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ABSTRACT

Pretesting for exogeneity has become a routine in many empirical applications involving instrumental vari-

ables (IVs) to decide whether the ordinary least squares (OLS) or the two-stage least squares (2SLS) method

is appropriate. Guggenberger (2010) shows that the second-stage t-test– based on the outcome of a Durbin-

Wu-Hausman type pretest for exogeneity in the first-stage– has extreme size distortion with asymptotic size

equal to 1 when the standard asymptotic critical values are used. In this paper, we first show that the stan-

dard wild bootstrap procedures (with either independent or dependent draws of disturbances) are not viable

solutions to such extreme size-distortion problem. Then, we propose a novel hybrid bootstrap approach,

which combines the residual-based bootstrap along with an adjusted Bonferroni size-correction method.

We establish uniform validity of this hybrid bootstrap under conditional heteroskedasticity in the sense that

it yields a two-stage test with correct asymptotic size. Monte Carlo simulations confirm our theoretical

findings. In particular, our proposed hybrid method achieves remarkable power gains over the 2SLS-based

t-test, especially when IVs are not very strong.

Key words: DWH Pretest; Instrumental Variable; Asymptotic Size; Bootstrap; Bonferroni-based

Size-correction; Uniform Inference.

JEL classification: C12; C13; C26.

∗ School of Economics, The University of Adelaide. 10 Pulteney Street, Adelaide SA 5005, AUSTRALIA.

Tel:+618 8313 1174, Fax:+618 8223 1460; e-mail: firmin.dokotchatoka@adelaide.edu.au
†Division of Economics, School of Social Sciences, Nanyang Technological University. HSS-04-65, 14 Nanyang

Drive, 637332, SINGAPORE. e-mail: wang.wj@ntu.edu.sg



1. Introduction

Inference after data-driven model selection is widely studied in both the statistical and economet-

ric literature. For instance, see Hansen (2005), Leeb and Pötscher (2005a, 2009), who provide an

overview of the importance and difficulty of conducting valid inference after model selection. In

particular, it is now well known that widely used model-selection practices such as pretesting may

have large impact on the size properties of two-stage procedures and thus invalidate inference on

parameter of interest in the second stage. For the classical linear regression model with exogenous

covariates, Kabaila (1995) and Leeb and Pötscher (2005b) show that confidence intervals (CIs)

based on consistent model selection have serious problem of under-coverage, while Andrews and

Guggenberger (2009b) show that such CIs have asymptotic confidence size equal to 0. Further-

more, Kabaila and Leeb (2006) derive an upper bound for the large-sample limit minimal coverage

probability of CIs after “conservative" model selection such as Akaike Information Criterion (AIC)

and various pretesting procedures. Andrews and Guggenberger (2009a) find extreme size distor-

tion for the two-stage test after “conservative" model selection and propose various least favourable

critical values (CVs). In comparison, the literature on models that contain endogenous covariates,

such as widely used instrumental variable (IV) regression models, remains relatively sparse.

The uniform validity of post-selection inference for structural parameters in linear IV models

was studied by Guggenberger (2010a), who advised not to use Hausman-type pretesting for exo-

geneity to select between ordinary least squares (OLS) and two-stage least squares (2SLS)-based

t-tests because such two-stage procedure can be extremely over-sized with standard asymptotic

CVs, even when IVs are strong.1 Instead, Guggenberger (2010a) recommended to use a t-statistic

based on the 2SLS estimator or, if weak IVs are a concern, an identification-robust method2 to

perform inference directly on the structural parameters. However, it is well known that the 2SLS-

based t-statistic itself may have undesirable size properties when IVs are not strong (especially if

the number of IVs is large), and compared with the t-statistic, identification-robust methods of-

ten yield relatively large confidence intervals in such cases. As such, in the quest for statistical

power, many empirical practitioners still use Hausman-type pretesting in IV applications despite

the important concern raised by Guggenberger (2010a). In particular, their motivation of imple-

menting the two-stage procedure also lies in the fact that valid IVs (i.e., exogenous IVs) found

in practice may be rather uninformative, while strong IVs are typically more or less invalid and

such deviation from IV exogeneity may also lead to serious size distortion in standard t-test and

identification-robust tests (e.g., see Berkowitz, Caner and Fang (2008, 2012), Doko Tchatoka and

Dufour (2008), Conley, Hansen and Rossi (2012), Guggenberger (2012), Andrews, Gentzkow and

Shapiro (2017)).

Recently, Young (2020) analyzes a sample of 1359 empirical application involving IV regres-

1Similar concerns were also raised by Guggenberger and Kumar (2012) about pretesting the instrument exogeneity

using a test of overidentifying restrictions, and by Guggenberger (2010b) and Kabaila, Mainzer and Farchione (2015)

about pretesting for the presence of random effects before inference on the parameters of interest in panel data models.
2Such as Anderson and Rubin (1949, AR), Kleibergen (2002, KLM), and Moreira (2003, CLR) among others.
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sions in 31 papers published in the American Economic Association (AEA): 16 in AER, 6 in AEJ:

A.Econ., 4 in AEJ: E.Policy, and 5 in AEJ: Macro. He highlights that the IVs often do not appear

to be strong in these papers, so that inference methods based-on standard normal CVs can be rather

unreliable, and he advocates for the usage of bootstrap methods to improve the quality of infer-

ence. Furthermore, he argues that in these papers IV confidence intervals almost always include

OLS point estimates and there is little statistical evidence of endogeneity and evidence that OLS is

seriously biased, based on the low rejection rates of Hausman tests in his data. In his simulations

based upon the published regressions (Table XIV), the rejection frequencies can be as low as 0.237

and 0.386 for 1% and 5% significance levels, respectively, for asymptotic Hausman tests, and even

as low as 0.105 and 0.208, respectively, for bootstrap Hausman tests.

However, Young (2020)’s finding from the AEA data that OLS estimates seem to be not very

different from 2SLS estimates may be attributed to the fact that the used IVs are not strong (2SLS

is biased towards OLS under weak IVs), and Hausman-type tests also have low power in this case

(e.g., see Doko Tchatoka and Dufour (2018, 2020)). It is therefore unclear whether OLS is not se-

riously biased in these data. In particular, as shown by Guggenberger (2010a) and Doko Tchatoka

and Dufour (2018, 2020), the Hausman test is not able to reject the null hypothesis of exogeneity in

situations where there is only a small degree of endogeneity: for sequences of correlations between

the structural and reduced form errors that are local to zero of order n−
1
2 (i.e., local endogeneity),

where n is the sample size, the Hausman pretest statistic has a noncentral chi-squared limiting

distribution, and its noncentrality parameter is small when IVs strength is not high. Therefore, the

pretest has low power and as a result, OLS based inference is selected in the second stage with high

probability. However, the OLS-based t-statistic often takes on very large values even under such

local endogeneity, causing extreme size distortions in the two-stage test. Indeed, Guggenberger

(2010) shows that the asymptotic size of the naive two-stage test equals 1 for empirically relevant

choices of parameter space.

In this paper, we study the possibility of proposing uniformly valid inference method for the

two-stage test procedure by using alternative data-dependent CVs. Following Young (2020)’s rec-

ommendation of using bootstrap methods for IV models, we first study the validity of bootstrapping

the two-stage procedure. It is well documented in the literature that resampling methods such as

bootstrap and subsampling can be invalid when IVs are weak; see e.g., Andrews and Guggenberger

(2010b), Wang and Doko Tchatoka (2018) and Wang (2020). Here, by deriving the null limiting

distributions of the bootstrap test statistics and their associated asymptotic sizes, we show that the

(wild) bootstrap method is invalid for the two-stage procedure even under strong IVs. In particular,

the usual intuition for bootstrapping the Hausman test is that one should restrict the bootstrap data

generating process (DGP) under exogeneity of the regressors, which corresponds to the pretest null

hypothesis. Interestingly, we find that such bootstrap DGP can still result in extreme size distortion

for the two-stage test with asymptotic size close to 1 in some settings, while the bootstrap DGP

without the null restriction typically has much smaller size distortions. As such, in general boot-

strap is not the solution to guarantee uniform inference for the two-stage test procedure. This is
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in contrast to the case of bootstrapping the Durbin-Wu-Hausman tests (without the second-stage t-

test), which achieves higher-order refinement under strong IVs and remains first-order valid under

weak IVs; e.g., see Doko Tchatoka (2015).

On the other hand, there is also a growing literature illustrating that when applied to IV models,

well designed bootstrap procedures typically have superior performance than conventional asymp-

totic approximations in terms of size control and coverage probability for hypothesis testing and

confidence intervals, respectively; see, e.g., Davidson and MacKinnon (2008, 2010, 2014), Wang

and Kaffo (2016), Finlay and Magnusson (2019), Wang (2021), Here, to address the bootstrap

failure for the two-stage test, we propose a novel hybrid bootstrap procedure, which makes use

of the standard wild bootstrap CVs and an appropriate size-correction method. This procedure

consists of developing a set of size-corrected bootstrap CVs for the two-stage test statistic, and we

show that these CVs are uniformly valid in the sense that they yield tests with correct asymptotic

size. In particular, since the standard wild bootstrap CVs cannot mimic well the key localized

endogeneity parameter, more attention is required on this parameter when designing the bootstrap

DGP. Furthermore, a Bonferroni-based size-correction technique is also implemented to deal with

the presence of this localization parameter in the limiting distribution of interest. Different from

conventional Bonferroni bound, which may lead to conservative test with asymptotic size strictly

less than the nominal level, our technique always leads to correct asymptotic size.

In terms of practical usage of our method, we are particularly interested in the IV applica-

tions where the values of endogeneity parameters are relatively small; e.g., Hansen, Hausman and

Newey (2008) report that the median of the estimated endogeneity parameters is only 0.279 in their

investigated AER, JPE, and QJE papers. These are cases where the Hausman-type pretest would

not reject exogeneity and the naive two-stage procedure would lead to extreme size distortion. On

the other hand, as the problem of size distortion is circumvented by our method, we may take

advantage of the power superiority of the OLS-based t-test over its 2SLS counterpart. In addition,

Doko Tchatoka and Dufour (2020) show that pretest estimators based on Durbin-Wu-Hausman

exogeneity tests can outperform both the OLS and 2SLS estimators in terms of mean squared error

if identification is not very strong, even with moderate endogeneity. As such, our proposed method

is also attractive from the viewpoint of inference for this type of models. Monte Carlo experiments

confirm that our hybrid bootstrap procedure is able to achieve remarkable power gains over the

2SLS-based t-test and the AR test, especially when the IVs are not very strong.

Our size-correction procedure is closely related to recent studies by McCloskey (2017), who

proposes Bonferroni-based size-correction procedures for general nonstandard testing problems,

and McCloskey (2019) applied this method to post-selection inference in linear regression model.

Wang and Doko Tchatoka (2018) proposed size-correction method for subvector inference in linear

IV models in which the structural nuisance parameter may be weakly identified, while Han and

McCloskey (2019) used it for inference in moment condition models where the estimating function

may exhibit mixed identification strength and a nearly singular Jacobian. Different from our hybrid

bootstrap procedures, these procedures are based on simulations from limiting distributions.
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The remainder of this paper is organized as follows. Section 2 presents the setting, test statistics

and parameter space of interest. Section 3 presents the results of both standard and hybrid bootstrap

methods for the two-stage testing. Section 4 investigates the finite sample power performance of

our methods using Monte Carlo simulations. Conclusions are drawn in Section 5 and the proofs

are provided in the Appendix.

Throughout the paper, for any positive integers n and m, In and 0n×m stand for the n × n

identity matrix and n × m zero matrix, respectively. For any full-column rank n × m matrix

A, PA = A(A′A)−1A′ is the projection matrix on the space spanned by the columns of A, and

MA = In−PA. The notation vec(A) is the nm×1 dimensional column vectorization of A. B > 0 for

a m×m squared matrix B means that B is positive definite. λ min(A), λ max(A), and rank(A) denote

the minimum and maximum eigenvalues and the rank of matrix A, respectively. ‖U‖ denotes the

usual Euclidean or Frobenius norm for a matrix U. The usual orders of magnitude are denoted by

OP(.) and oP(.), “
P→” stands for convergence in probability, while “

d→” stands for convergence

in distribution. We write P∗ to denote the probability measure induced by a bootstrap procedure

conditional on the data, and E∗ and Var∗ to denote the expected value and variance with respect

to P∗. For any bootstrap statistic T ∗ we write T ∗ →P∗
0 in probability if for any δ > 0, ε > 0,

limn→∞P[P∗(|T ∗|> δ )> ε] = 0, i.e., P∗(|T ∗|> δ ) = oP(1); see e.g. Gonçalves and White (2004)

and Dovonon and Gonçalves (2017). Also, we write T ∗ = OP∗(nϕ) in probability if and only if for

any δ > 0 there exists a Mδ <∞ such that limn→∞P[P∗(|n−ϕT ∗|>Mδ )> δ ] = 0, i.e., for any δ > 0

there exists a Mδ < ∞ such that P∗(|n−ϕT ∗|> Mδ ) = oP(1). Finally, we write T ∗ →d∗
T in proba-

bility if, conditional on the data, T ∗ weakly converges to T under P∗, for all samples contained in

a set with probability approaching one.

2. Framework

2.1. Model and test statistics

We consider the following linear IV model

y = Xθ +u, (2.1)

X = Zπ + v, (2.2)

where y,X ∈ Rn, Z ∈R
n×k is a matrix of instruments (k ≥ 1), (θ ,π ′)′ ∈R

1×k are unknown param-

eters, and n is the sample size. We assume that the matrix Z has full-column rank with probability

one. Denote by ui, vi, and Zi the ith rows of u, v, and Z respectively, written as column vectors

(or scalars) and similarly for the other random variables. Assume that {(ui,vi,Zi) : i ≤ n} are i.i.d.

with distribution F .

The object of inferential interest is the structural parameter θ and we consider the problem of

testing the null hypothesis H0 : θ = θ 0. We study the two-stage testing procedure for assessing H0,
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where an exogeneity test is undertaken in the first stage to decide whether a t-test based on the OLS

or 2SLS estimator is appropriate for testing H0 in the second stage. Assume that the instruments

Z are exogenous, i.e., EF [uiZi] = 0 for all i, where Identification EF denotes expectation under the

distribution F. Under this orthogonality condition of the instruments, X is endogenous in (2.1) if

and only if v and u are correlated. Consider the following linear projection of u on v:

u = va+ e, (2.3)

where e is uncorrelated with v (i.e., EF [eivi] = 0 for all i) and a = (EF [v
2
i ])

−1EF [viui]. The exo-

geneity of X in (2.1) can be assessed by testing the null hypothesis Ha : a = 0 in (2.3); see e.g.

Doko Tchatoka and Dufour (2018). Substituting (2.3) into (2.1), we obtain the extended regression

y = Xθ + vγ + e, (2.4)

where X and v are uncorrelated with e, i.e., EF [Xiei] = 0 and EF [viei] = 0 for all i ≤ n. Therefore,

the null hypothesis of exogeneity Ha : a = 0 can be assessed using a Wald statistic for a = 0

in the extended regression (2.4). For any full-column rank matrix A with appropriate sizes, let

MAW denote the residuals from the regression of W on A, MA = I −PA and PA = A(A′A)−1A′. To

account for possible conditional heteroskedasticity in the model, we consider the following control

function-based Wald statistic3 for Ha : a = 0 in (2.4):

Hn = nâ2/V̂a, (2.5)

where â = (ṽ′ṽ)−1ṽ′y, V̂a = (n−1ṽ′ṽ)−1
(

n−1 ∑
n
i=1 ṽ2

i ê2
i

)

(n−1ṽ′ṽ)−1 is the White heteroskedasticity-

robust estimator of the covariance matrix of â, ṽ = MX v̂, v̂ = MZX , and ê = M[X ,v̂]y. Note that ê is

the residuals vector from the OLS regression of y on X and v̂. The pretest reject the null hypothesis

that X is exogenous in (2.1) (equivalently, the null hypothesis that OLS is unbiased) if Hn > χ2
1,1−β ,

where χ2
1,1−β is the (1−β )th quantile of χ2

1-distributed random variable for some β ∈ (0,1). If θ

is strongly identified (Z being strong instruments) and X is exogenous, Hn follows a χ2
1 distribution

asymptotically.

Let θ̂ 2SLS = X
′
PZy/(X

′
PZX), and θ̂ OLS = X

′
y/(X

′
X) be the OLS and 2SLS estimators of θ re-

spectively in (2.1). Also, define V̂2SLS = (X
′
PZX/n)−1σ̂2

u(θ̂ 2SLS) and V̂OLS = (X
′
X/n)−1σ̂2

u(θ̂ OLS),

where σ̂2
u(θ̂ l) = n−1(y−X θ̂ l)

′(y−X θ̂ l), l ∈ {OLS,2SLS} are the usual OLS-based 2SLS-based

estimators of the variance of the structural error (both without correction for degrees of freedom).

The two-stage test statistic associated with a pretest using Hn in the first-stage is given by:

T̄n(θ 0) = TOLS(θ 0)1(Hn ≤ χ2
1,1−β )+T2SLS(θ 0)1(Hn > χ2

1,1−β ), (2.6)

3Alternative formulations of this exogeneity statistic are given in Hahn, Ham and Moon (2010); Doko Tchatoka

and Dufour (2018, 2020) but the Wald version considered in (2.5) easily accommodates conditional heteroskedasticity,

so we shall use this formulation.
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where Tl(θ), l ∈ {OLS,2SLS} is the usual t-statistic with OLS or 2SLS estimates, i.e.

Tl(θ) = n1/2(θ̂ l −θ)/V̂
1/2

l , l ∈ {OLS,2SLS}. (2.7)

Define Tn(θ 0) as ±T̄n(θ 0) or |T̄n(θ 0)|, depending on whether the test is a lower/upper one-sided

or a symmetric two-sided test, respectively. The nominal size α test with a standard normal CV

rejects H0 : θ = θ 0 if

Tn(θ 0)> c∞(1−α), (2.8)

where c∞(1−α) = z1−α for the one-sided test and z1−α/2 for the symmetric two-sided test, re-

spectively and z1−α is the (1−α)-th quantile of a standard normal distribution.

2.2. Parameter space and asymptotic size

We define the parameter space Γ of the nuisance parameter vector γ following Andrews and

Guggenberger (2009, 2010a, 2010b), Guggenberger (2012), and Guggenberger and Kumar (2012).

Importantly, as pointed out in Andrews and Guggenberger (2009, 2010a, 2010b), one may index

the model by nuisance parameters that have three components: γ = (γ1,γ2,γ3). (i) The first compo-

nent γ1 determines the point of discontinuity of the limiting distribution of interest. The parameter

space of γ1 is Γ1. (ii) The second component γ2 also affects the limiting distribution of interest,

but does not affect the distance of the first component to the point of discontinuity. The param-

eter space of γ2 is Γ2. (iii) The third component γ3 does not affect the limiting distribution. The

parameter space of γ3 is Γ3, which in general may depend on γ1 and γ2, i.e., Γ3 ≡ Γ3(γ1,γ2). To

obtain the asymptotic size results, the first and second components need to be finite dimensional,

while the third component is allowed to be infinite dimensional [e.g., the error distribution;4 see

the application examples in Andrews and Guggenberger (2009, 2010a, 2010b)].

Define the vector of nuisance parameters γ = (γ1,γ2,γ3) by

γ1 = a, γ2 = (γ21,γ22,γ23,γ24,γ25), γ3 = F, (2.9)

where a = (EF [v
2
i ])

−1EF [viui], γ21 = π, γ22 = EFe2
i ZiZ

′
i , γ23 = EFe2

i v2
i , γ24 = EFZiZ

′
i , and γ25 =

EFv2
i . Here, γ1 measures the degree of endogeneity of X through the regression endogeneity pa-

rameter a [see Doko Tchatoka and Dufour (2014), and γ
− 1

2

25 ‖γ
1
2

24γ21‖ measures the overall strength

4As pointed out by Andrews and Guggenberger (2010b, p.434), the limiting distribution of interest often does not

depend on the specific error distribution by virtue of the CLT, and only depends on whether it has certain moments

finite and uniformly bounded.
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of the IVs.5 Let

Γ1 = R, Γ2 =
{

(γ21,γ22,γ23,γ24,γ25) : γ21 = π ∈ R
k,γ22 = EFe2

i ZiZ
′
i = ΩZe ∈ R

k×k,

γ23 = EFe2
i v2

i = Ωve ∈ R,γ24 = EFZiZ
′
i = ΩZZ ∈ R

k×k,γ25 = EFv2
i = σ2

v ∈ R

s.t. ‖γ21‖ ≥ κ,λ min(γ22)≥ κ,γ23 > 0,λ min(γ24)≥ κ, and γ25 > 0
}

, (2.10)

for some κ > 0 that does not depend on n, where λ min(A) denotes the minimum eigenvalue of

the square matrix A. As ‖γ21‖ ≥ κ > 0, γ25 ≥ κ > 0, λ min(γ24) ≥ κ > 0, then the measure of

instrument strength γ
− 1

2

25 ‖γ
1
2

24γ21‖ is bounded away from zero. Therefore, the Staiger and Stock

(1997)’s weak IVs asymptotics is ruled out of the scope of this paper.6 Following Guggenberger

(2012) and Guggenberger and Kumar (2012), Γ3(γ1,γ2) is defined to allow for possible conditional

heterogeneity of the errors as follows:

Γ3(γ1,γ2) =
{

F : EFeivi = EFeiZi = EFviZi = 0, EFe2
i viZi = EFeiv

2
i Zi = EFeiviZiZ

′
i = 0,

EFeiv
3
i = 0, EFv2

i ZiZ
′
i = ΩZv ∈ R

k×k with λ min(ΩZv)≥ κ, (2.11)
∥

∥

∥

∥

EF

(

|ui|2+δ , |vi|2+δ , |uivi|2+δ
)′
∥

∥

∥

∥

≤ M,

∥

∥

∥

∥

EF

(

||Ziui||2+δ , ||Zivi||2+δ , ||Zi||2+δ
)′
∥

∥

∥

∥

≤ M
}

,

for some constant κ > 0, δ > 0 and M < ∞. The definition of Γ3(γ1,γ2) allows for conditional

heteroskedasticity by not imposing EFe2
i EFZiZ

′
i = ΩZe, EFv2

i EFZiZ
′
i = ΩZv, or EFe2

i EFv2
i = Ωve.

As the goal is to provide a practical means of controlling size of the two-stage t-test after pretesting

for exogeneity, allowing for conditional heteroskedasticity is paramount for the proposed method-

ology to be useful in applied work.

We then define the whole nuisance parameter space Γ of γ as

Γ = {γ = (γ1,γ2,γ3) : γ1 ∈ Γ1,γ2 ∈ Γ2,γ3 ∈ Γ3(γ1,γ2)}, (2.12)

where Γj, j = 1,2,3 are given in (2.10) and (2.11). To characterize the asymptotic behavior of the

estimators and test statistics, it is useful to consider the following convergence in distribution:

1√
n







Z′e

Z′v

v′e






→d







ψZe

ψZv

ψve






∼ N






0,







ΩZe 0 0

0 ΩZv 0

0 0 Ωve












. (2.13)

5Note that γ
− 1

2
25 ‖γ

1
2
24γ21‖ = (µ2/n)1/2, where µ2 denotes the well-known concentration parameter in the IV litera-

ture.
6However, the Monte Carlo experiments (see Section 4) show that our proposed tests perform very well even when

IVs are weak.
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Furthermore, let γ̄1 be defined as γ1 → γ̄1 ∈R as n → ∞. It is easy to see from (2.3) and (2.13) that

1√
n







Z′u

Z′v
(

v′u−EF [v
′u]
)






→d







ψZu(γ̄1)

ψZv

ψvu(γ̄1)






∼ N






0,







ΩZu(γ̄1) 0 0

0 ΩZv 0

0 0 Ωvu(γ̄1)












, (2.14)

where ψZu(γ̄1) = ψZvγ̄1 + ψZe, ψvu(γ̄1) = ψvγ̄1 + ψve with n−1/2
(

v′v − EF [v
′v]
)

→d ψv,

ΩZu(γ̄1) = γ̄2
1ΩZv +ΩZe, and Ωvu(γ̄1) = γ̄2

1Ωvv +Ωve with Ωvv = EFv4
i −σ4

v . Clearly, all the vari-

ables and covariance matrices in the limiting distribution in (2.14) are continuous functions in

γ̄1 ∈ R. It is also straightforward to see that ψZu(0) ≡ ψZe, ψvu(0) ≡ ψve, ΩZu(0) ≡ ΩZe, and

Ωvu(0)≡ Ωve.

Let cn denote a (possibly data-dependent) CV being used for the two-stage testing. The fi-

nite sample null rejection probability (NRP) of the two-stage test evaluated at γ ∈ Γ is given by

Pθ 0,γ [Tn(θ 0)> cn], where Pθ 0,γ [En] denotes the probability of event En given γ. Then, the asymp-

totic NRP of the test evaluated at γ ∈ Γ is given by

limsup
n→∞

Pθ 0,γ [Tn(θ 0)> cn] , (2.15)

and the asymptotic size of the test is given by

AsySz[cn] = limsup
n→∞

sup
γ∈Γ

Pθ 0,γ [Tn(θ 0)> cn] . (2.16)

In general, asymptotic NRP evaluated at a given γ ∈ Γ is not equal to the asymptotic size of the

test. To control the asymptotic size, one needs to control the null limiting behaviour of the test

statistic Tn(θ 0) under drifting parameter sequences {γn : n ≥ 1} indexed by the sample size; e.g.,

see Andrews and Guggenberger (2009, 2010a, 2010b), Guggenberger (2012), and Guggenberger

and Kumar (2012).

Following these papers, we can show that the asymptotic size of the two-stage test with the

standard fixed normal CV (i.e., AsySz[c∞(1−α)]) is realized under relevant choices of the parame-

ter space. In particular, to derive AsySz[c∞(1−α)], it is enough to study the asymptotic NRP along

some sequence of the type {γn,h} for some h ∈ H , as the highest asymptotic NRP is materialized

among such sequence, where

H =

{

h = (h1,h
′
21,vec(h22)

′,h23,vec(h24)
′,h25)

′ ∈ R
2k2+k+3
∞ : ∃{γn = (γn,1,γn,2,γn,3) ∈ Γ : n ≥ 1} :

n1/2γn,1 → h1 ∈ R∞, γn,2 → h2 = (h21,h22,h23,h24,h25) : (‖h21‖,h23,h25)≥ κ for some

κ > 0 and λ min(A)≥ κ for any A ∈ {γ22,γ24}
}

≡ H1 ×H21 ×H22 ×H23 ×H24 ×H25 (2.17)
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with R∞ = R ∪ {±∞}. The relevant drifting sequences {γn,h} are defined following Guggenberger

(2010a) as γn,h ≡ (γn,h,1,γn,h,2,γn,h,3) for h = (h1,h
′
21,vec(h22)

′,h23,vec(h24)
′,h25)

′ ∈ H , where γn,h,1 =

(EFn
[v2

i ])
−1EFn

[viui], γn,h,2 = (γn,h,21,γn,h,22,γn,h,23,γn,h,24,γn,h,25) with γn,h,21 = πn, γn,h,22 = EFn
e2

i ZiZ
′
i ,

γn,h,23 = EFn
e2

i v2
i , γn,h,24 = EFn

ZiZ
′
i , and γn,h,25 = EFn

v2
i satisfy:

n1/2γn,h,1 → h1, γn,h,2 → h2 = (h21,h22,h23,h24,h25), and γn,h,3 = Fn ∈ Γ3(γn,h,1,γn,h,2). (2.18)

More specifically, under H0 and the drifting sequences of parameters {γn,h : h ∈ H } satisfying (2.18)

with |h1| < ∞ (i.e., local endogeneity), we show in Lemma A.1 that the asymptotic variance n1/2(â− an,h)

is the same as that of n1/2â under exogeneity (Ha : a = 0) for any h1 ∈ R. Furthermore, the limiting dis-

tributions of the estimators θ̂ OLS, θ̂ 2SLS, and â are derived in Lemma A.2-(a). In particular, by noting that

ψZu(0) = ψZe and ψvu(0) = ψve, we have







n1/2â

n1/2(θ̂ OLS −θ)

n1/2(θ̂ 2SLS −θ)






→d







ψa

ψOLS

ψ2SLS,






≡







(h′21h24h21)
−1 (

h′21ψZu(0)−h−1
25 ψvu(0)+h1

(h25 +h′21h24h21)
−1 (h′21ψZu(0)+ψvu(0)+h25h1)

(h′21h24h21)
−1

h′21ψZu(0),






(2.19)

from Lemma A.2-(a), where ψa ∼ N
(

h1,
(

h′21h24h21

)−2
h′21h22h21 + h−2

25 h23

)

, ψOLS ∼ N
(

h25h1/
(

h25 +

h′21h24h21

)

,(h′21h22h21 + h23)/
(

h25 + h′21h24h21

)2
)

, and ψ2SLS ∼ N
(

0,
(

h′21h24h21

)−2
h′21h22h21

)

. Interest-

ingly, since we have γn,h,1 → γ̄1 = 0 under the drifting parameter sequences {γn,h : h ∈ H } satisfying

(2.18) with |h1| < ∞, the limiting distributions under H0 of all estimators in (2.19) do not depend on the

asymptotic behavior of both n−1/2Z′v and n−1/2
(

v′v−EF [v
′v]
)

.

Similarly, Lemma A.2-(b) and (2.19) imply the following convergence results for T2SLS(θ 0), TOLS(θ 0),

Hn, and the symmetric two-sided t test statistic Tn(θ 0):







T2SLS(θ 0)

TOLS(θ 0)

Hn







d→ ηh =









(h′21h22h21)
−1/2

h′21ψZu(0)

(h′21h22h21 +h23)
−1/2 (h′21ψZu(0)+ψvu(0)+h25h1)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1
(

(h′21h24h21)
−1h′21ψZu(0)−h−1

25 ψvu(0)+h1

)2









≡







η1,h

η2,h

η3,h






(2.20)

and Tn(θ 0)
d→ T̃h =

∣

∣

∣
η2,h1(η3,h ≤ χ2

1,1−β )+η1,h1(η3,h > χ2
1,1−β )

∣

∣

∣
, (2.21)

where η1,h ∼ N(0,1), η2,h ∼ N
(

(h′21h22h21 + h23)
−1/2h25h1,1

)

and η3,h ∼ χ2
1

(

( h′21h22h21

(h′21h24h21)2 +

h23h−2
25

)−1
h2

1

)

. The noncentrality parameter
(

h′21h22h21

(h′21h24h21)2 + h23h−2
25

)−1

h2
1 of the χ2 limiting dis-

tribution of Hn clearly depends on the endogeneity parameter h1, and is nonzero if and only if

h1 6= 0. Therefore, h1 determines the power of the first-stage pretest for exogeneity. As in Guggen-

berger (2010a), we can show from (2.21) that the asymptotic size of Tn(θ 0) (i.e., AsySz[c∞(1−α)])
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equals 1. That is, the maximal rejection of the two-stage t-test is realized under certain drifting

sequence {γn,h : h ∈ H } with local endogeneity. Such extreme size distortion occurs because

when exogeneity is present but is not rejected in the first-stage (which is the case when h1 6= 0 and
(

h′21h22h21

(h′21h24h21)2 + h23h−2
25

)−1

h2
1 ≈ 0), OLS-based t-test is used in the second stage, but the maximal

asymptotic rejection probability for H0 : θ = θ 0 with OLS-based t-test equals 1; see the discussion

at p.376 in Guggenberger (2010a). This result extends to the one-sided t-test, but we focus on the

two-sided t-test to simplify the presentation.

3. Main Results

3.1. Wild bootstrap

In this section, we study the asymptotic behaviour of standard wild bootstrap procedures for the

two-stage test, and we show that this bootstrap cannot consistently estimate the distribution of the

statistic of interest. To simplify the exposition, we focus on the case of symmetric two-sided test,

but our results remain valid for one-sided test.

Wild Bootstrap Algorithm:

1. Given H0 : θ = θ 0, compute the residuals from the first-stage and structural equations:

v̂ = X −Zπ̂, (3.1)

û(θ 0) = y−Xθ 0, (3.2)

where π̂ = (Z′Z)−1Z′X denotes the least squares estimator of π .

2. Generate the bootstrap pseudo-data following

X∗ = Zπ̂ + v∗, (3.3)

y∗ = X∗θ 0 +u∗, (3.4)

where there are two options to generate the bootstrap disturbances:

(a) v∗ and u∗ are generated independently from each other. Specifically, in the case with

heteroskedastic data, we set for each observation

(

v∗i
u∗i

)

=

(

v̂ie
∗
1,i

ûi(θ 0)e
∗
2,i

)

, (3.5)

where e∗1i and e∗2i are two random variables that has mean 0 and variance 1 and are

independent from each other.

10



(b) (v∗,u∗) are drawn dependently from each other. For heteroskedastic data, we set

(

v∗i
u∗i

)

=

(

v̂ie
∗
1,i

ûi(θ 0)e
∗
1,i

)

. (3.6)

Following Young (2020), we refer to (a) as independent transformation of disturbances and

(b) as dependent transformation of disturbances. For the purpose of better size control,

it is often recommended that to bootstrap exogeneity tests, (u∗,v∗) be generated using the

independent transformation scheme, so that the bootstrap samples are obtained under the

null hypothesis of exogeneity. However, as we will see below, this is not necessarily the case

for the bootstrap two-stage tests.

3. Compute the bootstrap analogue of the two-stage statistic (for a symmetric test):

T ∗
n (θ 0) =

∣

∣

∣
T ∗

OLS(θ 0)1(H
∗
n ≤ χ2

1,1−β )+T ∗
2SLS(θ 0)1(H

∗
n > χ2

1,1−β )
∣

∣

∣
, (3.7)

where T ∗
OLS(θ 0), T ∗

2SLS(θ 0) and H∗
n are the bootstrap analogues of TOLS(θ 0), T2SLS(θ 0) and

Hn, respectively, which are obtained from the bootstrap samples generated in Step 2.

4. Repeat Steps 2-3 B times and obtain T ∗
n (θ 0), b = 1, ...,B. The bootstrap test rejects H0 if the

bootstrap p-value 1
B ∑

B
b=11

[

T ∗(b)
n (θ 0)> Tn(θ 0)

]

is less than α.

To check whether the bootstrap consistently estimates the distribution of the two-stage test

statistic, one needs to check whether we have

sup
x∈R

|P∗ (T ∗
n (θ 0)≤ x)−P(Tn(θ 0)≤ x)| →P 0 (3.8)

under H0 and such drifting parameter sequences.

First, we note from Lemma A.4 in the appendix that the following convergence results hold for

the bootstrap statistics (conditional on the sample):

n−1/2









Z
′
u∗

Z
′
v∗

(

u∗
′
v∗−E∗[u∗

′
v∗]
)









→d∗







ψ∗
Zu(0)

ψ∗
Zv

ψ∗
vu(0)






∼ N






0,







ΩZu(0) 0 0

0 ΩZv 0

0 0 Ωvu(0)












, (3.9)

in probability, i.e., the bootstrap (with dependent or independent transformation) does replicate

well the randomness in the original sample. Theorem 3.1 gives the null limiting distributions

of the bootstrap two-stage test statistics under the drifting parameter sequences {γn,h : h ∈ H }
satisfying (2.18) with |h1|< ∞.
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Theorem 3.1 Conditional on the sample, the following convergence holds under H0 and {γn,h :

h ∈ H } satisfying (2.18) with |h1|< ∞:







T ∗
2SLS(θ 0)

T ∗
OLS(θ 0)

H∗
n






→d∗

η∗
h =









(h′21h22h21)
−1/2

h′21ψ∗
Zu(0)

(h′21h22h21 +h23)
−1/2 (

h′21ψ∗
Zu(0)+ψ∗

vu(0)+h25hb
1

)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1
(

(h′21h24h21)
−1h′21ψ∗

Zu(0)−ψ∗
vu(0)+hb

1

)2









,

≡







η∗
1,h

η∗
2,h

η∗
3,h







T ∗
n (θ 0) →d∗

T̃ ∗
h =

∣

∣

∣η∗
2,h1(η

∗
3,h ≤ χ2

1,1−β )+η∗
1,h1(η

∗
3,h > χ2

1,1−β )
∣

∣

∣ ,

in probability, where hb
1 = 0 for the bootstrap based on independent transformation of disturbances, and

hb
1 = h1 +ψvu(0) with ψvu(0) ∼ N(0,Ωvu(0)) for the bootstrap based on dependent transformation of dis-

turbances.

According to Theorem 3.1, the standard wild bootstraps are not able to mimic well the key

localization parameter h1, thus resulting in the discrepancy between the original and bootstrap

samples. In particular, we note that hb
1 corresponds to the localization parameter of endogeneity in

the bootstrap world, and the bootstrap with independent transformation (henceforth dubbed as in-

dependent bootstrap) removes all the endogeneity when generating the bootstrap samples. On the

other hand, while the bootstrap with dependent transformation (henceforth dubbed as dependent

bootstrap) is able to mimic the situation of local endogeneity in the original sample (note that hb
1 is

finite with probability approaching one when h1 is finite), the approximation is imprecise and re-

sults in an extra error term ψvu(0)∼N(0,Ωvu(0)), whose value depends on the actual realization of

the sample. In particular, these results suggest that, in the bootstrap world, the conditional limiting

distribution of H∗
n , given ψuv, is a central chi-squared distribution under the independent boot-

strap, while it is distributed as a noncentral chi-square with one degree of freedom and (random)

noncentrality parameter
( h′21h22h21

(h′21h24h21)2 + h23h−2
25

)−1
(h1 +ψvu(0))

2 under the dependent bootstrap.

Therefore, the power of the bootstrap pretest statistic H∗
n under either procedure will be different

from that of Hn.

From Theorem 3.1, it is clear that the (conditional) null limiting distribution of the bootstrap

two-stage test statistic is different from the null limiting distribution of the original two-stage test

statistic in (2.21). Therefore, the bootstrap consistency in (3.8) cannot hold in the current context.

However, even if the bootstrap is inconsistent, it might still be able to provide a valid test if its

asymptotic NRP does not exceed the nominal size under any sequence in (2.18). To further shed

light on the behaviour of the bootstrap statistics, we apply (2.21) and Theorem 3.1 to the case

with conditional homoskedasticity as in Guggenberger (2010), and plot the 95% quantiles of T̃h

and T̃ ∗
h in Figure 1 as a function of h1 with h2 ∈ {.2, .4, .6, .8,1,2}, where h2 = ||Ω 1/2

ZZ π/σ v||, and

β = .05. Notice that the limiting distributions of interest are considerably simplified in this case,

only depending on h1 and h2. We highlight some interesting findings below.
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Figure 1. 95% quantiles of T̃h and T̃ ∗
h

Note: The results are based on 100,000 simulation replications.

First, we observe that the quantiles of T̃ ∗
h for the independent bootstrap can be much lower

than those of T̃h when the values of h1 and/or h2 are small, suggesting that this bootstrap procedure

can seriously overreject the null hypothesis in such cases. Indeed, its quantiles always correspond

the case that the endogeneity parameter exactly equals zero as its data generating process totally

removes the degree of endogeneity in the bootstrap world. By contrast, the quantiles of T̃ ∗
h for

the dependent bootstrap turn out to be rather close to those of T̃h across various values of h1 and

h2. However, the figure suggests that this bootstrap procedure may also have some slight over-

rejection when the quantiles of T̃h are relatively high (e.g., when h2 = .4 and h1 = 5). In addition,

we note that the quantiles of T̃ ∗
h for the dependent bootstrap converge in each sub-figure to the

standard normal CV when the value of h1 increases: when |h1| is large, the Hausman pretest rejects

with high probability so that the two-stage test becomes the 2SLS-based t-test, and the dependent

bootstrap does mimic well such behaviour. On the other hand, we note that the quantiles for the

independent bootstrap becomes close to the standard normal CV only when h2 is fairly large (e.g.,

when h2=2). Intuitively, when h2 becomes large, the term with ψ∗
Zu becomes dominant in the limit

of T ∗
OLS(θ 0) (i.e., η∗

2,h) while the term with ψ∗
uv becomes dominant in the limit of H∗

n (i.e., η∗
3,h,

which equals
(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1 (
(h′21h24h21)

−1h′21ψ∗
Zu(0)−ψ∗

vu(0)
)2

for the independent

bootstrap), so that conditional on the sample, η∗
3,h becomes independent from both η∗

1,h and η∗
2,h

in this case, as ψ∗
Zu and ψ∗

uv are independent from each other (e.g., see (3.9)).

Furthermore, we can obtain the asymptotic sizes of the two bootstrap tests by applying the

results in (2.21) and Theorem 3.1. Specifically, the asymptotic size of the bootstrap two-stage test
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can be defined as:

AsySz [ĉ∗n(1−α)] := limsup
n→∞

sup
γ ∈ Γ

P
θ0,γ

[Tn(θ 0)> ĉ∗n(1−α)] , (3.10)

where ĉ∗n(1−α) denotes the (1−α)-th quantile of the distribution of T ∗
n (θ 0), based on the depen-

dent or independent transformation. The next theorem gives an explicit formula of the asymptotic

size. Note that the asymptotic size depends on α , β , and κ , but it does not depend on k (number

of instruments used).

Theorem 3.2 AsySz[ĉ∗n(1−α)] equals sup
h∈H

P[T̃h > c∗h(1−α)], where T̃h is defined in (2.21) and

c∗h(1−α) is the (1−α)-th quantile of T̃ ∗
h defined in Theorem 3.1.

Following Guggenberger (2010a, Table 1), we report the asymptotic sizes of the (symmetric)

two-stage tests based on the standard normal CV, the independent bootstrap CV, and dependent

bootstrap CV in Table 1 when α = .05 for κ ∈ {.001, .1, .5,1,2,10} and β ∈ {.05, .1, .2, .5}. First,

we note that both the standard normal CVs and the independent bootstrap CVs have asymptotic

size much larger than .05; e.g., when κ = .001, the two methods have asymptotic sizes equal to

100%,95.1%,85.3%,55.4% and 97.7%,92.8%,83.0%,53.7%, respectively. In addition, it turns

out that the independent bootstrap CVs always have smaller size distortion than the standard nor-

mal CVs, and this is in line with the results in Figure 1, in which the quantiles of the independent

bootstrap limit T̃ ∗
h are always higher than the standard normal CVs. On the other hand, we note

that although in general also unable to achieve uniform size control, the dependent bootstrap CVs

have asymptotic sizes quite close to the nominal level.

Remarks

1. How do these asymptotic size results correspond to real-world data? For instance, as re-

marked by Guggenberger (2010a), Angrist and Krueger (1991)’s influential study on return to

schooling has estimated concentration parameters equal to 95.6 and 257 for the cases with 3 IVs

and 180 IVs, respectively. And they correspond to the values of γ2 equal to .017 and .028, re-

spectively, for the sample size n = 329,509 in their study. Therefore, Table 1 suggests that a

Hausman-pretest-based two-stage procedure with either the asymptotic CV or the independent

bootstrap CV would lead to extreme distortion of null rejection probability for the Angrist and

Krueger (1991) data, while the one based on the dependent bootstrap CV would not suffer from

serious size distortion.

2. As seen in Table 1, the asymptotic size of the dependent bootstrap test can be either higher

or lower than the nominal level (thus asymptotically conservative or over-sized), depending on the

value of the lower bound of IV strength κ . Still, it has asymptotic sizes quite close to the nominal

level across various settings, and is therefore much more desirable than the independent bootstrap

in terms of size control for the two-stage test. Note that the extreme size distortion of the inde-

pendent bootstrap is not a surprise, as this scheme assumes exogeneity while the endogeneity is

local-to-zero in the true DGP. However, as we will see in Section 4, the dependent bootstrap has
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relatively low finite-sample power compared with alternative methods considered in the simula-

tions (including our novel hybrid bootstrap procedures that are based on independent draws of the

structural and reduced-form residuals). In the next section, we will show that the hybrid bootstrap

procedures achieve both correct asymptotic size and better finite-sample power properties. In par-

ticular, the use of the independent bootstrap is paramount for the validity of these procedures since

it helps to first remove all the endogeneity in the bootstrap world before applying an appropriate

size-correction method to account for the localized endogeneity parameter h1, which cannot be

well estimated by the .

Table 1. Asymptotic size (in %) of two-stage tests for α = .05.

Std Normal CV BS-independent BS-dependent

κ \ β .05 .1 .2 .5 .05 .1 .2 .5 .05 .1 .2 .5

.001 100 95.1 85.3 55.4 97.7 92.8 83.0 53.7 1.2 1.2 1.3 2.0

.1 95.5 90.4 80.2 50.7 93.9 88.4 77.6 48.8 1.3 1.5 1.9 3.0

.5 60.4 50.5 39.2 22.2 55.9 45.3 34.5 19.3 6.6 6.6 6.5 6.5

1 27.7 21.7 16.2 9.7 24.7 18.5 12.9 7.8 6.8 6.6 6.5 6.1

2 10.8 9.3 7.7 6.2 10.1 8.3 6.6 5.2 6.1 6.0 5.7 5.3

10 5.3 5.3 5.2 5.2 5.3 5.3 5.3 5.2 5.3 5.3 5.3 5.2

Note: The results are based on 100,000 simulation replications.

3.2. Hybrid bootstrap

In this section, we introduce hybrid bootstrap procedures that are able to achieve correct asymptotic

size for the two-stage test. First, we show how to construct a hybrid bootstrap CV in the current

context by using Bonferroni bounds. Note that in the case of local endogeneity with |h1|< ∞, the

localization parameter h1 cannot be consistently estimated. However, we may still construct an

asymptotically valid confidence set for h1 by using some appropriate choice of estimator ĥ
n,1 . For

example, we can define an estimator ĥn,1 = n1/2â, where

â =
(

v̂′MX v̂
)−1

v̂′MX y, (3.11)

and v̂ = MZX is the vector of residuals from the first-stage OLS regression (i.e., the regression of

X on instruments Z). Then a confidence set of h1 can be constructed by using the fact that under

the drifting parameter sequences,

ĥn,1 →d h̃1 ∼ N
(

h1,
(

h′21h24h21

)−2
h′21h22h21 +h−2

25 h23

)

(3.12)

from (2.19). With the exception of h1, note that the other parameters appearing in the normal

distribution in (3.12) can be consistently estimated.
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Alternatively, one may consider using the null-imposed estimator ĥn,1(θ 0) = n1/2ân(θ 0) =
(

v̂′v̂
)−1

v̂′(y−Xθ 0), whose null limiting distribution follows N
(

h1,h
−2
25 h23

)

. Then, uniformly valid

hybrid bootstrap CVs for testing H0 : θ = θ 0 under the two-stage procedure can be constructed

by using Bonferroni bounds: we first construct a 1− (α − δ ) level first-stage confidence set for

h1, then take the maximal (1− δ )-th quantile of appropriately generated bootstrap statistics over

the first-stage confidence set. Specifically, let ĥ
n,2 ≡ (ĥn,21, ĥn,22, ĥn,23, ĥn,24, ĥn,25) be a consistent

estimator of h2 ≡ (h21,h22,h23,h24,h25) and CI
α−δ

(ĥ
n,1) denote the 1− (α − δ ) level confidence

set for h1 for some 0 < δ ≤ α < 1. The bootstrap-based simple Bonferroni critical value (SBCV)

is defined as

cB−S(α,α −δ , ĥ
n,1 , ĥn,2) = sup

h1∈CI
α−δ

(ĥ
n,1

)

c∗
(h1,ĥn,2)

(1−δ ), (3.13)

where c∗
(h1,ĥ2)

(1− δ ) is the (1− δ )-th quantile of the distribution of T ∗
n,(h1,ĥn,2)

(θ 0), which is the

bootstrap analogue of Tn(θ 0) generated under the value of localization parameter equal to h1.

As we have seen in the previous section, the standard wild bootstrap procedures cannot mimic

well the localization parameter h1. Therefore, attention has to be taken when considering the

bootstrap DGP. In particular, we propose to generate T ∗
n,(h1,ĥn,2)

(θ 0) as follows:

T ∗
n,(h1,ĥn,2)

(θ 0)

=
∣

∣

∣
T ∗

OLS,(h1,ĥn,2)
(θ 0)1

(

H∗
n,(h1,ĥn,2)

≤ χ2
1,1−β

)

+T ∗
2SLS(θ 0)1

(

H∗
n,(h1,ĥn,2)

> χ2
1,1−β

)∣

∣

∣
,(3.14)

where T ∗
OLS,(h1,ĥn,2)

(θ 0) and H∗
n,(h1,ĥn,2)

are the bootstrap analogues of TOLS(θ 0) and Hn, respec-

tively, evaluated at the value of localization parameter equal to h1. To obtain these bootstrap

analogues, we first generate the bootstrap counterparts of the OLS and regression endogeneity

parameter estimators under h1:

θ̂
∗
OLS,(h1,ĥn,2)

= θ̂
∗
OLS +

(

1+ ĥn,21ĥn,22ĥ′n,21

)−1
n−1/2h1,

â∗
(h1,ĥn,2)

= â∗+n−1/2h1, (3.15)

where θ̂
∗
OLS and â∗ are generated by the standard bootstrap procedure in Section 3.1 with inde-

pendent transformation of disturbances, so that θ̂
∗
OLS and â∗ have localization parameter equal to

zero in the bootstrap world. By doing so,
√

n(θ̂
∗
OLS,(h1,ĥn,2)

−θ 0) and
√

nâ∗
(h1,ĥn,2)

have appropriate

(conditional) null limiting distribution. Then, we obtain T ∗
OLS,(h1,ĥn,2)

(θ 0) and H∗
n,(h1,ĥn,2)

as follows:

T ∗
OLS,(h1,ĥn,2)

(θ 0) =

√
n(θ̂

∗
OLS,(h1,ĥn,2)

−θ 0)

V̂
∗1/2

OLS

, (3.16)
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H∗
n,(h1,ĥn,2)

=
nâ∗

2

(h1,ĥn,2)

V̂ ∗
a

, (3.17)

and we can show that the following (conditional) convergence in distribution holds:





T ∗
OLS,(h1,ĥn,2)

(θ 0)

H∗
n,(h1,ĥn,2)



→d∗





(h′21h22h21 +h23)
−1/2 (h′21ψ∗

Zu(0)+ψ∗
vu(0)+h25h1)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1
(

(h′21h24h21)
−1h′21ψ∗

Zu(0)−ψ∗
vu(0)+h1

)2



 , (3.18)

in probability P. This implies that T ∗
n,(h1,ĥn,2)

(θ 0), the resulting bootstrap counterpart of the two-stage test

statistic, has the desired (conditional) limiting distribution evaluated at the value of localization parameter

equal to h1 (different from the limiting distributions in Theorem 3.1).

As seen from (3.13), the bootstrap SBCV equals the maximal CV c∗
(h1,ĥn,2

)
(1−δ ) over the values of the

localization parameter h1 in the set CI
α−δ

(ĥ
n,1). We can now state the following theorem for cB−S(α,α −

δ , ĥ
n,1 , ĥn,2).

Theorem 3.3 Suppose that H0 holds, and then for any 0 < δ ≤ α < 1, we have:

AsySz
[

cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

:= limsup
n→∞

sup
γ ∈ Γ

P
θ0 ,γ

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

≤ α.

Theorem 3.3 states that tests based on cB−S(α,α −δ , ĥ
n,1 , ĥn,2) control the asymptotic size. In practice,

cB−S(α,α −δ , ĥ
n,1 , ĥn,2) can be obtained by using the following algorithm.

Hybrid Bootstrap Algorithm for cccB-S(((α,,,α −−−δ ,,, ĥhh
n,1
,,, ĥhh

n,2
))):

1. Generate the bootstrap statistics
{

θ̂
∗(b)
OLS, θ̂

∗(b)
2SLS, â

∗(b),V̂ ∗(b)
OLS ,V̂

∗(b)
2SLS,V̂

∗(b)
a

}

,b = 1, ...,B, using the stan-

dard bootstrap procedure with independent transformation of disturbances.

2. Choose α and δ , and compute CI
α−δ

(ĥ
n,1).

3. Create a fine grid for CI
α−δ

(ĥ
n,1) and call it C grid

α−δ
.

4. For each h1 ∈ C grid
α−δ

, generate T
∗(b)

n,(h1,ĥn,2)
(θ 0), b = 1, ...,B, using the bootstrap statistics generated in

Step 1. The same set of
{

θ̂
∗(b)
OLS, θ̂

∗(b)
2SLS, â

∗(b),V̂ ∗(b)
OLS ,V̂

∗(b)
2SLS,V̂

∗(b)
a

}

,b = 1, ...,B, can be used repeatedly

for each h1.

5. Compute c∗
(h1,ĥn,2)

(1−δ ), the (1−δ )th quantile of the distribution of T ∗
n,(h1,ĥ2)

(θ 0) from these B draws

of bootstrap samples.

6. Find cB−S(α,α −δ , ĥ
n,1 , ĥn,2) = sup

h1∈C
grid

α−δ

c∗
(h1,ĥn,2)

(1−δ ).

Note that as shown in Theorem 3.3, although controlling the size, the bootstrap SBCV may yield a

conservative test whose asymptotic size does not reach its nominal level. For further refinement on the

Bonferroni bound, we propose a size-correction method to adjust the bootstrap SBCV so that the resulting
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test is not conservative with asymptotic size exactly equal to α . Specifically, the size-correction factor for

the bootstrap SBCV is defined as:

η̂n = inf

{

η : sup
h1∈H1

P∗
[

T ∗
n,(h1,ĥn,2)

(θ 0)> cB−S(α,α −δ , ĥ∗
n,1
(h1), ĥn,2)+η

]

≤ α

}

, (3.19)

where ĥ∗
n,1
(h1) denotes the bootstrap analogue of ĥ

n,1 with localization parameter equal to h1 and is generated

by the same bootstrap samples as those for T ∗
n,(h1,ĥn,2)

(θ 0). More precisely, we define

ĥ∗
n,1
(h1) = ĥ∗

n,1
+h1, (3.20)

where ĥ∗
n,1
= n1/2â∗ =

(

v̂∗′MX∗ v̂∗
)−1

v̂∗′MX∗y∗, v̂∗ = MZ∗X∗, is generated by the standard bootstrap procedure

with independent transformation (so that the localization parameter equals zero in the bootstrap world).

Note that ĥ∗
n,1

converges in distribution to N
(

0,
(

h′21h24h21

)−2
h′21h22h21 + h−2

25 h23

)

in probability P, while

ĥ∗
n,1
(h1) converges in distribution to N

(

h1,
(

h′21h24h21

)−2
h′21h22h21+h−2

25 h23

)

in probability P, i.e., the same

limiting distribution of ĥ
n,1 in (3.12).

We emphasize that ĥ∗
n,1
(h1) needs to be generated simultaneously with T ∗

n,(h1,ĥn,2)
(θ 0) using the same

bootstrap samples, so that the dependence structure between the statistics Tn(θ 0) and ĥ
n,1 is well mimicked

by the bootstrap statistics. This is important for the procedure described in (3.19) to correct the conser-

vativeness of the Bonferroni bound. Similarly, for the implementation of the size-correction method, one

cannot replace cB−S(α,α − δ , ĥ∗
n,1
(h1), ĥn,2) in (3.19) with cB−S(α,α − δ , ĥ

n,1 , ĥn,2), as it also breaks down

the dependence structure.

The goal of the size-correction method is to decrease the bootstrap SBCV as much as possible by using

the factor η while not violating the inequality in (3.19), so that the asymptotic size of the resulting tests can

be controlled. Then, the size-corrected bootstrap CV can be defined as

cB−C(α,α −δ , ĥ
n,1 , ĥn,2) = cB−S(α,α −δ , ĥ

n,1 , ĥn,2)+ η̂n, (3.21)

and one can expect that relatively small η̂n results in relatively less conservative (and more powerful) test.

In particular, under a proper algorithm for the size-correction method, and given some fixed α ∈ (0,1) and

δ ∈ (0,α], the size-correction factor η̂n(·) is continuous as a function of ĥ
n,1 . We can now state the following

theorem on the uniform size control of the bootstrap CVs based on the size-correction method.

Theorem 3.4 Suppose that H0 holds, and then for any 0 < δ ≤ α < 1, we have:

AsySz
[

cB−C(α,α −δ , ĥ
n,1 , ĥn,2)

]

:= limsup
n→∞

sup
γ ∈ Γ

P
θ0 ,γ

[

Tn(θ 0)> cB−C(α,α −δ , ĥ
n,1 , ĥn,2)

]

= α.

Theorem 3.4 shows that cB−C(α,α −δ , ĥ
n,1 , ĥn,2), the size-corrected bootstrap CVs, yield tests with the

correct asymptotic size. To implement such tests in practice, we must compute cB−S(α,α − δ , ĥ
n,1 , ĥn,2)

and η̂n. These values can be computed sequentially starting with cB−S(α,α − δ , ĥ
n,1 , ĥn,2). Then the size-

correction factor η̂n can be computed by evaluating (3.19) over a fine grid of H1 as follows.

Hybrid Bootstrap Algorithm for cccB-C(((α,,,α −−−δ ,,, ĥhh
n,1
,,, ĥhh

n,2
))):
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1. Generate the bootstrap statistics
{

θ̂
∗(b)
OLS, θ̂

∗(b)
2SLS, â

∗(b),V̂ ∗(b)
OLS ,V̂

∗(b)
2SLS,V̂

∗(b)
a , ĥ∗(b)

n,1

}

,b = 1, ...,B, using the

standard bootstrap procedure with independent transformation of disturbances.

2. Let cB−S(α,α −δ , ĥ
n,1 , ĥn,2) be the obtained bootstrap SBCV.

3. Create a fine grid of the set H1 in (3.19) and call it H
grid

1 .

4. For each h1 ∈ H
grid

1 , obtain T
∗(b)

n,(h1,ĥn,2)
(θ 0) and cB−S(α,α − δ , ĥ∗(b)

n,1
(h1), ĥn,2), b =

1, ...,B, using the bootstrap statistics generated in Step 1. Note that the same set of
{

θ̂
∗(b)
OLS, θ̂

∗(b)
2SLS, â

∗(b),V̂ ∗(b)
OLS ,V̂

∗(b)
2SLS,V̂

∗(b)
a , ĥ∗(b)

n,1

}

,b = 1, ...,B, can be used repeatedly for each h1.

5. Create a fine grid of [−cB−S(α,α −δ , ĥ
n,1 , ĥn,2), 0] and call it S

grid

n .

6. Find all η ∈ S
grid

n such that

sup
h1∈H1

1

B

B

∑
b=1

1

[

T
∗(b)

n,(h1,ĥn,2)
(θ 0)> cB−S(α,α −δ , ĥ∗(b)

n,1
(h1), ĥn,2)+η

]

≤ α

and set η̂n equal to the smallest η .

7. The size-corrected bootstrap CV is given by

cB−C(α,α −δ , ĥ
n,1 , ĥn,2) = cB−S(α,α −δ , ĥ

n,1 , ĥn,2)+ η̂n.

Remarks

1. We note that the computational cost of the proposed hybrid bootstrap procedures is not very high.

In particular, the same bootstrap samples can be used in the Algorithms for cB−S(α,α − δ , ĥ
n,1 , ĥn,2) and

cB−C(α,α −δ , ĥ
n,1 , ĥn,2): there is no need to generate a new set of bootstrap samples to implement the size-

correction method in (3.19). Moreover, the same set of bootstrap statistics can be used repeatedly for each

value of localization parameter h1 when constructing the localized quantiles c∗
(h1,ĥn,2)

(1−δ ) in Step 4 of the

Algorithm for cB−S(α,α −δ , ĥ
n,1 , ĥn,2). Similarly, the bootstrap statistics can be used repeatedly for each h1

when evaluating the size-correction factor in Step 4 of the Algorithm for cB−C(α,α −δ , ĥ
n,1 , ĥn,2).

2. Recently, Hansen (2017) proposes a Stein-like shrinkage approach in the context of IV regression. His

estimator takes a weighted average of the 2SLS and OLS estimators, with the weight depending inversely

on the test statistic for exogeneity. Under our current setting, this estimator can be written as

θ̃ = wθ̂ OLS +(1−w)θ̂ 2SLS, (3.22)

where

w =







τ/Hn if Hn ≥ τ,

1 if Hn < τ,
(3.23)

where τ is a shrinkage parameter. We can show that our hybrid bootstrap procedure can be applied to Hansen

(2017)’s shrinkage approach as well.

19



4. Finite sample power performance

In this section, we study the finite-sample power performance of four tests: the 2SLS-based t-test (without

Hausman pretest), the two-stage test based on the hybrid bootstrap CVs, and a test that is based on Hansen

(2017)’s shrinkage estimator and its corresponding hybrid bootstrap CVs. We do not include the two-stage

tests based on the standard normal CVs and the independent bootstrap CVs, as they have extreme size

distortion (e.g., see Table 1).

We conduct Monte Carlo simulations by using the linear IV model in (2.1). The sample size is set at

n = 100, the number of Monte Carlo replications is set at 2,000, and the number of bootstrap replications

is set at B = 199. We set α = .05 for the nominal levels the 2SLS-based t test, and the two bootstrap-

based tests, and set β = .05 for the nominal level of the Hausman pretest. The size-correction algorithms

described in Section 3.2 are executed with δ = .025. The shrinkage parameter τ is set to equal 1. The

number of instruments is set at k = 1. The errors have unit variance, so the endogeneity parameter, a, equals

ρ (the correlation).

Figures 2 - 3 show the finite-sample power curves of the tests. The true values of the endogeneity param-

eter are set at ρ ∈ {0,0.1,0.2,0.3,0.4,0.5}. The values of the concentration parameter, which characterizes

the overall IV strength, are set at µ2 ∈ {2,10} for Figures 2 - 3, respectively. It is clear that when the IV

is not strong, the two hybrid bootstrap-based tests have remarkable power gain over the 2SLS-based t-test.

Such power gain originates from the inclusion of the OLS-based t-test in the two-stage test. The Monte

Carlo simulations suggest that our method could be particularly attractive in the cases where the available

instruments may not be strong so that IV-based inference methods could suffer from low power but naively

using two-stage procedure to select between the OLS and 2SLS-based t-tests may result in extreme size

distortion.

5. Conclusions

In this paper, we study how to conduct uniformly valid inference for the two-stage procedure by using

data-dependent critical values with possibly heteroskedastic data. We first show that standard bootstrap pro-

cedures with dependent or independent transformation of disturbances cannot consistently estimate the null

distribution of the two-stage test statistics under local endogeneity. In particular, these bootstrap methods

cannot mimic well the key localization parameter in the model. We also study the asymptotic sizes of the

two bootstrap procedures, and find that the bootstrap two-stage test with independent transformation has

extreme size distortion while the one with dependent transformation is much less distorted. Then, we pro-

pose a hybrid bootstrap approach, which makes use of the standard bootstrap procedure with independent

transformation and a Bonferroni-based size-correction method, which allows us to handle the localization

parameter properly. We show that the hybrid bootstrap method is uniformly valid in the sense that it yields

correct asymptotic size. Monte Carlo simulations confirm that our proposed method is able to achieve

remarkable power gains over the 2SLS-based t-test, especially when the instruments are not very strong.
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Figure 2. Power of 2SLS-t and hybrid bootstrap tests: µ2 = 2

Notes: The power curves for the 2SLS-t test, the two-stage test with hybrid-bootstrap CVs, and

the shrinkage test with hybrid-bootstrap CVs are illustrated by the curves in pink, blue, and red,

respectively.

21



Figure 3. Power of 2SLS-t and hybrid bootstrap tests: µ2 = 10

Notes: The power curves for the 2SLS-t test, the two-stage test with hybrid-bootstrap CVs, and

the shrinkage test with hybrid-bootstrap CVs are illustrated by the curves in pink, blue, and red,

respectively.
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A. Appendix

Section A.1 contains the proofs of the theoretical results in the paper.

A.1. Mathematical Proofs

Lemma A.1 Under the drift sequences of parameters {γn,h} in (2.18) with |h1|< ∞, we have:

n1/2(â−an,h) =
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX e
)

+oP(1),

i.e., the limiting distribution of n1/2(â − an,h) is the same as that of
(

n−1v̂′MX v̂
)−1 (

n−1/2v̂′MX e
)

. So,

the asymptotic variance of n1/2(â − an,h) under localized sequences of drifting endogeneity parameter

n1/2an,h → h1 ∈ R is the same that as under exogeneity (a = 0).

PROOF OF LEMMA A.1 Note first that we can write n1/2(â−an,h) as:

n1/2(â−an,h) = n1/2
(

(v̂′MX v̂)−1v̂′MX ((v− v̂+ v̂)an,h + e)−an,h

)

(A.1)

=
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX(v− v̂)
)

an,h +
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX e
)

.

It is sufficient to show that the first term in (A.1) is oP(1). First,

n−1/2v̂′MX(v− v̂) = n−1/2v̂′MX Z(Z′Z)−1Z′v = (n−1v̂′MX Z)(n−1Z′Z)−1(n−1/2Z′v)

= OP(1)OP(1)OP(1) = OP(1), (A.2)

which follows from the fact that

n−1v̂′Z = n−1(v+(v̂− v))′Z = n−1v′Z +n−1(v̂− v)′Z (A.3)

= n−1v′Z +(πn,h − π̂n,h)
′(n−1Z′Z) = OP(n

−1/2)+OP(n
−1/2)OP(1) = OP(n

−1/2)

n−1v̂′PX Z = n−1v′PX Z +n−1(v̂− v)′PX Z = (n−1v′Zπn,h +n−1v′v)(n−1X ′X)−1(n−1X ′Z)+

n−1(v̂− v)′PX Z = σ2
v

(

σ2
x

)−1
σ xz +OP(n

−1/2), (A.4)

where σ2
v , σ2

x and σ xz denote the probability limits of n−1v′v, n−1X ′X and n−1X ′Z, respectively. The

OP(n
−1/2) term in (A.4) is justified by the fact that

n−1(v̂− v)′PX Z = (πn,h − π̂n,h)
′(n−1Z′X)(n−1X ′X)−1(n−1X ′Z) = OP(n

−1/2). (A.5)

Therefore, given that n−1/2v̂′MX(v− v̂) = OP(1) and n1/2an,h → h1 ∈ R, we have

(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX(v− v̂)
)

an,h = oP(1), (A.6)

so that

n1/2(â−an,h) =
(

n−1v̂′MX v̂
)−1
(

n−1/2v̂′MX e
)

+oP(1), (A.7)
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as stated.

Lemma A.2 Under the drift sequences of parameters {γn,h} in (2.18) with |h1| < ∞, the following results

hold:

(a) Asymptotic distributions of the estimators







n1/2â

n1/2(θ̂ OLS −θ)

n1/2(θ̂ 2SLS −θ)






→d







ψa

ψOLS

ψ2SLS,






≡







−(h′21h24h21)
−1

h′21ψZu(0)+h−1
25 ψvu(0)+h1

(h′21h24h21 +h25)
−1 (h′21ψZu(0)+ψvu(0)+h25h1)

(h′21h24h21)
−1

h′21ψZu(0)







where

ψa ∼ N
(

h1,
(

h′21h24h21

)−2
h′21h22h21 +h−2

25 h23

)

ψOLS ∼ N
(

h25h1/
(

h′21h24h21 +h25

)

,(h′21h22h21 +h23)/
(

h′21h24h21 +h25

)2
)

ψ2SLS ∼ N
(

0,
(

h′21h24h21

)−2
h′21h22h21

)

.

(b) Asymptotic distributions of the test statistics







T2SLS(θ 0)

TOLS(θ 0)

Hn







d→ ηh =







η1,h

η2,h

η3,h







≡









(h′21h22h21)
−1/2

h′21ψZu(0)

(h′21h22h21 +h23)
−1/2 (h′21ψZu(0)+ψvu(0)+h25h1)

(

h′21h22h21

(h′21h24h21)2 +h23h−2
25

)−1
(

−(h′21h24h21)
−1h′21ψZu(0)+h−1

25 ψuv(0)+h1

)2









Tn(θ 0)
d→ T̃h =

∣

∣

∣η2,h1(η3,h ≤ χ2
1,1−β )+η1,h1(η3,h > χ2

1,1−β )
∣

∣

∣ ,

where

η1,h ∼ N(0,1)

η2,h ∼ N
(

(h′21h22h21 +h23)
−1/2h25h1,1

)

η3,h ∼ χ2
1

(

( h′21h22h21

(h′21h24h21)2
+h23h−2

25

)−1
h2

1

)

.

PROOF OF LEMMA A.2 (a) It is sufficient to characterize the asymptotic distributions of estimators sepa-

rately: (a1) n1/2â; (a2) n1/2(θ̂ OLS −θ); and (a3) n1/2(θ̂ 2SLS −θ).

(a1) Asymptotic distribution of n1/2â. We know from Lemma A.1 that n1/2(â−an,h) is asymptotically

equivalent to
(

n−1v̂′MX v̂
)−1 (

n−1/2v̂′MX e
)

, so we focus on characterizing the asymptotic distribution of the
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latter. First, note that

n−1v̂′MX v̂ = n−1X̂ ′MX X̂ = n−1X̂ ′X̂ −n−1X̂ ′PZX̂ , (A.8)

where

n−1X̂ ′X̂ = n−1X ′PZX →P π ′ΩZZπ ≡ σ2
π (A.9)

n−1X̂ ′PX X̂ = (n−1X̂ ′X)(n−1X ′X)−1(n−1X ′X̂)→P σ4
π(σ

2
π +σ2

v)
−1. (A.10)

Therefore, we have for the denominator

n−1v̂′MX v̂ →P σ2
π −σ4

π(σ
2
π +σ2

v)
−1 = σ2

πσ2
v

(

σ2
π +σ2

v

)−1
(A.11)

For the numerator, note that

n−1/2v̂′MX e =−n−1/2X̂ ′MX e =−n−1/2X̂ ′e+n−1/2X̂ ′PX e. (A.12)

The first term is such that

n−1/2X̂ ′e = −
(

n−1X ′Z
)(

n−1Z′Z
)−1
(

n−1/2Z′e
)

→d −π ′ΩZZΩ−1
ZZ ψZe =−π ′ψZe, (A.13)

and the second term is such that

n−1/2X̂ ′PX e =
(

n−1X ′PZX
)(

n−1X ′X
)−1
(

n−1/2X ′e
)

→d σ2
π(σ

2
π +σ2

v)
−1
(

π ′ψZe +ψve

)

,

(A.14)

where ψZe and ψve are uncorrelated, ψZe ∼ N(0,h22) and ψve ∼ N(0,h23). Therefore,

n−1/2X̂ ′MX e →d −π ′ψZe +σ2
π(σ

2
π +σ2

v)
−1
(

π ′ψZe +ψve

)

= −σ2
v(σ

2
π +σ2

v)
−1π ′ψZe +σ2

π(σ
2
π +σ2

v)
−1ψve. (A.15)

By combining (A.11) and (A.15), we obtain

n1/2(â−an,h) →d −σ−2
π π ′ψZe +σ−2

v ψve

≡ −
(

h′21h24h21

)−1
h′21ψZe +h−1

25 ψve

∼ N
(

0,(h′21h24h21)
−2h′21h22h21 +h−2

25 h23

)

. (A.16)

Since n1/2â = n1/2(â−an,h)+n1/2an,h, it follows that

n1/2â →d ψa =−
(

h′21h24h21

)−1
h′21ψZu(0)+h−1

25 ψvu(0)+h1

∼ N
(

h1,(h
′
21h24h21)

−2h′21h22h21 +h−2
25 h23

)

, (A.17)
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with ψZu(0) = ψZe and ψvu(0) = ψve.

(a2) Asymptotic distribution of n1/2(θ̂ OLS −θ). First, we have

n1/2(θ̂ OLS −θ) =
(

n−1X ′X
)−1(

n−1/2X ′u
)

, (A.18)

where n−1X ′X →P σ2
π +σ2

v = h′21h24h21 +h25, and

n−1/2X ′u = n−1/2(π ′
n,hZ′+ v′)(van,h + e)

= π ′
n,h

(

n−1/2Z′e
)

+π ′
n,h

(

n−1/2Z′v
)

an,h +
(

n−1v′v
)

n1/2an,h +n−1/2v′e

→d h′21ψZe +ψve +h25h1, (A.19)

as n−1/2Z′e →d ψZe, n−1/2v′e →d ψve, π ′
n,h(n

−1/2Z′v)an,h = oP(1), n−1(v′v) = h25 +oP(1), and n1/2an,h →
h1 as n → ∞.

Therefore, we obtain

n1/2(θ̂ OLS −θ) →d ψOLS = (h′21h24h21 +h25)
−1(h′21ψZu(0)+ψvu(0)+h25h1) (A.20)

∼ N
( h25h1

h′21h24h21 +h25

,
h′21h22h21 +h23

(h′21h24h21 +h25)2

)

with ψZu(0) = ψZe and ψvu(0) = ψve.

(a3) Asymptotic distribution of n1/2(θ̂ 2SLS − θ). First, note that n1/2(θ̂ 2SLS − θ) =
(

n−1X ′PZX
)−1(

n−1/2X ′PZu
)

and it follows from the proofs above that n−1X ′PZX →P h′21h24h21 and

n−1/2X ′PZu →d h′21ψZe. Therefore, we have:

n1/2(θ̂ 2SLS −θ)→d ψ2SLS = (h′21h24h21)
−1h′21ψZe ∼ N

(

0,(h′21h24h21)
−2h′21h22h21

)

. (A.21)

(b) It also suffices to characterize the asymptotic distributions of each statistic separately.

First, note that Tl(θ) = n1/2(θ̂ l −θ)/V̂ 1/2(θ̂ l), l ∈ {OLS,2SLS}. Since

V̂ (θ̂ OLS)→P h′21h22h21 +h23

(h′21h24h21 +h25)
2
, and V̂ (θ̂ 2SLS)→P h′21h22h21

(h′21h24h21)2
, (A.22)

the results of TOLS(θ) and T2SLS(θ) follow immediately from the proof of part (a) along with the fact that

ψZu(0) = ψZe and ψvu(0) = ψve.

Furthermore, we notice that Hn is defined as Hn = nâ2/V̂ (â), where the variance estimator V̂ (â) =
(

n−1v̂′MX v̂
)−1(

n−1 ∑
n
i=1 v̂2

i ê2
i

)(

n−1v̂′MX v̂
)−1

. We can also write Hn as:

Hn =
(

n1/2(â−an,h)+n1/2an,h

)2

/V̂ (â), (A.23)

where
(

n1/2(â−an,h)+n1/2an,h

)2 →d ψ2
a from Lemma A.2-(a). Similarly, we can show that

V̂ (â)→P (h′21h24h21)
−2h′21h22h21 +h−2

25 h23, (A.24)
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so that

Hn →d

(

h′21h22h21

(h′21h24h21)2
+h23h−2

25

)−1(

− (h′21h24h21)
−1h′21ψZu(0)+h−1

25 ψvu(0)+h1

)2

, (A.25)

where ψZu(0) = ψZe and ψvu(0) = ψve.

Lemma A.3 If for some δ > 0, E∗[|e∗1i|2(2+δ ), |e∗2i|2+δ
]

is bounded in probability and EF [w
2+δ
i ] <

∞ for all wi ∈
{

||Ziui(θ 0)||, ||Zivi||, ||ZiZ
′
i ||, |ui(θ 0)|, |vi|, |ui(θ 0)vi|

}

, then n−1 ∑
n
i=1 E∗ [||Ziu

∗
i ||2+δ

]

,

n−1 ∑
n
i=1 E∗ [||Ziv

∗
i ||2+δ

]

and n−1 ∑
n
i=1 E∗ [||u∗i v∗i ||2+δ

]

are bounded in probability.

PROOF OF LEMMA A.3

The proof is straightforward for n−1 ∑
n
i=1 E∗ [||Ziu

∗
i ||2+δ

]

. Indeed, we have:

n−1
n

∑
i=1

E∗
[

||Ziu
∗
i ||2+δ

]

= n−1
n

∑
i=1

E∗
[

||Ziui(θ 0)e
∗
1i||2+δ

]

= n−1
n

∑
i=1

E∗
[

||Ziui(θ 0)||2+δ |e∗1i|2+δ
]

= n−1
n

∑
i=1

||Ziui(θ 0)||2+δ E∗
[

|e∗1i|2+δ
]

≤C1n−1
n

∑
i=1

||Ziui(θ 0)||2+δ

→P C1EF

[

||Ziui(θ 0)||2+δ
]

< ∞ (A.26)

for some large enough constant C1 < ∞. Now, consider the bound on n−1 ∑
n
i=1 E∗ [||Ziv

∗
i ||2+δ

]

. As in (A.26)

we have

n−1
n

∑
i=1

E∗
[

||Ziv
∗
i ||2+δ

]

= n−1
n

∑
i=1

E∗
[

||Ziv̂i||2+δ |e∗ji|2+δ
]

= n−1
n

∑
i=1

||Ziv̂i||2+δ E∗
[

|e∗ji|2+δ
]

≤ C jn
−1

n

∑
i=1

||Ziv̂i||2+δ (A.27)

in probability for some large enough constant C j < ∞, where j = 1 for the dependent bootstrap scheme and

j = 2 for the independent bootstrap scheme. By using Minkowski and Cauchy-Schwartz inequalities, along

with the fact that v̂i = vi −Z′
i(π̂ −π), we obtain

n−1
n

∑
i=1

||Ziv̂i||2+δ = n−1
n

∑
i=1

||Zivi −ZiZ
′
i(π̂ −π)||2+δ

≤ C

{

n−1
n

∑
i=1

||Zivi||2+δ + ||π̂ −π||2+δ n−1
n

∑
i=1

||ZiZ
′
i ||2+δ

}

,

→P CEF

[

||Zivi||2+δ
]

< ∞, (A.28)

where C < ∞ denotes a large enough constant, and (A.28) holds because n−1 ∑
n
i=1 ||Zivi||2+δ →P

EF

[

||Zivi||2+δ
]

< ∞, n−1 ∑
n
i=1 ||ZiZ

′
i ||2+δ →P EF

[

||ZiZ
′
i ||2+δ

]

< ∞, and π̂ − π →P 0. Therefore,

n−1 ∑
n
i=1 E∗ [||Ziv

∗
i ||2+δ

]

is bounded in probability from (A.27)-(A.28).

We now show that n−1 ∑
n
i=1 E∗ [|u∗i v∗i |2+δ

]

is bounded in probability. We have:
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n−1
n

∑
i=1

E∗
[

|u∗i v∗i |2+δ
]

= n−1
n

∑
i=1

E∗
[

|ui(θ 0)v̂i|2+δ |e∗1ie
∗
ji|2+δ

]

= n−1
n

∑
i=1

|ui(θ 0)v̂i|2+δ E∗[|e∗1ie
∗
ji|2+δ

]

(A.29)

for j = 1,2. For the independent bootstrap scheme, j = 2 so that E∗[|e∗1ie
∗
ji|2+δ

]

= E∗[|e∗1ie
∗
2i|2+δ

]

≤
E∗[|e∗1i|2+δ

]

E∗[|e∗2i|2+δ
]

≤ C < ∞ in probability for some large enough constant C. For the dependent

bootstrap scheme, j = 1 and we have E∗[|e∗1ie
∗
ji|2+δ

]

= E∗[|e∗2

1i |2+δ
]

= E∗[|e∗1i|2(2+δ )
]

≤ C̄ < ∞ in prob-

ability for some large enough constant C̄. Combining both cases into (A.29) along with the fact that

ui(θ 0)v̂i = ui(θ 0)vi −ui(θ 0)Z
′
i(π̂ −π), and using Minkowski and Cauchy-Schwartz inequalities, we get:

n−1
n

∑
i=1

E∗
[

|u∗i v∗i |2+δ
]

≤ Bn−1
n

∑
i=1

|ui(θ 0)vi −ui(θ 0)Z
′
i(π̂ −π)|2+δ

≤ D
{

n−1
n

∑
i=1

|ui(θ 0)vi|2+δ + ||π̂ −π||2+δ n−1
n

∑
i=1

||Ziui(θ 0)||2+δ
}

→P DEF

[

|ui(θ 0)vi|2+δ
]

< ∞ (A.30)

for some large enough constants B < ∞ and D < ∞.

Lemma A.4 Suppose that the H0 holds and the conditions of Lemma A.3 are satisfied. Then, under the

sequence {γn,h} defined in (2.18) with |h1|< ∞ we have:









n−1/2Z
′
u∗

n−1/2Z
′
v∗

n−1/2
(

u∗
′
v∗−E∗

[

u∗
′
v∗
])









→d∗
N






0,







ΩZu(0) 0 0

0 ΩZu 0

0 0 Ωvu(0)












, (A.31)

in probability.

PROOF OF LEMMA A.4

Let c1,c2 denote k-dimensional nonzero vectors, and d be a nonzero scalar. Define

X∗
n,i =

{

c′1u∗i Zi + c′2v∗i Zi +d (u∗i v∗i −E∗[u∗i v∗i ])
}

/
√

n

=
{

c′1e∗1iûi(θ 0)Zi + c′2e∗jiv̂iZi +d
(

ûi(θ 0)v̂ie
∗
1ie

∗
ji −E∗[ûi(θ 0)v̂ie

∗
1ie

∗
ji]
)}

/
√

n, (A.32)

where j = 1 for the dependent bootstrap scheme and j = 2 for the independent bootstrap scheme. It suffices

to verify that the conditions of the Liapounov Central Limit Theorem hold for X∗
n,i.

To simplify, we shall give the proof for the case with independent transformation, i.e., j = 2 in (A.32).

Note that the proof for the case with dependent transformation ( j = 1) follow similar steps.

(a) E∗[X∗
n,i] = 0 as E

∗
[e∗1iûi(θ 0)Zi] = ûi(θ 0)ZiE

∗
[e∗1i] = 0, E

∗
[e∗2iv̂iZi] = ûi(θ 0)ZiE

∗
[e∗2i] = 0, and

E
∗
[ûi(θ 0)v̂ie

∗
1ie

∗
2i −E∗[ûi(θ 0)v̂ie

∗
1ie

∗
2i]] = ûi(θ 0)v̂iE

∗
[e∗1ie

∗
2i]− ûi(θ 0)v̂iE

∗[e∗1ie
∗
2i] = 0. Note that E∗[e∗1ie

∗
2i] =

E∗[e∗1i]E
∗[e∗2i] = 0 under the independent transformation.
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(b) Note that E
∗
[u∗

2

i ZiZ
′
i ] = E

∗
[û2

i (θ 0)e
∗2

1i ZiZ
′
i ] = û2

i (θ 0)ZiZ
′
iE

∗
[e∗

2

1i ] = û2
i (θ 0)ZiZ

′
i , E

∗
[v∗

2

i ZiZ
′
i ] =

E
∗
[v̂2

i e∗
2

2i ZiZ
′
i ] = v̂2

i ZiZ
′
i , E

∗
[u∗

2

i v∗
2

i ] = E
∗
[û2

i (θ 0)v̂
2
i e∗

2

1i e∗
2

2i ] = û2
i (θ 0)v̂

2
i E

∗
[e∗

2

1i e∗
2

2i ] = û2
i (θ 0)v̂

2
i ,

E
∗
[u∗i v∗i ZiZ

′
i ] = E

∗
[ûi(θ 0)v̂ie

∗
1ie

∗
2iZiZ

′
i ] = ûi(θ 0)v̂iZiZ

′
iE

∗
[e∗1ie

∗
2i] = 0, E

∗
[u∗

2

i v∗i Zi] = E
∗
[û2

i (θ 0)v̂ie
∗2

1i e∗2iZi] =

û2
i (θ 0)v̂iZiE

∗
[e∗

2

1i e∗2i] = 0, and similarly E
∗
[v∗

2

i u∗i Zi] = 0. So, we have:

n

∑
i=1

E∗[X∗2

n,i] = c′1

(

n−1
n

∑
i=1

û2
i (θ 0)ZiZ

′
i

)

c1 + c′2

(

n−1
n

∑
i=1

v̂2
i ZiZ

′
i

)

c2 +d2

(

n−1
n

∑
i=1

û2
i (θ 0)v̂

2
i

)

= c′1ΩZu(0)c1 + c′2ΩZvc2 +d2Ωvu(0)+oP(1)≡ OP(1). (A.33)

(c) For some δ > 0, we note that

n

∑
i=1

E∗[
∣

∣X∗
n,i

∣

∣

2+δ
]

≤ Cn−
δ
2 n−1

n

∑
i=1

E∗
[

∣

∣c′1u∗i Zi + c′2v∗i Zi

∣

∣

2+δ
+ |du∗i v∗i |2+δ

]

≤ Cn−
δ
2 n−1

n

∑
i=1

E∗
[

∣

∣c′1Z∗
i u∗i
∣

∣

2+δ
+
∣

∣c′2Z∗
i v∗i
∣

∣

2+δ
+ |du∗i v∗i |2+δ

]

= Cn−
δ
2 n−1

n

∑
i=1

E∗
[

∣

∣c′1Ziûi(θ 0)e
∗
1i

∣

∣

2+δ
+
∣

∣c′2Ziv̂ie
∗
2i

∣

∣

2+δ
+ |dv̂iûi(θ 0)e

∗
1ie

∗
2i|2+δ

]

= Cn−
δ
2

[

n−1
n

∑
i=1

∣

∣c′1Ziûi(θ 0)
∣

∣

2+δ
E∗[|e∗1i|2+δ ]+n−1

n

∑
i=1

∣

∣c′2Ziv̂i

∣

∣

2+δ
E∗[|e∗2i|2+δ ]

+n−1
n

∑
i=1

|dv̂iûi(θ 0)|2+δ
E∗[|e∗1ie

∗
2i|2+δ ]

]

= Cn−
δ
2

[

E∗[|e∗1i|2+δ ]EF

∣

∣c′1Ziui

∣

∣

2+δ
+E∗[|e∗2i|2+δ ]EF

∣

∣c′2Ziui

∣

∣

2+δ

+E∗[|e∗1ie
∗
2i|2+δ ]EF |dviui|2+δ

]

+oP(1)→P 0, (A.34)

i.e., ∑
n
i=1 E∗[

∣

∣X∗
n,i

∣

∣

2+δ
]→P 0, where the convergence in probability is obtained by using Lemma A.3.

From (a)-(c) above, X∗
n,i satisfies the Lyapunov CLT conditions [see e.g. Theorem 14 in Ruud (2000)].

Lemma A.4 follows by applying this CLT.

PROOF OF THEOREM 3.1

First, we note that

n−1/2X∗′PZu∗ = n−1/2 (Zπ̂ + v∗)′ PZu∗

= n−1/2π̂ ′Z
′
u∗+n−1/2

(

n−1/2v∗
′
Z
)(

n−1Z
′
Z
)−1(

n−1/2Z
′
u∗
)

= n−1/2π̂ ′Z
′
u∗+OP∗

(

n−1/2
)

→d∗
π ′ψ∗

Zu, (A.35)

(A.36)

in probability, where the last equality follows from: (a) by Lemma A.4, n−1/2v∗
′
Z = OP∗(1) in proba-
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bility, and n−1/2Z
′
u∗ = OP∗(1) in probability; (b) n−1Z

′
Z →P ΩZZ , which is positive definite, and therefore

(

n−1Z
′
Z
)−1

→P Ω−1
ZZ in probability. And the (conditional) convergence in distribution follows from Lemma

A.4, along with the fact that π̂ −π →P 0.

Second, following the same as above, we have

n−1/2X∗′u∗ = n−1/2π̂ ′Z
′
u∗+n−1/2

(

v∗
′
u∗−E∗[v∗

′
u∗]
)

+n−1/2E∗[v∗
′
u∗]

→d∗
π ′ψ∗

Zu +ψ∗
uv +hb

1, (A.37)

in probability, where hb
1 = 0 for the independent transformation and hb

1 = h1 +ψuv for the dependent trans-

formation. This is because n−1/2E∗[v∗
′
u∗] = 0 for the independent transformation, and n−1/2E∗[v∗

′
u∗] =

n1/2
(

n−1 ∑
n
i=1 v̂iûi(θ 0)

)

for the dependent transformation, where

n1/2

(

n−1
n

∑
i=1

v̂iûi(θ 0)

)

= n1/2

(

n−1
n

∑
i=1

(viui(θ 0)−EF [viui(θ 0)])

)

+n1/2EF [viui(θ 0)]+oP(1)

→d h1 +ψuv.

Third, we note that

n−1X∗′PZX∗ = n−1 (Zπ̂ + v∗)′ PZ (Zπ̂ + v∗)

= n−1π̂ ′Z
′
Zπ̂ +n−1π̂ ′Z

′
v∗+n−1v∗

′
Zπ̂ +n−1v∗

′
PZv∗

= n−1π̂ ′Z
′
Zπ̂ +OP∗

(

n−1/2
)

+OP∗

(

n−1/2
)

+OP∗
(

n−1
)

→P∗
σ2

π = π ′ΩZZπ = h
′
21h24h21 in probability. (A.38)

Using similar arguments, we obtain

n−1X∗′X∗ →P∗
h25 +h

′
21h24h21 = (1+h−1

25 h
′
21h24h21)h25, (A.39)

in probability. Combining (A.35)-(A.39), along with the expression of the bootstrap OLS and 2SLS estima-

tors, we obtain:

n1/2(θ̂
∗
OLS −θ 0) →d∗

ψ∗
OLS = (1+h−1

25 h
′
21h24h21)

−1h−1
25 (h

′
21ψ∗

Zu +ψ∗
vu +h25hb

1)

n1/2(θ̂
∗
2SLS −θ 0) →d∗

ψ∗
2SLS = (h

′
21h24h21)

−1h
′
21ψ∗

Zu (A.40)

in probability. Following similar steps as in the derivation of (A.40), we find that

n1/2â∗ →d∗
(h

′
21h24h21)

−1(h
′
21ψ∗

Zu −h−1
25 h

′
21h24h21ψ∗

vu)+hb
1, (A.41)

V̂ ∗(â∗) →P∗
(h

′
21h24h21)

−1
(

(h−1
25 h

′
21h24h21)

−2h
′
21h22h21 +h23

)

,

V̂ ∗(OLS) →P∗
(1+h−1

25 h
′
21h24h21)

−2h−2
25

(

h
′
21h22h21 +h23

)

, V̂ ∗(2SLS)→P∗
h
′
21h24h21)

−2h
′
21h22h21

in probability. The desired results are obtained from (A.40)-(A.42), along with the expressions of the

different bootstrap statistics.
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PROOF OF THEOREM 3.2

We follow Andrews and Guggenberger (2010b) [e.g., the proof of Theorem 1; see also Guggenberger

(2010a)], and note that there exists a “worst case sequence” γn ∈ Γ such that:

AsySz[ĉ∗n(1−α)]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0 ,γ

[Tn(θ 0)> ĉ∗n(1−α)]

= limsup
n→∞

P
θ0 ,γn

[Tn(θ 0)> ĉ∗n(1−α)]

= lim
n→∞

P
θ0 ,γmn

[

Tmn
(θ 0)> ĉ∗mn

(1−α)
]

(A.42)

where the first equality holds by the definition of asymptotic size and the second by the choice of the

sequence {γn : n ≥ 1}. And {mn : n ≥ 1} is a subsequence of {n : n ≥ 1}; such a subsequence always exists.

Furthermore, there exists a subsequence {ωn : n ≥ 1} of {mn : n ≥ 1} such that:

lim
n→∞

P
θ0 ,γmn

[

Tmn
(θ 0)> ĉ∗mn

(1−α)
]

= lim
n→∞

P
θ0 ,γωn ,h

[

Tωn
(θ 0)> ĉ∗ωn

(1−α)
]

(A.43)

for some h ∈ H . But, for any h ∈ H , any subsequence {ωn : n ≥ 1} of {n : n ≥ 1}, and any sequence

{θ ωn,h : n ≥ 1}, we have
(

Tωn
(θ 0), ĉ

∗
ωn
(1−α)

) d→
(

T̃h,c
∗
h(1−α)

)

jointly. It follows that AsySz[ĉ∗n(1−α)] =

sup
h∈H

P[T̃h > c∗h(1−α)].

PROOF OF THEOREM 3.3

First, note that by following similar arguments as those in the proofs of Theorem 3.1, we can obtain that

the following (conditional) convergence in distribution holds:





T ∗
OLS,(h1,ĥ2)

(θ 0)

H∗
n,(h1,ĥ2)



→d∗

(

(π ′ΩZeπ +Ωve)
−1/2

(

π ′ψ∗
Zu +ψ∗

vu +σ2
vh1

)

(

h−4
2 π ′ΩZeπ +Ωve

)−1 (
h−2

2 π ′ψ∗
Zu −ψ∗

vu +σ2
vh1

)2

)

, (A.44)

in probability. Then, based on the formula of T ∗
n,(h1 ,ĥ2)

(θ 0), we conclude that the (conditional) null limiting

distribution of T ∗
n,(h1 ,ĥ2)

(θ 0) is the same as the null limiting distribution of Tn(θ 0) with the value of localization

parameter equal to h1, and this implies that c∗
(h1,ĥ2)

(1−δ )→P c(h1,h2)(1−δ ), where c(h1,h2)(1−δ ) denotes

the (1−δ )-th quantile of T̃h with h = (h1,h2).

Then, the proof is similar to the proof for Theorem 3.2 and those in McCloskey (2017). We note that

there exists a “worst case sequence” γn ∈ Γ such that:

AsySz
[

cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0 ,γ

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

= limsup
n→∞

P
θ0 ,γn

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

= lim
n→∞

P
θ0 ,γmn

[

Tmn
(θ 0)> cB−S(α,α −δ , ĥ

mn ,1
, ĥ

mn ,2
)
]

(A.45)

where {mn : n ≥ 1} is a subsequence of {n : n ≥ 1} and such a subsequence always exists. Furthermore,
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there exists a subsequence {ωn : n ≥ 1} of {mn : n ≥ 1} such that:

lim
n→∞

P
θ0 ,γmn

[

Tmn
(θ 0)> cB−S(α,α −δ , ĥ

mn ,1
, ĥ

mn ,2
)
]

= lim
n→∞

P
θ0 ,γωn ,h

[

Tωn
(θ 0)> cB−S(α,α −δ , ĥ

ωn ,1
, ĥ

ωn ,2
)
]

(A.46)

for some h∈H . But, for any h∈H , any subsequence {ωn : n≥ 1} of {n : n≥ 1}, and any sequence {γωn,h
:

n ≥ 1}, we have
(

Tωn
(θ 0), ĥωn ,1

) d→
(

T̃h, h̃1

)

jointly. In addition, cB−S(α,α −δ , ĥ
ωn ,1

, ĥ
ωn ,2

) is continuous in

ĥ
ωn ,1

by the definition of the SBCV and Maximum Theorem. Hence, the following convergence holds jointly

by the Continuous Mapping Theorem:

(

Tωn
(θ 0),c

B−S(α,α −δ , ĥ
ωn ,1

, ĥ
ωn ,2

)
) d→

(

T̃h,c
B−S(α,α −δ , h̃

1
,h

2
)
)

(A.47)

where cB−S(α,α −δ , h̃
1
,h

2
) = sup

h1∈CI
α−δ

(h̃1)

c(h1,h2)(1−δ ). Then, (A.45)-(A.47) imply that

AsySz
[

cB−S(α,α −δ , ĥ
n,1 , ĥn,2)

]

= lim
n→∞

P
θ0 ,γωn,h

[

Tωn
(θ 0)> cB−S(α,α −δ , ĥωn,1

, ĥωn,2
)
]

= sup
h∈H

P
[

T̃h > cB−S(α,α −δ , h̃
1
,h

2
)
]

, (A.48)

Now, for any h ∈ H , we have:

P
[

T̃h ≥ cB−S(α,α −δ , h̃
1
,h

2
)
]

= P
[

T̃h ≥ cB−S(α,α −δ , h̃
1
,h

2
)≥ ch(1−δ )

]

+ P
[

T̃h ≥ ch(1−δ )≥ cB−S(α,α −δ , h̃
1
,h

2
)
]

+ P
[

ch(1−δ )≥ T̃h ≥ cB−S(α,α −δ , h̃
1
,h

2
)
]

≤ P
[

T̃h ≥ ch(1−δ )
]

+P
[

ch(1−δ )≥ cB−S(α,α −δ , h̃
1
,h

2
)
]

= P
[

T̃h ≥ ch(1−δ )
]

+P
[

h1 /∈CIα−δ (h̃1)
]

= δ +(α −δ ) = α, (A.49)

where the inequality and the second equality follow from the form of cB−S(α,α − δ , h̃
1
,h

2
), and the third

equality follows from the definition of CIα−δ (h̃1). As (A.49) holds for any h ∈ H , it is clear from (A.48)

that AsySz[cB−S(α,α −δ , ĥ
n,1 , ĥn,2)]≤ α, as stated.

PROOF OF THEOREM 3.4 As in Theorem 3.3, we can show that there exists a sequence γn ∈ Γ , a sub-

sequence {mn : n ≥ 1} of {n : n ≥ 1}, and a subsubsequnce {ωn : n ≥ 1} of {mn : n ≥ 1} such that the

following result holds:

AsySz
[

cB−C(α,α −δ , ĥ
n,1 , ĥn,2)

]

= limsup
n→∞

sup
γ ∈ Γ

P
θ0 ,γ

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)+ η̂n

]

= limsup
n→∞

P
θ0 ,γn

[

Tn(θ 0)> cB−S(α,α −δ , ĥ
n,1 , ĥn,2)+ η̂n

]
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= lim
n→∞

P
θ0 ,γmn

[

Tmn
(θ 0)> cB−S(α,α −δ , ĥ

mn ,1
, ĥ

mn ,2
)+ η̂mn

]

= lim
n→∞

P
θ0 ,γωn ,h

[

Tωn
(θ 0)> cB−S(α,α −δ , ĥ

ωn ,1
, ĥ

ωn ,2
)+ η̂

ωn

]

(A.50)

for some h∈H . Furthermore, as in the proof of Theorem 3.3, for any h∈Hh, any subsequence {ωn : n≥ 1}
of {n : n ≥ 1}, and any sequence {γωn,h

: n ≥ 1}, we have
(

Tωn
(θ 0), ĥωn ,1

) d→
(

T̃h, h̃1

)

jointly. Hence,

lim
n→∞

P
θ0 ,γωn ,h

[

Tωn
(θ 0)> cB−S(α,α −δ , ĥ

ωn ,1
, ĥ

ωn ,2
)+ η̂

ωn

]

= sup
h∈H

P
[

T̃h > cB−S(α,α −δ , h̃
1
,h

2
)+ η̄

]

(A.51)

≡ sup
h∈H

P
[

T̃h > cB−C(α,α −δ , h̃
1
,h

2
)
]

, (A.52)

where η̄ = inf

{

η : sup
h1∈H1

P
[

T̃h > cB−S(α,α −δ , h̃
1
,h

2
)+η

]

≤ α

}

. For the simplicity of exposition, define

the following asymptotic rejection probability:

NRP[h,η ] ≡ P[T̃h > cB−S(α,α −δ , h̃
1
,h

2
)+η ]. (A.53)

It is clear from (A.50)-(A.53) that AsySz[cB−C(α,α − δ , ĥ
n,1 , ĥn,2)] = sup

h∈H

NRP[h, η̄ ]. Hence, it suffices to

show that sup
h∈H

NRP[h, η̄ ] = α to establish Theorem 3.4.

First, from the result of Theorem 3.3 and the definition of the size-correction criterion, it is clear that

sup
h∈H

NRP[h, η̄ ] ≤ α . We proceed to show that sup
h∈H

NRP[h, η̄ ] < α leads to contradiction. Assume that

sup
h∈H

NRP[h, η̄ ]< α and define the function K(·) : R− → [−α, 1−α] such that

K(x) = sup
h∈H

NRP[h,x]−α. (A.54)

As NRP[h, ·] is continuous on R−, the Maximum Theorem entails that K(·) is also continuous on R−.

Moreover, we have

K
(

−cB−S(α,α −δ , h̃
1
,h

2
)
)

= sup
h∈H

NRP[h,−cB−S(α,α −δ , h̃
1
,h

2
)]−α = 1−α > 0

and K (η̄) = sup
h∈H

NRP[h, η̄ ]−α < 0 (by assumption).

Then, we note that by the Intermediate Value Theorem, there exists η̇ such that

i) − cB−S(α,α −δ , h̃
1
,h

2
)< η̇ < η̄ ,

ii) K (η̇) = 0; i.e., sup
h∈H

NRP[h, η̇ ] = α.

However, this contradicts the size-correction procedure where

η̄ = inf

{

η : sup
h1∈H1

P
[

T̃h > cB−S(α,α −δ , h̃
1
,h

2
)+η

]

≤ α

}

.
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It follows that sup
h∈H

NRP[h, η̄ ] = α; i.e., AsySz[cB−C(α,α −δ , ĥ
n,1 , ĥn,2)] = α .
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