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Abstract

We design an induced value choice experiment where the objects are valued according to
only a single attribute with a continuous measure. Subjects have an imperfect perception of
the choice objects but can reduce their imperfect perception with cognitive effort. Subjects
are given a choice set involving several lines of various lengths and are told to select
one of them. They strive to select the longest line because they are paid an amount
that is increasing in the length of their selection. This "idealized" choice experiment
produces a dataset that is uniquely suited to study apparently random choice. We also
manipulate the available cognitive resources of the subjects by imposing either a high or
low cognitive load. We find that both choices and the allocation of effort are affected
by the material incentives in the choice problem and the available cognitive resources.
We find evidence that optimal choices have shorter deliberation times than suboptimal
choices, which is consistent with previous theoretical predictions. The distribution of
errors can have significant implications for the specification of stochastic choice models.
Specifications where errors have a Gumbel distribution appear to provide a better fit than
those with a normal distribution. Despite that the cognitive load manipulation affects
both choice and search, it is notable that neither the Gumbel distribution results nor the
relationship between optimal choice and deliberation time appear to be affected by the
available cognitive resources. This perhaps suggests that these results are general and
persistent features of choice.
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1 Introduction

We design a choice experiment where objective values are perfectly observable, we can observe

important aspects of the decision process, and we vary the cognitive resources available to the

subject. This dataset is uniquely suited to answer questions such as: Do available cognitive

resources affect choice or deliberation? Are optimal choices faster than sub-optimal choices?

Do available cognitive resources affect this relationship? Can we say anything about the

distribution of errors? Do available cognitive resources affect the distribution of errors?

Consider a subject making a binary choice between a bag of potato chips and a can of

soda. The choice from this set would allow the experimenter to conduct an inference of the

preferences of the subject. However, this inference is noisy and it is not straightforward to

detect a suboptimal choice.

If preferences are also elicited by a supplementary method (for example, eliciting either

willingness to pay or a ranking of the objects) the experimenter could compare the choice

with this alternate measure. However, both the choice and the supplementary elicitation are

noisy. In the case that preferences are not elicited by a different method, the experimenter

would only be able to identify that a suboptimal action was taken when intransitive choices

were made. In contrast, we design an experiment where we are able to determine—without

noise—whether subjects selected a suboptimal action.

For some time, economists have been conducting induced value experiments, where the

experimenter imposes a value on various outcomes.1 We distinguish our experiment from

the majority of these induced value experiments, as subjects in our experiment imperfectly

perceive the objective values of the objects and this produces a dataset that is uniquely suited

to study stochastic choice.

The objects of choice are lines of various lengths. Subjects attempt to select the longest

line because they are paid an amount that is increasing in the length of their selection. While

we are able to observe the true objective length of each line, it is well-known that subjects have

an imperfect perception of objectively measurable objects (Weber, 1834; Fechner, 1860; Thur-

1For example, see Smith (1976).
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stone, 1927a,b). In other words, even where objects have objectively measurable properties,

perception of them is imperfect.2 ,3

Certain regularities regarding imperfect perception have been known for some time. Per-

haps the oldest regularity is that the larger the stimuli, the more difficult it is to detect

absolute differences between stimuli (Fechner, 1860). For example, it is often more difficult to

determine the heaviest between a 5kg object and a 5.5kg object than it is to determine the

heaviest between a 1kg object and a 1.5 kg object. This regularity is sometimes referred to as

Weber’s Law.

Further, the imperfect perception of objective quantities has led researchers to consider

that one’s preferences might be imperfectly perceived and this has served as a justification

for random choice or random utility models. For instance, Bradley and Terry (1952), Luce

(1959a,b), Becker, DeGroot, and Marschak (1963), McFadden (1974, 1976, 1981, 2001), Yellott

(1977), and Falmagne (1978) each make explicit reference to Weber, Fechner, or Thurstone.4

However, despite this known connection between imperfect perception of objective properties

and stochastic choice, to our knowledge, our paper and Duffy and Smith (2020) are the only

examples of incentivized experiments where suboptimal choices are perfectly observable be-

cause utility is represented by a static, single-attribute physical quantity with an uncountable

measure.5

Subjects can only view one line at a time. This design simulates the feature that delib-

eration about the desirability of an object compared to another object crucially involves the

memory of the assessments of the objects. This design also allows us to observe the search

history of subjects.

2The vast majority of this literature conducts experiments that are not incentivized. Below, we discuss the
exceptions.

3Researchers have been studying the judgments of the lengths of lines for some time (Münsterberg, 1894;
Cattell, 1902).

4More recently, these authors have been cited by Machina (1985), Luce (1994, 2005), Mas-Colell, Whinston,
and Green (1995), Ballinger and Wilcox (1997), Loomis et al. (1998), Butler (2000), Butler and Loomes (2007),
Blavatskyy (2008, 2011), Rieskamp (2008), Caplin (2012), Lévy-Garboua et al. (2012), Fudenberg, Iijima, and
Strzalecki (2015), Caplin (2016), Agranov and Ortoleva (2017), Argenziano and Gilboa (2017), Khaw, Li, and
Woodford (2017), Navarro-Martinez et al. (2018), Cerreia-Vioglio et al. (2019), Horan, Manzini, and Mariotti
(2019), Olschewski, Newell, and Scheibehenne (2019), Alós-Ferrer and Garagnani (2020), Caplin et al. (2020),
and Alós-Ferrer, Fehr, and Netzer (2021).

5This design also suggests that there will not be an undetected relationship between one of several attributes
from a previous choice and one of several attributes of a subsequent choice.
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Subjects make their choice when under a cognitive load. This experimental manipulation

is designed to affect the available cognitive resources of subjects, so that the relationship

between cognition and behavior can be observed.6 Some choices are made when required to

remember a 6-digit number (high cognitive load) and others when required to remember a

1-digit number (low cognitive load). We have observations about the searches and the choices

of subjects in both cognitive load treatments.

We find that the choices are affected by both the features of the choice set and the available

cognitive resources, as manipulated by cognitive load. Specifically, we find that subjects in

the high load treatment make inferior line selections. We also find that the quality of the

selection decreases in the number of lines in the choice set, in the similarity of the lengths of

the lines in the choice set, and in the lengths of the lines in the choice set.

We likewise find that the searches are affected by both the incentives of the choice problem

and the available cognitive resources. In particular, we find that subjects in the high load

treatment conduct worse searches in that they spend less time deliberating than do subjects

in the low load treatment. We also find that the time deliberating is increasing in the similarity

of the lengths of the lines in the choice set.

We find that a measure of deliberation time is negatively related to selecting the longest

line in the choice set. A prediction of this result emerges from a setting where an agent faces

a choice between options with uncertain utility and there is a cost of gathering information

about the choice problem. Fudenberg, Strack, and Strzalecki (2018) show that, in this setting,

which seems to correspond to our experiment, suboptimal decisions will tend to have longer

deliberation times than optimal decisions.

McFadden (1974) and Yellot (1977) show that the distribution of error terms has significant

implications for the appropriate stochastic choice model specification. Our design permits a

multinomial discrete choice analysis on choice among single-attribute objects with an objective

value, where we can examine the distribution of the errors. Our analysis suggests that the

errors are better described as having a Gumbel distribution rather than a normal distribution.

We find evidence of choice overload in our setting, where the choice set is small and the

6For instance, see Duffy and Smith (2014) and Deck and Jahedi (2015).
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objects are simple. Finally, we observe the effects of limited cognition, consistent with memory

decay and attention.

We hope that our results on stochastic choice can help inform stochastic choice models.

We note that neither the Gumbel distribution results nor the relationship between optimal

choice and deliberation time appear to be affected by the available cognitive resources. This

perhaps suggests that these results are general and persistent features of choice. We also hope

that the technique of inducing an objective value based on an imperfectly perceived object

can help investigations of stochastic choice, and presently unforeseen applications, in future

studies.

2 Related literature

2.1 Random utility and stochastic choice

In order to make sense of the apparent randomness in choice data, researchers have advanced

random utility and stochastic choice models. The classic efforts include Bradley and Terry

(1952), Debreu (1958), Luce (1959a,b), and Becker, DeGroot, and Marschak (1963). Numerous

other random utility or stochastic choice experimental and theoretical papers have emerged

in an effort to better understand choice.7 ,8 The conceptualization that utility is random has

also lead to significant advances in econometrics (McFadden, 1974, 1976, 1981, 2001).

Some of the recent choice literature has focused on consideration set effects, whereby

the decision maker does not consider the entire set of objects and this is not necessarily

observable to the experimenter.9 However, with our experimental design, we can observe the

7A partial list of these efforts, not previously mentioned, would include Tversky (1969), Loomes, Starmer,
and Sugden (1989), Sopher and Gigliotti (1993), Loomes and Sugden (1995), Sopher and Narramore (2000),
Gul and Pesendorfer (2006), Rubinstein and Salant (2006), Tyson (2008), Caplin, Dean, and Martin (2011),
Conte, Hey, and Moffatt (2011), Reutskaja, Nagel, Camerer, and Rangel (2011), Wilcox (2011), Gul, Natenzon,
and Pesendorfer (2014), Loomes and Pogrebna (2014), Woodford (2014), Caplin and Dean (2015), Caplin and
Martin (2015), Cubitt, Navarro-Martinez, and Starmer (2015), Lu (2016), Apesteguia, Ballester, and Lu (2017),
Dean and Neligh (2017), Ahumada and Ulku (2018), Apesteguia and Ballester (2018), Echenique, Saito, and
Tserenjigmid (2018), Koida (2018), Conte and Hey (2019), Natenzon (2019), and Kovach and Tserenjigmid
(2021),

8For a partial list from the psychology literature, see Regenwetter, Dana and Davis-Stober (2011), Regen-
wetter, Dana, Davis-Stober, and Guo (2011), Regenwetter and Davis-Stober (2012), Birnbaum and Schmidt
(2008, 2011), and Birnbaum (2011).

9For instance, see Masatlioglu, Nakajima, and Ozbay (2012), Manzini and Mariotti (2014), Aguiar, Boc-
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consideration set and the objective lengths of the lines. We find that the longest viewed line

is not selected in many trials and this selection is affected by available cognitive resources.

Our analysis therefore suggests that, while there are possibly also consideration set effects,

imperfect perception about one’s preferences is a key component to understanding stochastic

choice.

Because economic agents cannot process all available and relevant information, the alloca-

tion of attention has been used to improve our understanding of a number of choice settings.10

In our setting, we find that the provision of effort and attention are affected both by the

incentives in the choice set and by the available cognitive resources.

Matějka and McKay (2015) offer a rational inattention foundation for discrete choice mod-

els. Agents optimally allocate costly attention in order to better understand the true state of

nature.11 Specifically, the agents can reduce the Shannon entropy associated with the choice

setting by incurring costs associated with attention. The authors show that this implies a

random choice specification, similar to Luce (1959a). In our experiment, there is a similar

process as subjects devote cognitive effort in order to select the longest line in the choice set.

2.2 Incentivized, induced value experiments with imperfectly perceived ob-

jects

We are not the first authors to study behavior in a setting where material outcomes depend on

choice involving imperfectly perceived objects. Researchers have conducted incentivized choice

experiments when the judgments are based on the relative quantity of static dots (Caplin and

Dean, 2015; Dutilh and Rieskamp, 2016), the quantity of dynamic dots (Zeigenfuse, Pleskac,

and Liu, 2014), the dominant direction of moving dots (Bhui, 2019a,b), and the number of

flickering dots (Oud et al., 2016). These papers are different from ours in many respects,

perhaps most notably because the imperfect perception in these settings could (in principle)

be eliminated by carefully counting the discrete and finite measures. In this sense, counting

could be considered an objective measure of value. Because the line pixels in our experiment

cardi, and Dean (2016), Caplin, Dean, and Leahy (2019), and Cattaneo et al. (2020).
10For example, see Caplin (2016) for an overview.
11Also see Weibull, Mattsson, and Voorneveld (2007).
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cannot be individually identified, they cannot be counted, and subjects must rely on their

subjective perception in order to make their choice.

To our knowledge, there are only three instances of papers that study choice where material

outcomes depend on choice involving imperfectly perceived objects with an uncountable mea-

sure. However, each differs from our setting. Tsetsos et al. (2016) study choice that involves

judgements of the heights of bars. Such a measure is uncountable, however the size of the

bars within each trial is dynamic: the subjects are charged with estimating the distribution

within a trial. By contrast, the size of each line in our setting is static within each trial.

Polanía et al. (2014) examine choice in a setting where outcomes are based on the area

occupied by the image of various objects. Area is also an uncountable measure. However,

the images have different shapes and so the objects vary according to several meaningful

attributes.

As we do here, Duffy and Smith (2020) conduct an experiment where subjects select among

lines and are paid as a function of the lengths of the selected lines. Therefore, to our knowledge,

Duffy and Smith (2020) is the only other example of an incentivized choice experiment in a

setting where outcomes depend on imperfectly perceived static objects with an uncountable

measure that varies only according to a single relevant attribute.

This is an attractive setting to study apparently random choice because values can be

completely characterized by a single value and it is therefore straightforward to produce a

dataset that can study the distribution of the errors. Further, there will neither be substi-

tutes nor compliments among the attributes, whereby a previous decision will interact with a

subsequent decision.

Similar to our findings, Duffy and Smith find that both choice and searches respond to

the features of the choice problem. The authors also find that Gumbel errors better fit the

data than normal errors. Additionally, Duffy and Smith find a negative relationship between

deliberation time and selecting the longest available line.

However, Duffy and Smith do not manipulate any other aspect of the choice problem. In

contrast, here we manipulate the available cognitive resources during the line selection task,
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and this provides additional clues about the nature of choice and search.

Further, Duffy and Smith (2020) permit up to 60 seconds for the line selection task and

allow subjects to click to proceed to the following stage. Here, we allocate 15 seconds for the

line selection task and we do not permit subjects to click to proceed to the following stage.

Therefore, in our experiment, shorter deliberation times do not yield the material benefit of

completing the session faster. Despite these differences, similar to Duffy and Smith (2020),

we find that deliberation times decrease across trials and are negatively related to optimal

choices.

2.3 Cognitive load manipulation

There is a large literature that employs the cognitive load manipulation in order to affect

the available cognitive resources of subjects. Although much of this research appears in the

psychology literature, the technique is more frequently appearing in the economics literature,12

including in strategic settings.13 Most relevant to our purposes, research finds that subjects

in a high cognitive load treatment fail to process available and relevant information (Gilbert,

Pelham, and Krull, 1988; Swann et al., 1990) and choices can be less consistent (Franco-

Watkins, Rickard, and Pashler, 2010; Olschewski, Rieskamp, and Scheibehenne, 2018). We

also note that subjects under a cognitive load tend to perform worse on visual judgment

tasks.14

To our knowledge, there are only two other examples of papers that employ the cognitive

load manipulation in an incentivized choice setting without social considerations or objective

risk: Lee, Amir, and Ariely (2009) and Drichoutis and Nayga (2020).

Lee, Amir, and Ariely (2009) study intransitive choices among pair-wise decisions made

12For instance, see Benjamin, Brown, and Shapiro (2013), Schulz et al. (2014), Deck and Jahedi (2015),
Hauge et al. (2016), and Deck, Jahedi, and Sheremeta (2021). Although the cognitive load manipulation
in economic settings can sometimes produce null results or results that are difficult to interpret (Achtziger,
Alós-Ferrer, and Ritschel, 2020).

13See Milinski and Wedekind (1998), Roch et al. (2000), Cappelletti, Güth, and Ploner (2011), Carpenter,
Graham, and Wolf (2013), Duffy and Smith (2014), Allred, Duffy, and Smith (2016), Buckert, Oechssler, and
Schwieren (2017), and Duffy, Naddeo, Owens, and Smith (2021).

14See Morey and Cowan (2004), Allen, Baddeley, and Hitch (2006), Cocchi et al. (2011), Morey and Bieler
(2013), Zokaei, Heider, and Husain (2014), and Allred et al. (2016).
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while their subjects are under a cognitive load.15 Surprisingly, the authors find that subjects

under a high cognitive load make fewer intransitive choices than subjects under a low cognitive

load. However, these are real world objects that have attributes whose desirability is not

observable to the experimenters. Further, the repeated nature of the experiment makes it

difficult to determine if the attributes from previous choices affected subsequent choices (either

because the attributes are regarded as complements or substitutes). By contrast our subjects

make judgments on objects that have a value based on only a single objective attribute.

Drichoutis and Nayga (2020) find that a high cognitive load does not increase internal

inconsistency on a GARP budget allocation task. By contrast, we find that the cognitive load

manipulation negatively affects choices and searches.

2.4 Deliberation times and choice

There is a long history of measuring response times in order to gain clues on deliberation and

researchers tend to find that longer deliberation times are associated with settings where the

elements of the choice set are similarly valued.16 Likewise, we find that trials involving choice

sets with lines of similar lengths tend to have longer deliberation times.

We also find that trials where the longest line was selected tend to have shorter deliberation

times than trials where the longest line was not selected. This finding also has precedence

in the experimental literature.17 We note that this result emerges from a model of an agent

in a choice problem with unknown utility and a cost of acquiring information about the

elements of the choice set (Fudenberg, Strack, and Strzalecki, 2018). Consistent with the

predictions of Fudenberg, Strack, and Strzalecki, we find evidence that suboptimal decisions

are associated with longer deliberation times, although we caution that our results could be

driven by endogenous effects.

15See Experiment 4.
16For instance, see Henmon (1911), Volkmann (1934), Dashiell (1937), Mosteller and Nogee (1951), Hey

(1995), Moffatt (2005), Chen and Fischbacher (2016), Alós-Ferrer et al. (2016), and Alós-Ferrer and Garagnani
(2020).

17For instance, see Henmon (1911), Kellogg (1931), Bhui (2019b), and Duffy and Smith (2020).
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2.5 Induced valuation experiments with information processing limitations

Our experiment presents subjects with a decision problem with an objectively optimal solution.

However because of their limitations, subjects are not able to attain the optimal solution with

certainty.18 This feature also appears in Gabaix et al. (2006) and Sanjurjo (2015, 2017). There

subjects are given a multi-attribute choice problem where each attribute value is represented

by a number. Since subjects cannot fully process the available information, despite that there

is an objectively optimal solution, the optimal solution is not attained with certainty. Also

similar to our setting, subjects must click on the information in order to make it appear. In

this way, similar to this multi-attribute literature, we can observe the process of search.19

3 Experimental design

3.1 Overview

The experiment was programmed on E-Prime 2.0 software (Psychology Software Tools, Pitts-

burgh, PA). The sessions were performed on standard 23 inch (58.42 cm) Dell Optiplex 9030

AIO monitors. E-Prime imposed a resolution of 1024 pixels by 768 pixels. A total of 92

subjects participated in the experiment.

3.2 Line selection task

In each round, subjects were presented a choice set of lines that ranged in number between

2 and 6. Each of these choice set sizes occurred with probability 1

5
and were drawn with

replacement. Subjects were able to only view one line at a time. The lines were labeled in

alphabetic order at the bottom of the screen. Letters A and B always represented the first two

options, and consecutive letters were added as needed. Subjects could view a particular line

by clicking on the letter label that corresponds to that line. To view another line, subjects

click on its corresponding label. This makes the new line appear and the old line disappear.

18Also see Caplin, Dean, and Martin (2011) and Geng (2016) for induced valuation experiments where
subjects select among options that pay amounts implied by arithmetic operations and subjects do not always
select optimally.

19Also see Payne, Braunstein, and Carroll (1978) and Payne, Bettman, and Johnson (1993).
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Each line appeared within a rectangular region of 400 pixels in the horizontal direction

and 150 pixels in the vertical direction. The boundaries of these regions were not visible to

the subjects. The lines were randomly offset vertically and horizontally within these regions

such that there was a minimum cushion between the line and the edge of the region. This

cushion was 20 pixels in the horizontal direction and 10 pixels in the vertical direction. The

offsetting was fixed for each line throughout each trial. The regions were non-overlapping and

arranged in 2 columns and 3 rows, with the regions for A and B in the top row, the regions

for C and D in the middle row, and the regions for E and F in the bottom row.

The length of the lines in any trial were determined by subtracting various amounts from

the longest line. There were 10 possible longest line lengths, ranging in 16 pixel (0.80 cm)

increments, from 160 pixels (8.0 cm) to 304 pixels (15.1 cm). The lines each had a height of

0.38 cm.

There were three line length treatments. In the difficult treatment, one line was exactly

one pixel shorter than the longest, and the other differences were drawn from a uniform on

{−1, ...,−11}. In the medium treatment, one line was exactly 12 pixels shorter than the

longest and the other differences were drawn from a uniform on {−12, ...,−39}. In the easy

treatment, one line was exactly 40 pixels shorter than the longest, and the other differences

were drawn from a uniform on {−40, ...,−100}. The difficult, medium, and easy treatments

each occurred with probability 1

3
, in random, interspersed order, and drawn with replacement.

The subjects were not informed of the existence of these treatments. Because the lines in the

choice set are generated by subtracting amounts from the longest line, the longest line offers

a partial characterization of the distribution of lengths in the choice set.

Below each letter label was a box indicating that the subject currently selected that line.

Subjects could change this selection during the allotted time.

The line selection task lasted 15 seconds. The subjects could view the time remaining,

rounded to the nearest second. The choice within each trial was the line that was selected when

the 15 seconds expired. If subjects did not select a line before time expired, it was assumed

that the selected line had a length of 0. Regardless of their actions in the stage, subjects would

11



Figure 1: Screenshot from a trial with 5 lines in the choice set, where line C is being viewed,
line B is currently selected as the longest, and there are 4 seconds remaining.

only advance to the following screen when the 15 seconds had expired. Therefore, 15 seconds

was both the minimum and maximum time in this stage. Subjects were not permitted to use

measurement aids and were required to base their choice exclusively on their perception. See

Figure 1 for a screenshot20 and Figure 2 for a characterization of the regions, which were not

visible to the subjects.

3.3 Cognitive load treatments

There were 50 trials where subjects were given a 6-digit number to remember, which we refer

to as high load. There were 50 trials where subjects were given a 1-digit number to remember,

which we refer to as low load. The cognitive load treatments were interspersed randomly and

drawn without replacement. Each of the 10 longest line lengths were presented 5 times in the

high load treatment and 5 times in the low load treatment, randomly interspersed and drawn

without replacement.

20See https://osf.io/srpzh/ for the full set of screenshots.
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Figure 2: A characterization of the regions, invisible to the subjects, which contain the corre-
sponding lines.

3.4 Timeline of the trials

At the start of each trial, subjects were presented with a number to be memorized. Subjects

were given 5 seconds to commit the number to memory21 and would only proceed to the

following stage when the 5 seconds had expired. Subjects then proceeded to the line selection

task, which lasted 15 seconds. Finally, subjects were presented with the screen that elicited

the memorization number. There was neither a maximum nor minimum time for this stage.

3.5 Unincentivized practice

Prior to the incentivized portion of the experiment, subjects had unincentivized practice re-

membering both a 1-digit and a 6-digit number. In contrast to the incentivized portion of

the experiment, here subjects were told if their responses were correct. If a response did

not contain the correct number of digits then subjects were directed to repeat the practice

memorization task.

21The subjects could not view the time remaining in this stage, as these numbers could interact with the
memorization number.
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Additionally, subjects had an unincentivized practice on the line selection task. Subjects

were given this practice with a choice set of 5 lines in the medium difficulty treatment. If the

subjects did not view any lines, did not select a line that they viewed, or did not select any

lines, the subjects were informed of this and were directed to repeat the practice line selection

task.

3.6 Payment details

Subjects completed 100 line selection tasks and 100 memorization tasks. Those who correctly

completed all 100 memorization tasks were paid for 30 randomly determined line selections,

those who correctly completed 99 were paid for 29, those who correctly completed 98 were paid

for 28, and so on, until subjects who correctly completed 70 or fewer memorization tasks were

not paid for any of the line selection tasks. The earnings for the line selection task were paid at

a rate of $1 per 240 pixels (or $0.4167 per 100 pixels). In addition to these payments, subjects

were also paid a $5 show-up fee. Subjects were paid in cash and amounts were rounded up to

the nearest $0.25. Subjects earned a mean of $26.00.

3.7 Discussion of the design

Considerable attention has been devoted to the design of incentives where subjects make

multiple (but similar) decisions. The majority of designs either pay for every decision or pay

for a single randomly selected decision.22 However, our experiment largely falls outside of

this discussion because there is an auxiliary task (memorization) and a primary task (line

selection). Both of these tasks need to be incentivized but the design requires additional

consideration.

The goals of our incentive scheme are as follows: strongly incentivize the memorization

task, keep incentives for memorization in each trial independent from incentives for the line

selection task in that particular trial, and have equal material incentives in the line selection

task for high and low load trials. To strive for these goals, we do not provide feedback on the

memorization tasks and we pay a number of randomly selected line selection outcomes that is

22For example, see Cox, Sadiraj, and Schmidt (2015) and Charness, Gneezy, and Halladay (2016).
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decreasing in the number of incorrect memorization tasks. Only 5 subjects, out of 92, failed

to correctly perform at least 70 memorization tasks, suggesting that the incentive scheme was

sufficiently calibrated. In addition, as feedback was not given on the memorization task, it

is not clear whether subjects realized that they were near or below 70 correct. Finally, while

incorrectly answering a specific memorization task decreases overall incentives, this affects

both high and low load trials equally and we are primarily interested in the difference between

these treatments.

Subjects were given inflexible time constraints. These fixed times were implemented so

that subjects were not able to strategically allocate their time in the experiment. For instance,

our design prevents subjects in the high cognitive load treatment from spending less time in

the line judgment task so that they could proceed quickly to the memorization task.

The boundaries of the regions that contained the lines were not visible to the subjects.

Our concern was that any such aid would differentially benefit the judgment of the lengths of

extreme (very short or very long) lines. Lines always appeared in the identical location within

a trial.

Although the letter labels and their spatial orientations might suggest a natural order

in which to view the lines, subjects could view the lines in any order. For example, it was

permitted to click back-and-forth between lines and it was permitted to view a particular line

on multiple occasions before all the lines were viewed. In summary, there were no restrictions

on the nature of the line search beyond the time constraint and the constraint that only one

line could be viewed at a time.

4 Results

4.1 Cognitive load

A larger fraction of memorization tasks were correctly completed in the low cognitive load

treatment (97.6%, 4490 of 4600) than the high cognitive load treatment (85.8%, 3947 of 4600)
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according to a two-sample Wilcoxon rank-sum test23, Z = 20.53, p < 0.001. See Table

A1 for a characterization of the distribution of correct memorization tasks by cognitive load

treatments.24

Further, 77 of the 92 subjects successfully completed more than 85% of their memorization

tasks correctly. This suggests to us that the incentives were sufficient to elicit cognitive effort

on these tasks.

Recall that subjects were given 15 seconds to make a decision and were not allowed to

click to proceed before this time. It appears that in many trials, subjects stopped viewing

lines and making line selections before the 15 seconds had elapsed. This suggests to us that

the subjects had concluded their effort for the trial, and would have clicked to proceed, if such

were possible. We therefore refer to the time between the start of the trial and the last click

in that trial as the Implicit response time.

We find that implicit response times are smaller in the high cognitive load treatment

(mean = 9.586s, SD = 3.463) than in the low cognitive load treatment (mean = 10.081s,

SD = 3.439) according to a two-sample Wilcoxon rank-sum test25 Z = 6.73, p < 0.001. It is

possible to interpret this result as evidence that our cognitive load manipulation affected the

decision-making process of subjects (Achtziger, Alós-Ferrer, and Ritschel, 2020).

4.2 Quality of choices

Here we explore the optimality of choices. We define the Selected longest variable to be a 1 if

the choice was the longest available line, and a 0 otherwise. We conduct regressions with the

Selected longest variable as dependent variable. Since the dependent variable is binary, we

employ a logistic specification. We include the High load variable, which obtains a 1 in the

high load treatment, and a 0 otherwise. Further, since the Selected longest variable appears

23The difference is also significant according to a one-sample Wilcoxon signed-rank test S = 95296.5, p <
0.001.

24We report the cognitive load summary statistics of two other repeated and incentivized experiments. Duffy
and Smith (2014) found that 592 of 600 (98.67%) 2-digit numbers were correctly remembered and 676 of 840
(80.48%) 7-digit numbers were correctly remembered. Further, Duffy, Naddeo, Owens, and Smith (2021) found
that 6362 of 6500 (98.87%) 1-digit numbers were correctly remembered and 5718 of 6500 (87.96%) 6-digit
numbers were correctly remembered.

25The number of observations of this test is identical to that in the preceding test.
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to be affected by the difficulty treatments, the number of lines treatments, the longest line

treatments, and the letter that contained the longest line, we include these as independent

variables.26 For the difficulty treatments, we include dummy variables indicating whether the

treatment was Easy or whether the treatment was Difficult. To account for the letter label

of the longest line, we offer specifications where we estimate a unique dummy variable for

each of the 20 combinations of letter-number of lines as in Table A5. However, in the analysis

immediately below we do not explore the effect of the letter label on the quality of the choice.27

Due to the repeated nature of the observations, we also offer fixed-effects specifications where

we estimate a dummy variable for each subject. We summarize these regressions in Table 1.

Table 1: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.0270∗∗ −0.0299∗∗ −0.0268∗∗ −0.0291∗∗

(0.0093) (0.0101) (0.0092) (0.0100)
Longest line normalized −0.0006∗∗∗ −0.0006∗∗∗ −0.0006∗∗∗ −0.0006∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Number of lines normalized −0.054∗∗∗ − −0.054∗∗∗ −

(0.003) (0.003)
Easy treatment dummy 0.355∗∗∗ 0.389∗∗∗ 0.367∗∗∗ 0.407∗∗∗

(0.014) (0.016) (0.014) (0.016)
Difficult treatment dummy −0.285∗∗∗ −0.311∗∗∗ −0.286∗∗∗ −0.314∗∗∗

(0.011) (0.012) (0.011) (0.012)
Trial 0.00007 0.00005 0.00005 0.00002

(0.00016) (0.00017) (0.00016) (0.00017)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 8339.6 8182.4 8173.6 8016.6

We provide the marginal effects evaluated at the sample means and the stan-
dard errors in parentheses. We do not provide the estimates of the intercepts, the
Letter dummies, or the subject-specific dummies in the fixed effects regressions.
AIC refers to the Akaike information criterion (Akaike, 1974). Each regression has
9200 observations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05,
and † denotes p < 0.1.

In every specification, we see that the high load coefficient is negative. This implies that

choices are worse in the high cognitive load treatment. We also find that the accuracy of the

26See Tables A2-A5.
27We postpone our discussion of this issue until subsections 4.7 and 4.8.
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choice decreases when there is a larger number of lines (choice overload effects) and decreases

in the difficulty of the decision. Additionally, we see that the accuracy decreases in the length

of the longest line. This result could be interpreted as suggesting that subjects are worse

at judging longer lines than shorter lines. This explanation is consistent with Weber’s law.

On the other hand, it is possible that the subjects expended less effort on trials with longer

lines because the subjects knew that they would earn more on these trials than on trials with

shorter lines. These effort-wealth effects could also explain the negative coefficient estimates

for the Longest line variable.

In the appendix, we also report additional analyses that investigate the optimality of

choice.28 Our results are not changed.29 Together these results imply that the availability of

cognitive resources affects the quality of the choice.30 ,31

4.3 Quality of searches

The analysis above suggests that the high cognitive load treatment implied worse choices.

Here we explore the effect of the cognitive load on the quality of the searches. We examine

the quality of the searches by employing the Implicit response time variable. A larger Implicit

response time would seem to be associated with more effort in identifying the optimal line.

Table 2 summarizes the analysis, which is analogous to that summarized in Table 1, with the

28We restrict the analysis to trials in which the cognitive load task was performed correctly (Table A6) and
to trials in which at least one line was viewed and one line was selected (Table A7). Additionally, we conduct
the analogous tobit regressions with the Longest line minus the selected line as dependent variable (Table A8).
We also include interactions of the difficulty variables with the Longest line variable and with the Number
of lines variable (Table A9). Finally, we conduct specifications with random-effects rather than fixed-effects
(Table A10).

29Although we note a negative and significant coefficient estimate for Trial in Table A8.
30The reader might wonder about the relationship between success on the memorization task and optimality

in the line selection task. We note a positive relationship between the total number of correct memorization
tasks completed by a subject and the total number of instances that the longest line was selected by that
subject, according to a Spearman correlation (r(92) = 0.266, p = 0.01). This suggests a role for individual
differences, possibly cognitive ability, attention, motivation, or some other attribute.

31A related question is whether subjects were aware that they would not correctly recall the memorization
number and this affected their behavior in the line selection task. We designed the incentives to avoid this
possibility. In order to avoid trial-specific wealth effects there is no relationship between correctly performing
the memorization task in that period with payment for the line selection task in that period. It is still possible
that subjects did not understand this matter. This concern prompted us to include Table A7, which only
includes observations where the memorization task was correct. The results from Table 1 are not changed.
We further explore this issue in Table A11. The results of Table A11 suggest that the effect of the high load
treatment in Table 1 is possibly slightly underestimated but possibly slightly overestimated in Table 2 below.
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exception that the dependent variable is Implicit response time and the regression is linear,

not logistic.

Table 2: Regressions of the Implicit response time variable

(1) (2) (3) (4)
High load −0.406∗∗∗ −0.410∗∗∗ −0.408∗∗∗ −0.413∗∗∗

(0.0580) (0.0579) (0.0510) (0.0509)
Longest line normalized 0.00239∗∗∗ 0.00234∗∗∗ 0.00239∗∗∗ 0.00235∗∗∗

(0.00063) (0.00063) (0.00056) (0.00055)
Number of lines normalized 1.088∗∗∗ − 1.100∗∗∗ −

(0.021) (0.018)
Easy treatment dummy −2.118∗∗∗ −2.129∗∗∗ −2.119∗∗∗ −2.130∗∗∗

(0.0712) (0.0711) (0.0629) (0.0628)
Difficult treatment dummy 1.042∗∗∗ 1.030∗∗∗ 0.969∗∗∗ 0.958∗∗∗

(0.0711) (0.0710) (0.0629) (0.0628)
Trial −0.00764∗∗∗ −0.00750∗∗∗ −0.00764∗∗∗ −0.00751∗∗∗

(0.00100) (0.00100) (0.00101) (0.00088)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 44974.8 44935.9 42597.4 42565.5

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001.

We find that trials in the high cognitive load treatment have a shorter Implicit response

time. This suggests that the cognitive load manipulation is negatively affecting the quality of

the searches.32 We also observe that Implicit response time is increasing in the difficulty of the

choice problem. In other words, whereas the penalty for an incorrect line selection is smaller

in the difficult treatment, the time devoted to deliberation is increasing in the difficulty of the

treatment. These results are consistent with previous experimental findings.33

32We conduct a similar analysis of the quality of searches by using the number of total line view clicks
during the stage as dependent variable (Table A12). These View clicks results are similar to those summarized
in Table 2 with the exceptions below. We find that View clicks are decreasing in the length of the longest line
but Implicit response times are increasing in the length of the longest line. Additionally, we find that View
clicks are increasing across trials but Implicit response times are decreasing across trials.

33See Henmon (1911), Kellogg (1931), Bhui (2019b), and Duffy and Smith (2020).

19



Further, Implicit response time is increasing in the length of the longest line. According to

this measure, more effort—not less—is associated with longer lines. It is possible that subjects

are responding to the material incentives, as longer line treatments are more valuable than

shorter line treatments. However, it is also possible that this effect was driven by the psychol-

ogy finding that absolute differences are more difficult to judge for longer than shorter lines

(Weber’s Law). We further note that the relationship involving the length of the longest line

is different when the measure of effort is the number of line views (Table A12). Regardless,

we are not able to distinguish between the Weber’s law explanation and effort-wealth effects

explanation for the results in Table 1.

4.4 Relationship between choice and search

We observe both that choices are worse in the high cognitive load treatment and that searches

are worse in the high cognitive load treatment. A natural question is whether the worse

searches are causing the worse choices. There is a literature that posits that suboptimal

choice occurs because subjects do not consider every object in the choice set, but only a subset.

Further this consideration set is not typically observable to the experimenter. However, due

to our design, we are able to observe whether subjects viewed the longest line.

Among the 9109 trials where subjects viewed the longest line, there are 6354 observations

where the longest line was not selected. However, among the 91 trials where subjects did

not view the longest line there are 73 observations where the longest line was not selected.34

Therefore in our data, 98.9% of the suboptimal choices occurred in trials where the subject

viewed the longest line. This suggests that the bulk of our suboptimal choices can be explained

due to imperfect perception rather than not considering the longest line.35

34How could the longest line be selected in a trial where the longest line was not viewed? One conjecture
is that in these 18 trials, subjects mistakenly thought that the line was viewed and it was perceived to be the
longest, when in fact, the line was not actually viewed in that trial. Regardless, we note that this is a very rare
occurrence that appears in less than 0.2% of trials.

35We conduct an analysis similar to that summarized in Table 1, but the dependent variable measures
whether the longest line was selected among the lines viewed in that trial (Table A13). The results are similar
to those in Table 1.
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4.5 Relationship between quality of choice and implicit response times

Recall that, in a theoretical set-up similar to our experimental setting, Fudenberg, Strack,

and Strzalecki (2018) find that suboptimal decisions will have longer deliberation times than

optimal decisions. Here we test this prediction with our dataset.

Implicit response times of the trials in which the longest line was selected (mean = 9.094s,

SD = 3.352) are smaller than those in trials in which the longest line was not selected

(mean = 11.498s, SD = 3.102), according to a two-sample Wilcoxon rank-sum test (Z =

31.22, p < 0.001). This effect is robust when restricted to a cognitive load treatment.36

In order to more carefully investigate this matter, we conduct regressions with Implicit

response time as the dependent variable. We employ specifications similar to those in Table

2, however we include Selected longest as an independent variable. In addition to estimating

the standard fixed effects dummies, we estimate an Easy treatment dummy coefficient, a

Difficult treatment dummy coefficient, a Number of lines coefficient estimate, and a Longest

line coefficient estimate for every subject. Below, we refer to these as the Subject-specific

choice set estimates. Additionally, we include specifications that estimate a High load dummy

coefficient for every subject. We refer to these as the Subject-specific cognitive load dummies.

We also include a specification where we estimate a Trial coefficient for every subject. We

refer to this as Subject-specific Trial estimates. Because the cognitive load might affect the

subject-specific choice set estimates, for every subject we estimate the choice set coefficients in

both the high load treatment and the low load treatment. We refer to this as Subject-specific

cognitive load-choice set interactions. We summarize this analysis in Table 3.

36 Implicit response times of high load trials in which the longest line was selected (mean = 8.851s, SD =
3.298) are smaller than those in trials in which the longest line was not selected (mean = 11.214s, SD = 3.259),
according to a two-sample Wilcoxon rank-sum test (Z = 21.82, p < 0.001). Likewise, Implicit response times
of low load trials in which the longest line was selected (mean = 9.335s, SD = 3.388) are smaller than those
in trials in which the longest line was not selected (mean = 11.789s, SD = 2.906), according to a two-sample
Wilcoxon rank-sum test (Z = 22.43, p < 0.001).
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Table 3: Regressions of the Implicit response time variable

(1) (2) (3) (4)
Trial −0.0079∗∗∗ −0.0080∗∗∗ − −

(0.0009) (0.0009)
High load −0.420∗∗∗ − − −

(0.050)
Selected longest −0.684∗∗∗ −0.682∗∗∗ −0.664∗∗∗ −0.648∗∗∗

(0.066) (0.066) (0.066) (0.067)
Subject-specific
choice set estimates Y es Y es Y es Y es

cognitive load dummies No Y es Y es Y es

Trial estimates No No Y es Y es

cognitive load-choice set interactions No No No Y es

Letter dummies No No No No

Fixed effects Y es Y es Y es Y es

AIC 42318.7 42108.1 42549.3 42572.4

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts or the subject-specific estimates.
AIC refers to the Akaike information criterion (Akaike, 1974). Each regression has
9200 observations. ∗∗∗ denotes p < 0.001.

In every specification, the Selected Longest variable is negative and significant. We inter-

pret this as suggesting that, even when controlling for the fixed characteristics of the subjects,

suboptimal choices tend to take longer than optimal choices.37 We also note that this rela-

tionship is robust across our specifications that account for the cognitive load treatments.

Due to the possible endogeneity present in the analysis, we conduct Spearman correlations

between the unstandardized residuals and the Selected longest variable. In specifications

(1) − (4), the p-values, respectively, are 0.029, 0.028, 0.035, and 0.040.38 We conclude that,

as predicted by Fudenberg, Strack, and Strzalecki, there is a negative relationship between

implicit response times and the optimality of choices. However, we acknowledge that this is

possibly driven by endogeneity.

37 In Table A14, we offer a robustness check of Table 3. Our qualitative results are not changed.
38When we restrict the analysis to the 9001 observations with a line view and a line selection, the p-values,

respectively, are 0.066, 0.070, 0.078, and 0.086.
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4.6 Multinomial discrete choice analysis and the nature of the stochastic

utility

An assumption in multinomial discrete choice analysis is that choice is stochastic because

of an unobserved stochastic component in the utility function.39 A common specification in

these random utility models (RUM) is that there is a non-stochastic component of the utility

function and an additive stochastic component. For example, option j would have utility:

Uj = Vj + εj , (1)

where Vj is the non-stochastic component and εj is the random component. RUMs typically

assume that agents select the item with the largest realized utility. Specifically, a choice of i

from the set K = {1, ..., k} arises when:

Vi + εi ≥ Vj + εj for every j ∈ K. (2)

Further, the non-stochastic components to the RUMs are not typically observable. There-

fore the researcher includes a set of observable features possibly relevant to the choice j,

xj = (xj1, ..., xjn). In order to account for the effect of each of these factors, the analyst also

estimates β = (β1, ..., βn). In these settings, the non-stochastic component is Vj = β ∗ xj .

However, in our setting, the length of the line is the only relevant attribute. Therefore the

non-stochastic component of option j simplifies to:

Vj = β ∗ Lengthj , (3)

where β is a scalar.

We also note that there can be a range of specifications of the stochastic component. For

instance, εj might be assumed to be normally distributed. On the other hand, the stochastic

component might also be assumed to have the Gumbel distribution, e−e
−ε
. (Regrettably, this is

also referred to as the Type I extreme-value distribution, the double exponential distribution,

39See McFadden (1974, 1976, 1981, 2001).
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and the log-Weibull distribution.) In our experiment, we can perfectly observe the objective

lengths of the lines and the choices made by the subjects. We can therefore run specifications

that employ either of these assumptions of the error distribution and observe which provides

a better fit of the data, given the objective lengths of the lines in the choice set.

We run one specification where the stochastic component has the Gumbel distribution

and is identically distributed for every option. As McFadden (1974) and Yellot (1977) show,

this structure implies the Luce (1959a) stochastic choice model, whereby the probability that

option j is selected from set K is:

P (j) =
eβ∗Lengthj

∑
k∈K

eβ∗Lengthk
. (4)

We denote this Conditional Logistic model as specification (1).

We also run a specification where the stochastic component is assumed to have a normal

distribution and is independently and identically distributed for every option. Yellot (1977)

shows that this corresponds to Case V of Thurstone (1927a). We refer to this Multinomial

Probit model as "Multi Probit 1" and denote it as specification (2).

Further, we run a specification where the stochastic component is assumed to be Gum-

bel but the options are not identically distributed. Specifically, each option has a stochastic

component distributed e−e
− ε
θi where θi varies by the option. This specification is the Het-

eroschedastic Extreme-Value (HEV) model, introduced by Bhat (1995). For identification

purposes, the final two options are assumed to be identically distributed with the unit scale:

θk = θk−1 = 1. We denote the HEV model as specification (3).

Finally, we run a specification where the stochastic component is assumed to be normally

but non-identically distributed. This Multinomial Probit specification assumes that the stan-

dard deviations of the options can be different but that they are also independently distributed.

Note that similar to the HEV model, for identification purposes, we assume that the standard

deviation of the final two choices are identical. We refer to this Multinomial Probit model as

"Multi Probit 2" and denote it as specification (4).

Note that we exclude observations where subjects did not specify a choice before time
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expired.40 We report the Akaike Information Criterion (AIC, Akaike, 1974) and the Bayesian

Information Criterion (BIC, Schwarz, 1978) for each model, restricted to a particular number

of lines treatment. We also report the estimate of β for each model in each setting. These

analyses are summarized in Table 4.41 ,42

Table 4: Comparisons of different multinomial discrete choice models

Cond Logit Multi Probit 1 HEV Multi Probit 2 Trials
(1) (2) (3) (4)

2 Lines β est. 0.131 0.098 − − 1785
AIC 1417 1432
BIC 1422 1437

3 Lines β est. 0.128 0.086 0.118 0.067 1871
AIC 2088 2140 2078 2145
BIC 2094 2146 2089 2156

4 Lines β est. 0.115 0.076 0.121 0.084 1826
AIC 2718 2801 2709 2820
BIC 2723 2807 2726 2837

5 Lines β est. 0.110 0.108 0.113 0.116 1780
AIC 3181 3383 3186 3282
BIC 3186 3389 3208 3304

6 Lines β est. 0.094 0.062 0.070 0.046 1780
AIC 3775 3808 3613 3684
BIC 3780 3813 3641 3711

We provide the estimates of β, the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) for the various models restricted to treat-
ments with identical numbers of lines. Each of the estimates for β are significantly
different from 0 with p < 0.001.

For both AIC and BIC, every value for the Conditional Logit model (1) is lower than that

for the analogous Multinomial Probit 1 model (2). Additionally for both measures, every

value for the HEV model (3) is lower than that for the analogous Multinomial Probit 2 model

(4). We interpret these results as suggesting that the models that assume that errors have

40Therefore, the numbers of trials as reported in Table A3 are different than those reported below.
41Each specification was executed with the MDC (multinomial discrete choice) procedure in SAS. Speci-

fication (1) was performed with the clogit option. Specification (2) was performed with the mprobit option.
Specification (3) was performed with the hev option and the Hardy integration method. Specification (4) was
performed with the mprobit option.

42Note that for the case of 2 Lines, the Conditional Logistic regression is identical to the HEV specification,
and the Multinomial Probit 1 is identical to the Multinomial Probit 2 specification. Therefore, we do not report
specifications (3) and (4) for the 2 Lines treatment.
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a Gumbel distribution provide a better fit than comparable models that assume that errors

have a normal distribution. These results are not changed when we restrict to either trials

in the high load treatment or trials in the low load treatment.43 These results are largely

unchanged when we restrict β = 0.1.44 The results are also unchanged when we estimate

different Length coefficients for high and low load, and we consider specifications where the

letter label affects choice.45 We interpret these results as evidence that the assumption that

the errors have a Gumbel distribution is a better fit than the assumption that the errors have

a normal distribution. Further, as we do not find evidence that these results are affected by

the cognitive load treatment, it is possible Gumbel errors are general and persistent features

of choice.

4.7 Memory decay and choice

Reutskaja, Nagel, Camerer, and Rangel (2011) report that the quality of choices tend to be

diminishing in number of items viewed between the last item viewed and the best item viewed.

Here we examine whether our subjects exhibit similar behavior consistent with memory decay.

Table A5 demonstrates the relationship between the quality of choice and the letter label

of the longest line. This suggests a relationship between the quality of the choice and number

of letters alphabetically between the letter label of the longest line and the last letter label in

the choice set. Below, we test whether there is such a relationship.

We introduce the variable Distance from last, which provides a measure of the alphabetic

distance between the letter label of the longest line and the last letter label in the choice set.

For instance, in the 2-Line treatment, if line A is the longest then the variable is 1 and if line

B is the longest then it is 0. In the 3-Line treatment, if A is the longest then the variable is

2, if B is the longest then it is 1, and if C is the longest then 0. We include Distance from the

last as an independent variable. We also include specifications with the interaction between

the High load dummy and the Distance from last variable. For identification reasons, we do

not include the Letter dummy variables. We summarize these regressions in Table 5.

43See Tables A15 and A16.
44See Table A17.
45See Table A18.
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Table 5: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.0278∗∗ −0.0276∗∗ −0.0275∗∗ −0.0273∗∗

(0.0093) (0.0093) (0.0092) (0.0092)
Distance from last −0.042∗∗∗ −0.042∗∗∗ −0.042∗∗∗ −0.042∗∗∗

(0.004) (0.004) (0.004) (0.004)
High load * Distance from last − −0.0065 − −0.0072

(0.0067) (0.0066)
Longest line normalized −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Number of lines normalized −0.033∗∗∗ −0.033∗∗∗ −0.033∗∗∗ −0.033∗∗∗

(0.004) (0.004) (0.004) (0.004)
Easy treatment dummy 0.359∗∗∗ 0.359∗∗∗ 0.372∗∗∗ 0.372∗∗∗

(0.014) (0.014) (0.014) (0.014)
Difficult treatment dummy −0.285∗∗∗ −0.285∗∗∗ −0.286∗∗∗ −0.286∗∗∗

(0.011) (0.011) (0.011) (0.011)
Trial 0.00006 0.00006 0.00004 0.00004

(0.00016) (0.00016) (0.00016) (0.00016)
Letter dummies No No No No

Fixed effects No No Y es Y es

AIC 8221.9 8223.7 8049.4 8051.2

We provide the marginal effects evaluated at the sample means and the stan-
dard errors in parentheses. We do not provide the estimates of the intercepts or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, we observe a negative relationship between Distance from last and

the quality of the choice. This is consistent with the hypothesis suggested by Table A5.

We also note that there is not a significant interaction between the cognitive load and the

Distance from last variable. Additionally, each of the other coefficient estimates are relatively

unchanged from the analysis summarized in Table 1.

One explanation for the negative coefficient estimates for the Distance from last variable is

that subjects view the lines in alphabetical order (A then B then C etc.). Even though there

were no restrictions on the order of viewing the lines, such a search might reduce the need to

recall which non-optimal lines have been previously viewed. Alphabetic search implies that

lines to the “left” have been viewed and lines to the “right” have not. Alphabetic search and

the condition that lines viewed in the more distant past are recalled with a lower precision
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offers an explanation for the apparent relationship between the letter label and line selection

accuracy.

To explore this explanation, we define the variable Time since longest to be the time

elapsed since the subject viewed the longest line when the trial ended. Table 6 demonstrates

the relationship between the Time since longest variable and the letter label of the longest

line.

Table 6: Time since longest line by number of lines and letter label of the longest

A B C D E F
2 Lines 2.491 s 1.452 s − − − −
3 Lines 2.801 s 3.464 s 1.347 s − − −
4 Lines 3.150 s 3.335 s 3.232 s 1.810 s − −
5 Lines 3.404 s 3.472 s 3.664 s 3.125 s 2.461 s −
6 Lines 4.117 s 3.986 s 3.627 s 3.270 s 3.211 s 1.800 s

Table 6 suggests that there is a negative relationship between the Time since longest

variable and the number of letter labels alphabetically between the longest line and the last

letter label in the choice set. Here we test whether there is such a relationship. To do so, we

conduct an analysis similar to Table 5, however we employ the Time since longest variable

rather than the Distance from last variable. We summarize these regressions in Table 7. We

interpret these results with caution due to the possibility of endogeneity by including the Time

since longest variable.
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Table 7: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.0136 −0.0144 −0.0130 −0.0136

(0.0089) (0.0090) (0.0088) (0.0089)
Time since longest −0.042∗∗∗ −0.042∗∗∗ −0.044∗∗∗ −0.044∗∗∗

(0.001) (0.001) (0.001) (0.001)
High load * Time since longest − −0.0013 − −0.0016

(0.0026) (0.0027)
Longest line normalized −0.0004∗∗∗ −0.0004∗∗∗ −0.0004∗∗∗ −0.0004∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Number of lines normalized −0.040∗∗∗ −0.040∗∗∗ −0.041∗∗∗ −0.041∗∗∗

(0.0033) (0.0033) (0.0033) (0.0033)
Easy treatment dummy 0.378∗∗∗ 0.378∗∗∗ 0.377∗∗∗ 0.376∗∗∗

(0.013) (0.013) (0.013) (0.013)
Difficult treatment dummy −0.236∗∗∗ −0.236∗∗∗ −0.235∗∗∗ −0.235∗∗∗

(0.011) (0.011) (0.011) (0.011)
Trial 0.00015 0.00015 0.00012 0.00012

(0.00015) (0.00015) (0.00015) (0.00015)
Letter dummies No No No No

Fixed effects No No Y es Y es

AIC 6703.6 6705.2 6582.0 6583.7

We provide the marginal effects evaluated at the sample means and the stan-
dard errors in parentheses. We do not provide the estimates of the intercepts or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, there is a negative relationship between the time elapsed since the

longest line was viewed at the end of the trial and the quality of the choice. On the other hand,

we do not find evidence that this relationship is affected by the cognitive load. Further, we

observe qualitatively similar results to those found above, with the exception of the estimate

for the High load variable. In none of the specifications is the estimate significant at 0.05.

We note that the results summarized in Table 7 should be viewed with caution. The Spear-

man correlations between the Time since longest variable and the residuals (both unstandard-

ized and Pearson standardized) are each significant at 0.001. This suggest that endogeneity

is present in our regressions.

It seems that choices are worse when the longest line is more alphabetically distant from

the last letter label in the choice set and the longer the time since the longest line was viewed.
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Taken together, our results are consistent with memory decay: lines viewed in the more distant

past are remembered with lower precision. We note that while these results are consistent

with limited cognition, we also note that we do not find a relationship between the memory

decay effects and the cognitive load manipulation. Finally, we note that these effects might

be exacerbated by the relatively smaller spatial distance between F region and the F box

compared with the larger spatial distance between the A region and the A box.

4.8 Attention and choice

Testing for evidence consistent with memory decay is not the only such investigation on the

effects of limited cognitive resources. Here we investigate the role of attention in choice.

Research finds that the time that a subject spends viewing (or fixated on) an object in a

choice setting is associated with a higher likelihood of selecting the object.46 Additionally, the

visual psychology literature also finds that spatial resolution of abstract objects and visual

information processing are enhanced by attention.47

One measure of attention is the total time spent viewing a line. In Table 8, we summarize

the Time viewing variable by the number of lines treatment and the letter label.

Table 8: Time viewing by number of lines and letter label

A B C D E F
2 Lines 6.338 s 6.909 s − − − −
3 Lines 4.356 s 3.675 s 5.195 s − − −
4 Lines 3.238 s 2.966 s 2.953 s 4.104 s − −
5 Lines 2.733 s 2.443 s 2.367 s 2.454 s 3.262 s −
6 Lines 2.263 s 2.080 s 1.993 s 2.005 s 1.975 s 2.938 s

In Table 9, we report the Time viewing variable but restricted to the letter label of the

longest line.

46See Armel, Beaumel, and Rangel (2008), Armel and Rangel (2008), Krajbich, Armel, and Rangel (2010),
and Krajbich and Rangel (2011).

47For instance, see Yeshurun and Carrasco (1998), Carrasco and McElree (2001), Carrasco, Williams, and
Yeshurun (2002), and Liu, Abrams, and Carrasco (2009).
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Table 9: Total time viewing longest by number of lines and letter label of the longest

A B C D E F
2 Lines 8.410 s 9.028 s − − − −
3 Lines 7.020 s 6.010 s 7.805 s − − −
4 Lines 5.622 s 5.252 s 5.074 s 6.351 s − −
5 Lines 5.047 s 4.374 s 4.351 s 4.170 s 5.040 s −
6 Lines 3.992 s 3.772 s 3.600 s 3.778 s 3.806 s 4.994 s

Table 9 suggests that when the longest line is closer to the end of the alphabetic sequence,

subjects spend more time viewing the longest line. Table A5 suggests that when the longest

line is closer to the end of the sequence, there is a higher likelihood that the longest line was

selected. Here we test whether there is a relationship between the time viewing the longest

line and the likelihood that the longest line is selected. We perform an analysis similar to

Tables 5 and 7 but with Time viewing longest as an independent variable. We summarize

these regressions in Table 10. Similar to the analysis summarized in Table 7, we interpret

these results with caution due to the possibility of endogeneity by including the Time viewing

longest variable.

Table 10: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.0270∗∗ −0.0255∗∗ −0.0264∗∗ −0.0244∗∗

(0.0092) (0.0094) (0.0091) (0.0093)
Time viewing longest 0.020∗∗∗ 0.020∗∗∗ 0.019∗∗∗ 0.018∗∗∗

(0.002) (0.002) (0.002) (0.002)
High load * Time viewing longest − 0.0039 − 0.0047†

(0.0028) (0.0028)
Longest line normalized −0.0005∗∗∗ −0.0005 −0.0005∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Number of lines normalized −0.031∗∗∗ −0.031∗∗∗ −0.033∗∗∗ −0.033∗∗∗

(0.004) (0.004) (0.004) (0.004)
Easy treatment dummy 0.340∗∗∗ 0.341∗∗∗ 0.353∗∗∗ 0.354∗∗∗

(0.014) (0.014) (0.014) (0.014)
Difficult treatment dummy −0.274∗∗∗ −0.274∗∗∗ −0.276∗∗∗ −0.276∗∗∗

(0.011) (0.011) (0.011) (0.011)
Trial −0.000015 −0.000013 −0.00003 −0.00003

(0.00016) (0.00016) (0.00016) (0.00016)
Letter dummies No No No No

Fixed effects No No Y es Y es

AIC 8185.3 8186.7 8060.5 8061.3

We provide the marginal effects evaluated at the sample means and the stan-
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dard errors in parentheses. We do not provide the estimates of the intercepts or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

In every specification, the quality of the choice is increasing in the time viewing the longest

line.48 A similar result is reported by Krajbich and Rangel (2011). Also in every specification,

we do not find a significant interaction between the cognitive load and the time viewing the

longest line. The qualitative results involving the other variables are similar to those found

above.

We note that the results summarized in Table 10 should be viewed with caution. The

Spearman correlations between the Time since longest variable and the residuals (both un-

standardized and Pearson standardized) are each significant at 0.001. This suggests that

endogeneity is present in these regressions.

Our results suggest that (endogenous) attention is related to choice. However, we do not

find that the cognitive load manipulation affects this relationship.

5 Conclusion

We observe behavior in an "idealized" choice setting where we know the true preferences of the

subjects, but subjects have an imperfect perception of the objects in the choice set. Subjects

can reduce their imperfect perception through cognitive effort. The objects of choice are lines

of various lengths and subjects are paid an amount increasing in the length of the selected

line. This feature allows us to make unambiguous conclusions about the optimality of choices.

Subjects also make their choices in different cognitive load treatments, which are designed

to manipulate their available cognitive resources. We are also able to observe aspects of the

search, such as the number of lines viewed and the deliberation time.

Are there brains in stochastic choice? Our results suggest a qualified "yes." In our choice

setting, we found that differences in available cognitive resources, as manipulated by cognitive

48We find similar results if we measure attention with the number of view clicks on the longest line or
whether subjects viewed the longest line 2 or more times.
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load, implied differences in both choice and search. Specifically, choices and searches are worse

in the high cognitive load treatment.

We further find that choices and searches respond to features of the choice set. For example,

the likelihood of optimal choice is decreasing and the deliberation times are increasing in the

similarity of the lengths of the lines in the choice set. This suggests to us that the allocation

of cognitive effort responds to the details of choice set.

We also find evidence that suboptimal choices are associated with longer deliberation times

than are optimal choices. This is consistent with the implications of a model (Fudenberg et

al., 2018) that is similar to our experimental setting. However, we admit that we cannot rule

out the possibility that our results on this are endogenous.

Additionally, we find evidence of choice overload in our setting, where the choice set is

small and the objects are simple. We also observe limited cognition effects, consistent with

memory decay and attention. However, we note that these effects, which are consistent with

memory decay and attention, are not affected by the cognitive load manipulation.

Many random utility models posit that there is a non-stochastic component and an additive

stochastic component, which is also referred to as an error term. The distribution of the

error term has significant implications for the specifications of stochastic choice models.49

An additional advantage of our design is that we are well-positioned to test the nature of

these errors. We run specifications that assume normally distributed errors and analogous

specifications that assume errors have a Gumbel distribution. We find that the Gumbel

specifications provide a better fit. We interpret this as suggesting that the assumption of

Gumbel errors is more accurate than the assumption of normal errors. We also note that this

result does not appear to depend on the available cognitive resources and this suggests that

Gumbel errors could be a general and persistent feature of choice.

We admit that there is much work to be done on the topic. We are interested to learn the

insights gleaned from eye-tracking and neuroeconomics techniques in our setting.50 We are also

interested in whether our results on Gumbel errors extend to other stimuli with uncountable

49See McFadden (1974) and Yellot (1977).
50For instance, see Summerfield and Tsetsos (2012).

33



measures, for example brightness, loudness, etc. This research would help shed light on the

generality of the specifications of stochastic choice models.

Whereas our design entailed objects valued according to only a single attribute, we hope

that future designs will study behavior in settings where the objects are valued based on

multiple attributes (Gabaix et al., 2006; Sanjurjo, 2015, 2017). Specifically, we are interested

to learn if classic multiple attribute effects, such as the decoy effect, can be replicated in this

setting and if the attributes interact as compliments or substitutes.51

Finally, in our design, subjects were forced to select only a single object from the choice

set. We are interested to study behavior if subjects are not constrained to select only one,

and are able to select more than one object. Such a multiple selection could be interpreted as

indifference if the received object was randomly selected among the chosen objects. We leave

these and other interesting questions to future research.
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Appendix for Online Publication

Cognitive load summary statistics

As each of the 92 subjects attempt 50 high load memorization tasks and 50 low load mem-

orization tasks, Table A1 presents a characterization of the subject-level distribution of the

number of correct memorization tasks by cognitive load treatment and the number pooled

across treatments.

Table A1: Distribution of subjects by number of correct memorization tasks

Restricted to cognitive load treatments
Number correct 46− 50 41− 45 36− 40 31− 35 26− 30 21− 25 < 21 Total
High load 50 17 11 5 4 3 2 92
Low load 88 4 0 0 0 0 0 92

Pooled across cognitive load treatments
Number correct 96− 100 91− 95 86− 90 81− 85 76− 80 71− 75 < 71 Total
Pooled 40 24 13 4 5 1 5 92

The upper panel characterizes the subject-level distribution of the number of
correct memorization tasks by cognitive load treatment. The lower panel charac-
terizes the subject-level distribution of the correct memorization tasks across both
cognitive load treatments.

Selected longest summary statistics

Table A2 characterizes the Selected longest variable in the cognitive load and difficulty treat-

ments.

Table A2: Selected longest variable by difficulty treatment

Easy Medium Difficult Pooled
High load 94.6% 73.1% 37.0% 68.9%

1497 of 1582 1124 of 1538 548 of 1480 3169 of 4600
Low load 96.8% 76.3% 38.5% 69.6%

1440 of 1487 1140 of 1495 623 of 1618 3203 of 4600
Pooled 95.7% 74.6% 37.8% 69.3%

2937 of 3069 2264 of 3033 1171 of 3089 6372 of 9200
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It appears to be the case that the difficulty treatments were successful in that the longest

line is more likely to be selected in the easy treatment. Table A3 characterizes the variable

by cognitive load and number of lines treatments.

Table A3: Selected longest variable by number of lines treatment

2 Lines 3 Lines 4 Lines 5 Lines 6 Lines
High load 79.0% 74.0% 71.1% 62.3% 57.9%

710 of 899 690 of 932 674 of 948 580 of 931 515 of 890
Low load 78.0% 75.0% 68.0% 66.4% 61.1%

700 of 899 720 of 960 613 of 902 588 of 886 582 of 953
Pooled 78.4% 74.5% 69.6% 64.3% 59.5%

1410 of 1798 1410 of 1892 1287 of 1850 1168 of 1817 1097 of 1843

It also appears that the probability that the longest line is selected is decreasing in the

number of available lines. This appears to be suggestive of choice overload, even from a choice

set of only a few simple objects of choice. Table A4 characterizes the variable in the cognitive

load and longest line length treatments.

Table A4: Selected longest variable by longest line length treatment

160 176 192 208 224 240 256 272 288 304
High load 71.1% 72.0% 69.1% 70.7% 70.4% 70.4% 66.7% 71.5% 64.4% 62.6%
Low load 71.7% 73.9% 75.0% 69.8% 69.4% 68.5% 66.3% 68.0% 67.6% 66.1%
Pooled 71.4% 72.9% 72.1% 70.2% 69.9% 69.5% 66.5% 69.8% 66.0% 64.3%

The Pooled values each have 920 observations. The values restricted to a
cognitive load treatment each have 460 observations.

This suggests that the quality of choices decreases in the length of the longest line. In

Table A5 we characterize the variable according to the number of lines and the letter label of

the longest line.
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Table A5: Selected longest variable by number of lines and letter label of the longest

A B C D E F
2 Lines 77.0% 79.9% − − − −

705 of 916 705 of 882
3 Lines 72.5% 72.5% 78.7% − − −

470 of 648 457 of 630 483 of 614
4 Lines 64.8% 62.0% 71.6% 79.3% − −

289 of 446 279 of 450 351 of 490 368 of 464
5 Lines 64.1% 58.0% 62.8% 70.8% 66.0% −

236 of 368 215 of 371 219 of 349 250 of 353 248 of 376
6 Lines 50.8% 52.8% 50.0% 60.2% 64.5% 78.7%

167 of 329 161 of 305 144 of 288 197 of 327 180 of 279 248 of 315

There appear to be differences in accuracy conditional on the letter label of the longest

line. Tables A2−A5 suggest the relevant variables that should be included in the analysis of

the Selected longest line variable.

More on the quality of choices

In order to investigate the optimality of choices, in Table 1 we summarized logistic regressions

of the Selected longest variable. Here we conduct the analogous analysis, but restricted to

the 8437 trials in which the cognitive load task was performed correctly. We summarize these

regressions in Table A6.

Table A6: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.0201∗ −0.0233∗ −0.0217∗ −0.0244∗

(0.0094) (0.0102) (0.0093) (0.0102)
Longest line normalized −0.0005∗∗∗ −0.0006∗∗∗ −0.0005∗∗∗ −0.0006∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Number of lines normalized −0.052∗∗∗ − −0.051∗∗∗ −

(0.003) (0.003)
Easy treatment dummy 0.354∗∗∗ 0.389∗∗∗ 0.369∗∗∗ 0.410∗∗∗

(0.014) (0.016) (0.014) (0.016)
Difficult treatment dummy −0.279∗∗∗ −0.306∗∗∗ −0.278∗∗∗ −0.307∗∗∗

(0.011) (0.013) (0.012) (0.013)
Trial 0.00008 0.00006 0.00004 0.00002

(0.00016) (0.00018) (0.00016) (0.00018)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 7496.6 7358.3 7339.6 7201.3
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We provide the marginal effects evaluated at the sample means and the stan-
dard errors in parentheses. We do not provide the estimates of the intercepts, the
Letter dummies, or the subject-specific dummies in the fixed effects regressions.
AIC refers to the Akaike information criterion (Akaike, 1974). Each regression has
8437 observations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05,
and † denotes p < 0.1.

The qualitative results are not changed from those in Table 1. Likewise, we conduct the

analysis in Table 1 but restricted to the 9001 trials in which a line was viewed and a line was

selected. We summarize these regressions in Table A7.

Table A7: Logistic regressions of the Selected longest line variable

(1) (2) (3) (4)
High load −0.0213∗ −0.0237∗ −0.0215∗∗∗ −0.0232∗

(0.0087) (0.0095) (0.0086) (0.0094)
Longest line normalized −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Number of lines normalized −0.048∗∗∗ − −0.047∗∗∗ −

(0.003) (0.003)
Easy treatment dummy 0.360∗∗∗ 0.397∗∗∗ 0.368∗∗∗ 0.410∗∗∗

(0.013) (0.015) (0.013) (0.015)
Difficult treatment dummy −0.266∗∗∗ −0.293∗∗∗ −0.265∗∗∗ −0.294∗∗∗

(0.011) (0.012) (0.011) (0.012)
Trial −0.00019 −0.00023 −0.00017 −0.00022

(0.00015) (0.00017) (0.00015) (0.00016)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 7873.4 7702.5 7761.9 7594.0

We provide the marginal effects evaluated at the sample means and the stan-
dard errors in parentheses. We do not provide the estimates of the intercepts, the
Letter dummies, or the subject-specific dummies in the fixed effects regressions.
AIC refers to the Akaike information criterion (Akaike, 1974). Each regression has
9001 observations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05,
and † denotes p < 0.1.

Again, the qualitative results are not changed from those in Table 1. In order to further

explore the robustness the results in Table 1, we perform the analogous exercise but we analyze

the Longest minus selected variable, defined to be the length of the longest line minus the length

of the selected line. As this variable is bounded below by 0 we perform tobit regressions. The

52



regressions are otherwise identical to those in Table 1. We summarize these tobit regressions

in Table A8.

Table A8: Tobit regressions of Longest minus selected variable

(1) (2) (3) (4)
High load 6.795∗∗∗ 7.038∗∗∗ 6.689∗∗∗ 6.948∗∗∗

(1.823) (1.826) (1.775) (1.777)
Longest line normalized 0.133∗∗∗ 0.132∗∗∗ 0.131∗∗∗ 0.131∗∗∗

(0.020) (0.020) (0.019) (0.019)
Number of lines normalized 9.934∗∗∗ − 9.843∗∗∗ −

(0.661) (0.645)
Easy treatment dummy −53.638∗∗∗ −53.784∗∗∗ −56.172∗∗∗ −56.316∗∗∗

(2.955) (2.963) (2.974) (2.982)
Difficult treatment dummy 34.928∗∗∗ 34.795∗∗∗ 34.286∗∗∗ 34.180∗∗∗

(2.082) (2.085) (2.033) (2.037)
Trial −0.172∗∗∗ −0.171∗∗∗ −0.173∗∗∗ −0.171∗∗∗

(0.031) (0.031) (0.031) (0.031)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 35693 35646 35415 35370

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001.

Similar to Table 1, the accuracy of the choice decreases when there is a larger number of

lines, decreases in the length of the longest line, and decreases in the difficulty of the decision.

Further, in every specification, we see that the high load coefficient is positive. This implies

that choices are worse in the high cognitive load treatment. The negative and significant trial

coefficient perhaps suggests that very poor line selections become less frequent across trials.

Here we include an analysis similar to that summarized in Table 1, but we include interac-

tions with the difficulty treatment variables. Specifically, we include the difficulty interactions

involving the Longest line normalized variable and the Number of lines normalized. This is

summarized in Table A9.
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Table A9: Logistic regressions of the Selected longest line variable

(1) (2)
High load −0.0264∗∗ −0.0261∗∗

(0.0092) (0.0091)
Easy treatment dummy 0.2025∗∗∗ 0.2026∗∗∗

(0.0089) (0.0088)
Difficult treatment dummy −0.3874∗∗∗ −0.4013∗∗∗

(0.0120) (0.0124)
Number of lines normalized −0.0604∗∗∗ −0.0615∗∗∗

(0.0056) (0.0056)
Easy*Number of lines norm 0.0465∗∗∗ 0.0498∗∗∗

(0.0060) (0.0060)
Difficult*Number of lines norm −0.0078 −0.0088

(0.0085) (0.0086)
Longest line normalized −0.00109∗∗∗ −0.00112∗∗∗

(0.00017) (0.00017)
Easy*Longest line norm 0.00097∗∗∗ 0.00099∗∗∗

(0.00018) (0.00018)
Difficult*Longest line norm 0.00089∗∗∗ 0.00092∗∗∗

(0.00026) (0.00026)
Trial 0.00007 0.00004

(0.00016) (0.00016)
Letter dummies No No

Fixed effects No Y es

AIC 8328.7 8162.3

We provide the marginal effects evaluated at the sample means and the stan-
dard errors in parentheses. We do not provide the estimates of the intercepts or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

The results are largely unchanged from Table 1, but we mention the possibly interesting

interaction effects. We find positive and significant interactions with the Longest line variable.

This suggests that the diminishing optimality with line length is strongest in the medium

difficulty treatment. Also, the interaction of the Number of lines and the Easy variable is

positive and significant. This suggests that the diminishing optimality in the number of lines

is weaker in the easy treatment than the medium treatment. However, we note that the

interaction of the Number of lines and the Difficult variable is not significant.
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To further explore the robustness of the results in Table 1, we conduct random-effects

regressions. Whereas specifications (3) and (4) in Table 1 employed fixed-effects, here we

conduct a similar analysis but with random-effects. Specifically, we estimate an exchangeable

covariance matrix, clustered by subject. In other words, we assume a unique relationship

between any two observations involving a particular subject. However, we assume that ob-

servations involving two different subjects are statistically independent. The regressions are

estimated using Generalized Estimating Equations (GEE). Since GEE is not a likelihood based

method, Akaike Information Criterion is not available. Therefore, we provide the Quasilikeli-

hood information criterion (QIC). This is summarized in Table A10.

Table A10: Logistic regressions of the Selected longest line variable

(1) (2)
High load −0.0269∗ −0.0287∗

(0.0105) (0.0114)
Longest line normalized −0.0005∗∗∗ −0.0006∗∗∗

(0.0001) (0.0001)
Number of lines normalized −0.054∗∗∗ −

(0.004)
Easy treatment dummy 0.362∗∗∗ 0.395∗∗∗

(0.019) (0.023)
Difficult treatment dummy −0.287∗∗∗ −0.305∗∗∗

(0.012) (0.012)
Trial 0.00007 0.00005

(0.00019) (0.00020)
Letter dummies No Y es

Random effects Y es Y es

QIC 8357.2 8209.1

We provide the marginal effects evaluated at the sample means and the stan-
dard errors in parentheses. We do not provide the estimates of the intercepts, the
Letter dummies, or the correlation estimates. QIC refers to the Quasi-likelihood in-
formation criterion. Each regression has 9200 observations. ∗∗∗ denotes p < 0.001,
∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes p < 0.1.

The results are largely unchanged from Table 1 and our results do not appear to be sensitive

to the specification of the repeated measures.
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Memorization task and line selection task

Here we explore the relationship between success on the memorization task in a trial and

outcomes in the line selection task in that trial. This effort is driven by the concern that

subjects might have known that the memorization task would be incorrect in that trial and

this could have affected outcomes in the line selection task. While incentives were designed to

prevent this from occurring, we look for evidence of such outcomes.

In order to measure success on the memorization task, we define the Cognitive load correct

variable to be a 1 if the cognitive load task in that trial was correct, and a 0 otherwise.

We conduct regressions analogous to those in Tables 1 and 2, with the following differences.

We restrict attention to a cognitive load treatment, we include Cognitive load correct as an

independent variable, and we do not include the High load dummy. We therefore conduct

16 regressions and we report the relevant estimates of the effect of the Cognitive load correct

variable. The upper panel is analogous to Table 1, with Selected longest as dependent variable

and we report the marginal effects of the Cognitive load correct variable. The lower panel is

analogous to Table 2, with Implicit response time as dependent variable and we report the

coefficient estimates of the Cognitive load correct variable.

Table A11: Cognitive load correct estimates restricted to cognitive load treatments

DV: Selected longest, Marginal effects
(1) (2) (3) (4)

Cognitive load correct, restricted to HL 0.0656∗∗∗ 0.0660∗∗ 0.0374† 0.0362
(0.0189) (0.0206) (0.0208) (0.0229)

Cognitive load correct, restricted to LL 0.1103∗∗ 0.1182∗∗ 0.0999∗ 0.1080∗

(0.0397) (0.0424) (0.0389) (0.0423)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

DV: Implicit response time, Coefficient estimates
(1) (2) (3) (4)

Cognitive load correct, restricted to HL −0.0877 −0.0799 −0.0813 −0.0675
(0.1186) (0.1184) (0.1154) (0.1154)

Cognitive load correct, restricted to LL −0.6250∗ −0.5899∗ −0.5000∗ −0.4622†

(0.2666) (0.2667) (0.2375) (0.2374)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es
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Each cell presents the estimates related to the Cognitive load correct variable
in a regression restricted to a cognitive load treatment. In the upper panel, we
provide the marginal effects evaluated at the sample means and the standard errors
in parentheses. The dependent variable is Selected longest. In the lower panel,
we provide the coefficient estimates and the standard errors in parentheses. The
dependent variable is Implicit response time. Each regression has 4600 observa-
tions. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05, and † denotes
p < 0.1.

Restricted either to high or low load, regressions without fixed-effects (specifications (1)

and (2)) show that trials in which the memorization was correct are more likely to have the

longest line selected than trials in which the memorization was not correct. This result could

be driven by the individual differences that are behind the within-subject relationship between

the total number of correct memorization tasks and the total number of optimal line selections.

However, regressions with fixed-effects (specifications (3) and (4)) only show this relationship

when restricted to low load.

Restricted to the high load treatment, we do not find evidence that the Implicit response

time is related to the Cognitive load correct variable. This suggests to us that the level of

effort in high load trials did not depend on whether the memorization task was correct. On

the other hand, in the low load treatment trials, we find evidence that Implicit response time

was larger in incorrect trials than in correct trials. Perhaps in these rare incorrect low load

trials, subjects invested more effort in the line selection task.

Overall, we find some evidence that the accuracy in the memorization task is related to

the behavior in the line selection task in that trial. However, this evidence is confined to the

rare instances of incorrect memorization tasks in the low load treatment. Low load trials with

an incorrect memorization task are associated with a lower likelihood of selecting the optimal

line and a longer deliberation time than low load trials with a correct memorization task.

Combined with their relatively rare occurrences, the results of Table A11 suggest that the

effect of the high load treatment in Table 1 is possibly slightly underestimated but possibly

slightly overestimated in Table 2.
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More on the quality of searches

In Table 2 we investigated the quality of searches by conducting an analysis with Implicit

response time as the dependent variable. Whereas the time deliberating is one measure of

effort in the line selection task, it is not the only such measure. Another measure of the

effort expended is the number of line view clicks. It would seem that a larger such number

would be associated with more effort in identifying the optimal line. We define the View

clicks variable as the number of total line view clicks during the search stage. We conduct an

analysis identical to Table 2, with the exception that the dependent variable is View clicks.

Table A12 summarizes this analysis.

Table A12: Regressions of the View clicks variable

(1) (2) (3) (4)
High load −0.339∗∗∗ −0.346∗∗∗ −0.340∗∗∗ −0.348∗∗∗

(0.049) (0.049) (0.040) (0.0401)
Longest line normalized −0.0018∗∗∗ −0.0018∗∗∗ −0.0018∗∗∗ −0.0018∗∗∗

(0.0005) (0.0005) (0.0004) (0.0004)
Number of lines normalized 1.082∗∗∗ − 1.083∗∗∗ −

(0.017) (0.0143)
Easy treatment dummy −1.458∗∗∗ −1.469∗∗∗ −1.420∗∗∗ −1.430∗∗∗

(0.060) (0.060) (0.050) (0.049)
Difficult treatment dummy 0.654∗∗∗ 0.639∗∗∗ 0.655∗∗∗ 0.643∗∗∗

(0.060) (0.060) (0.050) (0.049)
Trial 0.0034∗∗∗ 0.0035∗∗∗ 0.0034∗∗∗ 0.0035∗∗∗

(0.0009) (0.0008) (0.0007) (0.0007)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 41891.0 41810.8 38307.7 38209.2

We provide the coefficient estimates and the standard errors in parentheses.
We do not provide the estimates of the intercepts, the Letter dummies, or the
subject-specific dummies in the fixed effects regressions. AIC refers to the Akaike
information criterion (Akaike, 1974). Each regression has 9200 observations. ∗∗∗

denotes p < 0.001.

Here we observe fewer View clicks in the high load treatment. This suggests that the

cognitive load manipulation is negatively affecting the quality of the searches. We also observe

that View clicks is increasing in the number of available lines. Further, we observe that View
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clicks is decreasing in the length of the longest line. This suggests that subjects expended less

effort in the searches involving longer lines. Additionally, we observe more View clicks in the

Difficult treatment and fewer in the Easy treatment. We note that Reutskaja et al. (2011),

Krajbich, Armel, and Rangel (2010), and Krajbich and Rangel (2011) find similar results.

More on the relationship between choice and search

In Table 1, we explored whether subjects optimally selects the longest line by conducting

regressions with the Selected longest line variable. Another question to ask is whether subjects

selected the longest line, among the lines that were viewed. We define the Selected longest line

viewed variable as a 1 if the longest line among those viewed was selected, and a 0 otherwise.

We conduct an analysis similar to Table 1, but rather than using the Selected longest line

variable, we employ the Selected longest line viewed variable. We summarize these regressions

in Table A13.

Table A13: Logistic regressions of Selected longest line viewed variable

(1) (2) (3) (4)
High load −0.0241∗∗ −0.0268∗∗ −0.0239∗∗ −0.0262∗∗

(0.0092) (0.010) (0.0091) (0.010)
Longest line normalized −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Number of lines normalized −0.051∗∗∗ − −0.052∗∗∗ −

(0.003) (0.003)
Easy treatment dummy 0.360∗∗∗ 0.395∗∗∗ 0.367∗∗∗ 0.407∗∗∗

(0.014) (0.015) (0.014) (0.015)
Difficult treatment dummy −0.281∗∗∗ −0.307∗∗∗ −0.284∗∗∗ −0.312∗∗∗

(0.011) (0.012) (0.011) (0.012)
Trial 0.00019 0.00018 0.00018 0.00017

(0.00016) (0.00017) (0.00016) (0.00017)
Letter dummies No Y es No Y es

Fixed effects No No Y es Y es

AIC 8305.4 8134.4 8176.8 8005.0

We provide the marginal effects evaluated at the sample means and the stan-
dard errors in parentheses. We do not provide the estimates of the intercepts, the
Letter dummies, or the subject-specific dummies in the fixed effects regressions.
AIC refers to the Akaike information criterion (Akaike, 1974). Each regression has
9200 observations. ∗∗∗ denotes p < 0.001, ∗∗ denotes p < 0.01, ∗ denotes p < 0.05,
and † denotes p < 0.1.
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Even when we restrict attention to the set of viewed lines, we still find evidence that

subjects in the high load treatment make worse choices. Therefore, consideration set effects

cannot fully explain the relationship between cognitive load and the Selected longest variable,

as summarized in Table 1. Additionally, we note a negative relationship between the quality

of choices among the lines that were viewed and the length of the longest line. Finally, we

note the negative relationship between selecting the longest line viewed and the number of

lines in the choice set.52

Robustness of the relationship between quality of choice and response times

In order to test the robustness of Table 3, we conduct a similar analysis here. We perform an

analysis, similar to that summarized in Table 2 but we include Selected longest as an indepen-

dent variable. Further, for the specifications without fixed-effects, we include an independent

variable that is the average of the Implicit response time for that particular subject. We

summarize this analysis in Table A14.

Table A14: Regressions of Implicit response time variable

(1) (2) (3) (4)
High load −0.424∗∗∗ −0.429∗∗∗ −0.424∗∗∗ −0.429∗∗∗

(0.051) (0.051) (0.051) (0.051)
Longest line normalized 0.0021∗∗∗ 0.0020∗∗∗ 0.0021∗∗∗ 0.0021∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006)
Number of lines normalized 1.068∗∗∗ − 1.057∗∗∗ −

(0.018) (0.018)
Easy treatment dummy −1.968∗∗∗ −1.985∗∗∗ −1.960∗∗∗ −1.977∗∗∗

(0.064) (0.064) (0.064) (0.064)
Difficult treatment dummy 0.712∗∗∗ 0.714∗∗∗ 0.715∗∗∗ 0.717∗∗∗

(0.067) (0.067) (0.067) (0.067)
Trial −0.0076∗∗∗ −0.0075∗∗∗ −0.0076∗∗∗ −0.0075∗∗∗

(0.0009) (0.0009) (0.0009) (0.0009)
Selected Longest −0.705∗∗∗ −0.673∗∗∗ −0.668∗∗∗ −0.639∗∗∗

(0.067) (0.067) (0.065) (0.066)
Sub’s Average RT − − 0.971∗∗∗ 0.969∗∗∗

(0.019) (0.018)
Letter dummies No Y es No Y es

Fixed effects Y es Y es No No

AIC 42489.7 42469.2 42480.4 42459.7

52Reutskaja et al. (2011) find a similar relationship in their data.
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We provide the coefficient estimates and the standard errors in parentheses. We
do not provide the estimates of the intercepts, the Letter dummies, the subject-
specific dummies in the fixed effects regressions or the demographics estimates.
AIC refers to the Akaike information criterion. Each regression has 9200 observa-
tions. ∗∗∗ denotes p < 0.001.

In every specification, the Selected Longest variable is negative and significant. We inter-

pret this as suggesting that, even when controlling for the fixed characteristics of the subjects,

suboptimal choices tend to take longer than optimal choices. Due to the possible endogeneity

present in the analysis, we conduct Spearman correlations between the unstandardized residu-

als and the Selected longest variable. In specifications (1)− (4), the p-values, respectively, are

0.019, 0.019, 0.015, and 0.015.53 Similar to Table 3, we find a negative relationship between

the Selected longest variable and Implicit response time. Although we note that the significant

correlations suggest that this result might be driven by endogeneity.

Robustness of the multinomial discrete choice models

In Table 4, we conducted comparisons of different multinomial discrete choice models. In Ta-

bles A15 and A16, we conduct the identical analysis but restricted to either the high cognitive

load treatment or the low cognitive load treatment.

53When we restrict the analysis to the 9001 observations with a line view and a line selection, the p-values,
respectively, are 0.049, 0.048, 0.051, and 0.051.
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Table A15: Comparisons of different multinomial discrete choice models for high load

Cond Logit Multi Probit 1 HEV Multi Probit 2 Trials
(1) (2) (3) (4)

2 Lines β est. 0.134 0.103 − − 890
AIC 689 693
BIC 694 698

3 Lines β est. 0.134 0.093 0.125 0.084 917
AIC 983 999 981 996
BIC 988 1004 991 1006

4 Lines β est. 0.110 0.113 0.109 0.125 933
AIC 1387 1607 1388 1543
BIC 1392 1612 1402 1557

5 Lines β est. 0.097 0.128 0.106 0.158 912
AIC 1680 1998 1678 1756
BIC 1685 2003 1698 1775

6 Lines β est. 0.089 0.059 0.066 0.044 856
AIC 1867 1879 1792 1824
BIC 1871 1883 1816 1848

We provide the estimates of β, the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) for the various models restricted to treat-
ments with identical numbers of lines. Each of the estimates for β are significantly
different from 0 with p < 0.001.

In every model, there is evidence that logistic errors provide a better fit than normal

errors in high cognitive load trials. We perform the analysis for trials in the low cognitive load

treatment.
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Table A16: Comparisons of different multinomial discrete choice models for low load

Cond Logit Multi Probit 1 HEV Multi Probit 2 Trials
(1) (2) (3) (4)

2 Lines β est. 0.128 0.094 − − 895
AIC 730 740
BIC 734 745

3 Lines β est. 0.123 0.081 0.113 0.074 954
AIC 1106 1139 1100 1139
BIC 1111 1144 1109 1149

4 Lines β est. 0.122 0.118 0.119 0.126 893
AIC 1331 1422 1334 1399
BIC 1336 1427 1349 1414

5 Lines β est. 0.131 0.129 0.122 0.140 868
AIC 1486 1613 1488 1583
BIC 1490 1618 1507 1602

6 Lines β est. 0.100 0.066 0.075 0.048 924
AIC 1907 1928 1825 1862
BIC 1911 1933 1849 1886

We provide the estimates of β, the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) for the various models restricted to treat-
ments with identical numbers of lines. Each of the estimates for β are significantly
different from 0 with p < 0.001.

Again, the evidence in our low cognitive load trials suggest that the assumption of Gumbel

errors provides a better fit than the assumption of normal errors.

We note that the estimates of β vary among the models summarized in Tables 4, A15, and

A16, which is possibly affecting our results. In order to address this possibility, we offer an

analysis, identical to that summarized in Table 4, however we add an additional restriction

that β = 0.1. This analysis is summarized in Table A17.
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Table A17: Comparisons of different restricted multinomial discrete choice models

Cond Logit Multi Probit 1 HEV Multi Probit 2 Trials
(1) (2) (3) (4)

2 Lines AIC 1435 1430 − − 1785
BIC 1435 1430

3 Lines AIC 2116 2154 2087 2154 1871
BIC 2116 2154 2093 2160

4 Lines AIC 2729 2903 2722 2810 1826
BIC 2729 2903 2733 2821

5 Lines AIC 3186 3317 3190 3241 1780
BIC 3186 3317 3207 3257

6 Lines AIC 3776 4153 3691 4097 1780
BIC 3776 4153 3713 4119

We provide the Akaike Information Criterion (AIC) and the Bayesian Informa-
tion Criterion (BIC) for the various models restricted to treatments with identical
numbers of lines. We have restricted β = 0.1 in each specification.

Similar to the analysis summarized in Table 4, with the exception of the 2 Lines treatment,

both the AIC and BIC are lower for the specifications with Gumbel errors than for normal

errors. In 17 of 18 comparisons, the AIC of the Gumbel error specification is lower than that

for the normal error specification. Likewise, in 17 of 18 comparisons, the BIC of the Gumbel

error specification is lower than that for the normal error specification.

In order to further explore the robustness of our results, we conduct an analysis similar to

specifications (1) and (2) in Table 4, however we estimate different Length coefficients for the

high load and the low load. We denote the coefficient estimates for the high and low load trials,

respectively, as βHL and βLL. In order to further account for possible heterogeneity, we include

specifications that estimate the effects of the letter label on choice. In specifications (3) and (4)

we account for the letter label by including a Letter label dummy. In these specifications, the

non-stochastic component to the utility for line j is: Vj = βi ∗Lengthj+LetterLabelDummyj

for i ∈ {HL,LL}. This analysis is summarized in Table A18.
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Table A18: Comparisons of different multinomial discrete choice models

Not including letter label Including letter label
Cond Logit Multi Probit Cond Logit Multi Probit Trials

(1) (2) (3) (4)
2 Lines βHL est. 0.1335 0.1031 0.1337 0.1031 1785

βLL est. 0.1280 0.0937 0.1277 0.0934
AIC 1419 1433 1422 1436
BIC 1430 1444 1444 1458

3 Lines βHL est. 0.1338 0.0932 0.1367 0.0947 1871
βLL est. 0.1231 0.0810 0.1244 0.0819
AIC 2089 2139 2068 2119
BIC 2100 2150 2096 2147

4 Lines βHL est. 0.1100 0.0979 0.1128 0.0978 1826
βLL est. 0.1220 0.1181 0.1239 0.1204
AIC 2718 2944 2643 2893
BIC 2729 2955 2676 2926

5 Lines βHL est. 0.0970 0.1338 0.0992 0.1338 1780
βLL est. 0.1309 0.1209 0.1351 0.1209
AIC 3166 3645 3086 3655
BIC 3177 3656 3124 3693

6 Lines βHL est. 0.0889 0.0589 0.0952 0.0624 1780
βLL est. 0.1003 0.0661 0.1070 0.0699
AIC 3773 3806 3461 3505
BIC 3784 3817 3505 3548

We provide the estimates of β, the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) for the various models restricted to treat-
ments with identical numbers of lines. Each of the estimates for βHL and βLL are
significantly different from 0 with p < 0.001.

Similar to the results found above, in every comparison of either AIC and BIC, the value in

the Conditional Logit model (1) is lower than that for the analogous Multinomial Probit model

(2). Also for both measures, the Conditional Logit model (3) values are lower than those in

the analogous Multinomial Probit model (4). We again interpret these results as suggesting

that the models that assume that errors have a Gumbel distribution provide a better fit than

comparable models that assume that errors have a normal distribution.
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