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Abstract

Synthetic control method (SCM) identifies causal treatment effects by constructing a
counterfactual treatment unit as a convex combination of donors in the control group,
such that the weights of donors and predictors are jointly optimized during the pre-
treatment period. This paper demonstrates that the true optimal solution to the SCM
problem is typically a corner solution where all weight is assigned to a single predic-
tor, contradicting the intended purpose of predictors. To address this inherent design
flaw, we propose to determine the predictor weights and donor weights separately. We
show how the donor weights can be optimized when the predictor weights are given,
and consider alternative data-driven approaches to determine the predictor weights.
Re-examination of the two original empirical applications to Basque terrorism and
California’s tobacco control program demonstrates the complete and utter failure of
the existing SCM algorithms and illustrates our proposed remedies.
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1 Introduction

During the past two decades, the synthetic control method (SCM) has emerged as a popu-

lar tool for estimating causal effects of policy interventions and programs in a comparative

case study setting. Abadie and Gardeazabal (2003) originally introduced this innovative ap-

proach to examine the economic impacts of Basque terrorism. Abadie et al. (2010) further

developed the statistical foundations of the method in their study of California’s tobacco

control program. Subsequently, SCM has been used in a large number of influential applica-

tions, including Acemoglu et al. (2016) (political connections), Cavallo et al. (2013) (natural

disasters), Gobillon and Magnac (2016) (enterprise zones), Kleven et al. (2013) (taxation of

athletes), and Abadie et al. (2015) (German reunification), among others. Recently, Cole

et al. (2020) apply SCM to study the impact of the Covid-19 lockdown on air pollution and

health in Wuhan, China. There is clearly large and growing interest in this approach: Athey

and Imbens (2017) refer to SCM as “arguably the most important innovation in the policy

evaluation literature in the last 15 years.”

Technically, SCM estimates the treatment effect by constructing a counterfactual of the

treated unit using a convex combination of similar units not exposed to the treatment. The

convex combination requires non-negative weights that sum to one to avoid extrapolation.

The weights are determined to ensure that the treated unit and the synthetic control re-

semble each other as closely as possible prior to the treatment, both with respect to the

outcome of interest and some observed economic predictors. Since there are typically mul-

tiple predictors, the predictors are also weighted using another set of non-negative weights.

In practice, virtually all published SCM applications resort to the data-driven procedure

where the weights of predictors and control units are jointly optimized to minimize the

mean squared prediction error of the synthetic control over the pre-treatment period. Abil-

ity of the synthetic control to closely match the pre-treatment outcomes of the treated unit

is frequently cited as a highly appealing feature of SCM.

Almost all empirical SCM studies apply the Synth algorithm described in Abadie et al.

(2011), which is available for R, Matlab, and Stata. However, several recent studies report

rather disturbing findings, suggesting that the synthetic control weights produced by Synth

may be numerically unstable and suboptimal (e.g., Becker and Klößner, 2017, 2018; Becker
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et al., 2018; Klößner et al., 2018).1 A related but even more serious concern is that the

predictors often turn out to have little impact on the synthetic control, as noted by several

authors (e.g., Ben-Michael et al., 2018; Doudchenko and Imbens, 2017; Kaul et al., 2015).

This is a disturbing concern because the statistical properties of the SCM estimator critically

depend on the ability of the synthetic control to reproduce the observed and unobserved

characteristics of the treated unit (Abadie, 2019; Abadie et al., 2010). If most predictors

are typically assigned negligibly small weights, then the ability of SCM to reproduce the

observed characteristics and the latent factors is seriously compromised.

The recent study by Malo et al. (2020) sheds new light on the computational difficulties

noted above. Developing the first explicit mathematical formulation of the standard SCM

problem where the predictor weights and the donor weights are jointly optimized, Malo et al.

(2020) argue that the SCM problem is in fact a NP-hard bilevel optimization problem. The

good news for SCM is that a unique optimum exists; the problem is solvable. Malo et al.

(2020) develop an iterative algorithm based on Tykhonov regularization, which is guaranteed

to converge to the optimal solution. The bad news is Synth and other SCM algorithms known

in the literature generally fail to converge to the optimum. As a result, several thousands of

SCM applications published thus far are based on suboptimal weights, which may affect the

qualitative conclusions. This is not a minor glitch; it is a major design flaw.

The purpose of the present paper is not only to demonstrate the existence of the design

flaw in SCM and discuss its practical implications, but also to present a constructive proposal

of how the design flaw could be addressed. Our specific contributions are three-fold:

1) We demonstrate that numerical instability of the Synth algorithm occurs even in the

original studies of Basque terrorism by Abadie and Gardeazabal (2003) and California’s

tobacco control program by Abadie et al. (2010). Specifically, we show that random

reordering of the donors and predictors affects the Synth results. Klößner et al. (2018)

have previously noted similar numerical instability, but they misleadingly attribute the

problem to the cross-validation approach suggested by Abadie et al. (2015). We show

that their diagnosis is false: numerical instability of Synth is an even more wide-spread

1 Abadie et al. (2011), Footnote 16, acknowledge that “Depending on the exact setup of the data there
exist situations in which the objective function may contain local minima, so that (as is routinely the case in
these types of problems) there is no analytical guarantee that the derivative-based algorithms routinely used
by optim() (i.e., Nelder-Mead and BFGS) will converge to the global minimum.”
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problem, affecting also the original SCM setting.

2) Applying insights from game theory, we explain why the optimal solution of the SCM

problem is typically a corner solution where all weight is assigned to a single predictor.

This is also the case in the two original SCM applications to Basque terrorism Abadie

and Gardeazabal (2003) and the California tobacco control program Abadie et al.

(2010). In our interpretation, the numerical instability of SCM is a symptom, but

the tendency towards corner solutions is the underlying design flaw of SCM, caused

by the joint optimization of donor weights and predictor weights. Developing better

algorithms to solve the NP-hard bilevel optimization problem does not suffice to address

the root cause of the problem.

3) To address the design flaw, we propose to determine the predictor weights and donor

weights in two separate stages. We develop a simple two-step algorithm to optimize

the donor weights when the predictor weights are given a priori. This proves a non-

trivial task, in fact, we find that the Synth algorithm fails to produce optimal donor

weights even when the predictor weights are given by the user. We also briefly explore

alternative data-driven approaches to determine the predictor weights. These include

the use of regression-based weights, which are used as starting values for the Synth

algorithm (Abadie et al., 2011) and the default option in the Matlab implementation

of Synth. Another possibility is to apply equal weights to standardized predictors,

analogous to Bloom and Van Reenen (2007)’s approach to aggregate management

survey indicators, which has also been considered in some empirical SCM studies (e.g.,

Bohn et al., 2014). We illustrate the application of the regression-based and uniform

weights in the case of the two original SCM applications to Basque terrorism and

California tobacco control program.

Interestingly, the recent SCM literature appears to shy away from the computational

difficulties by excluding one of the two levels of the original bilevel SCM formulation. Some

studies focus solely on the predictors (e.g., Abadie and L’Hour, 2020), while others restrict

to the pre-treatment outcomes (e.g., Doudchenko and Imbens, 2017; Ben-Michael et al.,

2018; Powell, 2018; Ferman et al., 2018; Chernozhukov et al., 2020). However, since the

statistical basis of SCM rests on the empirical fit to the predictors (Abadie, 2019; Abadie
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et al., 2010), optimization of weights to yield a good empirical fit to the predictors in order to

forecast the post-treatment outcomes remains a major unresolved issue, despite the advances

of the recent literature. It is clearly wrong to use suboptimal weights that are artifacts of a

computational failure. By identifying and addressing the inherent design flaw, we are hoping

to stimulate further research to build SCM on a more solid foundation.

The rest of the paper is organized as follows. Section 2 introduces the SCM method and

empirically demonstrates the instability of the Synth algorithm by reexamining the two orig-

inal SCM applications. Section 3 presents the SCM problem as a bilevel optimization prob-

lem, discusses its game theoretic interpretation, and explains why the optimum is typically

a corner solution. Section 3.3 demonstrates empirically that the two original SCM applica-

tions both have corner solutions, and that the existing Synth and MSCMT algorithms fail

to converge to the optimum. Section 4 proposes a simple two-step approach to optimize the

donor weights when the predictor weights are given a priori, explores alternative data-driven

approaches to determine the predictor weights, and revisits the two original SCM applica-

tions to illustrate the proposed approaches. Section 5 presents our concluding remarks and

discusses avenues for future research. Additional numerical experiment results and details

of data processing are provided in Appendices A and B, respectively. To allow readers to

reproduce the iterative algorithm to check for the feasibility of the unconstrained optimum

and the possibility of corner solutions and to reproduce our two-step approach to optimize

the donor weights when the predictor weights are empirically determined, documentation of

the essential source code (in R) is provided in Appendix C. The latest code and technical

documentation is available at GitHub: https://github.com/Xun90/SCM-Debug.git.

2 Synthetic control method

2.1 Preliminaries

To estimate causal effects in a comparative case study setting, the outcomes of the unit

affected by an event or intervention (the treatment group) are compared with the outcomes

of one or more unaffected units (the control group). The rationale behind the SCM method

is to use the control group’s outcome to approximate the counterfactual outcome of the

treated group in the absence of treatment. To this end, SCM constructs a synthetic control
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as a convex combination of multiple control units. The weights that determine the synthetic

control are chosen to best approximate the relevant characteristics of the treated unit during

the pre-treatment period. The post-intervention outcomes for the synthetic control unit are

then used to estimate the outcomes that would have been observed for the treated unit in

the absence of the intervention.

Suppose we observe units j = 1, . . . , J + 1, where the first unit is exposed to the in-

tervention and the J remaining units are control units that can contribute to the synthetic

control. The set of J control units is referred to as the pool of donors. The number of time

periods prior to the treatment is denoted as T pre and the number of time periods after the

treatment as T post. For the sake of clarity, we indicate vectors with bold lowercase font and

matrices with bold capital letters. The outcome of interest of the treated unit is denoted

by y: column vectors ypre
1 and y

post
1 with T pre and T post rows, respectively, refer to the time

series of the pre-treatment and post-treatment outcomes. Similarly, matrices Ypre
0 and Y

post
0

with J columns refer to the pre-treatment and post-treatment outcomes of the control group,

respectively.

Ideally, the impact of treatment could be measured as

α = y
post
1 − y

post,N
1 , (1)

where y
post,N
1 refers to the counterfactual outcome that would occur if the unit was not

exposed to the treatment. If one could observe the outcomes ypost,N
1 in an alternative state

of nature where the unit was not exposed to the treatment, then one could simply calculate

the elements of vector α. The main challenge in the estimation of the treatment effect is

that only y
post
1 is observable, whereas the counterfactual ypost,N

1 is not.

The goal of SCM is to construct a synthetic control group to estimate the counterfactual

y
post,N
1 . The key idea of the SCM is to use the convex combination of the observed outcomes

of the control units Ypost
0 as an estimator of ypost,N

1 . Formally, the SCM estimator is defined

as

α̂ = y
post
1 −Y

post
0 w, (2)

where the J elements of column vector w are non-negative and sum to one. The weights w

characterize the synthetic control, that is, a counterfactual path of outcomes for the treated

unit in the absence of treatment.
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The main challenge is to determine the weights w. The simplest approach considered

by Abadie and Gardeazabal (2003) is to track the observed path of pre-treatment outcomes

as closely as possible to minimize the mean squared prediction error (MSPE). That is, one

could apply the weights w that solve the following constrained least squares problem

min
w

L =
1

T pre
(ypre

1 −Y
pre
0 w)′(ypre

1 −Y
pre
0 w)

subject to (3)

1′w = 1

w ≥ 0

For transparency, we write the constraints on weights explicitly throughout the paper to re-

mind a reader that we are dealing with a constrained optimization problem. The constraints

on weights w ensure that the synthetic control is a convex combination of the control units

in the pool of donors. The fact that SCM does not involve extrapolation is considered as

one of its greatest advantages over regression analysis (e.g., Abadie, 2019).

Note that if we relax the constraints on weights w in (3), then the unconstrained min-

imization problem reduces to the classic OLS problem without the intercept term. In that

case, one could simply regress the time series ypre
1 on the parallel outcomes of the J donors

in the control group, and set the weights w equal to the corresponding OLS coefficients.

While the OLS problem has the well-known closed form solution that satisfies the first-order

conditions, however, the optimal solution to the constrained least squares problem must be

solved numerically. To remind a reader about this fact, we write explicitly the linear con-

straints on the weights w in (3). The constrained least squares problem can be efficiently

solved by quadratic programming (QP) algorithms such as CPLEX, Gurobi, or CVXOPT,

which are guaranteed to converge to the global optimum.

In addition to the outcome of interest, an integral part of SCM is to utilize additional

K variables referred to as predictors (also known as growth factors, characteristics, or co-

variates), which are observed prior to the treatment or are unaffected by the treatment, and

which can influence the evolution of outcomes. These predictors are denoted by a (K × 1)

vector x1 and a (K × J) matrix X0, respectively.
2 Abadie et al. (2010) prove unbiasedness

2 A common practice in SCM is to include some convex combinations of the pre-treatment outcomes
also as predictors (see Abadie et al., 2010, 2015, for discussion). However, Kaul et al. (2015) demonstrate
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and consistency of the SCM in the ideal case where the synthetic control yields perfect fit

to the predictors, that is, x1 = X0 ×w. Abadie (2019) acknowledges that “In practice, the

condition x1 = X0 ×w is replaced by the approximate version x1 ≈ X0 ×w. It is important

to notice, however, that for any particular data-set there are not ex-ante guarantees on the

size of the difference x1 −X0 ×w. When this difference is large, Abadie et al. (2010) rec-

ommend against the use of synthetic controls because of the potential for substantial biases.”

The previous quotation aptly highlights the critical importance of achieving a good fit with

respect to predictors.

Since the K predictors do not necessarily have the same effect on the outcomes, Abadie

and Gardeazabal (2003) introduce predictor weights using a (K × K) diagonal matrix V.

For notational convenience, we denote V = diag (v) where v is a vector of predictor weights

that reflects their relative importance. The K elements of v must be non-negative3 and are

usually normalized to sum to unity.4 The optimal choice of v satisfies the solution to the

following problem

v⋆ = argmin
v

(x1 −X0w
⋆(v))′(x1 −X0w

⋆(v))

subject to (4)

1′v = 1

v ≥ 0

To compute the optimal predictor weights v⋆, most SCM studies use the Synth package

described in Abadie et al. (2011), which is available for R, Matlab, and Stata. Unfortu-

nately, the Synth package is numerically unstable and unreliable, as the following example

demonstrates.

that including all pre-treatment outcomes as predictors is not a good idea because the predictors become
completely redundant in that case.

3 While Abadie et al. (2010) assume that the diagonal elements of V must be positive, a positive real
number can be arbitrarily close to zero, and therefore, the distinction between positive and non-negative
model variables has no real meaning in optimization unless one imposes some explicit lower bound, e.g.,
Vkk ≥ 0.01. Becker and Klößner (2018) set a lower bound Vkk ≥ 0.00000001, which is so low that it has no
practical meaning.

4 Of course, other normalizations are possible, but we here restrict attention to the most standard
normalization that allows one to interpret the elements of v as shared weights that sum to one.
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2.2 Numerical instability of Synth

Recently Klößner et al. (2018) reported a rather disturbing finding that simply reordering

the donors can have a major effect on the Synth results. They attributed the problem to the

cross-validation approach by Abadie et al. (2015), but this diagnosis is false: the numerical

instability occurs even in the original SCM setting without cross-validation.

To demonstrate our claim, let us first revisit the original SCM application by Abadie et

al. (2010) to California’s tobacco control program using the original data and the standard R

implementation of Synth.5 We compare the Synth results obtained using the original ordering

of predictors and donors used by Abadie et al. (2010) with those obtained by randomly

reordering the donors and predictors. More specifically, we draw 1,000 random orderings of

the rows of matrix X0, and another 1,000 random orderings of the columns of matrix X0,

while retaining all other features of the original data and using the default settings of Synth.

Obviously, such random reordering of either the rows or columns of the data matrix does not

affect the true optimal solution to the SCM problem in any way. However, it does influence

the results produced by the Synth package, as Table 1 demonstrates.

The leftmost column of Table 1 presents the donor weights w and the predictor weights v

sorted in the descending order, and values of the loss functions LV and LW (the loss functions

will be formally introduced in Section 3) reported by Synth using the original ordering of

donors and predictors. The donor and predictor weights have been rounded to the four

decimal digit accuracy, and we only report those with the minimum weight of 0.001. For

comparison, we report the corresponding minimum and maximum values obtained using the

randomly reordered samples.

The results of Table 1 clearly demonstrate that the Synth package is numerically unstable

even in the context where it was originally designed. Random ordering of either predictors or

donors affects all of the donor and predictor weights, but also the values of the loss function.

The most extreme example is the second largest predictor weight (0.3917) for cigarette sales

5 We assume that the reader is familiar with the original SCM applications; we refer to Abadie and
Gardeazabal (2003) and Abadie et al. (2010) for a more detailed description of the donors and predictors.
The R implementation of Synth is described in Abadie et al. (2011) and the Synth R package is available at
https://cran.r-project.org/web/packages/Synth/index.html. The R package contains the original data for
the Basque terrorism application, while the original data for the application to California’s tobacco control
program are embedded in the Matlab implementation of Synth available at https://web.stanford.edu/∼jhain/
synthpage.html.
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Table 1. Random reordering of either predictors or donors changes the Synth results in the
application to California’s tobacco control program.

Original ordering
Random ordering of predictors Random ordering of donors

Min. Max. Min. Max.

w

Utah 0.3432 0.3274 0.3432 0.3234 0.3432

Nevada 0.2358 0.2272 0.2358 0.2243 0.2358

Montana 0.1820 0.1820 0.2020 0.1820 0.2011

Colorado 0.1747 0.1605 0.1788 0.1627 0.1863

Connecticut 0.0624 0.0624 0.0752 0.0624 0.0773

v

smoking 1975 0.4925 0.3700 0.4925 0.3512 0.5557

smoking 1980 0.3917 0.0252 0.3917 0.0005 0.3917

smoking 1988 0.0682 0.0579 0.1009 0.0481 0.1007

retail price 0.0312 0.0312 0.4191 0.0312 0.4003

beer consum. 0.0124 0.0124 0.0922 0.0124 0.0267

percent 15–19 0.0034 0.0034 0.2384 0.0034 0.2148

LV 3.20908 3.18659 3.20908 3.14722 3.20908

LW 0.00170 0.00165 0.00243 0.00137 0.00296

Note: Following the notation of Synth, “smoking” denotes cigarette sales per capita; “retail price” denotes
average retail price of cigarettes; “beer consum.” denotes beer consumption per capita; and “percent 15–19”
denotes the percentage of the population aged 15–19.
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Table 2. Random reordering of either predictors or donors changes the Synth results in the
placebo study of Catalonia in the original SCM application to Basque terrorism.

Original ordering
Random ordering of predictors Random ordering of donors

Min. Max. Min. Max.

w

Madrid 0.4350 0.4348 0.4352 0.4347 0.4352

Baleares 0.2716 0.2714 0.2719 0.2712 0.2719

Cantabria 0.2575 0.2565 0.2577 0.2564 0.2577

Asturias 0.0359 0.0356 0.0369 0.0356 0.0368

v

gdpcap 0.5167 0.5162 0.5168 0.5162 0.5168

sec.agriculture 0.2817 0.2814 0.2820 0.2814 0.2820

sec.energy 0.0875 0.0874 0.0875 0.0874 0.0875

invest 0.0794 0.0777 0.0795 0.0779 0.0795

school.illit 0.0141 0.0127 0.0143 0.0128 0.0143

school.prim 0.0134 0.0129 0.0163 0.0129 0.0161

school.med 0.0050 0.0049 0.0056 0.0049 0.0056

school.high 0.0018 0.0016 0.0023 0.0016 0.0023

LV 0.00031 0.00031 0.00031 0.00031 0.00031

LW 0.02724 0.02623 0.02755 0.02629 0.02753

Note: Following the notation of Synth, “gdpcap” denotes real GDP per capita; “sec.agriculture” and
“sec.energy” denote the sectoral shares of agriculture, forestry, and fishing, and energy and water, respec-
tively; “invest” denotes investment ratio; and “school.illit”, “school.prim”, “school.med”, and “school.high”
denote the percentages of the working-age population that were illiterate, up to primary school education,
with some high school, and with high school or above, respectively.

10



per capita 1980 of the original ordering, which decreases to 0.0252 or 0.0005 by just randomly

reordering the predictors or donors, respectively. Interestingly, the value of the loss function

LV that the SCM problem aims to minimize can also decrease as a result of reordering the

data, which directly implies that the donor and predictor weights reported by Abadie et al.

(2010) cannot be the optimal solution to the SCM problem.

In the original SCM application to Basque terrorism by Abadie and Gardeazabal (2003),

the Synth results for the Basque Country proved numerically stable in 1,000 random orderings

of predictors or donors. However, in the placebo study of one of its key donors, Catalonia, we

do find numerical instabilities in 1,000 random orderings of predictors or donors as reported

in Table 2. Abadie and Gardeazabal (2003) devote the entire Section II.B to the placebo

study of Catalonia, which forms an important piece of evidence to support the SCMmethod.6

Note that Table 2 is organized similar to Table 1. All the donor or predictor weights are to

some extent affected by simply randomly reordering the donors or predictors, respectively.

The value of the loss function LW can also decrease as a result of reordering the data. To

gain a better understanding of why the Synth algorithm fails, we need to take a closer look

at the SCM problem from the optimization perspective.

3 Design flaw of the SCM problem

3.1 Bilevel formulation

Abadie and Gardeazabal (2003) and Abadie et al. (2010) state the SCM problem implicitly.

The recent study by Malo et al. (2020) develops the first explicit mathematical formulation

of the standard SCM problem where the predictor weights and the donor weights are jointly

optimized. They show that the SCM problem can be stated as the following optimistic

6 Abadie and Gardeazabal (2003) justify the choice of Catalonia as follows: “To conduct this ‘placebo’
study we chose Catalonia which was the region with the largest weight in the synthetic control for the Basque
Country. In addition to being the region most similar to the Basque Country before terrorism in economic
growth determinants (as measured using our methods), Catalonia resembles the Basque Country in many
characteristics, some of which are not directly measured in our data.”
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bilevel optimization problem

min
v,w

LV =
1

T pre
(ypre

1 −Y
pre
0 w)′(ypre

1 −Y
pre
0 w) (5)

subject to

w = argminLW = (x1 −X0w)′diag (v)(x1 −X0w) (6)

1′w = 1

1′v = 1

w ≥ 0,v ≥ 0

For the sake of transparency, we state the linear constraints for weights w and v explicitly.

Note that the feasible sets of w and v are standard simplexes whose vertices consist of the

J and K standard unit vectors, respectively.

The explicit formulation of the optimization problem reveals that the SCM problem

is far from trivial from the computational point of view. The minimization problem (6)

referred to the lower-level problem, and problem (5) is called the upper-level problem; the

SCM literature commonly uses the terms inner and outer problems, but the meaning is

the same. The problem is solvable, when it is interpreted as an optimistic bilevel problem,

but the global optimum is not necessarily unique. Unfortunately, the bilevel optimization

problems are generally NP-hard (Hansen et al., 1992; Vicente et al., 1994). In particular,

the hierarchical optimization structure can introduce difficulties such as non-convexity and

disconnectedness (e.g., Sinha et al., 2013), which are also problematic in the present setting.

These observations can help at least partly to explain the numerical instability of SCM

demonstrated in Section 2.2. The general-purpose algorithms are simply ill-equipped for the

task at hand. If the weights w,v are arbitrarily determined by an algorithm that fails to

converge to the optimum, then all the attractive theoretical properties of the estimator fly

out of the window.

3.2 Game interpretation

To gain intuition, we find it helpful to consider the bilevel SCM problem (5)–(6) as a Stack-

elberg game where the upper-level problem characterizes the optimal strategy of a “leader”

who determines v and the lower-level problem defines the optimal strategy of a “follower”

12



who determines w. The optimal solution to the bilevel optimization problem can then be

interpreted as the mixed strategy Nash equilibrium of the game.

Consider first the optimal strategy of the follower. In the non-cooperative Nash equilib-

rium, the follower solves the following QP problem, taking the weights v⋆ as given

minLW = (x1 −X0w)′diag (v⋆)(x1 −X0w)

subject to (7)

1′w = 1

w ≥ 0

The lower-level problem of the follower is straightforward. In contrast, the optimal strategy of

the leader is much more complicated in the non-cooperative setting. The leader sets weights

v to incentivize the follower to choose attractive weights w to minimize the upper-level loss

function LV . In general, it is well-known that the Nash equilibrium of the non-cooperative

game is not unique, and not necessarily Pareto efficient (compare, e.g., with the classic

Prisoner’s Dilemma).

Of course, the SCM problem is not a game played by two independent agents: there is just

one agent with the primary objective to minimize the upper-level loss function, subject to the

lower-level problem taken as a constraint. Therefore, the SCM problem is more analogous

to a coordination problem by a single social planner. To allow for coordination between the

upper-level and the lower-level problems, we can rephrase the lower-level problem (7) as

min
w

LW = (x1 −X0w)′diag (v⋆)(x1 −X0w) + ε(ypre
1 −Y

pre
0 w)′(ypre

1 −Y
pre
0 w)

subject to (8)

1′w = 1

w ≥ 0

where ε > 0 denotes an infinitesimally small non-Archimedean scalar (see Malo et al., 2020

for a more detailed discussion). Introducing the upper-level objective as a part of the lower-

level QP problem in (8) makes a subtle but important difference compared to problem (7):

the primary objective of both (7) and (8) is to minimize the loss function LW with respect

to the predictors. However, if there are alternate optima w⋆ that minimize the loss function
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LW , problem (8) chooses the best solution for the upper-level problem. This is an important

missing link between the lower-level problem and the upper-level problem because, in general,

there can be many alternate optima where the loss function goes to zero, LW = 0. Recall that

unbiasedness and consistency of the SCM estimator depend on the perfect match between

the treated unit and the synthetic control with respect to the predictors (Abadie et al., 2010).

Next, consider the optimization of weights v in the cooperative setting. For the given

weights w⋆, suppose the leader assigns predictor weights v is to minimize the lower-level loss

function, formally,

min
v

LW = (x1 −X0w
⋆)′diag (v)(x1 −X0w

⋆) + ε(ypre
1 −Y

pre
0 w⋆)′(ypre

1 −Y
pre
0 w⋆)

subject to (9)

1′v = 1

v ≥ 0

The rationale of this cooperative solution is the following. The leader chooses weights v

to minimize the loss for the follower, and the follower reciprocates by choosing among the

alternate optima for weights w that minimize the loss for the leader. The resulting solution

is Pareto efficient, and it is also one of the Nash equilibria to the non-cooperative game.

But without coordination, there is zero probability that the non-cooperative game would

converge to the cooperative solution. The lack of an explicit link between the upper-level

and the lower-level problems is one of the reasons why the existing SCM algorithms generally

fail to converge to the optimum.

Observe that problem (9) is a linear programming (LP) problem since both the objective

function and the constraints are linear functions of weights v: recall that the feasible set

of weights v is a standard simplex whose vertices are unit vectors, and note that we can

equivalently write the objective function as q′v, where q = (x1 −X0w
⋆)⊙ (x1 −X0w

⋆) and

⊙ denotes the Hadamard product. The fundamental theorem of linear programming states

that every feasible LP problem has an optimal solution in a zero-dimensional face (a vertex)

of the feasible set (see, e.g., Tardella, 2011). This implies that, for given weights w⋆, the

optimal solution to problem (9) is always a corner solution where one of the elements of v is

equal to one and all other elements are equal to zero. In other words, all weight is assigned

to a single predictor, and all other predictors are left with zero weight. Since this is the
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optimal strategy to set weights v for any given eights w⋆, the optimal solution to the SCM

problem is typically a corner solution. We consider this tendency towards corner solutions

as an inherent design flaw of the data-driven approach to set weights predictor weights v.

Based on the previous discussion it might be tempting to assume the optimal v⋆ must

always be a corner solution. Since the weights w and v are jointly optimized, this is not nec-

essarily the case, as the following counter-example demonstrates. For the sake of simplicity,

assume there are only two predictors, two donors, and a single outcome. The data of the

treated unit are x1 = (4, 6), y1 = 5. The two donors are xA = (1, 1), yA = 1 and xB = (9, 9),

yB = 9, respectively. It is easy to verify that the optimal weights are wA = wB = 0.5 and

v = (0.5, 0.5), which yield LV = 0. In contrast, the corner solution v = (1, 0) implies donor

weights wA = 5/8, wB = 3/8 and LV = 1. Similarly, for v = (0, 1), we have wA = 3/8,

wB = 5/8, and LV = 1. This simple counter-example suffices to demonstrate that the

optimal v⋆ is not necessarily a corner solution.

To illustrate the prevalence of corner solutions in the SCM applications, we next revisit

the two original SCM applications to Basque terrorism and the tobacco control program in

California. In both applications, the optimal solution turns out to be a corner solution.

3.3 Comparison of Synth, MSCMT, and the global optimum

Applying the iterative algorithm proposed by Malo et al. (2020) to the data of the two

original SCM applications to Basque terrorism (Abadie and Gardeazabal, 2003) and the

California tobacco control program (Abadie et al., 2010), we empirically verify that the

optimal solution in both cases is indeed a corner solution. The corner solution is found

superior to the solutions obtained by Synth and the MSCMT algorithm proposed by Becker

and Klößner (2018). This observation demonstrates that the existing SCM algorithms fail to

find the optimal solution even in the two original applications of SCM, which are also used

as illustrative examples for Synth.

We compare the results of the following three algorithms: the standard implementation

of Synth described in Abadie et al. (2011),7 the MSCMT package described in Becker and

Klößner (2018), and the iterative algorithm proposed by Malo et al. (2020), which ensures

7 In addition to the standard Synth command, we have also considered the genoud() option available
in Synth, as noted in Abadie et al. (2011). However, the use of the genoud() option does not improve the
matter; in fact, the solution is only worse.
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the true global optimum. Tables 3 and 4 report the donor weights (w), the predictor weights

(v), and the loss function values of the upper-level problem (LV ) and the lower-level problem

(LW ) estimated by different algorithms in R for the Basque terrorism application and the

California tobacco control application, respectively. For convenience, Tables 3 and 4 are

organized similar to Tables 1 and 2 above. We discuss the results of both tables in parallel.

Recall that the value of LV measures how well the synthetic control matches the pre-

treatment outcomes of the treated unit, and this is the upper-level objective to be minimized.

In this respect, all algorithms come relatively close to the global optimum. Note that LV

depends on the measurement units of outcomes: for example, multiplying y
pre
1 and Y

pre
0

by 1 Thousand would increase LV by a factor of 1 Million. Therefore, it is helpful to

measure empirical fit with respect to the pre-treatment outcomes in terms of the coefficient

of determination (R2)—after all, the upper-level problem is just constrained least squares

regression without intercept. Such a comparison reveals that the differences in empirical fit

are rather marginal, the R2 statistic varies between 0.96866 (Synth) to 0.98541 (optimum) in

the Basque example and between 0.97518 (Synth) and 0.97878 (optimum) in the California

example. In contrast, the differences in weights w and v are rather dramatic. The results of

Tables 3 and 4 help to illustrate that good empirical fit may be achieved with a wide variety

of weights w and v, but there is only one unique global optimum.

The loss function LW measures how well the synthetic control matches the predictors

x1. Minimization of LW is the lower-level objective, but the consistency of SCM depends on

the (nearly) perfect match with the predictors. In this regard, the relatively high value of

LW given by the standard Synth command in both applications indicates that Synth fails to

converge to the global optimum. Furthermore, the MSCMT procedure greatly improves LW ,

but the performance varies between the two empirical examples: LW converges to the global

optimum in the California case but not in the Basque case. In contrast, the value of LW at the

global optimum goes to zero, suggesting a perfect match in terms of the weighted predictors.

However, this is an illusion because the optimal solution is a corner solution that assigns all

weight to a single predictor: real per capita GDP in the Basque terrorism application and

cigarette sales per capita in 1980 in the California tobacco control application (see Tables 3

and 4). The MSCMT algorithm comes close to the corner solution in the former application,

but fails to converge to the corner solution in the latter. The Synth algorithm appears to
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Table 3. Basque terrorism application revisited: donor weights, predictor weights, loss
functions, and empirical fit by different algorithms.

Synth MSCMT Optimum

w

Catalonia 0.8508 0.6328 0.0000

Madrid 0.1492 0.1479 0.4405

Baleares 0.0000 0.2193 0.3700

La Rioja 0.0000 0.0000 0.1895

v

Schooling of working age population (%)

Illiterates 0.0156 0.0000 0

Up to primary school 0.0018 0.0000 0

With some high school 0.0442 0.0000 0

With high school or above 0.0341 0.0003 0

Investment ratio 0.0001 0.0003 0

Real GDP per capita 0.2010 0.9993 1

Sectoral shares (%)

Agriculture, forestry, and fishing 0.0948 0.0000 0

Energy and water 0.0077 0.0000 0

Industry 0.1339 0.0000 0

Construction and engineering 0.0087 0.0000 0

Marketable services 0.0097 0.0000 0

Non-marketable services 0.1081 0.0000 0

Population density 0.3403 0.0000 0

LV 0.00886 0.00429 0.00413

LW 0.24670 0.00034 0.00000

R2 0.96866 0.98485 0.98541
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Table 4. California tobacco control application revisited: donor weights, predictor weights,
loss functions, and empirical fit by different algorithms.

Synth MSCMT Optimum

w

Utah 0.3432 0.3351 0.3939

Nevada 0.2358 0.2356 0.2049

Montana 0.1820 0.2019 0.2318

Colorado 0.1747 0.1595 0.0148

Connecticut 0.0624 0.0679 0.1091

New Hampshire 0.0000 0.0000 0.0454

v

Income per capita 0.0006 0.0000 0

Retail price of cigarettes 0.0312 0.3333 0

Population aged 15–19 (%) 0.0034 0.3333 0

Beer consumption per capita 0.0124 0.0000 0

Cigarette sales per capita 1988 0.0682 0.0000 0

Cigarette sales per capita 1980 0.3917 0.0000 1

Cigarette sales per capita 1975 0.4925 0.3333 0

LV 3.20908 3.07666 2.74366

LW 0.00170 0.00000 0.00000

R2 0.97518 0.97621 0.97878
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use more balanced weights for predictors, however, note that Synth also assigns almost 90%

of the predictor weight to cigarette sales per capita (the outcome variable) during two years

of the pre-treatment period. Unfortunately, Synth fails to solve the optimization problem it

is supposed to solve; its predictor weights are just artifacts of a computational failure. This

is the design flaw that we intended to demonstrate by these two empirical examples.

Of course, the most important piece of information for SCM are the donor weights w,

which are used to form the synthetic control. As noted above, a marginal improvement in

the empirical fit leads to rather dramatic changes in the composition of the synthetic control.

Consider first the synthetic control for Basque. The Synth algorithm identifies Catalonia and

Madrid as the benchmarks, with 85% weight assigned to Catalonia. The solution found by

the MSCMT algorithm reassigns 22 percentage points of Catalonia’s weight to the Balearic

Islands, maintaining the weight of Madrid. In sharp contrast, the global optimum assigns

no weight to Catalonia, whereas the largest weights are assigned to Madrid (44%) and the

Balearic Islands (37%), but also the neighboring region of La Rioja enters the synthetic

control with the 19% weight. Consider next the synthetic control for California. Synth and

MSCMT yield almost the same donor weights despite their different estimates of the loss

function values. However, the global optimum reassigns nearly all of Colorado’s weight and 4

percentage points of Nevada’s weight to Utah (consolidating as the largest weighting state),

Montana, Connecticut, and New Hampshire (a new state entering the synthetic California).

Figure 1 illustrates the impact of suboptimal donor weights on the evolution of the syn-

thetic Basque (panel 1a) and the synthetic California (panel 1b). Fortunately the qualitative

conclusions of these two original and highly influential applications remain, but the subop-

timal weights lead to a lower treatment effect in both cases, particularly in the Basque

terrorism application. We stress that the globally optimal weights minimize the MSPE of

the pre-treatment outcomes ypre
1 , but there is no guarantee that the weights are optimal to

minimize the MSPE of the counterfactual because the good empirical fit to pre-treatment

outcomes was achieved by disregarding all predictors except for one. We compare the solu-

tions produced by the Synth and MSCMT algorithms to the global optimum just to illustrate

the computational failure, but the practical use of this global optimum is not the approach

that we advocate.
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Fig. 1. The impact of suboptimal w weights on the evolution of synthetic controls.
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4 Alternative data-driven approaches

4.1 Optimizing donor weights when predictor weights are given

In the previous section we found that the original SCM problem is solvable, but unfortunately,

the solution is not nice. In light of the arguments presented in the previous section, we would

strongly recommend the users of SCM to determine the predictor weights v separately, before

optimizing the donor weights w.

In this sub-section we develop a simple iterative procedure to compute the optimal weights

w when the predictor weights v⋆ are given a priori. Malo et al. (2020) previously consider

this problem, suggesting to solve problem (8) such that the non-Archimedean ε is gradually

decreased towards zero. In practice, it is difficult to ensure that ε is sufficiently close to

zero to give the priority to the lower-level objective function LW , but high enough to achieve

coordination with the upper-level objective LV . To operationalize the theoretical idea of Malo

et al. (2020), we propose to optimize the weights w using the following two-step procedure

when the predictor weights v⋆ are predetermined:

Step 1: Solve the QP problem

min
w

LW = (x1 −X0w)′diag (v⋆)(x1 −X0w)

subject to

1′w = 1

w ≥ 0

Step 2: Given the optimal L⋆
W from Step 1, solve the convex programming problem

min
w

LV = (ypre
1 −Y

pre
0 w)′(ypre

1 −Y
pre
0 w)

subject to

(x1 −X0w)′diag (v⋆)(x1 −X0w) = L⋆
W

1′w = 1

w ≥ 0

Breaking the problem into two separate stages allows to eliminate the non-Archimedean

ε in (8). In Step 1 we minimize the lower-level objective function LW , and its optimal
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value is subsequently inserted as a constraint to the optimization problem in Step 2. This

establishes an explicit link between the upper-level and the lower-level objectives. The two-

step procedure explicitly considers the possibility of alternate optima in Step 1. Since the

Synth algorithm does not take the possibility of alternate optima into account, there is no

guarantee that it finds the optimal donor weights w even when the predictor weights v are

defined by the user (see Appendix A for a numerical demonstration). In the next sub-sections

we explore and demonstrate alternative data-driven strategies to determine the weights v

empirically.

4.2 Panel regression approach to determine predictor weights

There are several possibilities to set weights v based on empirical data. Both Abadie and

Gardeazabal (2003) and Abadie et al. (2010) discuss the possibility to use subjectively deter-

mined weights v. The default option of the Stata implementation of the Synth package is to

use regression-based weights v, which are also used as starting values in the R and Matlab

implementation of Synth (see Abadie et al., 2011). In this sub-section we similarly resort to

a regression-based approach, but propose some modifications to the Synth approach.

If panel data of predictors X are available, we propose to first estimate the equation

yprejt = µ+ x′

jtβ+ γj + εjt j = 1, 2, . . . , J + 1; t = 1, 2, . . . , T pre. (10)

Model (10) can be estimated by standard fixed effects (FE) or random effects (RE) panel

data regression. Note that the FE estimator cannot be used when there are time-invariant

predictors. The original SCM application to Basque terrorism, to be revisited below, does

include some time-invariant predictors. Therefore, we will resort to the RE estimator below,

assuming that the random effects γj are uncorrelated with the predictors.

Given estimated coefficients β̂, we propose to assign weights v based the absolute values

of the parameter estimates, that is

vk = |β̂k|
/

K
∑

j=1

|β̂j|. (11)

We note that the Synth algorithm uses the squared values of the parameter estimates to

assign weights v. By using the absolute values rather than squared values, one achieves a

more equal balance between different predictors.
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Having optimized the predictor weights, we apply the two-step procedure proposed in

Section 4.1 to optimize the donor weights. Given the optimal donor weights w⋆, we estimate

the counterfactual as

yN
1 = Y0w

⋆ + (γ̂1 − γ̂
′

0w
⋆). (12)

Note that the random effects γj were not taken into account in the optimization of the donor

weights. Therefore, we utilize the estimated random effects to implement the standard bias

correction, following Ben-Michael et al. (2018) and Ferman et al. (2018).

We next illustrate the regression-based approach outlined above by reexamining the orig-

inal SCM application to Basque terrorism. Imputing the missing values by suitable methods

(see Appendix B for details), we obtain panel data for most of the predictors during the

pre-treatment period. In the RE panel regression to set weights v, we excluded the real

GDP per capita, the percentage of the illiterate working-age population, and the sectoral

share of non-marketable services to avoid perfect collinearity. Table 5 reports the RE es-

timates of predictor coefficients and the empirical v weights determined by equation (11)

for the Basque example. The percentage of the working age population with some high

school and the sectoral share of marketable services are found to be statistically significant

predictors. Together with the percentage of the working age population with high school or

higher education, those two significant predictors are the three most influential predictors

that receive more than 70% weight. On the other hand, the empirical v weights are relatively

balanced among the other predictors, except for population density, which is attributed less

than 1% weight. In addition, the overall empirical fit of the RE panel regression is 0.8808,

with the between and within effects being 0.8734 and 0.9277, respectively. Note that 78%

of the unexplained variation of the outcome is attributed to the random effects and that the

random effects are statistically significant.

Given the empirically set v weights, we next determine the optimalw weights to construct

the synthetic Basque by using the two-step procedure described in Section 4.1. The donor

weight is assigned to Cantabria (79.9%), Catalonia (12.4%), and Madrid (7.7%). Interest-

ingly, Cantabria enters the synthetic control with a large weight. Cantabria is a neighboring

region to the Basque Country, but it was not included in any of the the three synthetic

controls considered in Section 3.3. However, it was one of the components that construct

the synthetic controls for Catalonia considered in the placebo study of Section 2.2.
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Table 5. Predictor coefficients and empirical predictor weights for the Basque example.

Predictors Coefficients Robust standard errors Empirical v

Schooling of working age population (%)

Up to primary school 0.0397 0.0264 0.0532

With some high school 0.2567∗∗∗ 0.0527 0.3439

With high school or above 0.2126 0.2275 0.2848

Investment ratio -0.0085 0.0068 0.0114

Sectoral shares (%)

Agriculture, forestry, and fishing 0.0150 0.0335 0.0201

Energy and water 0.0196 0.0389 0.0262

Industry 0.0446 0.0368 0.0598

Construction and engineering -0.0477 0.0715 0.0639

Marketable services 0.1007∗∗ 0.0397 0.1349

Population density -0.0014 0.0016 0.0019

Intercept -5.7426∗∗ 2.9123

R2: within = 0.9277, between = 0.8734, overall = 0.8808

σγ̂ = 0.2062, σε̂ = 0.1099, ρ = 0.7789 (fraction of variance due to γi)

Note: * p ≤ 0.10; ** p ≤ 0.05; *** p ≤ 0.01.
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Figure 2 illustrates the impact of the alternative strategy to set v on the evolution of the

synthetic Basque. The time series start from 1960, which is the first year in the panel model.

Note that the absolute RE weights approach with bias-correction yields notably better fit

to the pre-treatment outcomes than the “canonical” SCM that does not use any predictors,

which is exactly the same as the “global optimum” considered in Section 3.3 obtained by

assigning all weight to a single predictor. The synthetic Basque based on the absolute RE

weights still identifies the treatment effect of Basque terrorism on real GDP per capita.

However, the treatment effect is considerably smaller than the “canonical” synthetic control

that does not use any predictors. The treatment effect disappears by the mid-1990s. This

example illustrates that appropriate use of the predictors does influence the results, and can

potentially affect the qualitative conclusions.
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Fig. 2. The impact of alternative approaches on the evolution of synthetic Basque.

One of the key assumptions of any treatment effect model is that the control group is

not exposed to the treatment. This assumption does not, strictly speaking, hold in the

present application because a significant proportion of Euskadi Ta Askatasuna (ETA)’s ter-

rorism activity took place in other regions, including Madrid and Catalonia, which have
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large weight in the synthetic control. Abadie and Gardeazabal (2003) indicate that 69% of

deaths attributed to terrorism occurred in the Basque Country, which directly implies that

almost one third of deaths occurred in the regions that form the donor pool. Further, the

specification of the pre-treatment and post-treatment periods (before and after 1970, respec-

tively) could be debated. ETA was founded in 1968 and there were three victims during the

pre-treatment period, but only one victim during the first three years of the post-treatment

period. The difference between the actual outcome and the counterfactual synthetic control

becomes evident from the year 1975 onwards, which matches perfectly with the death of

Dictator Franco and the transition towards democracy. While we do not intend to deny

the economic cost of ETA’s terrorism, perhaps at least some part of the observed treatment

effect may be attributed to the economic transition from Franco’s dictatorship to democracy,

which had varying effects across different regions of Spain. Of course, ETA’s terrorism is

also closely related to this historical context, but ETA’s terrorism did not cause the major

political regime shift in Spain.

4.3 Uniform weights to standardized predictors

Suitable panel data are not always available for the purposes of SCM. The original appli-

cation to California’s tobacco control program is one example of such application. Another

possibility would be to apply uniform v weights when panel data for the predictors are simply

unavailable. In this approach, we propose to first standardize the predictors as

zik = (xik–x̄k)) / std(xk).

and subsequently apply equal weights vk = 1/K to the standardized predictors. By doing

so, all predictors will count, and the weights are invariant to rescaling or changing the units

of measurement.

We next illustrate the application of uniform v weights by revisiting the California to-

bacco control application. The donor weights are obtained by applying the two-stage pro-

cedure proposed in Section 4.1. This yields the following optimal donor weights: Colorado

(62.6%), Connecticut (27.8%), Texas (6.5%), and Utah (3.2%). Colorado was included in

the synthetic control in the examples of Sections 2.2 and 3.3, but the use of standardized

uniform predictor weights notably increases its weight. In contrast, Utah was previously
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assigned the largest weight, but in the present analysis it gets only 3.2% weight.
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Fig. 3. The impact of alternative approaches on the evolution of synthetic California.

Figure 3 illustrates the impact of the uniform v on the evolution of the synthetic Cali-

fornia. Note that in this example the uniform v approach leads to worse empirical fit to the

pre-treatment outcomes than the “canonical” SCM that does not use any predictors. There

is a trade-off: when we put more emphasis on optimizing the empirical fit with respect to

predictors X, then the fit with respect to pre-treatment outcomes y is likely to deteriorate,

and vice versa. The good pre-treatment fit of Synth is to some extent illusion because it

tends to put negligibly small weight to many predictors.

However, it is reassuring to find that the post-treatment outcomes of the synthetic Cali-

fornia based on uniform v are very similar to those of the “canonical” synthetic California.

Therefore, the use of predictors mainly affects the pre-treatment fit, but not so much the

post-treatment. One would be mainly interested in the post-treatment effect, so this would

help to support the empirical finding that there was indeed impact. In fact, we suggest that

one could examine a range of alternative v weights for testing robustness of the treatment

effect (as an additional tool, in addition to the placebo trials and statistical tests that are

already known in the literature).
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In summary, the main point of Section 4 is to demonstrate that alternative data-driven

approaches to determine the weights v are available. The empirical comparisons above

demonstrate that the introduction of empirically determined v weights presents a viable

remedy to the ill-designed Synth algorithm. While the relative merits of the alternative

approaches clearly warrant further research, in light of the problems discussed in Sections 2

and 3, we strongly recommend that the suboptimal weights produced by Synth should not

be used.

5 Conclusions

SCM has proved a highly appealing approach to estimate causal treatment effects in a

comparative case study setting, as a large number of published applications clearly demon-

strate. Unfortunately, the computational difficulties caused by joint optimization of the

donor weights and the predictor weights cast serious doubts on the reliability of this method.

The purpose of this paper was to demonstrate the inherent design flaw of SCM, but also

propose a constructive solution. The contributions of our paper are three-fold.

Firstly, we revisited the two original SCM applications to illustrate that arbitrary re-

ordering of the rows or columns of the data can change the results produced by the Synth

algorithm. Klößner et al. (2018) have previously pointed out a similar problem, but their

diagnosis was misleading. Our results demonstrate that the numerical instability of Synth is

an even more serious issue, affecting the original SCM setting. However, numerical instability

is merely a symptom, not the root cause of the problem.

Secondly, we examined the explicit bilevel optimization formulation of the SCM problem

by Malo et al. (2020). By applying insights from the game theory, we explained why the

optimal solution to the SCM problem is typically a corner solution where all weight is assigned

to a single predictor and all other predictors become redundant. This is also the case in

the two original SCM applications. We stress that development of a better computational

algorithm is not the solution that we advocate because it does not help to address the

root cause of the problem. While the optimal solution is not always a corner solution, the

computational complexity of the NP-hard bilevel optimization can explain why Synth and

other SCM algorithms generally fail to converge to the optimum.

Thirdly, we proposed to address the root cause of the problem by estimating the predictor
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weights and the donor weights separately. We first proposed a simple two-step procedure

to optimize the donor weights for a given set of predictor weights. We then explored two

simple empirical strategies to determine the predictor weights using panel data regression or

applying uniform weights to standardized predictors.

We illustrated the application of the proposed data-driven approaches to determine the

predictor weights by revising the two original SCM applications to Basque terrorism and

the California tobacco control program. Our results demonstrate that alternative empirical

strategies to determine the predictor weights are readily available and, in our view, yield

meaningful results. While further research is clearly needed, there is no excuse to apply

suboptimal weights that are just artifacts of a computational failure.

This study opens several important avenues for future research, both empirical and

methodological studies. From the empirical point of view, the findings of our paper call

for systematic replication of the published SCM studies to examine whether and to what

extent the use of suboptimal weights produced by Synth has affected the qualitative conclu-

sions. Becker and Klößner (2017) is an excellent example of such a replication study. We

hope that the qualitative results of the influential SCM studies prove robust to the opti-

mization errors that are evidently present, but this remains to be tested empirically. Our

replication of the two original applications of SCM showed that the suboptimal weights yield

somewhat different results than the optimal ones, but fortunately the qualitative conclusions

of these two studies remain. The source code and documentation provided in Appendix C

and the online supplementary material can be easily adapted to other data sets for replication

purposes.

From the methodological point of view, while we strongly recommend the users of the

classic SCM to determine the predictor weights a priori, we do not consider the joint opti-

mization of the predictor weights and the donor weights entirely hopeless. However, the loss

function to be minimized requires careful reconsideration to ensure that the optimal solution

is meaningful for the intended purposes of using the predictors, and that the problem re-

mains computationally tractable. In this respect, utilizing the structural similarity of SCM

with the benefit-of-the-doubt weighting (e.g., Cherchye et al., 2007) could provide useful

insights. It would also be helpful to establish more detailed practical guidelines regarding

what kind of variables are suitable predictors for SCM. At present, many SCM studies in-
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clude a mixed set of predictors expressed in levels, logs, differences, and percentage growth

rates, which appears potentially problematic. Finally, we hope that the insights of our paper

might contribute to further integration of SCM with other estimation approaches such as the

difference-in-differences, panel data regression, and machine learning; several recent studies

such as Doudchenko and Imbens (2017), Xu (2017), Amjad et al. (2018), Arkhangelsky et

al. (2018), Ben-Michael et al. (2018), Abadie and L’Hour (2020), and Chernozhukov et al.

(2020) have made impressive progress in this direction. Again, we hope that the results of

the present study can help to strengthen the foundation of SCM.

Beyond SCM and treatment effect models, we hope that the findings of our paper would

help to stimulate further discussion about the importance of corner solutions, and the role

of optimization in economics more broadly. It is standard in economics to assume away the

corner solutions, for the sake of convenience, so much so that the corner solutions appear to

be a blind spot. However, relevant problems are not always well-behaved: we have shown

that the SCM problem is NP-hard with a strong tendency towards corner solutions.

For a long time, optimization theory was central to economics as the economic theory was

heavily based on the idea of rational agents making optimal decisions. However, behavioral

economists have successfully challenged the rational paradigm during the recent decades.

In our interpretation, the design flaw of SCM discussed in this paper is intimately related

to the declined status of optimization in economics. Our results strongly suggest that the

SCM paradigm has placed too much faith on a black-box algorithm. In light of the growing

interest in artificial intelligence, machine learning, and similar techniques, we hope that this

study might serve as a healthy reminder to the economics profession about the possible risks

associated with the replacement of rigorous optimization by black-box algorithms.
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Supplementary materials

Appendix A Demonstrating the failure of Synth when the predic-

tor weights are given a priori

This appendix demonstrates numerically that the Synth algorithm does not always find

the optimal donor weights w even when the user has predefined the predictor weights.

Table A1 reports the results obtained in one of the robustness checks to the re-examination

of the California tobacco control application reported in Section 4.3. We emphasize that

the predictor weights v reported at the bottom part of the table should be interpreted as

subjective weights given by the user.

We have inserted exactly the same set of predictor weights v to both Synth and our

two-step algorithm proposed in Section 4.1. Table A1 demonstrates that the donor weights

w produced by Synth differ substantially from the optima ones. Note that the donor weights

w influence both the upper-level and lower-level loss functions LV and LW . The comparison

of the loss functions reveals that the results produced by Synth are far from optimal in this

case. This example demonstrates that Synth is not reliable even in the drastically simplified

case where the user has prespecified the predictor weights by some other method.
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Table A1. California tobacco control application revisited: Synth fails to find the optimal
donor weights w⋆ even when the predictor weights v are defined by the user.

Synth Optimum Synth Optimum

w w

Alabama 0.0021 0.0000 Nevada 0.1842 0.2324

Arkansas 0.0018 0.0000 New Hampshire 0.0057 0.0000

Colorado 0.0117 0.1193 New Mexico 0.0034 0.0000

Connecticut 0.0036 0.0169 North Carolina 0.0311 0.0000

Delaware 0.0018 0.0000 North Dakota 0.0147 0.0613

Georgia 0.0018 0.0000 Ohio 0.0019 0.0000

Idaho 0.0213 0.0404 Oklahoma 0.0050 0.0000

Illinois 0.0042 0.0000 Pennsylvania 0.0028 0.0000

Indiana 0.0017 0.0000 Rhode Island 0.0017 0.0000

Iowa 0.0042 0.0000 South Carolina 0.0017 0.0000

Kansas 0.0036 0.0000 South Dakota 0.0045 0.0000

Kentucky 0.0000 0.0000 Tennessee 0.0017 0.0000

Louisiana 0.0036 0.0000 Texas 0.0064 0.0000

Maine 0.0022 0.0000 Utah 0.3315 0.3302

Minnesota 0.0057 0.0000 Vermont 0.0024 0.0000

Mississippi 0.0025 0.0000 Virginia 0.0018 0.0000

Missouri 0.0019 0.0000 West Virginia 0.0026 0.0000

Montana 0.3088 0.1995 Wisconsin 0.0037 0.0000

Nebraska 0.0051 0.0000 Wyoming 0.0059 0.0000

v v

income 0.0000 0.0000 smoking 1988 0.0296 0.0296

retail price 0.0005 0.0005 smoking 1980 0.5082 0.5082

percent 15–19 0.0008 0.0008 smoking 1975 0.4604 0.4604

beer consumption 0.0005 0.0005

LV 6.89385 5.16664 LW 0.00013 0.00007

Note: Following the notation of Synth, “income” denotes personal income per capita; “retail price” denotes
average retail price of cigarettes; “percent 15–19” denotes the percentage of the population aged 15–19; “beer
consumption” denotes beer consumption per capita; and “smoking” denotes cigarette sales per capita.
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Appendix B Imputation of missing values

The Synth R package contains the original data for the Basque terrorism application. This

data set contains incomplete panel data for the predictors across different regions in the

pre-treatment period (1960–1969). See Abadie et al. (2011) for more details.

For the six sectoral share predictors (i.e., “sec.agriculture”, “sec.energy”, “sec.industry”,

“sec.construction”, “sec.services.venta”, and “sec.services.nonventa”), panel data are avail-

able for odd years only (1961, 1963, . . ., 1969). We replaced the missing values in even years

from 1962 through 1968 with the mean of the data of two adjacent years. We then estimated

a linear time trend by regressing the values of 1961–1969, and used the predicted value for

the year 1960.

For the four schooling predictors (i.e., “school.illit”, “school.prim”, “school.med”, and

“school.high”) and the predictor “investment ratio”, panel data are available only for the

years 1964–1969. Again, we estimated a linear time trend by regressing the values of 1964–

1969, and used the predicted values for the years 1960–1963.

Finally, the predictor “population density” was observed only in the year 1969. Since the

population density usually changes very slowly, in the absence of better data, we used the

observed value of population density in the year 1969 throughout the pre-treatment period

1960–1969.
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Appendix C R code

In this appendix we provide some essential R code (functions) to help the reader to reproduce

our empirical results or adapt the code for their own applications. The complete code and

documentation are available as the online supplementary material and are updated regularly

at GitHub (https://github.com/Xun90/SCM-Debug.git).

Step 1: Load necessary R packages.

library("Synth") #Synth package

library(kernlab) #QP solver 1: ipop

library(LowRankQP) #QP solver 2: LowRankQP

library(lpSolve) #LP solver

library(matrixcalc) #for matrix calculations

Step 2: Re-examine the Synth results for the California tobacco control application with

1,000 random reorderings of predictors.

##loop on 1000 random orders

lossV <- matrix(0, 1000, 1)

lossW <- matrix(0, 1000, 1)

W <- matrix(0, 38, 1000)

V <- matrix(0, 7, 1000)

C <- matrix(0, 7, 1000)

set.seed (42)

for (i in 1:1000){

row <- sample(nrow(X0))

C[,i] <- row

dataprep.out$X0 <- X0[row ,]

dataprep.out$X1 <- as.matrix(X1[row ,])

synth.out <- synth(data.prep.obj = dataprep.out , method = "BFGS")

lossV[i,] <- synth.out$loss.v

lossW[i,] <- synth.out$loss.w

W[,i] <- synth.out$solution.w

sorted <- cbind(row , t(synth.out$solution.v))

sorted <- sorted[order(sorted[,"row"]) ,]

V[,i] <- sorted [,2]}

Step 3: Re-examine the Synth results for the California tobacco control application with

1,000 random reorderings of donors.

##loop on 1000 random orders

lossV <- matrix(0, 1000, 1)

lossW <- matrix(0, 1000, 1)

W <- matrix(0, 38, 1000)

V <- matrix(0, 7, 1000)

C <- matrix(0, 38, 1000)

set.seed (42)

for (i in 1:1000){

column <- sample(ncol(X0))

C[,i] <- column

dataprep.out$X0 <- X0[,column]

dataprep.out$Z0 <- Y0pre[,column]

synth.out <- synth(data.prep.obj = dataprep.out , method = "BFGS")

lossV[i,] <- synth.out$loss.v

lossW[i,] <- synth.out$loss.w
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V[,i] <- t(synth.out$solution.v)

sorted <- cbind(column , synth.out$solution.w)

sorted <- sorted[order(sorted[,"column"]) ,]

W[,i] <- sorted [,2]}

Step 4: Run the R function that implements the iterative algorithm proposed by Malo

et al. (2020) to check for the feasibility of the unconstrained optimum and the possibility of

corner solutions.

scm.corner <- function(Y1pre ,Y0pre ,X1 ,X0){

##step1

Tpre <- dim(Y0pre)[1]

nDonors <- dim(Y0pre)[2]

#QP setup

c1 <- -t(Y0pre) %*% Y1pre

H1 <- t(Y0pre) %*% Y0pre

A1 <- matrix(rep(1,nDonors), ncol = nDonors)

b1 <- 1

r1 <- 0

l1 <- matrix(rep(0,nDonors), nrow = nDonors)

u1 <- matrix(rep(1,nDonors), nrow = nDonors)

#run QP

step1_ipop <- ipop(c = c1 , H = H1 , A = A1 , b = b1 , l = l1 , u = u1 , r = r1 ,

margin = 0.0005 , maxiter = 1000, sigf = 7, bound = 10) #QP_Solver1

step1_lowr <- LowRankQP(Vmat = H1 , dvec = c1 , Amat = A1 , bvec = b1 , uvec = u1 ,

method = "LU") #QP_Solver2

W_ipop <- matrix(step1_ipop@primal , nrow = nDonors)

W_lowr <- step1_lowr$alpha

L1_ipop <- (t(Y1pre) %*% Y1pre)/Tpre + 2/Tpre * (t(c1) %*% W_ipop

+ 0.5 * t(W_ipop) %*% H1 %*% W_ipop)

L1_lowr <- (t(Y1pre) %*% Y1pre)/Tpre + 2/Tpre * (t(c1) %*% W_lowr

+ 0.5 * t(W_lowr) %*% H1 %*% W_lowr)

##step2

#normalize X - Synth

nvarsV <- dim(X0)[1]

big.dataframe <- cbind(X0 , X1)

divisor <- sqrt(apply(big.dataframe , 1, var))

scaled.matrix <- t(t(big.dataframe) %*% ( 1/(divisor)

* diag(rep(dim(big.dataframe)[1], 1)) ))

X0.scaled <- scaled.matrix[,c(1:( dim(X0)[2]))]

if(is.vector(X0.scaled)==TRUE)

{X0.scaled <- t(as.matrix(X0.scaled))}

X1.scaled <- scaled.matrix[,dim(scaled.matrix)[2]]

#LP setup

f.obj_ipop <- (X1.scaled - X0.scaled %*% W_ipop)^2

f.obj_lowr <- (X1.scaled - X0.scaled %*% W_lowr)^2

f.con <- rbind(rep(1,nvarsV), diag(x = 1, nrow = nvarsV))

f.dir <- c("=", rep(">=",nvarsV))

f.rhs <- c(1, rep(0,nvarsV))

#run LP

step2_ipop <- lp ("min", f.obj_ipop , f.con , f.dir , f.rhs)

step2_lowr <- lp ("min", f.obj_lowr , f.con , f.dir , f.rhs)

V_ipop <- step2_ipop$solution

V_lowr <- step2_lowr$solution

L2_ipop <- step2_ipop$objval

L2_lowr <- step2_lowr$objval

scm.corner.out <- list(W = cbind(W_ipop ,W_lowr), V = cbind(V_ipop ,V_lowr),

Lv = c(L1_ipop ,L1_lowr), Lw = c(L2_ipop ,L2_lowr))

return(scm.corner.out)}

37



Step 5: Run the R function that implements the two-step procedure described in Section

4.1. This implementation is currently a hybrid of Section 4.1 and Malo et al. (2020). Since

there are currently no reliable solvers in R for the second-stage convex programming problem,

we solve the non-Archimedean problem (8) iteratively, decreasing ε towards zero until the

objective function reaches the optimal solution of the first-stage QP problem.

two.step.iterative <- function(Y1pre ,Y0pre ,X1.scaled ,X0.scaled ,SV){

#SV - predictor weights defined by the user

##Solve non -Archimedean problem (8)

Tpre <- dim(Y0pre)[1]

nDonors <- dim(Y0pre)[2]

#QP setup

A <- matrix(rep(1,nDonors), ncol = nDonors)

b <- 1

r <- 0

l <- matrix(rep(0,nDonors), nrow = nDonors)

u <- matrix(rep(1,nDonors), nrow = nDonors)

#Loop on 10 epsilon values (0.1^1 ... 0.1^10) to find the best performer

L_upper = matrix(0, 10, 2)

L_lower = matrix(0, 10, 2)

W_ipop = matrix(0, nDonors , 10)

W_lowr = matrix(0, nDonors , 10)

for (i in 1:10){

eps <- 0.1^(i) #epsilon - penalty term

c <- (-t(X0.scaled) %*% diag(SV1) %*% X1.scaled) - eps * t(Y0pre) %*% Y1pre

H <- t(X0.scaled) %*% diag(SV1) %*% X0.scaled + eps * t(Y0pre) %*% Y0pre

#run QP

QP_ipop <- ipop(c = c, H = H, A = A, b = b, l = l, u = u, r = r,

margin = 0.0005 , maxiter = 1000, sigf = 7, bound = 10) #QP_Solver1

QP_lowr <- LowRankQP(Vmat = H, dvec = c, Amat = A, bvec = b, uvec = u,

method = "LU") #QP_Solver2

W_ipop[,i] <- matrix(QP_ipop@primal , nrow = nDonors)

W_lowr[,i] <- QP_lowr$alpha

L_upper[i,1] <- 1/Tpre * t(Y1pre - Y0pre %*% W_ipop[,i]) %*%

(Y1pre - Y0pre %*% W_ipop[,i])

L_upper[i,2] <- 1/Tpre * t(Y1pre - Y0pre %*% W_lowr[,i]) %*%

(Y1pre - Y0pre %*% W_lowr[,i])

L_lower[i,1] <- t(X1.scaled - X0.scaled %*% W_ipop[,i]) %*% diag(SV1) %*%

(X1.scaled - X0.scaled %*% W_ipop[,i])

L_lower[i,2] <- t(X1.scaled - X0.scaled %*% W_lowr[,i]) %*% diag(SV1) %*%

(X1.scaled - X0.scaled %*% W_lowr[,i])}

##Use the first step of the two -step procedure in Section 4.1 to determine epsilon

c1 <- (-t(X0.scaled) %*% diag(SV) %*% X1.scaled)

H1 <- t(X0.scaled) %*% diag(SV) %*% X0.scaled

#run QP

QP_ipop1 <- ipop(c = c1 , H = H1 , A = A, b = b, l = l, u = u, r = r,

margin = 0.0005 , maxiter = 1000, sigf = 7, bound = 10) #QP_Solver1

QP_lowr1 <- LowRankQP(Vmat = H1 , dvec = c1 , Amat = A, bvec = b, uvec = u,

method = "LU") #QP_Solver2

W_ipop1 <- matrix(QP_ipop1@primal , nrow = nDonors)

W_lowr1 <- QP_lowr1$alpha

W1 <- cbind(W_ipop1 , W_lowr1)

obj_left <- t(X1.scaled) %*% diag(SV) %*% X1.scaled

Lw_ipop1 <- obj_left + 2 * (t(c1) %*% W_ipop1 + 1/2 * t(W_ipop1) %*% H1 %*% W_ipop1)

Lw_lowr1 <- obj_left + 2 * (t(c1) %*% W_lowr1 + 1/2 * t(W_lowr1) %*% H1 %*% W_lowr1)

Lw1 <- c(Lw_ipop1 , Lw_lowr1)

two.step.iterative.out <- list(W = cbind(W_ipop ,W_lowr), W1 = W1 , V = SV ,

L_upper = L_upper , L_lower = L_lower , Lw1 = Lw1)

return(two.step.iterative.out)}
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