with sign changes for the

bootstrap procedure in (17)-(20) is implemented on the score component of the full-sample

estimator rather than directly on the cluster-level estimators. In this sense, the bootstrap tests

are more robust to cluster heterogeneity/outlier in terms of instrument strength.

Moreover, when the IV estimator applied in the regression has substantial finite sample

bias (e.g., TSLS in the over-identified case), the bootstrap tests may perform better as they

are based on a full-sample estimator, rather than an average of cluster-level estimators whose

finite sample bias may not average out. By contrast, in the case that all clusters are “strong”

and/or the cluster-level IV estimators have minimal bias, the approaches of IM and CRS have

advantage over the bootstrap as they require neither the condition on cluster homogeneity in

Assumption 2(iii) nor the condition that the limits of cluster-level Jacobian being proportional

to each other as in Assumption 3(ii)5. Therefore, the wild bootstrap and the cluster-level

estimator-based approaches can be considered as complements as there are scenarios where one

would be preferred to the other.

Remark 2. In general, the results in Theorem 3.1 do not hold for the two bootstrap tests

when all clusters are “weak”. Intuitively, further complication arises because
∑

i∈In,j
Z̃i,jvi,j/

√
n,

the noise part in the first-stage of the model in (1), enters the distributions of interest. Indeed,

5In the case of testing H0 : β = β0, Assumption 3(ii) is not required to establish Theorem 3.1 for the two wild

bootstrap tests, but Assumption 2(iii) would still be required.
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under the weak-instrument parameter sequence such that Πz,j = n
−1/2
j Cj with some fixed full

rank Cj for all j ∈ J , the sample Jacobian

1√
n

∑

j∈J

∑

i∈In,j

Z̃i,jX
′
i,j

d−−→
∑

j∈J

√
ξjQZ̃Z̃,jCj +

∑

j∈J

√
ξjZv,j, (25)

where
∑

j∈J
√
ξjQZ̃Z̃,jCj, the signal part of the first-stage equation, is of the same order of

magnitude as the noise part
∑

j∈J
√
ξjZv,j. A randomization test with sign changes would not

work in this case because for each j ∈ J , (i) the distribution of
√

ξj
(
QZ̃Z̃,jCj + Zv,j

)
is not

symmetric around zero, and (ii) Cj cannot be consistently estimated so that one could not de-

mean either. In particular, the double-equation procedure in (24) would result in the following

limiting distribution:

1√
n

∑

j∈J

∑

i∈In,j

Z̃i,jX
∗′
i,j(g)

d−−→
∑

j∈J

√
ξjQZ̃Z̃,jCj +

∑

j∈J

√
ξjgjZv,j

+
∑

j∈J
ξj(1− gj)QZ̃Z̃,jQ

−1

Z̃Z̃


∑

j̃∈J

√
ξj̃Zv,j


 . (26)

The first term in (26) equals the signal part in (25), the second term equals the G-transformed

version of the noise part in (25), while the third is an extra term: the procedure mimics the

noise correctly when gj = 1 but over-states the noise when gj = −1.

Remark 3. However, for the empirically prevalent case of testing the coefficient of single

endogenous regressor with single instrument (e.g., 101 out of 230 specifications in Andrews et

al. (2019)’s sample and 1087 out of 1359 in Young (2020)’s sample), the WU,n-based unstu-

dentized bootstrap test is fully robust to weak instrument. Indeed, in this particular case the

unstudentized bootstrap test is equivalent to certain version of bootstrap AR test (the ARU,n-

based unstudentized bootstrap test in Section 3.2), and its asymptotic null rejection probability

is no larger than the nominal level irrespective of instrument strength. We notice that such

equivalence also holds for the standard framework in which the number of observations/clusters

tends to infinity, and the unstudentized wild bootstrap test is thus fully robust to weak instru-

ment under such framework as well. By contrast, the studentized wild bootstrap test, which

is more widely used in practice (e.g., see Cameron et al. (2008), Cameron and Miller (2015),

MacKinnon and Webb (2017), and Roodman et al. (2019)), is not weak-instrument robust

no matter under the standard framework or the framework with few clusters, and thus may
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produce substantial size distortions even in the case with single instrument, as illustrated by

simulations in Section 4.

Therefore, although we expect that in the strong-instrument case with a large number of

observations/clusters (so that the bootstrap consistently estimates distributions of interest),

bootstrapping an asymptotically pivotal statistic such as Wn can achieve a higher order re-

finement (e.g., see Beran (1988), Hall (1992), Horowitz (2001), Djogbenou et al. (2019)), here

it could be more desirable to use the unstudentized wild bootstrap test from the viewpoint

of robustness, especially when the number of clusters is small. Furthermore, notice that its

validity under both weak instrument and few clusters depends crucially on the Rademacher

weight and the specific procedure in (17)-(20), and thus could not be extended to alternative

procedures such as the double-equation procedure in (24) or the commonly employed pairs

cluster bootstrap (including percentile, percentile-t, and bootstrap standard error).

3.2 Wild bootstrap with weak-instrument-robust statistics

Similarly, we may define the procedure of the bootstrapped tests for H0 : β = β0 with the AR,

LM, and CQLR statistics and their unstudentized versions under the form of randomization

inference with sign changes:

1. Compute the null-restricted residual

ǫ̂ri,j(β0) = yi,j −X ′
i,jβ0 −W ′

i,j γ̄
r
n(β0), (27)

where γ̄r
n(β0) is the H0-restricted least squares estimator of γ.

2. Let G = {−1, 1}q and for any g = (g1, ..., gq) ∈ G define

f̂ ∗
n(β0, g) = n−1

∑

j∈J

∑

i∈In,j

f ∗
i,j(β0, gj),

Ω̂∗
n(β0, g) = n−1

∑

j∈J

∑

i∈In,j

∑

k∈In,j

f ∗
i,j(β0, gj)f

∗
k,j(β0, gj)

′,

Ω̂∗
W,n(β0, g) = n−1

∑

j∈J

∑

i∈In,j

∑

k∈In,j

Z̃i,jZ̃k,jû
∗
i,j(β0, g)û

∗
k,j(β0, g), (28)

where f ∗
i,j(β0, gj) = Z̃i,jǫ

∗
i,j(β0, gj), ǫ

∗
i,j(β0, gj) = gj ǫ̂

r
i,j(β0) and û∗

i,j(β0, gj) equals the residual

of regressing ǫ∗i,j(β0, gj) on Zi,j and Wi,j.

18



For the bootstrapped LM and CQLR tests, also compute

D̂∗
n(β0, g) =

(
D̂∗

1,n(β0, g), ..., D̂
∗
dx,n(β0, g)

)
,

D̂∗
l,n(β0, g) = Ĝl,n − Γ̂∗

l,n(β0, g)Ω̂
∗−1
n (β0, g)f̂

∗
n(β0, g),

Γ̂∗
l,n(β0, g) = n−1

∑

j∈J

∑

i∈In,j

∑

k∈In,j

(
Z̃i,j v̂

∗
i,j,l(gj)

)
f ∗
k,j(β0, gj)

′, for l = 1, ..., dx, (29)

where v̂∗i,j,l(gj) equals the residual of regressing v∗i,j,l(gj) = gj v̂i,j,l on Zi,j and Wi,j.

3. Compute the bootstrap analogues of the test statistics:

AR∗
n(β0, g) = nf̂ ∗

n(β0, g)
′Ω̂∗−1

n (β0, g)f̂
∗
n(β0, g),

AR∗
W,n(β0, g) = nf̂ ∗

n(β0, g)
′Ω̂∗−1

W,n(β0, g)f̂
∗
n(β0, g),

AR∗
U,n(β0, g) =

∥∥√nf̂ ∗
n(β0, g)

∥∥2,

LM∗
n(β0, g) = nf̂ ∗

n(β0, g)
′Ω̂∗−1/2

n (β0, g)PΩ̂
∗−1/2
n (β0,g)D̂∗

n(β0,g)
Ω̂∗−1/2

n (β0, g)f̂
∗
n(β0, g),

LM∗
U,n(β0, g) =

∥∥√nD̂∗′
n (β0, g)Ω̂

∗−1/2
n (β0, g)f̂

∗
n(β0, g)

∥∥2,

LR∗
n(β0, g) =

1

2

(
AR∗

n(β0, g)− rkn(β0) +

√
(AR∗

n(β0, g)− rkn(β0))
2 + 4LM∗

n(β0, g) · rkn(β0)

)
,

LR∗
U,n(β0, g) =

1

2

(
AR∗

U,n(β0, g)− rkn(β0)

+

√(
AR∗

U,n(β0, g)− rkn(β0)
)2

+ 4LM∗
U,n(β0, g) · rkn(β0)

)
. (30)

4. The bootstrapped tests and the corresponding critical values are defined in the same

fashion as in Step 5 of the bootstrapped t-test.

The following theorem shows that in the general case with multiple instruments, theARU,n(β0)-

based unstudentized wild bootstrap test is fully robust to weak instruments and few clusters

in the sense that its limiting null rejection probability is no greater than the nominal level

α, irrespective of instrument strength. In addition, its limiting null rejection probability is

bounded from below by α− 1/2q−1. On the other hand, the theorem also shows that when the

number of instruments is smaller than the total number of clusters, the limiting null rejection

probabilities of the two studentized bootstrap AR tests are bounded by α− 1/2q−1 from below

and by α + 1/2q−1 from above, respectively.
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Theorem 3.2 If Assumption 2(i)-(iii) and H0 : β = β0 holds, then

α− 1

2q−1
≤ lim inf

n→∞
P{ARU,n(β0) > ĉaru,n(1− α)} ≤ lim sup

n→∞
P{ARU,n(β0) > ĉaru,n(1− α)} ≤ α,

and if further dz < q, then

α− 1

2q−1
≤ lim inf

n→∞
P{ARn(β0) > ĉarn (1− α)} ≤ lim sup

n→∞
P{ARn(β0) > ĉarn (1− α)} ≤ α +

1

2q−1
;

α− 1

2q−1
≤ lim inf

n→∞
P{ARW,n(β0) > ĉarr,n(1− α)} ≤ lim sup

n→∞
P{ARW,n(β0) > ĉarr,n(1− α)} ≤ α +

1

2q−1
,

where ĉaru,n(1−α), ĉarn (1−α) and ĉarr,n(1−α) denote the critical values of the ARU,n(β0), ARn(β0)

and ARW,n(β0)-based bootstrap tests, respectively.

Remark 4. In terms of size properties under a small number of clusters, the bootstrap AR tests

have substantial improvement over the AR tests with conventional asymptotic critical values.

We notice that the ARn(β0)-based asymptotic test typically under-rejects or does not reject

at all in the over-identified case (in the simulations of Section 4, its null rejection frequencies

equal zero for the cases with 10 clusters and 3 or 5 instruments). In particular, the null

rejection probabilities of this AR test decreases toward zero when the number of instruments

dz approaches the number of clusters q; in fact, when dz is equal to q, the statistic ARn(β0)

will be exactly equal to dz (or q) since for F̂n(β0) =
(
f̂1,n(β0), ..., f̂q,n(β0)

)′
and f̂j,n(β0) =

n−1
∑

i∈In,j
fi,j(β0) with j = 1, ..., q,

ARn(β0) = ℓ′F̂n(β0)
(
F̂n(β0)

′F̂n(β0)
)−1

F̂n(β0)
′ℓ = ℓ′ℓ = dz (31)

as long as F̂n(β0) is invertible, where ℓ denotes a q-dimensional vector of ones. The ARW,n(β0)

statistic also cannot be employed in this case since its variance-covariance matrix estimator V̂W,n

would become singular. Moreover, the asymptotic test that is based on ARW,n(β0) tends to

have substantial over-rejections in the case with few clusters, as illustrated by the simulations.

Compared with the asymptotic tests, all the three bootstrap tests typically have much

better size controls. With regard to power properties, in the over-identified case the ARn(β0)

and ARW,n(β0)-based studentized bootstrap tests may suffer from the issue of low power due

to similar problems as those for the asymptotic tests (e.g., the value of the bootstrap analogue

of ARn(β0) will also be exactly equal to dz when dz is equal to q). On the other hand, the

ARU,n(β0)-based unstudentized bootstrap test does not have such issue and also works well even
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in the case with dz larger than q. Overall, we recommend to use the unstudentized bootstrap

AR test instead of the others when the number of clusters is small.

Remark 5. It is also possible to modify the bootstrap AR tests so that they can be applied

to the cases where Assumption 2(iii) of cluster homogeneity may not hold. For instance, the

modified ARU,n(β0) statistic can be defined as

ARc
U,n(β0) ≡

∥∥√nf̂ c
n(β0)

∥∥2, (32)

where f̂ c
n(β0) = n−1

∑
j∈J
∑

i∈In,j
f c
i,j(β0), f c

i,j(β0) = Z̃c
i,j ǫ̂

c
i,j(β0), ǫ̂ci,j(β0) = yi,j − X ′

i,jβ0 −
Wi,j γ̂

r
n,j(β0), with Z̃c

i,j and γ̂r
n,j(β0) being the cluster-level residuals from regressing Zi,j on

Wi,j (i.e., Z̃
c
i,j = Zi,j − Γ̂c′

n,jWi,j) and the null-restricted least squares estimator of γ only using

the sample in the j-th cluster, respectively. Assuming that for all j ∈ J ,




1
√
nj

∑

i∈In,j

Z̃c
i,jǫi,j : j ∈ J





d−−→
{
Zc

ǫ,j : j ∈ J
}
,

where Zc
ǫ,j ∼ N

(
0,Σc

j

)
with some positive definite Σc

j, then the result for ARU,n(β0) in Theorem

3.2 can be established under arbitrary cluster heterogeneity for ARc
U,n(β0)-based bootstrap test

with f̂ c∗
n (β0, g) = n−1

∑
j∈J
∑

i∈In,j
f c∗
i,j(β0, gj), f c∗

i,j(β0, gj) = Z̃c
i,jǫ

c∗
i,j(β0, gj), and ǫc∗i,j(β0, gj) =

gj ǫ̂
c
i,j(β0). We may do similar modifications to ARn(β0) and ARW,n(β0) as well.

We also notice that different from the original bootstrap test, the modified bootstrap test

requires the parameter of interest to be identified within each cluster (this is similar to IM and

CRS’s approaches; e.g., see the discussions in p.1025 of CRS). For example, consider a clustered

regression model with endogenous treatment effect,

yi,j = θ + βXi,j +W ′
i,jγ + ǫi,j, (33)

where yi,j denotes the outcome of unit i in group or area j, Xi,j a single endogenous regressor

(e.g., the treatment status or dose), Wi,j a vector of covariates that vary within each cluster,

Zj the cluster-level random assignment status of treatment, and the quantity of interest is the

treatment effect β. Let J1 the set of clusters such that Zj = 1 and J0 the set of clusters

such that Zj = 0. To implement the test, we need to define the clusters by forming pairs of

groups or areas, that is, by matching each group in J1 with a group in J0 (e.g., in experimental

settings, such pairs can be determined by the treatment assignment status of each group). Such
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pairing would reduce the number of clusters available for inference by half, while there is no

need for pairing when implementing the original bootstrap AR tests. Therefore, the original

and modified bootstrap AR tests are also complement to each other.

Remark 6. For empirical applications involving treatment effect such as the one in (33), we

may consider an alternative AR-type procedure by imposing the null hypothesis H0 : β = β0

into the structural form equation so that

yi,j − β0Xi,j = θ +W ′
i,jγ + ǫi,j. (34)

Since θ can be identified in each cluster j ∈ J0 ∪ J1, we may therefore run the least squares

regressions for the q clusters separately, and obtain their estimates as (θ̂n,1, ..., θ̂n,q). Then, we

may define a two-sample test statistic based on the cluster-level estimates:

1

|J1|
∑

j∈J1

θ̂n,j −
1

|J0|
∑

j∈J0

θ̂n,j. (35)

Notice that under our current framework and the null hypothesis,
√
n
(
θ̂n,j − θ

)
d−−→ N

(
0, σ2

j

)

for j ∈ J0 ∪ J1, so the two-sample t-test in Ibragimov and Müller (2016) and the adjusted

permutation test in Hagemann (2019), which is based on permuting (θ̂1, ..., θ̂q) and adjusted

critical values, will be asymptotically valid for the test statistic in (35) with arbitrary cluster

heterogeneity. The number of clusters available for inference under these procedures is equal to

q (if one use IV estimator-based statistics instead, than again one has to pair the treatment and

control groups for identification). We also notice that (35) is closely related to the permutation

test proposed by Rosenbaum (1996) and Imbens and Rosenbaum (2005), which is exact for

testing sharp null hypothesis under a finite-population perspective.

The behaviour of the LM and CQLR tests is more complicated than the AR test as they

depend on the adjusted sample Jacobian D̂n(β0). Similar to the bootstrap IV estimate and

t-test, further complication arises for the bootstrap LM and CQLR tests in the case that all the

clusters are “weak”, as the noise part in the first-stage enters the distributions of interest. For

instance, let us consider the LM statistic and also suppose that kx = 1 for notational simplicity.
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For the adjusted sample Jacobian we notice that

√
nD̂n(β0)

=
√
nĜn −


∑

j∈J

nj

n


 1
√
nj

∑

i∈In,j

Z̃i,j v̂i,j




 1
√
nj

∑

k∈In,k

fk,l(β0)




′
 Ω̂−1

n (β0)
(√

nf̂n(β0)
)
,

(36)

where the distributions of
√
nĜn and

∑
i∈In,j

Z̃i,j v̂i,j/
√
nj, the two terms related to the first-

stage equation, cannot be well mimicked by the G-transformation with sign changes when

all the clusters are “weak” for similar reason as that noted in Remark 3. Furthermore, it is

clear from (36) that
√
nD̂n(β0) is no longer asymptotically independent from

√
nf̂n(β0) under

the framework with fixed number of clusters as the orthogonalization adjustment is no longer

valid in this case, thus resulting in a highly nonstandard null limiting distribution for the LM

statistic. We therefore cannot give the lower and upper bounds of the limiting null rejection

probabilities of the two bootstrap tests in the case that all the clusters are “weak”. This is

different from Moreira et al. (2004, 2009), who show the bootstrap validity for the LM and

CLR tests under the weak-instrument asymptotics and homoskedastic errors.

However, when there is at least one “strong” cluster, we are still able to establish the

connection between a randomization test with sign changes and the bootstrap LM and CQLR

tests, as shown in Theorem 3.3. In particular, Ĝn in (36) becomes dominant in this case and

LMn(β0)
d−−→
∥∥∥∥


Q′

Z̃X

(
∑

j∈J
ξjZǫ,jZ ′

ǫ,j

)−1

QZ̃X




−1/2

Q′
Z̃X

(
∑

j∈J
ξjZǫ,jZ ′

ǫ,j

)−1∑

j∈J

√
ξjZǫ,j

∥∥∥∥
2

.(37)

Although the distribution on the right-hand side of (37) is still nonstandard, we can establish

the connection by showing that

(LMn(β0), {LM∗
n(β0, g) : g ∈ G}) = (Tlm(Sn), {Tlm(gSn) : g ∈ G}) + oP (1), (38)

for some statistic Sn and function Tlm(·) defined in the proofs of Theorem 3.3. Then, we can

show the asymptotic equivalence of the bootstrap LM and bootstrap CQLR tests in this case.

Similar arguments are used for their unstudentized version.
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Theorem 3.3 If Assumption 2(i)-(iii), Assumption 3(i), H0 : β = β0 holds and dz < q, then

α− 1

2q−1
≤ lim inf

n→∞
P{LMn(β0) > ĉlmn (1− α)} ≤ lim sup

n→∞
P{LMn(β0) > ĉlmn (1− α)} ≤ α +

1

2q−1
;

α− 1

2q−1
≤ lim inf

n→∞
P{LMU,n(β0) > ĉlmu,n(1− α)} ≤ lim sup

n→∞
P{LMU,n(β0) > ĉlmu,n(1− α)} ≤ α +

1

2q−1
;

α− 1

2q−1
≤ lim inf

n→∞
P{LRn(β0) > ĉlrn (1− α)} ≤ lim sup

n→∞
P{LRn(β0) > ĉlrn (1− α)} ≤ α +

1

2q−1
;

α− 1

2q−1
≤ lim inf

n→∞
P{LRU,n(β0) > ĉlru,n(1− α)} ≤ lim sup

n→∞
P{LRU,n(β0) > ĉlru,n(1− α)} ≤ α +

1

2q−1
,

where ĉlmn (1−α), ĉlmu,n(1−α), ĉlru,n(1−α) and ĉlrn (1−α) denote the critical values of the LMn(β0),

LMU,n(β0), LRU,n(β0) and LRn(β0)-based bootstrap tests, respectively.

Remark 7. We emphasize that in our framework, it is assumed for all j ∈ J that nj → ∞
as n → ∞, but the number of clusters, q, is fixed, thus very different from the asymptotic

framework considered in Djogbenou et al. (2019), MacKinnon et al. (2019), and Hansen and

Lee (2019), where the number of clusters tends to infinity with the sample size. Under such

framework with q → ∞, one can show that the wild bootstrap procedure for the AR, LM, and

CQLR tests are all asymptotically valid for testing the joint null hypothesis H0 : β = β0 (by

extending the results in Moreira et al. (2009)), no matter the instruments are strong or weak.

In particular, f̂n(β0) and the orthogonalized Jacobian D̂n(β0) are asymptotically independent

in such case, and the LM and CQLR statistics will thus follow the limiting distributions given

in the weak-instrument literature, which can be consistently estimated by the wild bootstrap.

However, weak-instrument-robust inference with regard to a subvector of β would be substan-

tially more complicated since unrestricted structural parameters enter the problem as additional

nuisance parameter. Indeed, Wang and Doko Tchatoka (2018) and Wang (2020) show that both

residual-based and nonparametric bootstrap procedures are inconsistent even for the subvector

AR test under conditional homoskedasticity.
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4 Monte Carlo simulation

In this section, we investigate the finite-sample performance of the bootstrap tests with a

simulation study. The data is generated as

yi,j = γ +Xi,jβ + σ(Zi,j) (ηǫ,j + ǫi,j) ,

Xi,j = γ + Z ′
i,jΠz + σ(Zi,j) (ηv,j + vi,j) , (39)

for i = 1, ..., n and j = 1, ..., q. The total sample size n is equal to 500, the number of

clusters q is equal to 10, and the cluster size is set to be the same. The disturbances (ǫi,j, vi,j)

and cluster effects (ηǫ,j, ηv,j) are specified as follows: (ǫi,j, ui,j) ∼ N(0, I2), vi,j = ρǫi,j + (1 −
ρ2)1/2ui,j, (ηǫ,j, ηu,j) ∼ N(0, I2), ηv,j = ρηǫ,j + (1 − ρ2)1/2ηu,j. ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.99}
corresponds to the degree of endogeneity. The instruments are generated by Zi,j ∼ N(0, Idz)

and σ(Zi,j) = |∑dz
k=1 Zi,j,k|. The instrument strength is characterized by the concentration

parameter Π′
z

(∑
j∈J
∑

i∈In,j
Zi,jZ

′
i,j

)
Πz equal to 10, 100, and 200. The number of Monte

Carlo replications is equal to 5,000.

Figure 1 reports the null empirical rejection frequencies of the cluster-robust tests that are

based on the TSLS estimates, including the studentized and unstudentized (single-equation)

wild bootstrap tests in Section 3.1, the group-based t-test of Ibragimov and Müeller (2010,

2016), the randomization test of Canay et al. (2017), and the cluster-robust t-test with the

conventional asymptotic normal critical values and the critical values proposed by Bester et al.

(2011), We notice that size distortions increase for all the tests when the instruments become

weak and/or the degree of endogeneity becomes high. The studentized wild bootstrap test has

size properties similar to the t-tests with the asymptotic normal or Bester et al. (2011)’s critical

value when the instruments are weak, while it typically has smaller size distortions when the

instrument becomes strong. Furthermore, the unstudentized wild bootstrap test is found to

have the smallest size distortions among these test procedures. In particular, we notice that

in line with the discussions in Remark 3, it does not have size distortions in the case with

one instrument, irrespective of the instrument strength. Figure 2 reports the results for the

studentized and unstudentized double-equation wild bootstrap tests in (24), the studentized and

unstudentized pairs bootstrap tests, and the t-test with bootstrap standard error. We notice
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that the pairs bootstrap tests typically have larger size distortions than their wild bootstrap

counterparts, and the t-test with bootstrap standard error has performance very similar to that

of the unstudentized pairs bootstrap test.

Figure 3 reports the null empirical rejection frequencies of the same set of tests as those in

Figure 1 but with LIML estimates instead of TSLS. We notice that in this case, the approaches

of Ibragimov and Müeller (2010, 2016) and Canay et al. (2017) have large improvement upon

the case with TSLS estimates. This is due to the fact that these tests are based on cluster-level

estimates, which could produce serious finite-sample bias when TSLS is employed, especially

in the over-identified case. All the other procedures, including the studentized wild bootstrap

test, also have improvement upon their TSLS-based counterparts in Figure 1. Again, the

unstudentized wild bootstrap test turns out to have the best size control across different settings

of instrument strength, degree of endogeneity, and number of instruments, with null rejection

frequencies no larger than 10% in these simulations. Figure 4 reports the results for the double-

equation wild bootstrap tests, the pairs bootstrap tests, and the t-test with bootstrap standard

error, all based on the LIML estimates. The two studentized bootstrap tests seem to have

relatively large size distortions across different settings. The t-test with bootstrap standard

error has smaller size distortions than the unstudentized pairs bootstrap test when the degree

of endogeneity is high, but may be more conservative in other cases.

Figure 5 reports the rejection frequencies of the AR-based tests, including the AR test and

Wald-AR test that are based on the asymptotic critical values, the studentized and unstu-

dentized bootstrap AR tests, and the bootstrap Wald-AR test. Figure 6 reports the rejection

frequencies of the asymptotic LM and CQLR tests, and the bootstrap LM and CQLR tests for

both studentized and unstudentized versions. We highlight some findings below. First, it turns

out that the asymptotic AR test can be very conservative and even does not reject at all when,

e.g., the number of instruments equals 3 or 5, while the asymptotic Wald-AR test has serious

over-rejections across various settings, with over-rejections increasing with the number of in-

struments. Second, we notice that in line with our analysis in Section 3.2, the bootstrap LM

and CQLR tests also have size distortions when the instruments are weak and/or the degree

of endogeneity is high. Moreover, the unstudentized versions tend to under-reject while the

studentized versions tend to over-reject when the instruments are weak and/or the degree of
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endogeneity is high. The bootstrap CQLR tests have slightly smaller distortions than their LM

counterparts. By contrast, the three bootstrap AR tests always have rejection frequencies very

close to the nominal size. In particular, the studentized bootstrap AR test is able to correct

the conservativeness of the asymptotic AR test, and the studentized bootstrap Wald-AR test

also largely erases the size distortions of the asymptotic Wald-AR test.

Figures 7 reports the power properties of the AR-based tests with dz = 3, and the results are

in line with those found in Figure 5. In particular, among the tests that are able to have good

size control (namely, the three bootstrap AR tests), the unstudentized bootstrap AR test has

remarkably superior power performance compared with the alternative methods, as discussed in

Remark 4. Figure 8 reports the power curves with dz = 5. We observe that the two asymptotic

tests become even more distorted in this case with the AR test not rejecting at all while the

Wald-AR test having very large size distortions.

5 Conclusion

In this paper, we study the properties of wild bootstrap tests under a framework with a small

number of clusters but large numbers of observations per cluster for IV regressions. Our setting

allows for cluster heterogeneity in terms of instrument strength, and we show that an unstuden-

tized wild bootstrap test based on IV estimators is valid as long as the instruments are strong

for at least one cluster. This is different from alternative methods proposed in the literature

for inference with a small number of clusters (e.g., IM and CRS’s approaches that are based

on cluster-level estimates), whose validity would require that the instruments be strong for all

clusters. Moreover, for the leading case in empirical applications with a single instrument, the

unstudentized wild bootstrap test generated by our procedure is fully robust to weak instru-

ment in the sense that its limiting null rejection probability is no greater than the nominal

level even if all clusters are “weak”. However, such robustness is not shared by the studentized

wild bootstrap test or the commonly used pairs cluster bootstrap, which may result in serious

size distortion in this case. Furthermore, in the general case with multiple instruments, we

show that an unstudentized version of bootstrap AR test is fully robust to weak instruments,

and is superior with regard to both size and power properties to alternative asymptotic and
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bootstrap AR tests that employ cluster-robust variance estimators. By contrast, we find that

bootstrapping other weak-instrument-robust tests such as the LM and CQLR tests, no mat-

ter studentized or unstudentized, does not guarantee correct limiting null rejection probability

when all clusters are “weak”. Overall, when the weak instrument issue is a concern and the

number of available clusters is small, we recommend to use the unstudentized bootstrap test

with TSLS in the case with single instrument, and to use the unstudentized bootstrap AR test

in the case with multiple instruments.
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Figure 1: Null empirical rejection frequencies of TSLS-based tests (1)
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Figure 2: Null empirical rejection frequencies of TSLS-based tests (2)
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Figure 3: Null empirical rejection frequencies of LIML-based tests (1)
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Figure 4: Null empirical rejection frequencies of LIML-based tests (2)
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Figure 5: Null empirical rejection frequencies of AR-based tests

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
e

j
e

c
t
i
o

n
 
r
a

t
e

s

cp=0 K=1

AR.boot.unstud

AR.boot.stud

WAR.boot.stud

AR.asy

WAR.asy

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cp=0 K=3

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cp=0 K=5

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
e

j
e

c
t
i
o

n
 
r
a

t
e

s

cp=10 K=1

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cp=10 K=3

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cp=10 K=5

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
e

j
e

c
t
i
o

n
 
r
a

t
e

s

cp=100 K=1

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cp=100 K=3

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cp=100 K=5

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
e

j
e

c
t
i
o

n
 
r
a

t
e

s

cp=200 K=1

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cp=200 K=3

0 0.2 0.4 0.6 0.8 0.99
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
cp=200 K=5

33



Figure 6: Null empirical rejection frequencies of LM and CQLR-based tests
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Figure 7: Power of AR-based tests with dz = 3
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Figure 8: Power of AR-based tests with dz = 5
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Appendices

A Proofs

Proof of Theorem 3.1 Let S ≡ Rdz×dx ×Rdz×dz × ⊗j∈JR
dz and write an element s ∈ S by

s = (s1, s2, {s3,j : j ∈ J}) where s3,j ∈ Rdz for any j ∈ J . Define the function T u
w: S → R to be

given by

T u
w(s) ≡

∣∣∣∣c
′ (s′1s−1

2 s1
)−1

s′1s
−1
2

(
∑

j∈J
s3,j

)∣∣∣∣ (A.1)

for any s ∈ S such that s2 and s′1s
−1
2 s1 are invertible, and let T u

w(s) = 0 otherwise. We

also identify any (g1, ..., gq) = g ∈ G = {−1, 1}q with an action on s ∈ S given by gs =

(s1, s2, {gjs3,j : j ∈ J}). For any s ∈ S and G’ ⊆ G, denote the ordered values of {T u
w(gs) : g ∈

G’} by

T u(1)
w (s|G’) ≤ . . . ≤ T u(|G’|)

w (s|G’). (A.2)

Given this notation we can define the statistics Sn, Ŝn ∈ S as

Sn ≡


Q̂Z̃X,n, Q̂Z̃Z̃,n,





√
nj√
n

1
√
nj

∑

i∈In,j

Z̃i,jǫi,j : j ∈ J






 ,

Ŝn ≡


Q̂Z̃X,n, Q̂Z̃Z̃,n,





√
nj√
n

1
√
nj

∑

i∈In,j

Z̃i,j ǫ̂
r
i,j(λ) : j ∈ J






 . (A.3)

Let An denote the event

An ≡ I
{
Q̂Z̃X,n is of full rank value and Q̂Z̃Z̃,n is invertible

}
, (A.4)

and note that whenever An = 1 and Hc
0 : c′β = λ is true, the Frisch-Waugh-Lovell theorem

implies that

WU,n(λ) =

∣∣∣∣
√
n
(
c′β̂n − λ

) ∣∣∣∣ =
∣∣∣∣
√
nc′
(
β̂n − β

) ∣∣∣∣

=

∣∣∣∣c
′
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

∑

j∈J

1√
n

∑

i∈In,j

Z̃i,jǫi,j

∣∣∣∣

= T u
w(Sn). (A.5)

1



Similarly, we have for any action g ∈ G that

W ∗
U,n(λ, g) =

∣∣∣∣
√
nc′
(
β̂∗
n(g)− β̂r

n

) ∣∣∣∣

=

∣∣∣∣c
′
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

∑

j∈J

1√
n

∑

i∈In,j

gjZ̃i,j ǫ̂
r
i,j(λ)

∣∣∣∣

= T u
w(gŜn). (A.6)

Therefore, for any x ∈ R letting ⌈x⌉ denote the smallest integer larger than x and k∗ ≡
⌈|G|(1− α)⌉, we obtain from (A.5)-(A.6) that

I
{
WU,n(λ) > ĉwu,n(1− α)

}
= I

{
T u
w(Sn) > T u(k∗)

w (Ŝn|G)
}
. (A.7)

In addition, Assumption 1 implies that

lim inf
n→∞

P{An = 1} = 1. (A.8)

Furthermore, let ℓ ∈ G correspond to the identity action, i.e., ℓ ≡ (1, ..., 1) ∈ Rq, and

similarly define −ℓ ≡ (−1, ...,−1) ∈ Rq. Then note that since T u
w(−ℓŜn) = T u

w(ℓŜn), we obtain

from (A.6) that

T u
w

(
−ℓŜn

)
= T u

w

(
ℓŜn

)

=

∣∣∣∣c
′
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

∑

j∈J

1√
n

∑

i∈In,j

Z̃i,j

(
yi,j −X ′

i,jβ̂
r
n −W ′

i,j γ̂
r
n

) ∣∣∣∣,

=

∣∣∣∣c
′
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

∑

j∈J

1√
n

∑

i∈In,j

Z̃i,j

(
yi,j −X ′

i,jβ̂
r
n

) ∣∣∣∣,

=
∣∣√nc′(β̂n − β̂r

n)
∣∣ = T u

w (Sn) , (A.9)

where the third equality follows from
∑

j∈J
∑

i∈In,j
Z̃i,jW

′
i,j = 0. (A.9) implies that if k∗ ≡

⌈|G|(1 − α)⌉ > |G| − 2, then I{T u
w(Sn) > T

u(k∗)
w (Ŝn|G)} = 0, and this gives the upper bound

in Theorem 3.1. We therefore assume that k∗ ≡ ⌈|G|(1− α)⌉ ≤ |G| − 2, in which case

lim sup
n→∞

E [φn (WU,n(λ))] = lim sup
n→∞

P{T u
w(Sn) > T u(k∗)

w (Ŝn|G);An = 1}

= lim sup
n→∞

P{T u
w(Sn) > T u(k∗)

w (Ŝn|G \ {±ℓ});An = 1}

≤ lim sup
n→∞

P{T u
w(Sn) ≥ T u(k∗)

w (Ŝn|G \ {±ℓ});An = 1}, (A.10)

where the first equality follows from (A.7), the second equality from (A.9) and k∗ ≤ |G| − 2,
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and the final inequality follows by set inclusion.

Then, to examine the right hand side of (A.10), first note that by Assumptions 1-2, Assump-

tion 3(ii) and the continuous mapping theorem we have

Q̂Z̃X,n, Q̂Z̃Z̃,n,





√
nj√
n

1
√
nj

∑

i∈In,j

Z̃i,jǫi,j : j ∈ J






 d−−→

(
āQZ̃X , QZ̃Z̃ ,

{√
ξjZj : j ∈ J

})
≡ S,

(A.11)

where ξj > 0 for all j ∈ J by Assumption 2(i), and QZ̃Z̃ denotes the limit of Q̂Z̃Z̃,n. We further

note that whenever An = 1, for every g ∈ G,

∣∣∣T u
w(gSn)− T u

w(gŜn)
∣∣∣

≤
∣∣∣∣c

′
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

∑

j∈J

nj

n

1

nj

∑

i∈In,j

gjZ̃i,jX
′
i,j

√
n(β − β̂r

n)

∣∣∣∣

+

∣∣∣∣c
′
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

∑

j∈J

nj

n

1

nj

∑

i∈In,j

gjZ̃i,jW
′
i,j

√
n(γ − γ̂r

n)

∣∣∣∣.

(A.12)

Note that whenever c′β = λ it follows from Assumption 1 and Amemiya (1985, Eq.(1.4.5)) that
√
n(β̂r

n−β) and
√
n(γ̂r

n−γ) are bounded in probability. In addition, we have
∑

i∈In,j
Z̃i,jW

′
i,j/nj =

oP (1) by using the same argument as in Lemma A.2 of Canay et al. (2020). Therefore,

lim sup
n→∞

P





∣∣∣∣c
′
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

∑

j∈J

nj

n

1

nj

∑

i∈In,j

gjZ̃i,jW
′
i,j

√
n(γ − γ̂r

n)

∣∣∣∣ > ǫ;An = 1





= 0. (A.13)

Moreover, Assumption 3(ii) yields for any ǫ > 0 that

lim sup
n→∞

P





∣∣∣∣c
′
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

∑

j∈J

nj

n

1

nj

∑

i∈In,j

gjZ̃i,jX
′
i,j

√
n(β − β̂r

n)

∣∣∣∣ > ǫ;An = 1





= lim sup
n→∞

P

{∣∣∣∣c
′
(
ā2Q′

Z̃X
Q−1

Z̃Z̃
QZ̃X

)−1

āQ′
Z̃X

Q−1

Z̃Z̃

∑

j∈J
ξjgjajQZ̃X

√
n(β − β̂r

n)

∣∣∣∣ > ǫ;An = 1

}

= lim sup
n→∞

P

{∣∣∣∣c
′
∑

j∈J

ξjgjaj
ā

√
n(β − β̂r

n)

∣∣∣∣ > ǫ;An = 1

}

= lim sup
n→∞

P

{∣∣∣∣
∑

j∈J

ξjgjaj
ā

√
n(c′β − c′β̂r

n)

∣∣∣∣ > ǫ;An = 1

}
= 0, (A.14)
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where ā =
∑

j∈J ξjaj, and the last equality holds because c′β̂r
n = λ under Hc

0 : c
′β = λ.

Notice that T u
w(gŜn) = T u

w(gSn) whenever An = 0 as we have defined T u
w(s) = 0 for any

s = (s1, s2, {s3,j : j ∈ J}) whenever s2 or s′1s−1
2 s1 is not invertible. Therefore, results in (A.12),

(A.13), and (A.14) imply that T u
w(gŜn) = T u

w(gSn)+ oP (1) for any g ∈ G. We thus obtain from

(A.11) that

(
T u
w(Sn),

{
T u
w(gŜn) : g ∈ G

})
d−−→ (T u

w(S), {T u
w(gS) : g ∈ G}) . (A.15)

Moreover, since lim infn→∞ P{An = 1} = 1, it follows that
(
T u
w(Sn), An, {T u

w(gŜn) : g ∈ G}
)

converge jointly as well. Hence, Portmanteau’s theorem implies that

lim sup
n→∞

P{T u
w(Sn) ≥ T u(k∗)

w (Ŝn|G \{±ℓ});An = 1}

≤ P{T u
w(S) ≥ T u(k∗)

w (S|G \{±ℓ})} = P{T u
w(S) > T u(k∗)

w (S|G \{±ℓ})}, (A.16)

where the equality follows from P{T u
w(S) = T u

w(gS)} = 0 for all g ∈ G \ {±ℓ} since the covari-

ance matrix of Zj is full rank for all j ∈ J , and the limit of
(
Q̂′

Z̃X,n
Q̂−1

Z̃Z̃,n
Q̂Z̃X,n

)−1

Q̂′
Z̃X,n

Q̂−1

Z̃Z̃,n

is of full rank by Assumption 1.

Finally, since T u
w(ℓS) = T u

w(−ℓS), we obtain that T u
w(S) > T

u(k∗)
w (S|G \ {±ℓ}) if and only if

T u
w(S) > T

u(k∗)
w (S|G), which together with (A.10) and (A.16) yields

lim sup
n→∞

E [φn(WU,n(λ))] ≤ P{T u
w(S) > T u(k∗)

w (S|G \{±ℓ})} = P{T u
w(S) > T u(k∗)

w (S|G)} ≤ α,

(A.17)

where the final inequality follows by gS
d
= S for all g ∈ G and the properties of randomization

tests. This completes the proof of the upper bound in the statement of the Theorem.

For the lower bound, first note that k∗ ≡ ⌈|G|(1− α)⌉ > |G| − 2 implies that α− 1
2q−1 ≤ 0,

in which case the result trivially follows. Now assume k∗ ≡ ⌈|G|(1 − α)⌉ ≤ |G| − 2 and note

that

lim sup
n→∞

E [φn (WU,n(λ))] ≥ lim inf
n→∞

P{T u
w(Sn) > T u(k∗)

w (Sn|G)}

≥ P{T u
w(S) > T u(k∗)

w (S|G)}

≥ P{T u
w(S) > T u(k∗+2)

w (S|G)}+ P{T u
w(S) = T u(k∗+2)

w (S|G)}

≥ α− 1

2q−1
, (A.18)
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where the first inequality follows from (A.7), the second inequality follows from Portmanteau’s

theorem, the third inequality holds because P{T u(z+2)
w (S|G) > T

u(z)
w (S|G)} = 1 for any integer

z ≤ |G| − 2 by (A.1) and Assumption 2(i)-(ii), and the last equality follows from noticing that

k∗ + 2 = ⌈|G|((1 − α) + 2/|G|)⌉ = ⌈|G|(1 − α′)⌉ with α′ = α − 1
2q−1 and the properties of

randomization tests. This completes the proof of the lower bound.

The proof for the studentized wild bootstrap test follows similar arguments as those for the

unstudentized wild bootstrap test and the arguments in the proof of Theorem 3.3 in Canay et

al. (2020), and is thus omitted. �

Proof of Theorem 3.2 The proof follows similar arguments as those in Theorem 3.1, and

thus we keep exposition more concise. Let S ≡ ⊗j∈JR
dz and write an element s ∈ S by

s = {sj : j ∈ J} where sj ∈ Rdz for any j ∈ J . Define the function T u
ar: S → R to be given by

T u
ar(s) ≡

∥∥∥∥
∑

j∈J
sj

∥∥∥∥
2

. (A.19)

Given this notation we can define the statistics Sn, Ŝn ∈ S as

Sn ≡





√
nj√
n

1
√
nj

∑

i∈In,j

Z̃i,jǫi,j : j ∈ J



 , Ŝn ≡





√
nj√
n

1
√
nj

∑

i∈In,j

Z̃i,j ǫ̂i,j(β0) : j ∈ J



 . (A.20)

Note that by the Frisch-Waugh-Lovell theorem,

ARU,n(β0) =

∥∥∥∥
∑

j∈J

1√
n

∑

i∈In,j

Z̃i,jǫi,j

∥∥∥∥
2

= T u
ar(Sn). (A.21)

Similarly, we have for any action g ∈ G that

AR∗
U,n(β0, g) =

∥∥∥∥
∑

j∈J

1√
n

∑

i∈In,j

gjZ̃i,j ǫ̂i,j(β0)

∥∥∥∥
2

= T u
ar(gŜn). (A.22)

Therefore, for any x ∈ R letting ⌈x⌉ denote the smallest integer larger than x and k∗ ≡
⌈|G|(1− α)⌉, we obtain from (A.21)-(A.22) that

I
{
ARU,n(β0) > ĉaru,n(1− α)

}
= I

{
T u
ar(Sn) > T u(k∗)

ar (Ŝn|G)
}
. (A.23)
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Furthermore, similar to the arguments in the proof of Theorem 3.1, we have

T
(
−ℓŜn

)
= T

(
ℓŜn

)
=

∥∥∥∥
∑

j∈J

1√
n

∑

i∈In,j

Z̃i,j

(
yi,j −X ′

i,jβ0 −W ′
i,j γ̂

r
n(β0)

) ∥∥∥∥
2

,

=

∥∥∥∥
∑

j∈J

1√
n

∑

i∈In,j

Z̃i,j

(
ǫi,j +W ′

i,j(γ − γ̂r
n(β0))

) ∥∥∥∥
2

= T (Sn) . (A.24)

(A.24) implies that if k∗ ≡ ⌈|G|(1−α)⌉ > |G| − 2, then I{T (Sn) > T (k∗)(Ŝn|G)} = 0, and this

gives the upper bound in Theorem 3.2. We therefore assume that k∗ ≡ ⌈|G|(1−α)⌉ ≤ |G| − 2,

in which case

lim sup
n→∞

E [φn (ARU,n(β0))] = lim sup
n→∞

P{T u
ar(Sn) > T u(k∗)

ar (Ŝn|G)}

= lim sup
n→∞

P{T u
ar(Sn) > T u(k∗)

ar (Ŝn|G \ {±ℓ})}

≤ lim sup
n→∞

P{T u
ar(Sn) ≥ T u(k∗)

ar (Ŝn|G \ {±ℓ})}. (A.25)

Then, to examine the right hand side of (A.25), first note that by Assumption 2(i) and the

continuous mapping theorem we have




√
nj√
n

1
√
nj

∑

i∈In,j

Z̃i,jǫi,j : j ∈ J





d−−→
{√

ξjZj : j ∈ J
}
≡ S, (A.26)

where ξj > 0 for all j ∈ J by Assumption 2(ii). We further note that for every g ∈ G,

gŜn =



gj

1√
n

∑

i∈In,j

Z̃i,jǫi,j −
gj
n

∑

i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂r

n(β0)− γ) : j ∈ J





=



gj

1√
n

∑

i∈In,j

Z̃i,jǫi,j + oP (1) : j ∈ J



 , (A.27)

by Assumption 2(iii), which implies that

T u
ar(gŜn) =

∥∥∥∥
∑

j∈J
gj

1√
n

∑

i∈In,j

Z̃i,jǫi,j + oP (1)

∥∥∥∥
2

= T u
ar(gSn) + oP (1). (A.28)

We thus obtain from results in (A.26)-(A.28) and the continuous mapping theorem that

(
T u
ar(Sn),

{
T u
ar(gŜn) : g ∈ G

})
d−−→ (T u

ar(S), {T u
ar(gS) : g ∈ G}) . (A.29)
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Hence, Portmanteau’s theorem implies that

lim sup
n→∞

P{T u
ar(Sn) ≥ T u(k∗)

ar (Ŝn|G \{±ℓ})}

≤ P{T u
ar(S) ≥ T u(k∗)

ar (S|G \{±ℓ})} = P{T u
ar(S) > T u(k∗)

ar (S|G \{±ℓ})}, (A.30)

where the equality follows from P{T (S) = T (gS)} = 0 for all g ∈ G\{±ℓ} since the covariance

matrix of Zj is full rank for all j ∈ J . Finally, using arguments similar to those in the proof of

Theorem 3.1, we obtain

lim sup
n→∞

E [φn(ARU,n(β0))] ≤ P{T u
ar(S) > T u(k∗)

ar (S|G \{±ℓ})} = P{T u
ar(S) > T u(k∗)

ar (S|G)} ≤ α,

(A.31)

where the final inequality follows by gS
d
= S for all g ∈ G and the properties of randomization

tests. This completes the proof of the upper bound in the statement of the Theorem. The

proof of the lower bound follows the same arguments as those for Theorem 3.1.

The proof for the studentized AR test follows similar arguments as those for the unstuden-

tized version, and we keep exposition concise. Define the function Tar : S → R to be given

by

Tar(s) ≡
∥∥∥∥

(
∑

j∈J
sjs

′
j

)−1/2∑

j∈J
sj

∥∥∥∥
2

, (A.32)

for any s ∈ S such that
∑

j∈J sjs
′
j is invertible, and set Tar(s) = 0 whenever

∑
j∈J sjs

′
j is not

invertible. We set An ∈ R to equal

An ≡ I

{
∑

j∈J
Ŝn,jŜ

′
n,j is invertible

}
, (A.33)

where Ŝn,j =
1√
n

∑
i∈In,j

Z̃i,j ǫ̂i,j(β0), and we have

lim inf
n→∞

P{An = 1} = 1, (A.34)

which follows from
{√

ξjZǫ,j : j ∈ J
}

being independent and continuously distributed with

covariance matrices that are full rank. It follows that whenever An = 1,

(ARn(β0), {AR∗
n(β0, g) : g ∈ G}) = (Tar(Sn), {Tar(gSn) : g ∈ G}) + oP (1). (A.35)
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Next, we have

lim sup
n→∞

P {ARn(β0) > ĉarn (1− α)}

≤ lim sup
n→∞

P {ARn(β0) ≥ ĉarn (1− α);An = 1}

≤ P

{
Tar(S) ≥ inf

{
u ∈ R :

1

|G|
∑

g∈G
I{Tar(gS) ≤ u} ≥ 1− α

}}
, (A.36)

where the final inequality follows from (A.34), (A.35), the continuous mapping theorem and

Portmanteau’s theorem.

Therefore, setting k∗ ≡ ⌈|G|(1− α)⌉, we can then obtain from (A.36) that

lim sup
n→∞

P {ARn(β0) > ĉarn (1− α)}

≤ P
{
Tar(S) > T (k∗)

ar (S|G)
}
+ P

{
Tar(S) = T (k∗)

ar (S|G)
}

≤ α + P
{
Tar(S) = T (k∗)

ar (S|G)
}
, (A.37)

where the final inequality follows by gS
d
= S for all g ∈ G and the properties of randomization

tests. Furthermore, by applying Lehmann and Romano (2005, Theorem 15.2.2), we obtain

P
{
Tar(S) = T (k∗)

ar (S|G)
}
= E

[
1

|G|
∑

g∈G
I
{
Tar(gS) = T (k∗)

ar (S|G)
}
]
. (A.38)

For any g = (g1, ..., gq) ∈ G then let −g = (−g1, ...,−gq) ∈ G, and note that Tar(gS) =

Tar(−gS) with probability one. However, if g̃, g ∈ G are such that g̃ /∈ {g,−g}, then

P {Tar(gS) = Tar(g̃S)} = 0 (A.39)

since ξj > 0 for all j ∈ J and {Zj : j ∈ J} are independent with full rank covariance matrices

by Assumption 2(i)-(ii). Hence,

1

|G|
∑

g∈G
I
{
Tar(gS) = T (k∗)

ar (S|G)
}
=

1

|G| × 2 =
1

2q−1
(A.40)

with probability one. The claim of the upper bound in the theorem then follows from (A.37) and

(A.40). The proof for the lower bound follows similar arguments as those for the unstudentized

AR test and thus are omitted. �

Proof of Theorem 3.3

The proof for the studentized LM test follows similar arguments as those for the studentized
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version of the AR rest. Let S ≡ Rdz×dx × ⊗j∈JR
dz , and write an element s ∈ S by s =

({s1,j : j ∈ Js}, {s2,j : j ∈ J}). We identify any (g1, ..., gq) = g ∈ G = {−1, 1}q with an action

on s ∈ S given by gs = ({s1,j : j ∈ Js}, {gjs2,j : j ∈ J}). We define the function Tlm : S → R

to be given by

Tlm(s) ≡
∥∥∥∥∥


D(s)′

(
∑

j∈J
s2,js

′
2,j

)−1

D(s)




−1/2

D(s)′

(
∑

j∈J
s2,js

′
2,j

)−1∑

j∈J
s2,j

∥∥∥∥∥

2

, (A.41)

for any s ∈ S such that
∑

j∈J s2,js
′
2,j and D(s)′

(∑
j∈J s2,js

′
2,j

)−1

D(s) are invertible and set

Tlm(s) = 0 whenever one of the two is not invertible, where

D(s) ≡ (D1(s), ..., Ddx(s)) ,

Dl(s) ≡
∑

j∈Js

s1,j,l −
(
∑

j∈Js

s1,j,ls
′
2,j

)(
∑

j∈J
s2,js

′
2,j

)−1∑

j∈J
s2,j, (A.42)

for s1,j = (s1,j,1, ..., s1,j,dx) and l = 1, ..., dx.

Furthermore, define the statistic Sn as

Sn ≡







1

n

∑

i∈In,j

Z̃i,jX
′
i,j : j ∈ Js



 ,





1√
n

∑

i∈In,j

Z̃i,jǫi,j : j ∈ J






 , (A.43)

Note that for l = 1, ..., dx, we have

1

n

∑

i∈In,j

Z̃i,jXi,j,l =
nj

n


 1

nj

∑

i∈In,j

Z̃i,jZ̃
′
i,jΠz,j,l +

1

nj

∑

i∈In,j

Z̃i,jvi,j,l




=
nj

n


 1

nj

∑

i∈In,j

Z̃i,jZ̃
′
i,jΠz,j,l


+ oP (1)

P−−→ QZ̃X,j,l, (A.44)

where QZ̃X,j,l denotes the l-th column of the dz×dx-dimensional matrix QZ̃X,j, the second equal-

ity follows from Assumption 2(i), and the convergence in probability follows from Assumption

3(i). Then, by Assumptions 2 and the continuous mapping theorem we have

Sn
d−−→
(
{ξjajQZ̃X : j ∈ Js} ,

{√
ξjZj : j ∈ J

})
≡ S, (A.45)

9



where ξj > 0 for all j ∈ J . Also notice that for l = 1, ..., dx,

D̂l,n(β0) =
∑

j∈J


 1

n

∑

i∈In,j

Z̃i,jXi,j,l


−


∑

j∈J


 1

n

∑

i∈In,j

Z̃i,jXi,j,l




 1√

n

∑

k∈Ik,j

Z̃k,j ǫ̂k,j(β0)




′


·


∑

j∈J


 1√

n

∑

i∈Ii,j

Z̃i,j ǫ̂i,j(β0)




 1√

n

∑

k∈Ik,j

Z̃k,j ǫ̂k,j(β0)




′


−1

1√
n

∑

i∈Ii,j

Z̃i,j ǫ̂i,j(β0).

(A.46)

Here, we set An ∈ R to equal

An ≡ I
{
D̂n(β0) is of full rank value and Ω̂n(β0) is invertible

}
, (A.47)

and we have

lim inf
n→∞

P{An = 1} = 1, (A.48)

which holds because
{√

ξjZj : j ∈ J
}
are independent and continuously distributed with co-

variance matrices that are of full rank, and QZ̃X,j are of full rank for all j ∈ J , by Assumption

2 and Assumption 3(i).

It follows that whenever An = 1,

(LMn(β0), {LM∗
n(β0, g) : g ∈ G}) = (Tlm(Sn), {Tlm(gSn) : g ∈ G}) + oP (1). (A.49)

In what follows, we denote the ordered values of {Tlm(gs) : g ∈ G} by

T
(1)
lm (s|G) ≤ ... ≤ T

|G|
lm (s|G). (A.50)

Next, we have

lim sup
n→∞

P
{
LMn(β0) > ĉlmn (1− α)

}

≤ lim sup
n→∞

P
{
LMn(β0) ≥ ĉlmn (1− α);An = 1

}

≤ P

{
Tlm(S) ≥ inf

{
u ∈ R :

1

|G|
∑

g∈G
I{Tlm(gS) ≤ u} ≥ 1− α

}}
, (A.51)

where the final inequality follows from (A.43), (A.45), (A.48), (A.49), the continuous mapping

theorem and Portmanteau’s theorem. Therefore, setting k∗ ≡ ⌈|G|(1−α)⌉, we can then obtain
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from (A.51) that

lim sup
n→∞

P
{
LMn(β0) > ĉlmn (1− α)

}

≤ P
{
Tlm(S) > T

(k∗)
lm (S|G)

}
+ P

{
Tlm(S) = T

(k∗)
lm (S|G)

}

≤ α + P
{
Tlm(S) = T

(k∗)
lm (S|G)

}
, (A.52)

where the final inequality follows by gS
d
= S for all g ∈ G and the properties of randomization

tests. Then, using similar arguments as those for the studentized AR test, we obtain

P
{
Tlm(S) = T

(k∗)
lm (S|G)

}
=

1

2q−1
. (A.53)

The claim of the upper bound in the theorem then follows from (A.52) and (A.53). The proof

for the lower bound is similar to that for the bootstrap AR test, and thus is omitted.

To prove the result for the CQLR test, we note that

LRn(β0)

=
1

2

{
ARn(β0)− rkn(β0) +

√
(ARn(β0)− rkn(β0))2 + 4 · LMn(β0) · rkn(β0)

}

=
1

2

{
ARn(β0)− rkn(β0) + |ARn(β0)− rkn(β0)|

√
1 +

4 · LMn(β0) · rkn(β0)

(ARn(β0)− rkn(β0))2

}

=
1

2

{
ARn(β0)− rkn(β0) + |ARn(β0)− rkn(β0)|

(
1 + 2 · LMn(β0)

rkn(β0)

(ARn(β0)− rkn(β0))2
(1 + oP (1))

)}

= LMn(β0)
rkn(β0)

rkn(β0)− ARn(β0)
(1 + oP (1)) = LMn(β0) + oP (1),

(A.54)

where the third equality follows from the mean value expansion
√
1 + x = 1 + (1/2)(x+ o(1)),

the fourth and last equalities follow from ARn(β0)−rkn(β0) < 0 w.p.a.1 since ARn(β0) = OP (1)

while rkn(β0) → ∞ w.p.a.1 under Assumption 3(i). Using arguments similar to those in (A.54),

we obtain that for each g ∈ G,

LR∗
n(β0, g) = LM∗

n(β0, g)
rkn(β0)

rkn(β0)− AR∗
n(β0, g)

(1 + oP (1)) = LM∗
n(β0, g) + oP (1), (A.55)

by AR∗
n(β0, g)− rkn(β0) < 0 w.p.a.1 since AR∗

n(β0, g) = OP (1) for each g ∈ G. Then, it follows

that whenever An = 1,

(LRn(β0), {LR∗
n(β0, g) : g ∈ G}) = (Tlm(Sn), {Tlm(gSn) : g ∈ G}) + oP (1). (A.56)
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Then, we obtain that

lim sup
n→∞

P
{
LRn(β0) > ĉlrn (1− α)

}

≤ lim sup
n→∞

P
{
LRn(β0) ≥ ĉlrn (1− α);An = 1

}

≤ P

{
Tlm(S) ≥ inf

{
u ∈ R :

1

|G|
∑

g∈G
I{Tlm(gS) ≤ u} ≥ 1− α

}}
, (A.57)

where the second inequality follows from (A.43), (A.45), (A.48), (A.56), the continuous mapping

theorem and Portmanteau’s theorem. Finally, the upper and lower bounds for the studentized

bootstrap CQLR test follows from the previous arguments for the bootstrap LM test. The

proofs for the unstudentized bootstrap LM and CQLR test follow from similar arguments, and

thus are omitted. �
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