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Abstract 

The continued development of artificial intelligence (AI) has changed production methods but 

may also pose challenges related to energy consumption; in addition, the effectiveness of AI 

differs across industries. Thus, to develop efficient policies, it is necessary to discuss the effect of 

AI adoption on energy intensity and to identify industries that are more significantly affected. 

Using data on industrial robots installed in 16 Chinese industrial subsectors from 2006 to 2016, 

this paper investigates both the effect of AI on energy intensity and the channel through which 

this effect is transmitted. The empirical results show, first, that boosting applications of AI can 

significantly reduce energy intensity by both increasing output value and reducing energy 

consumption, especially for energy intensities at high quantiles. Second, compared with the 

impacts in capital-intensive sectors (e.g., basic metals, pharmaceuticals, and cosmetics), the 

negative impacts of AI on energy intensity in labor-intensive sectors (e.g., textiles and paper) and 

technology-intensive sectors (e.g., industrial machinery and transportation equipment) are more 

pronounced. Finally, the impact of AI on energy intensity is primarily achieved through its 

facilitation of technological progress; this accounts for 78.3% of the total effect. To reduce 

energy intensity, the Chinese government should effectively promote the development of AI and 

its use in industry, especially in labor-intensive and technology-intensive sectors. 

 

Keywords: artificial intelligence; energy intensity; energy consumption; industrial robot; China 
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1. Introduction 

Energy is the material basis and a strong driver of economic development (Yu and Choi, 

1985; Hall et al., 2003; IEA, 2018; Pinzón, 2018). With the acceleration of industrialization, 

China’s economy has displayed unparalleled growth, as has its energy consumption, resulting in 

severe energy shortages and environmental pollution (Lin and Xu, 2019). In fact, China’s energy 

consumption has exceeded that of the US since 2009, making China the world’s largest energy 

consumer (Dong et al., 2018). However, excessive energy consumption can trigger energy 

depletion and environmental pollution and thereby severely restrict the sustainable development 

of China’s economy (Chen et al., 2019). With the country facing energy conservation and green 

transition pressures, reducing energy intensity (i.e., energy consumption in production per unit of 

output value), as a simultaneous indicator of energy efficiency and economic development, has 

become one of China’s most important tasks (Lin and Tan, 2017). For example, in the 13th 

Five-Year Plan of China (2016-2020), the Chinese government pledged to reduce energy 

intensity by at least 15% compared to its 2015 baseline. Therefore, identifying the factors that 

drive energy intensity in China has become a subject of interest to researchers and to the 

government in recent years, and clarifying the related influencing factors is helpful for making 

more effective energy policies (Huang and Chen, 2020). 

Artificial intelligence (AI) is one of the most promising technologies currently under 

development and in deployment (Acemoglu and Restrepo, 2020a). Broadly speaking, AI can be 

defined as “the capability of a machine to imitate intelligent human behavior”; it drives 

innovations such as machine learning, deep learning, natural language processing, robots, and 

others (Cockburn et al., 2018), allowing an incremental number of tasks previously performed by 

human physical and brain power to be automated and significantly increasing efficiency and 

productivity (Aghion et al., 2017). China has attached great importance to the development of its 

AI industry, elevating it to a national strategy. In 2017, the Chinese government published “A 

New Generation of Artificial Intelligence Development Plan”, which guided the development of 

AI and established the goal of making China the global innovation center of this field by 2030 

(Fatima et al., 2020). 



3 

 

These expectations notwithstanding, AI also has some noneconomic consequences that have 

both positive and negative impacts on energy consumption (Vinuesa et al. 2020), resulting in an 

uncertain impact on energy intensity. More specifically, by replacing and supplementing the 

physical and brain power of humans, AI may boost technological progress, and this is the 

primary driver of AI-related reductions in energy intensity (Haas and Kempa, 2016; Brynjolfsson 

et al., 2017). Nonetheless, compared to energy-consuming technologies such as machine learning 

and industrial robotics, the physical and brain power of humans is incredibly efficient and 

involves far less energy consumption, while AI research and applications such as deep learning 

platforms demand large amounts of energy (Lu et al., 2018; Vinuesa et al., 2020). For instance, 

the energy consumption and CO2 emissions required to train a common natural language 

processing model are five times higher than those required to produce and use a car (Strubell et 

al., 2019). This environmental cost is even higher in China, where cloud computing providers 

derive 65% of the energy they consume from carbon and 22% from renewable energy sources, in 

comparison to the corresponding values of 38% and 40% in Germany and 27% and 17% in the 

US (Strubell et al., 2019). In addition, although energy consumption can be reduced by AI to 

some extent, AI may also increase it due to the enormous stimulus that AI provides to economic 

growth, causing a rebound effect (Grant et al., 2016). Does application of AI lead to lower energy 

intensity? Furthermore, what is the mechanism through which AI affects energy intensity? 

Considering the industrial sector’s enormous energy demand, which accounts for 

approximately 70% of China’s total energy consumption (Luan et al., 2020), this paper takes 16 

Chinese industrial subsectors as a sample and investigates the impact of AI penetration on energy 

intensity and the transmission channel of this effect using data on industrial robot adoption from 

2006 to 2016. These data offer us a complete picture of AI in industrial sectors (McElheran, 

2018). First, we discuss the effect of AI on energy intensity using the ordinary least squares 

(OLS), fixed effects (FE), random effects (RE), and feasible generalized least squares (FGLS) 

methods and further test the separate impacts of AI on industrial output value and energy 

consumption. Second, we employ the quantile regression (QR) model to analyze the effect of AI 

on different conditional distributions of energy intensity. Third, the industry heterogeneity in the 
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responses of energy intensity to AI is evaluated by incorporating dummy variables for different 

factor-intensive sectors. Fourth, using the two-stage least squares (2SLS) model and alternative 

measurements of AI, we test the robustness of our conclusions. Finally, we further examine the 

transmission channel connecting AI to energy intensity by introducing technological progress as 

a mediator variable. Figure 1 shows the research framework of this paper. 

(Insert Figure 1 about here) 

 

Most relevant to our study are the papers by Røpke and Christensen (2012), Wang and Han 

(2016), Zhou et al. (2018) and Avom et al. (2020), which estimate the effect of information and 

communications technology (ICT) on energy intensity. Unlike prior studies, we attempt to 

investigate the effect of industrial robot adoption on energy intensity in various industrial sectors. 

The International Federation of Robotics (IFR) defined “multipurpose manipulating industrial 

robots” based on the definition provided by the International Organization for Standardization 

(ISO). According to IFR, an industrial robot is defined in ISO 8373 as an “automatically 

controlled, reprogrammable multipurpose manipulator programmable in three or more axes, 

which may be either fixed in place or mobile for use in industrial automation applications” (see 

https://ifr.org/). That is, industrial robots are fully autonomous machines that can be programmed 

to perform multiple manual tasks without human intervention (Acemoglu and Restrepo, 2020b). 

This definition excludes software and other automated machines such as textile looms, transport 

bands and cranes (Acemoglu and Restrepo, 2020b). These capabilities also distinguish industrial 

robots from innovations developed during the earlier waves of automation and from more 

conventional ICT, which lack three-dimensional flexible movement capability (Graetz and 

Michaels, 2018). However, industrial robots may pose a new challenge to energy consumption 

(Brossog et al., 2015). First, industrial robots depend on ICT, especially on machine learning and 

deep learning, for programming and control, resulting in high energy demands (Vinuesa et al., 

2020). Second, because more energy is needed to drive the hardware apparatus of industrial 

robots (Pastras et al., 2019), it is crucial to clarify the consequences of AI, especially industrial 

robots, for energy intensity and the mechanisms of the effect. 
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The novelty of this study is twofold. First, to the best of our knowledge, this is the first study 

to investigate the effect of AI on energy intensity. In the previous literature, the positive impacts 

of AI on economic growth have been widely discussed, while little attention has been paid to the 

effects of AI on energy consumption and on the environment, effects that are directly related to 

the sustainability of economic development. Second, we not only investigated the effect of AI on 

energy intensity by detailing the impact of AI on output value and energy consumption, and the 

channels through which the impact occurs but also further validated the industry heterogeneity. 

Industrial characteristics affect the relationship between AI implementation and the change in 

energy intensity because of technical differences across industries (Fujii and Managi, 2013). The 

capital equipment and labor requirements for energy savings differ across industries because the 

types of fuel consumed also differ. Therefore, industrial characteristics provide important 

information for creating effective AI implementation policies for energy intensity reduction in 

every industry. Furthermore, we decompose the effect of AI on energy intensity into direct 

effects and indirect effects via technological progress using the mediation effect model; this 

decomposition is helpful in allowing us to quantify the transmission channel that connects AI to 

energy intensity. 
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2. Literature review 

Substantial recent literature has confirmed that energy intensity is driven by technological 

progress such as the use of more efficient production technologies and newer vintages of capital 

equipment (technology effects) and changes in the composition of the economy (structural effects) 

(Fisher-Vanden et al., 2006; Voigt et al., 2014; Huang et al., 2017). In addition, foreign direct 

investment (FDI) (Huang et al., 2018), research and development (R&D) (Chen et al., 2019), 

ownership type (Luan et al., 2020), enterprise size (Zhang et al., 2010; Lin et al., 2018), factor 

endowment (Lan et al., 2012; Bu et al., 2019), and other factors affect how AI changes energy 

intensity. The impact of AI has been heatedly discussed in recent years from different 

perspectives, including the points of view of economic growth (productivity) (Bard, 1986; 

Dirican, 2015; Purdy and Daugherty, 2017; Aghion et al., 2017; Brynjolfsson et al., 2017; Graetz 

and Michaels, 2018; Kromann et al., 2020; Jung and Lim, 2020; Camiña et al., 2020; Ballestar et 

al., 2020), innovation (Cockburn et al., 2018; Liu et al., 2020; Li et al., 2020; Yang et al., 2020), 

employment (Howell, 1985; Edler and Ribakova, 1994; Acemoglu and Restrepo, 2018, 2020a, 

2020b; Chiacchio et al., 2018; Dauth et al., 2018; Barbieri et al., 2019; Carbonero et al., 2020; 

Dekle, 2020; Ballestar et al., 2020; Jung and Lim, 2020), and sustainable economic development 

(Vinuesa et al., 2020; Machado et al., 2020; Liu et al., 2021). 

From an overview of these studies, it is easy to note that energy intensity is heavily 

influenced by technological progress, which may be triggered by the penetration of AI. That is, 

the increased use of AI may drive energy intensity by facilitating technological progress. 

Unfortunately, we found no literature that discusses the effect of AI on energy intensity, 

including the role of technological progress in this effect. To motivate our paper, we particularly 

emphasize the technological factors. 

 

2.1. Technologies and energy intensity 

The essence of an industrial revolution is the shift from an economy dependent on land 

resources to an economy dependent on fossil fuels (Wrigley, 1998). Modern technologies, such 
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as steam engines in the 18th century, internal combustion engines since the 19th century and now, 

increasingly, the use of electricity, are at least partially associated with energy consumption (Koh 

and Magee, 2018). The global use of fossil fuels as an energy source has increased almost 

800-fold since 1750 and approximately 12-fold in the 20th century (Hall et al., 2003). To 

improve energy efficiency and reduce energy consumption, various technologies for industrial 

processes, boiler operation, compressed air usage, motor efficiency, heating and lighting and 

transport applications have been developed and are available (Dyer et al., 2008). For instance, 

zero- and low-carbon energy technologies use “waste” heat from plants to replace other heat 

sources, thereby reducing energy consumption in plants by 20-40% (Engineering Council, 1998). 

Bioenergy and biowaste utilization, including anaerobic digestion, pyrolysis and gasification, is a 

broad and active field focused on reducing fossil energy dependence (Chowdhury et al., 2018). 

The percentage of bioenergy in the total energy supply was projected to increase to 12.5% by 

2020 and to 15% by 2050 (Chowdhury et al., 2018). Recently, information systems have widely 

penetrated the energy sector from production to consumption, and traditional energy systems 

have been digitalized, resulting in intelligent energy systems (Zhou and Yang, 2015). Through 

the collection of data on energy use and analysis, system design and implementation, information 

systems can improve the efficiency of energy demand and supply systems and optimize energy 

distribution and consumption networks; these tasks have developed into a new subfield, energy 

informatics (Watson et al., 2010). With the increasing amount of data generated and the 

continuously improving computing power, information systems can predict energy compliance 

and enable efficient energy management (Heghedus et al., 2018). 

However, there is no consensus in the literature on the effect of technological progress on 

energy intensity. Specifically, on the one hand, a multitude of studies hold that technological 

progress, especially energy-saving technological progress, increases energy efficiency and 

reduces energy intensity (Li and Wang, 2017; Huang et al., 2017, 2018; Chen et al., 2019; Huang 

and Chen, 2020). For example, using data on 30 Chinese provinces for the period 2000 to 2013, 

Huang et al. (2017) found that technological progress contributes the most to decreases in energy 

intensity, with a 1% gain in R&D capital stock leading to an energy intensity decrease of 
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approximately 0.07%. Similarly, Huang et al. (2018) pointed out that a 1% increase in China’s 

R&D capital stock is linked to a 0.24% decrease in its energy intensity. On the other hand, quite a 

few studies argue that although technological progress can reduce energy consumption and 

improve energy efficiency, lower effective prices cause an energy rebound effect that may trigger 

a disproportionate decrease in actual energy consumption (Khazzoom, 1980; Shao et al., 2014; 

Grant et al., 2016; Lin and Zhao, 2016). Therefore, it remains to be determined how 

technological progress affects energy intensity. 

The increasing use of ICT throughout the economy and society has raised great hopes for 

reducing energy demand (Mickoleit, 2010; Lange et al., 2020). However, like the technological 

progress literature, the literature on the impact of ICT on energy intensity, which is relevant to 

our study, also reveals a lack of consensus. On the one hand, early studies, including those of 

Walker (1986) and Chen (1994), generally concluded that ICT and energy were substitutes for 

each other and that ICT would reduce energy use. Empirically, some studies find that the 

application of ICT can promote energy efficiency and productivity and thereby contribute to 

reducing energy intensity (Røpke and Christensen, 2012; Corbett, 2013; Cai et al., 2013; Wang 

and Han, 2016; Bastida et al., 2019; Avom et al., 2020). For example, Røpke and Christensen 

(2012) pointed out that ICT has great potential for reducing energy consumption but that this 

depends on economic and political conditions. Wang and Han (2016) employed the 

Driscoll-Kraay econometric method to analyze the effect of ICT on energy intensity and found 

that ICT investment negatively drives energy intensity. Bastida et al. (2019) showed that 

ICT-based household energy use interventions can contribute between 0.23% and 3.3% of the EU 

CO2 reduction targets for the energy sector. 

Conversely, other concerns have been raised about the overall effects of ICT on energy 

demand (Faucheux and Nicolaï, 2011; Lange et al., 2020). In recent decades, energy 

consumption and carbon emissions have increased as more and more digital devices have been 

produced and used (Van Heddeghem et al., 2014; Salahuddin and Alam, 2016; Zhou et al., 2018; 

Belkhir and Elmeligi, 2018; Lange et al., 2020). According to Van Heddeghem et al. (2014), the 

electricity consumption of communication networks, personal computers, and data centers has 
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increased by 10%, 5% and 4%, respectively; these increases are larger than the increase in world 

electricity consumption (3%) over the same period. Similarly, based on OECD panel data for the 

period 1985-2012, Salahuddin and Alam (2016) found that OECD countries had not yet secured 

energy efficiency gains from ICT expansion in that period, which saw a 1% increase in the 

number of internet users and a 0.026% increase in per capita electricity consumption. Using the 

three-tier structural decomposition analysis approach, Zhou et al. (2018) found that although 

higher energy efficiency in the ICT sector leads to a slight decrease in energy intensity, structural 

changes in ICT investment increase energy intensity, and the proliferation of ICT products 

increases energy consumption by the production process. Lange et al. (2020) analyzed the direct 

effects of the production, use and disposal of ICT-related products and the effects of ICT on 

productivity and structure and argued that the hope set on saving energy through ICT has not yet 

been fulfilled. Instead of reducing energy consumption, ICT has resulted in additional energy 

use. 

 

2.2. AI and technological progress 

In contrast to the conclusions about the effect of technological progress and ICT on energy 

intensity, there is a general consensus that AI penetration positively affects technological 

progress (Bard, 1986; Dirican, 2015; Purdy and Daugherty, 2017; Aghion et al., 2017; 

Brynjolfsson et al., 2017; Graetz and Michaels, 2018; Kromann et al., 2020; Jung and Lim, 2020; 

Camiña et al., 2020; Ballestar et al., 2020). Theoretically, the impact of AI on technological 

progress is mainly reflected in the following three aspects (Purdy and Daugherty, 2017). First, AI 

can create a new virtual workforce to replace labor in performing programmed tasks (Acemoglu 

and Restrepo, 2020b; Jung and Lim, 2020), enabling “intelligent automation”. The ability of 

robots to acquire and respond to remotely sensed data and to adaptively control the activities of 

machine cells represents just some of the basic capabilities they offer. Their inherent versatility 

emphasizes their advantages over existing stationary automation (Bard, 1986). In a study of 

industrial robot adoption in 42 countries, Jung and Lim (2020) confirmed this labor-substituting 

effect. As Brynjolfsson et al. (2017) noted, even if AI were to replace only 2 million car drivers, 
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labor productivity in the US would increase by more than 1.7%. Based on the data on industrial 

robot adoption in Germany, Dauth et al. (2018) argued that every industrial robot destroyed two 

manufacturing jobs between 1994 and 2014, representing almost 23% of the overall decline in 

manufacturing employment in Germany or approximately 275,000 jobs, but that robots do 

increase labor productivity. Dekle (2020) also demonstrated a positive significant productivity 

effect following the introduction of industrial robots in Japan. 

Second, AI complements and enhances the skills and capabilities of human physical and 

brain power. Using data on industrial robots in 17 countries from 1993 to 2007, Graetz and 

Michaels (2018) found that the contribution of the increasing number of industrial robots to 

annual labor productivity growth is approximately 0.36%, accounting for 15% of total 

productivity growth, and that their contribution to the growth of total factor productivity is 0.26%. 

According to Kromann et al. (2020), industrial robots contribute to increasing total factor 

productivity by more than 5% in 9 countries. Along the same lines, Camiña et al. (2020) 

examined the relationship between the use of industrial robots and long-term productivity gains 

in Spanish industrial firms. 

Third, AI gives rise to technological innovation. AI is not only about supplementing and 

replacing manpower with machines. It also promotes the construction of an innovation ecosystem, 

the formation of corresponding R&D innovation, digestion, absorption and reinvention 

capabilities, and the true promotion of productivity with the introduction and transformation of 

intelligent technologies and equipment as a carrier (Li et al., 2020). In this context, Yang et al. 

(2020) found a significant role of the implementation of AI in promoting the innovation 

performance of China’s manufacturing enterprises. Based on data on industrial robots, Liu et al. 

(2020) confirmed that AI facilitates technological innovation by accelerating knowledge creation 

and technology spillover and increasing learning and absorptive capacity as well as R&D and 

human capital investments. More importantly, AI, especially machine learning, is commonly 

considered to have the potential to become a “general purpose technology”, with such 

technologies long having been an important driving force in technological progress (Brynjolfsson 

et al., 2017). 
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In general, most papers in this field have addressed the role of AI in technological progress. 

However, as already discussed, energy demand is heightened because of the existence of the 

rebound effect, resulting in inconsistent conclusions about the effect of technological progress on 

energy intensity. Machado et al. (2020) theoretically proposed that AI improves productivity and 

resource efficiency in manufacturing production; examples would include the use of big data for 

predictive maintenance and rapid reconfiguration of production systems and reductions in waste, 

energy consumption and overproduction through, for example, sharing of surplus renewable 

energy with other factories. Using a consensus-based expert elicitation process, Vinuesa et al. 

(2020) analyzed the positive and negative effects of AI on the Sustainable Development Goals 

and confirmed that it may potentially benefit the clean energy goals but may undermine the 

climate goals due to the high need for energy, especially when non-carbon-neutral energy sources 

are used. However, there is still a lack of empirical research on the impact of AI on energy 

intensity and on the transmission channel, especially in the case of China, and this is a subject 

that deserves the attention of scholars and policymakers. 

In light of the abovementioned factors, this paper empirically investigates, for the first time, 

the effect of AI on energy intensity based on data from 2006 to 2016 on industrial robots installed 

in 16 Chinese industrial subsectors and further discusses the effects of AI on economic output 

value and energy consumption, the nonlinear impact of AI across different energy intensity 

groups, and industry heterogeneity in these effects. Finally, taking technological progress as a 

mediator variable, we examine the transmission channel through which AI exerts its effect on 

energy intensity.  
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3. Methodology and Data 

3.1. Empirical model 

Referring to existing research and considering the availability of data, we use FDI (Huang et 

al., 2017), ownership status (state or other ownership type) (Luan et al., 2020), enterprise scale 

(Lin et al., 2018), capital intensity (Bu et al., 2019) and R&D level (Huang et al., 2017) as control 

variables in our investigation of the effect of AI on energy intensity. Industrial energy intensity 

can thus be formulated as follows: 

 

0 1 2 3 4 5 6 &
it it it it it it it it

EI AI FDI State C lScal apie ta R D       = + + + + + + +      

(1) 

 

where i and t indicate the sector and year, respectively, EI represents energy intensity, AI 

indicates the level of AI application, FDI, Stata, Scale, Capital and R&D represent FDI, share of 

state-owned enterprises, enterprise scale, capital intensity and R&D level, respectively, 1  to 

6  denote the marginal contributions of the six variables to be estimated, with 1 , the 

coefficient of the core explanatory variable AI, indicating whether AI enables or inhibits energy 

intensity reductions, and   is the error term. 

In general, commonly used estimation methods for panel data are the OLS, FE and RE 

methods. However, in this case, the variables may be autocorrelated, and the fact that the panel 

data cover several subsectors with different sizes and characteristics naturally induces 

heteroskedasticity (Zheng et al., 2011), which has great impact on parameter estimation in the 

OLS, FE and RE methods. In light of this, following Zheng et al. (2011) and Huang et al. (2017), 

the FGLS method is used in the benchmark regression, and the OLS, FE, and RE approaches are 

employed in the robustness checks. 
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3.2. Measurement of energy intensity 

Energy intensity is defined as the total energy consumption in the production of one unit of 

output value. However, the China Industry Statistical Yearbook has not provided data on industry 

output value or added value since 2012. Considering data availability, following Montalbano and 

Nenci (2019) and Alam et al. (2019), this paper selects industry sales value to substitute for 

industry output value or added value and uses the ratio of energy consumption to industry sales 

value to measure energy intensity1. We use the industry deflator to adjust the sales values to real 

2006 prices. At the same time, to match the IFR industry classification standard and China’s 

industrial classification for national economic activities, we divide the overall industrial sector 

into 16 subsectors. These data can be obtained from the China Energy Statistical Yearbook and 

the China Industry Statistical Yearbook. 

 

3.3. Measurement of AI 

In general, AI includes a series of technologies such as machine learning, deep learning, 

natural language processing, robots, and other technologies. (Cockburn et al., 2018). However, 

due to the immateriality of machine learning, deep learning and natural language processing, 

existing studies commonly use industrial robots as a proxy for AI, possibly owing to robots’ 

physical properties, which makes them easier to track over time and space (Acemoglu and 

Restrepo, 2020b; Liu et al., 2020, 2021). Moreover, this paper focuses on the industrial sector, in 

which the level of AI application may be better reflected by the number of industrial robots than 

in other sectors (McElheran, 2018). Therefore, we use the number of industrial robots installed in 

China’s industrial subsectors, as indicated by data provided by the IFR, to measure the AI levels 

of the subsectors. The more industrial robots a subsector is equipped with, the higher is the AI 

level of that subsector. 

 
1 Sales values reflect the overall economic value of products and are less affected by factors other than 
energy-saving activities, such as cost savings through labor cost reduction and reductions in the price of 
intermediate materials. However, sales values are generally larger downstream in the flow of goods from raw 
materials to finished goods. In addition, upstream industries are generally more resource- and energy-intensive. 
Therefore, in general, energy intensity, defined as the total energy consumption in the production of one unit of 
sales value, tends to be higher at the upstream stage and lower at the downstream stage. To deal with this point, 
this study applies industry fixed effects. 
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According to the IFR, China has had the world’s largest industrial robot market since 2013. 

In 2018, China installed 154,032 industrial robot units. Although this represented a 1% reduction 

compared to the 156,176 units installed in 2017, this number of newly installed robots was still 

greater than the corresponding figure for all of Europe and the US (130,772 units)2. Figure 2 

shows the changes in the number of industrial robots installed in China’s 16 industrial subsectors 

during 2006-2016. Over this period, the number of industrial robots equipped in China’s 16 

industrial subsectors rose significantly from 3,690 units in 2006 to 73,121 units in 2016. 

Furthermore, industrial robot applications are heterogeneous across the different industrial 

subsectors. For example, in 2016, the electrical/electronics sector, which had the greatest number 

of industrial robots, was equipped with 29,979 units, while the electricity, gas, and water supply 

sector had only 57 industrial robot units. 

(Insert Figure 2 about here) 

 

3.4. Control variables 

3.4.1. Foreign direct investment (FDI) 

Technology spillovers from FDI are considered an important channel for improving 

environmental performance. In contrast to host country enterprises, transnational corporations 

can transfer advanced technology and management experience to local enterprises through the 

demonstration effect of FDI (Huang et al., 2018). We use the ratio of FDI to industrial sales value 

as a control variable in our empirical model. The data can be obtained from the China Industry 

Statistical Yearbook. 

 

3.4.2. Ownership status (State) 

The features of the internal industrial structure, such as the ownership structure, also have a 

significant effect on energy intensity. Fisher-Vanden et al. (2006) and Luan et al. (2020) point 

out that foreign-owned enterprises have superior management experience compared to that of 

 
2 More details can be found in the report of the IFR (https://www.ifr.org/downloads/press2018/Executive 
Summary WR 2019 Industrial Robots.pdf). 
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state-owned enterprises, leading to generally higher energy efficiency in foreign-owned 

enterprises, and thus, ownership structure reforms in China contribute to decreasing energy 

intensity. We use the ratio of state capital to paid-up capital to represent state ownership. The 

relevant data are collected from the China Industry Statistical Yearbook. 

 

3.4.3. Enterprise scale (Scale) 

Firm size is an important factor affecting energy intensity. On the one hand, larger 

enterprises typically exhibit lower energy intensities than smaller firms due to the advantages in 

efficiency associated with economy of scale (Alok, 2004; Golder, 2011; Fisher-Vanden et al., 

2016; Lin et al., 2018). For instance, Lin et al. (2018) argued that the larger firms are, the more 

efficient is their use of energy and equipment; the authors found that the energy intensity of 

China’s textile industry decreases by 0.216% with a 1% increase in the enterprise scale. These 

scale economies are encouraged by the closure of small-scale, polluting plants and the 

restructuring of enterprises, a phenomenon that is represented in China by the strategy of 

“grasping the large, letting go of the small” (Fisher-Vanden et al., 2016). In addition, larger firms 

tend to adopt more energy efficiency measures than smaller ones (Schleich, 2009). Small and 

medium-sized enterprises (SMEs), especially non-energy-intensive ones, invest less in energy 

management in their production processes and exhibit lower rates of adoption of energy 

efficiency measures than do larger firms (Gruber and Brand, 1991; Cagno et al., 2010). The ratio 

of the industrial sales value to the number of firms is utilized to measure enterprise scale. The 

relevant data are sourced from the China Industry Statistical Yearbook. 

 

3.4.4. Capital intensity (Capital) 

The energy consumption of an industry may be affected by its capital intensity. On the one 

hand, high capital intensity commonly indicates greater machinery and equipment requirements, 

resulting in greater demand for power and higher pollution emissions (Bu et al., 2019). On the 

other hand, capital-intensive industries may also be energy-intensive, requiring more energy such 

as feedstock and power for production (Lan et al., 2012). This paper uses the ratio of gross fixed 
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capital to annual average number of employees to measure capital intensity. The data can be 

obtained from the China Industry Statistical Yearbook. 

 

3.4.5. R&D activities (R&D) 

Fisher-Vanden et al. (2006) held the view that R&D activity is one of the main ways in 

which technological progress can be accelerated and that it is a crucial driver of energy intensity. 

Increasing R&D not only helps reduce production costs but also improves energy efficiency 

(Huang et al., 2017). R&D activities are measured by the number of invention patent applications, 

collected from the China Stock Market & Accounting Research Database. 

 

3.5. Data management 

In this paper, we select 2006-2016 as our sample interval based purely on the availability of 

data. Variable descriptions, including symbols, definitions and units, are listed in Table A1 in the 

Appendix. To smooth the data, we transform the variables EI, AI and R&D into logarithmic form. 

The descriptive statistics, a correlation matrix of the variables and the results of unit root tests are 

summarized in Table A2 of the Appendix. Table A2 shows that the absolute values of the 

correlation coefficients between variables are less than 0.4537 and that all the variance inflation 

factors (VIFs) are smaller than the empirical criterion of 10, indicating that there is no significant 

multicollinearity among the regression variables used in this paper. In addition, three panel unit 

root tests show that all the variables are stationary at the 5% level of significance and can be 

further used for empirical analysis. 
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4. Empirical results 

In this section, we first analyze the impact of AI on energy intensity. The impacts across 

different conditional energy intensity distributions are then investigated based on the QR method. 

Furthermore, industry heterogeneity in the responses of energy intensity to AI is also discussed. 

Finally, we examine the endogeneity issue and re-estimate the impact of AI on energy intensity 

by introducing an alternative AI measurement to strengthen the reliability of our findings. 

 

4.1 Baseline results 

We summarize the baseline results obtained using Eq. (1) in Table 1, where the FGLS 

regressions (models (5) and (6)) are the primary results and the OLS (models (1) and (2)), FE 

(model (3)) and RE (model (4)) methods are used for comparison. As shown in Table 1, the 

coefficients of AI across all specifications are negative and significant, suggesting that 

incremental applications of AI contribute to decreases in energy intensity. Specifically, according 

to the results obtained using model (6), which includes all control variables and fixed effects, a 

decrease of 0.0244% in energy intensity accompanies a 1% increase in the number of industrial 

robots adopted. At the same time, the magnitude and significance levels of the estimated 

coefficients in models (1) to (5) are highly similar to those in model (6), indicating that the 

results are not sensitive to the estimation method. Our findings are plausible and consistent with 

those of Røpke and Christensen (2012) and Wang and Han (2016), who verify the significant 

negative impact of ICT on energy intensity. There are two possible reasons for this negative 

impact. First, the technological progress effect of AI can increase output value; this is confirmed 

by previous findings that AI promotes productivity and economic growth (Purdy and Daugherty, 

2017; Graetz and Michaels, 2018). Second, although the training of AI requires considerable 

energy (Strubell et al., 2019), AI can also deepen the integration of renewable energy and energy 

efficiency and support the use of low-carbon energy systems, an effect that is beneficial for 

containing energy demand (Vinuesa et al., 2020). For instance, machine learning and deep 

learning in energy informatics can be used to create accurate models that can be used to solve 
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energy problems, including energy distribution, prevention of energy waste and theft, pollution 

reduction, and other problems, thereby contributing to dynamic and economic management of 

energy (Heghedus et al., 2018). In terms of improving the energy efficiency of robots, path 

rerouting, reprogramming of robot motions and the use of energy-efficient equipment can 

effectively reduce the energy consumption of industrial robots in manufacturing systems 

(Brossog et al., 2015). For example, by varying robot motion profiles, for instance, to avoid 

peak torques and to follow the eigenfrequencies of the system, energy gains in the range of 

30% to 70% can be achieved (Pastras et al., 2019). 

Nevertheless, a decrease in energy intensity is not necessarily evidenced by decreasing 

energy consumption. Since energy intensity is the energy consumption per unit of output value in 

the production process, it is also possible for AI to reduce energy intensity by increasing output 

value while increasing energy demand when the positive effect of AI on output value is greater 

than its positive impact on energy consumption. To evaluate this conjecture, we decompose 

energy intensity into output value and energy consumption as the explained variables. 

Considering the data availability, sales value is used to measure output value (SALES), and gross 

energy consumed in the production process is employed as the metric of energy consumption 

(ENERGY). Moreover, to assess the robustness of our results, we further divide the gross energy 

consumption into coal consumption (COAL), oil consumption (OIL), natural gas consumption 

(GAS) and electricity consumption (ELC) and regard these as the explained variables. All of these 

energy intensity components are logarithmically transformed. The data are sourced from the 

China Industry Statistical Yearbook and the China Energy Statistical Yearbook. In Table 2, 

models (1) to (6) are the estimated with lnSALES, lnENERGY, lnCOAL, lnOIL, lnGAS and lnELC, 

respectively, as the explained variables. 

The results show a significantly positive effect of AI on output value. For every 1% increase 

in the level of AI, the output value increases by 0.0056%. At the same time, AI has obvious 

negative effects on energy consumption, including gross energy consumption, coal consumption, 

oil consumption, natural gas consumption and electricity consumption. The empirical results 

validate our conjecture that AI applications can significantly reduce energy intensity both by 
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increasing output value and by reducing energy consumption. 

The coefficients of the control variables, which are shown in Table 1, also align with our 

overall expectations. Concretely, energy intensity has significantly negative responses to R&D 

activities and is obviously and positively impacted by state ownership, enterprise scale and 

capital intensity. In addition, higher FDI can reduce energy intensity, although its effect may be 

nonsignificant. 

(Insert Tables 1 and 2 about here) 

 

4.2 Heterogeneity in conditional distributions 

In section 4.1, we confirmed the significantly negative effect of AI on energy intensity, 

where the effect of AI is implicitly assumed to be uniform across different conditional 

distributions of energy intensity. In this section, selecting 9 quantiles (i.e., 0.1, 0.2, …, 0.9), we 

use the panel QR method to further investigate the impact of AI on different energy intensity 

levels. This approach can specify the complete conditional distributions of energy intensity 

across different sectors and years (Nguyen et al., 2020) and thereby provide more useful insights 

than the previously used OLS, FE, RE and FGLS methods, which can only reveal the relationship 

between AI and the conditional mean of energy intensity. 

The heterogeneous impact of AI across different conditional distributions of energy intensity 

is summarized in Table A3 in the Appendix; to make the results more intuitive, Figure 3 portrays 

the evolution of the coefficients across the different quantiles. First, in Table A3 and Figure 3, 

consistent with the baseline results, the coefficients of AI are negative and obvious across all 

energy intensity quantiles, indicating that AI application can significantly reduce energy intensity 

in Chinese industries. Second, by comparing the absolute coefficient values, it is easy to observe 

that AI has greater effects on reducing energy intensity at high quantiles (i.e., 0.7, 0.8 and 0.9). 

This result is consistent with the results of Chen et al. (2019), who found that deepening of ICT 

can promote the “lightweight” production model, especially at high quantiles. Another possible 

reason for this finding is that sectors with higher energy intensity, e.g., paper manufacturing and 

iron and steel, face higher energy costs and may be more eager to increase their energy efficiency 
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(Fisher-Vanden et al., 2016) and thus may prefer cleaner AI technology to decrease energy 

consumption and intensity. 

(Insert Figure 3 about here) 

 

4.3 Industry heterogeneity 

Thus far, when discussing the impact of AI on energy intensity, we have assumed that all 

industrial subsectors are homogeneous; this, however, ignores the heterogeneous impacts of AI 

across different industries that results from uneven development among industrial subsectors and 

collection of AI technologies (Executive Office of the President, 2016). Thus, the effect of AI on 

energy intensity may be sector-dependent. To investigate industry heterogeneity in the responses 

of energy intensity to AI, referring to Chen et al. (2017), we divide the industrial subsectors into 

labor-, capital- and technology-intensive industries based on their dependence on specific 

production elements3 and further introduce the interaction term lnAI and the two dummy 

variables Labor and Tech into Eq. (1). To improve the reliability of our conclusions, six energy 

intensity components (i.e., lnSALES, lnENERGY, lnCOAL, lnOIL, lnGAS and lnELC) are also 

taken as the explained variables. The regression results on industry heterogeneity are reported in 

Table 3. 

First, the coefficients of lnAI remain negative and significant at the 1% level for all models, 

consistent with the baseline results shown in Tables 1 and 2. Second, it is noteworthy that the 

coefficients of lnAI*labor and lnAI*tech are -0.0718 and -0.0640, respectively, and are 

significant at the 1% level in model (1), revealing that the energy intensity reduction in the labor-, 

capital- and technology-intensive sectors benefits from increasing AI penetration, although the 

impact is marginally lower in capital-intensive sectors. This pattern of results, which is consistent 

with that in Pieri et al. (2018), suggests that the effect of ICT in improving efficiency varies 

across industries. Possible reasons for this finding are that on the one hand, more tasks that 

 
3 According to Chen et al. (2017), labor-intensive sectors include the food and beverage, textiles, wood and 
furniture, and paper industries, capital-intensive sectors include the mining and quarrying, pharmaceuticals, 
cosmetics, other chemical products n.e.c., rubber and plastic products (nonautomotive), basic metals, glass, 
ceramics, stone, mineral products (nonautomotive), and electricity, gas, and water industries, and 
technology-intensive sectors include the metal products (nonautomotive), industrial machinery, transportation 
equipment, and electrical/electronics industries as well as all other branches of manufacturing. 
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require low or medium skill have gradually been automated by more efficient AI in recent years 

(Acemoglu and Restrepo, 2020b); the enormous differences in productivity between AI and 

human labor thus cause the impact of AI on energy intensity to be more pronounced in 

labor-intensive sectors. Moreover, technology-intensive sectors enjoy a competitive edge from 

R&D-induced frontier movements (Pieri et al., 2018). Owing to their absolute advantages with 

respect to AI infrastructure and talent, these sectors also have greater technology absorptive 

capacity, an attribute that can reduce the discrepancy between the technical potential of AI and 

the actual realization of its benefits (Purdy and Daugherty, 2017). Thus, the effect of AI on 

energy intensity is much stronger in technology-intensive sectors than in other sectors. 

Third, according to the coefficients of the interaction terms in models (2) to (7), similar 

industry heterogeneity also exists in the effects of AI on output value and energy consumption 

(including consumption of coal, oil, natural gas and electricity). More specifically, the positive 

effect of AI on output value is greater in labor- and technology-intensive sectors than in 

capital-intensive sectors, and the negative response of energy consumption to AI is again more 

pronounced in the former two types of sectors, although the heterogeneity in the effect of AI on 

electricity consumption in the technology- and capital-intensive sectors is not significant. 

(Insert Table 3 about here) 

 

4.4. Robustness check 

4.4.1. Endogeneity test 

Theoretically, if there is credible evidence that an increasing AI level can decrease energy 

intensity, it is reasonable to believe that high energy intensity may, in turn, influence 

policymaking for AI development. That is, there may be a two-way causal relationship between 

AI and energy intensity, generating endogeneity issues and thus leading to biased estimations. 

Therefore, we introduce an instrumental variable (IV) and use the 2SLS model to address 

endogeneity concerns. Following Acemoglu and Restrepo (2020b), we employ the logarithmic 

form of the number of industrial robots used in the corresponding industrial subsectors in the US 
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as the IV4, based mainly on the following two considerations. On the one hand, investments in 

and applications of AI in the US, which are more advanced than those in China, may intensify the 

international competition faced by Chinese industries and further improve their AI applications 

(Acemoglu and Restrepo, 2020b), and thus there is a relationship between the instrumental 

variable (IV) and the endogenous variable. On the other hand, there are no other plausible 

channels whereby the AI level in the US may influence China’s energy intensity. Thus, the 

number of industrial robots in the US meets the two requirements of the IV approach: i.e., 

correlation with the endogenous variable and exogeneity. 

The 2SLS regression results are summarized in models (1) and (2) of Table A4 in the 

Appendix. According to the coefficient of model (1), AI adoption in the US is an important 

indicator that improves AI penetration in China. According to model (2), AI acts as a negative 

and significant contributor to energy intensity, consistent with the results of the previous analyses. 

In addition, regarding identification tests, the Anderson canon. corr. LM statistic is significantly 

greater than the critical value at the 1% level, indicating a rejection of the null hypothesis that the 

IV is not related to the endogenous variable. The weak identification test rejects the null 

hypothesis of a weak IV. Moreover, according to the Anderson-Rubin Wald test, the null 

hypothesis that the sum of the endogenous regression coefficients equals 0 is rejected at the 1% 

level. The abovementioned three tests show that the IV used in this paper is appropriate. 

 

4.4.2. Controls for selection bias 

Considering the relationship between AI and energy intensity mentioned above, it is likely 

that adoption of AI is a choice or decision variable; i.e., companies or industries that focus on 

reducing energy intensity are more motivated to choose to apply AI. This means that the 

application of AI is nonrandom, a condition that generates selection bias. To address this 

potential bias in the estimates, we use the Heckman two-step approach (Heckman, 1979). 

Specifically, we include a dummy variable, AI adoption (1 = yes, 0 = no), in the model. In the 

first step, the dummy variable is used as the explanatory variable, the IV is again the number of 

 
4 The relevant data are provided by IFR. 
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industrial robots used in the corresponding US industries, and a probit model is regressed to 

estimate the probability of an observation entering a sample. In the second step, the selection 

parameter, the inverse Mills ratio (IMR), is introduced in Eq. (1), and the FGLS model is used to 

predict the ultimate dependent variable. The regression results are summarized in models (3) and 

(4) of Table A4 in the Appendix. The results obtained using the Heckman two-step method and 

those obtained using the baseline are identical, and the signs and significance levels of the 

regression coefficients obtained using the former method are largely consistent with those in the 

baseline results. 

 

4.4.3. Alternative AI measurement 

To further check the robustness of our findings, we use an alternative AI measure: industrial 

robot stocks in China’s industrial subsectors (Acemoglu and Restrepo, 2020b). In addition to 

energy intensity, we take lnSALES, lnENERGY, lnCOAL, lnOIL, lnGAS and lnELC as the 

explained variables. Overall, the results shown in Table A5 in the Appendix are consistent with 

the baseline results presented in Tables 1 and 2. For example, expansion of AI can significantly 

reduce China’s industrial energy intensity by both increasing output value and reducing energy 

consumption. When an alternative AI measure is used, the empirical results of this paper remain 

robust. 
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5. Further discussion 

5.1. The transmission channel connecting AI to energy intensity 

In this section, we further discuss the transmission channel that connects AI to energy 

intensity. As mentioned above, technological progress has been proven to drive energy intensity 

and to be affected by AI. Thus, we conjecture that technological progress is the main 

transmission channel through which AI affects energy intensity. To verify this hypothesis, we 

adopt the stepwise regression method and the bootstrap method and use technological progress 

(TP) as a mediator variable to test the mediation effect. Following He et al. (2013), we measure 

technological progress using the Malmquist productivity index5. The relevant data can be 

obtained from the China Industry Statistical Yearbook and the China Energy Statistical 

Yearbook. 

The results of applying the stepwise regression and bootstrap methods to models (1) to (3) 

are shown in Table 4. The results for model (1) show that the total size of the effect of AI on 

energy intensity is -0.0244. Models (2) and (3) demonstrate that the direct component of the 

effect of AI on energy intensity is -0.0028 (the coefficient of AI in model (3)), while the indirect 

component of the effect through technological progress is -0.0191 (the coefficient of AI in model 

(2) multiplied by the coefficient of the mediator variable in model (3)). Thus, the proportion of 

the total effect accounted for by the mediation effect is approximately 78.3%. In addition, the 

bootstrap method with 1,000 repeated samplings confirms the obvious mediation effect of 

technological progress. That is, the application of AI significantly increases technological 

progress and further reduces energy intensity, validating the hypothesis set forth in this paper. 

 

5.2. Robustness check 

To check the robustness of our findings, we retest the transmission channel using industrial 

robot stocks as an alternative measure of AI in models (4) to (6) and report the results in Table 4. 

The results confirm the robustness of our conclusions regarding the mediation effect of 

 
5 The input variables are net fixed assets, employees (measured as the annual average number of employees) and 
energy consumption, and the output variable is sales value. 
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technological progress. In addition, we use the FE model to re-estimate the transmission channel 

in models (7) to (9) and report the results in Table 4; the results corroborate our previous 

inference that AI penetration reduces energy intensity by boosting technological progress. 

(Insert Table 4 about here) 
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6. Conclusion and policy implications 

In recent years, AI has affected every aspect of our lives, especially the way in which 

production is organized. However, this increase in AI penetration poses a challenge with respect 

to energy consumption. Because reducing energy intensity is one of China’s most important tasks, 

a proper evaluation of how AI affects energy intensity is needed. In general, AI penetration in the 

production process involves technological progress, which in turn influences energy intensity. 

However, few studies have examined the relationship between AI and energy intensity. 

Extending the existing literature, we present the first evidence that AI reduces energy intensity, 

identify industries that are more significantly affected in this way and quantify the mediating role 

of technological progress in the response of energy intensity to AI. Throughout our study, we 

analyze the effect of AI on energy intensity, emphasizing that AI contributes to increasing output 

value and reducing energy consumption and that the higher energy intensity is, the greater is the 

impact of AI on energy intensity. The effect of AI on energy intensity reduction is more 

pronounced in labor- and technology-intensive sectors than in capital-intensive sectors. The 

mediation effect model proves that the impact of AI on energy intensity is primarily achieved 

through the facilitation of technological progress in that technological progress accounts for 78.3% 

of the total impact of AI on energy intensity. 

This paper not only adds to the new literature on the effect of AI on energy intensity but also 

has practical implications for green economic transformation. From a policy perspective, first, it 

is necessary to note the importance of considering the set of effects generated by AI on energy 

intensity. The government could promote a wave of AI research and AI adoption to incentivize 

companies to adopt AI to retrofit traditional production equipment and processes, prioritizing the 

development of sectors in which energy intensity falls within high quantiles and leading to an 

increase in output value and a decrease in energy intensity. Second, there are significant 

differences in the effects of AI at different energy intensity levels and in different industries. This 

suggests that specific adaptive and differentiated policies that address the strengths and 

characteristics of different sectors should be formulated to enhance the practicality of policy 

tools. 
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Our work also has some limitations that could be addressed in the future. First, China has 

been a relative world leader in the development of AI; this, on the one hand, comes from the 

support of government, while, on the other hand, many of its enterprises have technical 

foundations. Therefore, China's companies may gain better productivity effects from 

implementing AI. It is difficult to guarantee the universality of our conclusion as it applies to 

other developing countries, and studies conducted in other developing countries are necessary. 

Second, our paper represents an initial step towards understanding the consequences of AI 

penetration in Chinese industrial energy consumption. At this stage, the threats of energy 

shortages and environmental pollution are high-priority concerns to the Chinese government. We 

hope to make further progress on the impact of AI on energy efficiency and carbon emissions and 

to provide more microlevel evidence. 
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Figures 

 

Fig. 1. Research framework of this study. 
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Fig. 2. Changes in the number of industrial robots installed in China’s 16 industrial subsectors 

during 2006-2016. Source: International Federation of Robotics (IFR). 

  



39 

 

 

Fig. 3. Evolution of coefficients across different quantiles. Note: The dotted line indicates the OLS 

coefficient at the 95% confidence level, while the solid green line denotes the quantile coefficient. 

The shaded areas are the areas within the upper and lower limits of the 95% confidence intervals for 

the quantile regressions. 
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Tables 

 

Table 1 

Baseline estimation (i). 

 (1) (2) (3) (4) (5) (6) 

 OLS OLS FE RE FGLS FGLS 

lnAI -0.1234*** -0.0800*** -0.0177* -0.0177* -0.0133*** -0.0244*** 

 (0.0192) (0.0185) (0.0102) (0.0104) (0.0024) (0.0031) 

FDI  -11.1233*** -0.0180 0.1725 -0.4144 -0.5019 

  (2.0915) (0.7233) (0.7382) (0.3673) (0.3640) 

State  -2.5252** 0.6432 0.9415* 1.8122*** 1.5295*** 

  (1.2464) (0.5662) (0.5700) (0.1406) (0.3092) 

Scale  0.1009*** -0.0889** -0.0582 0.0156 0.0431** 

  (0.0274) (0.0399) (0.0385) (0.0102) (0.0207) 

Capital  0.0266*** 0.0076*** 0.0074*** 0.0055*** 0.0077*** 

  (0.0071) (0.0016) (0.0016) (0.0005) (0.0011) 

lnR&D  -0.1054*** -0.3246*** -0.2979*** -0.0777*** -0.1352*** 

  (0.0279) (0.0330) (0.0313) (0.0091) (0.0154) 

Constant 8.9903*** 9.4890*** 10.4102*** 10.1928*** 8.9238*** 9.1435*** 

 (0.0919) (0.2278) (0.2258) (0.2831) (0.1112) (0.1042) 

Industry fixed 

effect 
NO NO YES YES YES YES 

Year fixed effect NO NO YES YES NO YES 

F-statistic 41.3221 33.7245 10.1449    

Adjusted 

R-squared 
0.1548 0.4599 0.4287    

Wald chi2     797.77 2541.48 

Observations 176 176 176 176 176 176 

Note: The standard deviations corresponding to the estimated coefficients are shown in parentheses 

below the individual entries. ***, ** and * indicate significance at the 1%, 5% and 10% levels, 

respectively. 
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Table 2 

Baseline estimation (ii). 

 (1) (2) (3) (4) (5) (6) 

 lnSALES lnENERGY lnCOAL lnOIL lnGAS lnELC 

lnAI 0.0056*** -0.0176*** -0.0357*** -0.0075 -0.0324*** -0.0096*** 

 (0.0020) (0.0029) (0.0091) (0.0051) (0.0100) (0.0036) 

FDI -4.9256*** -2.3823*** -7.7097*** -1.0926 -6.5560*** -2.8858*** 

 (0.3321) (0.5836) (1.3462) (1.0308) (1.1563) (0.6462) 

State -0.0931 1.7134*** 4.6649*** 1.4893*** 2.4158*** 1.7394*** 

 (0.1744) (0.1857) (0.6832) (0.4846) (0.7114) (0.3099) 

Size 0.0759*** 0.1247*** 0.2976*** 0.4434*** 0.2169*** 0.0025 

 (0.0068) (0.0140) (0.0195) (0.0534) (0.0253) (0.0093) 

Capital 0.0016** 0.0058*** 0.0187*** 0.0057* 0.0163*** 0.0050*** 

 (0.0007) (0.0011) (0.0024) (0.0032) (0.0027) (0.0007) 

lnR&D 0.3100*** 0.1414*** 0.0876*** 0.1586*** 0.2206*** 0.1273*** 

 (0.0132) (0.0103) (0.0212) (0.0189) (0.0172) (0.0083) 

Constant 7.7617*** 7.7503*** 6.9311*** 4.1830*** -0.1402 5.2862*** 

 (0.0863) (0.0605) (0.1285) (0.1613) (0.1355) (0.0453) 

Wald chi2 13546.54 6110.71 3584.19 2176.00 16871.74 38451.19 

Observations 176 176 176 176 176 176 

Note: The standard deviations corresponding to the estimated coefficients are shown in parentheses 

below the individual entries. ***, ** and * indicate significance at the 1%, 5% and 10% levels, 

respectively. 
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Table 3 1 

Regression results of industry heterogeneity. 2 

 (1) (2) (3) (4) (5) (6) (7) 

 lnEI lnSALES lnENERGY lnCOAL lnOIL lnGAS lnELC 

lnAI -0.0523*** 0.0038** -0.0218*** -0.0394*** -0.0104 -0.0481*** -0.0164*** 

 (0.0042) (0.0015) (0.0038) (0.0107) (0.0069) (0.0055) (0.0036) 

lnAI*labor -0.0718*** 0.0066* -0.0383*** -0.0213 -0.0247** -0.0536*** -0.0183** 

 (0.0063) (0.0037) (0.0041) (0.0381) (0.0098) (0.0164) (0.0086) 

lnAI*tech -0.0640*** 0.0040* -0.0290*** -0.1165*** -0.0068 -0.0323*** -0.0029 

 (0.0037) (0.0022) (0.0046) (0.0130) (0.0120) (0.0079) (0.0040) 

FDI -2.1130*** -4.8159*** -4.9657*** -6.4468*** -1.5371 -6.3288*** -4.9184*** 

 (0.6122) (0.2475) (0.6873) (1.5447) (1.1663) (0.9749) (1.0142) 

State 1.5513*** -0.2005 1.6556*** 5.8185*** 1.1320 2.8425*** 2.3921*** 

 (0.2943) (0.1795) (0.3365) (0.5947) (0.7319) (0.6920) (0.3932) 

Scale 0.0668*** 0.0761*** 0.1160*** 0.2988*** 0.4634*** 0.2344*** -0.0183 

 (0.0105) (0.0048) (0.0181) (0.0277) (0.0600) (0.0144) (0.0143) 

Capital 0.0092*** 0.0026*** 0.0076*** 0.0154*** 0.0058 0.0144*** 0.0076*** 

 (0.0011) (0.0006) (0.0011) (0.0026) (0.0039) (0.0017) (0.0015) 

lnR&D -0.1302*** 0.3027*** 0.1694*** 0.0839*** 0.1613*** 0.2314*** 0.1674*** 

 (0.0096) (0.0118) (0.0095) (0.0237) (0.0197) (0.0187) (0.0081) 

Constant 9.1600*** 7.7899*** 7.6838*** 6.8710*** 4.1813*** -0.2004 5.1106*** 

 (0.0712) (0.0751) (0.0514) (0.1604) (0.1750) (0.1417) (0.0726) 

Industry fixed effect YES YES YES YES YES YES YES 

Year fixed effect YES YES YES YES YES YES YES 

Wald chi2 8025.52 5481.02 2906.85 3293.58 1630.74 21685.29 39085.82 

Observations 176 176 176 176 176 176 176 

Note: The standard deviations corresponding to the estimated coefficients are shown in parentheses 3 

below the individual entries. *** and ** indicate significance at the 1% and 5% levels, respectively. 4 
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Table 4 6 

Mediation effect test 7 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

lnAI -0.0244*** 0.1627*** -0.0028* -0.1922*** 0.7822*** -0.0257*** -0.0177* 0.1598 -0.0188** 

 (0.0031) (0.0229) (0.0015) (0.0119) (0.0720) (0.0027) (0.0102) (0.1242) (0.0091) 

TP   -0.1174***   -0.1100***    

   (0.0032)   (0.0054)    

FDI -0.5019 -4.1051 -0.3777 -2.5334*** 3.6542 0.0000 -0.0180 -10.3701 -1.6374** 

 (0.3640) (4.2414) (0.2588) (0.9579) (5.4188) (0.2705) (0.7233) (8.8106) (0.7007) 

State 1.5295*** -10.0015*** 0.9842*** 2.6298*** -10.9879*** 0.7103*** 0.6432 -2.9523 0.0962 

 (0.3092) (1.0622) (0.1121) (0.3677) (2.6393) (0.1775) (0.5662) (6.8962) (0.5041) 

Scale 0.0431** -0.1439** -0.0005*** 0.0425** -0.2366 -0.0005*** -0.0889** 0.1620  

 (0.0207) (0.0621) (0.0000) (0.0207) (0.1495) (0.0001) (0.0399) (0.4857)  

Capital 0.0077*** -0.0313*** 0.0007** 0.0104*** -0.0442*** 0.0003 0.0076*** -0.0610*** 0.0045*** 

 (0.0011) (0.0060) (0.0003) (0.0015) (0.0096) (0.0006) (0.0016) (0.0195) (0.0015) 

lnR&D -0.1352*** 0.8769*** -0.0202*** -0.1305*** 0.8447*** -0.0511*** -0.3246*** 1.2825*** -0.2791*** 

 (0.0154) (0.1035) (0.0064) (0.0110) (0.0974) (0.0102) (0.0330) (0.4014) (0.0297) 

Constant 9.1435*** -0.6691 9.0280*** 9.5315*** -2.0332*** 9.2521*** 10.4102*** -3.1029 10.3254*** 

 (0.1042) (0.6077) (0.0461) (0.0753) (0.7834) (0.0616) (0.2258) (2.7503) (0.1879) 

Industry 

fixed effect 
YES YES YES YES YES YES YES YES YES 

Year fixed 

effect 
YES YES YES YES YES YES YES YES YES 

Bootstrap 

mediation 

effect test 

 -0.1706***   -0.3126***   -0.3126***  

Wald chi2 2541.48 2324.03 12693.11 1803.02 4262.69 3614.17    

Adjusted 

R-squared 
      0.4287 0.4791 0.5604 

Observations 176 176 176 176 176 176 176 176 176 

Note: The standard deviations corresponding to the estimated coefficients are shown in parentheses 8 

below the individual entries. ***, ** and * indicate significance at the 1%, 5% and 10% levels, 9 

respectively. 10 
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Appendix 12 

Table A1 13 

Description of variables. 14 

 Definition Unit 

EI Energy consumption divided by industrial sales value Tons of coal equivalent / 

104 RMB 

AI Application volume of industrial robots 1 unit 

FDI FDI amount divided by industrial sales value % 

State State capital divided by paid-up capital % 

Scale Industrial sales value divided by number of firms 104 RMB / 1 firm 

Capital Net fixed capital divided by annual average size of the 

employed population 

104 RMB / 1 person 

R&D Number of invention patent applications 1 unit 

  15 
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Table A2 

Descriptive statistics, correlation matrix of variables and unit root tests. 

 lnEI lnAI FDI State Scale Factor lnR&D 

Panel A: Descriptive statistics 

Mean 8.4675 4.2347 0.0292 0.0408 1.4787 14.1766 7.4165 

Std. Dev. 0.9347 3.0253 0.0236 0.0652 1.6767 14.9536 2.4824 

Min 6.5612 0 0.0016 0.0003 0.3471 2.6576 0 

Max 10.0188 10.1632 0.1015 0.359 8.9577 87.9483 11.4927 

Observations 176 176 176 176 176 176 176 

Panel B: Correlation matrix of variables 

lnEI 1.0000       

lnAI -0.3996 1.0000      

FDI -0.3637 0.1030 1.0000     

State 0.3817 -0.3271 -0.3148 1.0000    

Scale 0.3143 -0.0071 -0.0744 0.2995 1.0000   

Capital 0.4537 -0.1572 -0.2502 0.7611 0.4059 1.0000  

lnR&D -0.3211 0.3617 -0.0309 -0.0212 0.0340 0.0797 1.0000 

VIFs / 1.32 1.11 2.75 1.20 2.66 1.18 

Panel C: Unit root tests 

ADF 135.65*** 108.06*** 99.38*** 149.55*** 75.11*** 131.92*** 83.30*** 

PP 50.58** 77.51*** 44.77** 147.41*** 44.20* 54.96*** 59.07*** 

LLC -3.16*** -2.93*** -3.76*** -9.41*** -4.64*** -5.60*** -8.00*** 

Notes: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. ADF, PP and LLC denote 

the panel Augmented Dickey-Fuller, the Phillips-Perron and the Levin Lin-Chu tests for stationarity, 

respectively. 
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Table A3 

Quantile regression results. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

lnAI -0.1117*** -0.1370*** -0.1451*** -0.1341*** -0.1107*** -0.1013** -0.1957*** -0.2092*** -0.1457*** 

 (0.0195) (0.0139) (0.0225) (0.0305) (0.0355) (0.0451) (0.0472) (0.0460) (0.0296) 

FDI -3.2656 -3.5524 -3.1267 2.7247 0.1615 -0.2970 -0.5858 -6.2283 -12.2549*** 

 (2.8237) (2.8067) (4.2386) (4.1647) (4.3316) (4.9514) (5.6977) (6.6357) (3.2755) 

State 3.8540*** 3.1726*** 2.6417*** 1.8608* 1.0884 1.0323 -3.5687 -5.2916*** -3.9733*** 

 (0.9138) (0.6207) (0.7701) (1.0790) (1.5647) (2.1951) (2.1876) (1.6896) (1.0631) 

Scale 0.0565*** 0.0491*** 0.0534** 0.0410* 0.0355 0.0470 -0.0011 0.0382 0.0353 

 (0.0124) (0.0153) (0.0205) (0.0242) (0.0269) (0.0332) (0.0426) (0.0369) (0.0253) 

Capital 0.0002 0.0006 0.0010 0.0024 0.0022 0.0017 0.0093** 0.0074* 0.0030* 

 (0.0009) (0.0008) (0.0012) (0.0016) (0.0023) (0.0041) (0.0039) (0.0038) (0.0016) 

lnR&D -0.1330*** -0.1214*** -0.1312*** -0.1886*** -0.1801*** -0.1806*** -0.1762*** -0.1493*** -0.1402*** 

 (0.0193) (0.0228) (0.0413) (0.0431) (0.0354) (0.0376) (0.0404) (0.0458) (0.0434) 

Constant 8.3295*** 8.4729*** 8.6397*** 9.0251*** 9.2246*** 9.2998*** 9.8267*** 10.2195*** 10.6780*** 

 (0.1159) (0.1426) (0.2710) (0.3374) (0.3327) (0.3567) (0.3948) (0.4891) (0.3523) 

Observations 176 176 176 176 176 176 176 176 176 

Note: The standard deviations corresponding to the estimated coefficients are shown in parentheses below the 

individual entries. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 
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Table A4 

Regression results of the 2SLS model and the Hackman model. 

 2SLS Hackman 

 (1) (2) (3) (4) 

 First-stage Second-stage First-stage Second-stage 

lnAI  -0.1259***  -0.0205*** 

  (0.0315)  (0.0033) 

IV 0.5777***  0.3550***  

 (0.0557)  (0.1370)  

IMR    0.0401*** 

    (0.0121) 

FDI -0.4453 -11.0392*** -2.7333 -0.3470 

 (7.0628) (2.3080) (13.1669) (0.4018) 

State -23.3621*** -3.4214** -18.8150 0.9827*** 

 (3.8643) (1.3998) (13.0721) (0.3363) 

Scale -0.1195 0.1061*** 0.3964 0.0431** 

 (0.1056) (0.0339) (0.3490) (0.0200) 

Capital 0.0726*** 0.0277*** 0.0563 0.0088*** 

 (0.0179) (0.0057) (0.0430) (0.0012) 

lnR&D 0.3204*** -0.0863*** 0.0913 -0.1432*** 

 (0.0667) (0.0248) (0.1679) (0.0133) 

Constant -0.9320 9.5530*** -2.9865** 9.1206*** 

 (0.6206) (0.1942) (1.5117) (0.0904) 

Anderson canon. corr. LM statistic  68.41***   

Weak identification test  107.45***   

Anderson-Rubin Wald test  15.73***   

F-statistic  24.9333   

Wald chi2    2058.44 

Adjusted R-squared  0.4426   

Observations 176 176 176 176 

Note: The standard deviations corresponding to the estimated coefficients are shown in parentheses below the 

individual entries. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 
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Table A5 

Alternative measurement of AI: Stocks of industrial robots. 

 (1) (2) (3) (4) (5) (6) (7) 

 lnEI lnSALES lnENERGY lnCOAL lnOIL lnGAS lnELC 

lnAI -0.0394*** 0.0107*** -0.0186** -0.0814*** -0.0239*** -0.0868*** -0.0224*** 

 (0.0051) (0.0030) (0.0074) (0.0129) (0.0086) (0.0102) (0.0047) 

FDI 1.7381*** -5.0723*** -1.9232*** -2.5429*** -1.9445* -4.9482*** -2.2178*** 

 (0.4656) (0.2322) (0.5422) (0.8881) (1.0509) (1.2217) (0.6568) 

State 1.9065*** -0.1666 1.4112*** 4.3415*** 1.5266*** 2.7485*** 1.5255*** 

 (0.2264) (0.1441) (0.3061) (0.6596) (0.5476) (0.5978) (0.3489) 

Scale 0.0125 0.0792*** 0.1080*** 0.2361*** 0.3907*** 0.2263*** 0.0047 

 (0.0127) (0.0056) (0.0188) (0.0303) (0.0490) (0.0239) (0.0110) 

Capital 0.0039*** 0.0018** 0.0035*** 0.0106*** 0.0058** 0.0128*** 0.0051*** 

 (0.0011) (0.0007) (0.0011) (0.0020) (0.0026) (0.0020) (0.0010) 

lnR&D -0.1164*** 0.3132*** 0.1079*** 0.0807*** 0.1520*** 0.2286*** 0.1299*** 

 (0.0224) (0.0109) (0.0141) (0.0238) (0.0195) (0.0174) (0.0084) 

Constant 9.0116*** 7.7398*** 7.9884*** 7.0355*** 4.3477*** -0.1440 5.2581*** 

 (0.1290) (0.0660) (0.0885) (0.1576) (0.1580) (0.1439) (0.0442) 

Industry fixed effect YES YES YES YES YES YES YES 

Year fixed effect YES YES YES YES YES YES YES 

Wald chi2 3259.61 8943.67 15051.17 1495.98 2195.23 4673.20 33854.73 

Observations 176 176 176 176 176 176 176 

Note: The standard deviations corresponding to the estimated coefficients are shown in parentheses below the 

individual entries. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively. 


