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Abstract

This study uses a growth model with automation technology to consider two classes—

workers and capitalists—and investigates how advances in automation technology af-

fect economic growth and income distribution. In addition to the two production factors

labor and traditional capital, we consider automation capital as the third production fac-

tor. We also introduce Pasinetti-type saving functions into the model to investigate how

the difference between the capitalists’ and workers’ saving rates affect economic growth

and income distribution. When the capitalists’ saving rate is higher than a threshold

level, per capita output exhibits endogenous growth irrespective of the workers’ sav-

ings rate. In this case, the income gap between workers and capitalists widens over

time. When the capitalists’ saving rate is less than the threshold level, two different

long-run states occur depending on the workers’ saving rate: the capitalists’ own au-

tomation capital share approaches a constant, and it approaches zero. In both cases, the

per capita output growth is zero and the income gap between the two classes becomes

constant over time.

Keywords: automation technology; endogenous growth; income distribution

JEL Classification: E25; O11; O33; O41

1 Introduction

Automation technology has recently seen several advances such as artificial intelligence

(AI) and robots. Technologies such as autonomous cars, face recognition systems, and high-
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frequency trading can operate without human support and substitute for human labor. How

do advances in automation technology affect an economy? This study uses a theoretical

model to investigate how the introduction of AI and robots affects economic growth and

income distribution by incorporating two classes—workers and capitalists.

Frey and Osborne (2013, 2017) point out the possibility of AI and robots substituting

human labor, and investigate how automation technology can affect the US labor market.

They estimate that around 47% of labor can be substituted in the future. The McKinsey

Global Institute (2017) considered more than 800 jobs and 2000 activities in the United

States, to find that around 45% of labor activities can be substituted by AI. The Boston

Consulting Group (2015) has predicted that 40–50% of jobs in the United States, the United

Kingdom, Canada, and Japan will be substituted by AI and robots by 2025.

More attempts have been made to investigate the effect of automation technology on an

economy from a macroeconomics perspective.1 These works can be classified roughly un-

der two approaches, task-based approach, represented by Daron Acemoglu, and automation

capital-based approach, represented by Klaus Prettner.2

Acemoglu and Restrepo (2018, 2020) explain the effects of AI and robots on the macroe-

conomy as follows. AI and robots substitute human labor and decrease labor demand and

the wage rate. Correspondingly, they generate new employment opportunities in the labor

market, and thus increase the labor demand and wage rate. Thus, AI and robots have a

counterbalancing effect. Under specific assumptions, the positive effects of AI and robots

dominate their negative effects. Acemoglu and Restrepo (2018, 2020) thus conclude that the

introduction of AI and robots does not lead to severe unemployment and wage declines.3

Prettner (2019) introduces a new production factor that perfectly substitutes labor, “au-

tomation capital” (e.g., AI and robots), differentiating it from “traditional capital” (e.g.,

machines and factories). To this end, he proposes an augmented Solow growth model with

automation capital in the Cobb–Douglas production function. Specifically, he assumes that

a representative household saves a constant fraction of income—a portion saved as accumu-

lation of automation capital, and the rest saved as accumulation of traditional capital. The

results show that the accumulation of automation capital reduces the wage rate and labor

share of the national income and leads to the endogenous per capita output growth, but with

no exogenous technological progress.4

1For the study of mechanization under a growth model, see Zeira (1998).
2For growth models with AI and robots, see Aghion et al. (2019).
3Some empirical studies report how the introduction of labor-substitutable technology affected employment

and the wage rates (Graetz and Michaels 2018; Cords and Prettner 2019; Acemoglu and Restrepo 2020).
4Gasteiger and Prettner (2020) build an overlapping generations model with automation capital. They

show that endogenous growth cannot be obtained, and that the economy will become stagnant over time. In

the overlapping generations model, the working generations earns wage income, but this decreases owing to
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This study aims to examine how advances in automation technology that substitute hu-

man labor can affect economic growth and income distribution. To this end, we adopt Pret-

tner’s approach. The substitution of human labor with automation technology has been

shown in an empirical study. DeCanio (2016) empirically analyzes the US cross-section

data to estimate the elasticity of substitution between robots and human labor and investi-

gates the effect of automation technology on wage rates. He uses Houthakker’s method to

avoid problems that could arise from the use of aggregate capital. The study shows that the

elasticity of substitution is around 1.9, indicating that the introduction of robots decreases

the wage rates.

Studies in the literature have considered whether advances in automation technology af-

fected economic growth. However, no study has examined the effect on income distribution

and the income gap between workers and capitalists. Thus, we extend the literature by in-

troducing two classes—workers and capitalists—and examine how advances in automation

technology affect the income gap between the two classes and economic growth. As Piketty

(2014) points out, wealth is largely concentrated in the hands of a few. Several recent stud-

ies focus on issues of disparity and gaps between people in the economy. The introduction

of automation capital has affected people differently, leading to income disparities between

people.

To incorporate workers’ saving in the model, we follow the approach proposed by Pasinetti

(1962).5 Pasinetti (1962) argues that when workers save, they receive interest income by

holding capital stock through savings. Thus, the total capital stock of the whole economy

consists of the workers’ and capitalists’ own capital stock. He also shows that at the long-

run equilibrium, where workers and capitalists coexist, the profit rate is the natural growth

rate divided by the capitalists’ saving rate. This is called the Pasinetti theorem, by which the

long-run profit rate is independent of the workers’ propensity to save.

Furthermore, Samuelson and Modigliani (1966) point out that the Pasinetti theorem

assumes that the capitalists’ propensity to save is considerably higher than the workers’

propensity to save. They also show that unless this implicit assumption is satisfied, the

the accumulation of automation capital. This decrease in wage income in turn reduces the saving of house-

holds, which then decreases the accumulation of traditional capital, to lead to economic stagnation. Moreover,

mechanization can decrease the wage rate, stagnate the economy, and thus decrease the social welfare of the

future generations. For a detailed discussion on this issue, see Benzell et al. (2015) and Sachs et al. (2015).
5Böhm and Kaas (2000) build a discrete time growth model with a Kaldorian saving function, and show

chaotic dynamics when the production function takes the Leontief form. Dalgaard and Hansen (2005) extend

the Solow growth model using two different saving rates, and show that multiple equilibria occur when the

propensity to save from wage is higher than the propensity to save from profit. Saez and Zucman (2016) show

that the saving rate inequality in the US economy has increased recently, with the top 1% saving more as a

fraction of their income than the top 10–1% and bottom 90%. Stiglitz (1967) presents a two-sector (capital

goods and consumption goods), two-class growth model, and investigates the existence and stability of steady-

state equilibria.
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long-run profit rate will be the natural growth rate times the output capital elasticity of the

production function divided by the workers’ propensity to save. This is called the “dual

theorem.”

Thus, in two-class models, the difference in saving rates between two classes would lead

to different long-run situations or multiple equilibria.6

We extend Prettner’s (2019) augmented Solow model and incorporate workers and cap-

italists with different asset holdings and saving behavior into our model. We divide house-

holds into two groups—workers and capitalists. While workers own labor and traditional

capital, capitalists own traditional capital and automation capital. The saving rates of the

two classes are assumed different, but constant: the saving rate of capitalists is higher than

that of workers. The dynamics of our model can be summarized as a set of differential equa-

tions of workers’ own capital per worker and capitalists’ own capital per capitalist. From

the saving rates of the two classes, we obtain various long-run situations, summarized as

follows.

First, when the capitalists’ saving rate is more than a threshold level, per capita output

exhibits endogenous growth irrespective of the workers’ saving rate. In this case, the income

gap between workers and capitalists widens over time.

Second, when the capitalists’ saving rate is less than the threshold level, two different

long-run states occur depending on the workers’ saving rate. In one case, the capitalists’

own automation capital share approaches a constant value, and in the other, it approaches

zero. In both cases, the per capita output growth is zero, with the income gap between the

two classes becoming constant over time.

The remainder of this paper is organized as follows. Section 2 presents our model.

Section 3 investigates the dynamics of two-class capital. Section 4 investigates the dynamics

of income distribution and growth. Section 5 conducts numerical simulations. Section 6

concludes the paper.

2 Model

Assume an economy producing a final good with labor, traditional capital, and automation

capital. The good is used for consumption, investment in traditional capital, and investment

in automation capital. This assumption implies that the good can be converted into tradi-

tional capital and automation capital at no additional cost. The goods and factor markets are

competitive. This economy has two classes, workers and capitalist. Workers own labor and

6For two-class models with dynamic optimization of workers and capitalists, see Michl and Foley (2004),

Commendatore and Palmisani (2009), Kurose (2021), and Sasaki (2021).
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traditional capital, and receive wage income as well as capital income accruing from tra-

ditional capital. Capitalists own traditional capital and automation capital, and receive two

types of capital income, one accruing from traditional capital, and the other accruing from

automation capital. Assume also that L and Nc denote the number of workers and capitalists,

respectively. The total population is, therefore, N = L + Nc. Suppose the total population

increases at the constant rate n > 0. Suppose also that the composition of workers and cap-

italist, L/N and Nc/N, stays constant over time. Then, both L and Nc increase at the rate

n > 0. Finally, we assume that labor, traditional capital, and automation capital are fully

utilized.

2.1 Firms and production

The production function takes the following modified Cobb–Douglas form:

Y = F(K, L, P) = Kα(L + P)1−α, 0 < α < 1, (1)

where K denotes traditional capital, L denotes labor, and P denotes automation capital.

Traditional capital is owned by workers and capitalists.

K = Kw + Kc, (2)

where Kw and Kc denote the workers’ and capitalists’ own capital, respectively.

Let w, Rk, and Rp denote the wage rate, rental price of capital, and rental price of automa-

tion capital, respectively. Then, the workers’ and capitalists’ income will be, respectively,

Workers’ income = wL + RkKw, (3)

Capitalists’ income = RpP + RkKc. (4)

From the profit maximization of firms, their factor prices would be equal to their marginal

productivities.

w = (1 − α)
Y

L + P
= (1 − α)

(

K

L + P

)α

, (5)

Rk = α
Y

K
= α

(

K

L + P

)−(1−α)

, (6)

Rp = (1 − α)
Y

L + P
= (1 − α)

(

K

L + P

)α

. (7)

From equations (5) and (7), w and Rp are increasing in K but decreasing in P, whereas from
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equation (6), Rk is decreasing in K but increasing in P.

The production function does not satisfy the Inada conditions, because we have

lim
P→0

Rp = (1 − α)

(

K

L

)α

, (8)

lim
K→0

Rk = ∞. (9)

As stated above, Rp is increasing in K, whereas Rk is decreasing in K. Thus, only after

traditional capital K becomes sufficiently accumulated will automation capital P begin to

accumulate.

Gasteiger and Prettner (2020) impose a no-arbitrage condition between two assets K and

P such that Rk = Rp. From this, we obtain 7

P =

(

1 − α

α

)

K − L⇒ P = max

{

0,

(

1 − α

α

)

K − L

}

. (10)

When K > [α/(1 − α)]L ≡ K̄, P will start to accumulate. Therefore, when 0 < K < K̄, we

have P = 0, and when K̄ < K, we have P > 0.

From our assumption that the final good is used for consumption, and investment in tra-

ditional and automation capital, we obtain Rk = Rp. This no-arbitrage condition is similar to

the no-arbitrage condition between physical capital and human capital used in the one-sector

human capital endogenous growth model presented in Barro and Sala-i-Martin (2003), and

leads to the AK growth model.

In sum, the production function leads to

Y =



















KαL1−α if 0 < K < K̄

BK if K̄ ≤ K, B ≡
(

1−α
α

)1−α
.

(11)

The second production function is given by incorporating L + P = [(1 − α)/α]K from the

no-arbitrage condition into equation (1). Accordingly, if the traditional capital exceeds

its threshold level, perpetual output growth can be achieved even without technological

progress as long as traditional capital is accumulated.

7Heer and Irmen (2019) criticize Prettner (2019) for not using the no-arbitrage condition, and show that

using the no-arbitrage condition will endogenize the division of investment between traditional capital and

automation capital, which will not be given exogenously.
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We rewrite the production functions in per capita terms as

y =



















kα if 0 < k < k̄

Bk if k̄ ≤ k,
(12)

where y = Y/L = (N/L)(Y/N) and k = K/L = (N/L)(K/N) denote the per capita output and

traditional capital, respectively, as N/L is constant by assumption.

At equilibrium, by substituting K/(L + P) = α/(1 − α) into equations (5)–(7), we have

w = Rk = Rp = αα(1 − α)1−α ≡ R. (13)

The rate of return R takes the minimum value 1/2 when α = 1/2, whereas it takes the

maximum value 1 when α = 0, 1.

2.2 Households and asset holdings

The asset holdings of workers and capitalists are, respectively,

Aw = Kw, (14)

Ac = Kc + P, (15)

where AW and Ac denote the workers’ and capitalists’ asset holdings, respectively.

Let sw and sc denote the saving rates of workers and capitalists, respectively. Now, the

saving of workers, S w, and capitalists, S c, are, respectively,

S w = sw(wL + RkKw), (16)

S c = sc(R
pP + RkKc). (17)

The dynamics of the two kinds of assets are specified as

Ȧw = S w − δAw = sw(wL + RAw) − δAw, (18)

Ȧc = S c − δAc = scRAc − δAc, (19)

where δ ∈ [0, 1] denotes the capital depreciation rate. We assume a common capital depre-

ciation rate for traditional and automation capital.

Let aw = Aw/L and ac = Ac/L. Now, the differential equations of aw and ac are, respec-
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tively,

ȧw = swR(1 + aw) − (n + δ)aw, (20)

ȧc = [scR − (n + δ)]ac. (21)

Note that these differential equations are independent of each other. Furthermore, as ac =

Ac/L = (Nc/L)(Ac/Nc) and Nc/L is constant by assumption, ac is the own asset per capitalist

and aw is the own asset per worker.

3 Dynamics of two-class capital

To further investigate the model dynamics, we rewrite our model’s dynamics in terms of

kc = Kc/L and kw = Kw/L. We have

ac = kc + p, (22)

aw = kw, (23)

ȧc = k̇c + ṗ = [scR − (n + δ)](kc + p), (24)

ȧw = k̇w = swR(1 + aw) − (n + δ)aw, (25)

p =

(

1 − α

α

)

(kc + kw) − 1, (26)

ṗ =

(

1 − α

α

)

(k̇c + k̇w). (27)

Note that because kc = Kc/L = (Nc/L)(Kc/Nc), p = P/L = (Nc/L)(P/Nc), and Nc/L is

constant by assumption, kc and p are the own traditional and own automation capital per

capitalist, respectively. Equation (27) is the dynamic version of the no-arbitrage condition,

which is given by differentiating the no-arbitrage condition with respect to time.

From the above equations, we obtain the system of differential equations of kc and kw as

follows:

k̇c(t) = [scR − (n + δ)]kc(t) + (1 − α)(sc − sw)Rkw(t) − [αsc + (1 − α)sw]R + α(n + δ), (28)

k̇w(t) = swR[1 + kw(t)] − (n + δ)kw(t), (29)

kc(t) + kw(t) >
α

1 − α
. (30)

The last inequality comes from the no-arbitrage condition: when P > 0, we have K >

[α/(1 − α)]L, and hence k = kc + kw > α/(1 − α).
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From the dynamic system, we find that the dynamics of kw are independent of those

of ks, whereas the dynamics of kc depend on the dynamics of kw. Note that depending on

the conditions, both kc and kw continue to increase over time with no steady state such that

k̇c = k̇w = 0. Thus, we cannot use the Routh–Hurwitz conditions to examine the stability of

our dynamic system. Hence, we investigate the dynamics of kw and kc separately, assuming

that kw has already reached its steady-state value kw in the stable case, or that kw has been

increasing exponentially at the rate swR−(n+δ) > 0 in the unstable case, as explained below.

As regards the dynamics of kw, we consider two cases, sw < (n+δ)/R and sw > (n+δ)/R.

In the former case, kw converges to the steady-state value k∗w. However, in the latter case, kw

continues to increase exponentially at the constant rate limkw→+∞ k̇w/kw = swR − (n + δ) > 0

over time. See Figures 1 and 2.

O

k

w

�

k

w

k

�

w

Figure 1: Dynamics of kw when sw < (n +

δ)/R

O

k

w

�

k

w

k

w

(0)

Figure 2: Dynamics of kw when sw > (n +

δ)/R

From the size of sw and sc, we can consider the following five cases:

Case 1-1-1 : sw <
α(n + δ)

R
and

n + δ

R
< sc.

Case 1-1-2 :
α(n + δ)

R
< sw <

n + δ

R
< sc.

Case 1-2-1 : sw <
α(n + δ)

R
and sc <

n + δ

R
.

Case 1-2-2 :
α(n + δ)

R
< sw < sc <

n + δ

R
.

Case 2 :
n + δ

R
< sw < sc.

Figure 3 shows these five cases on the (sc, sw) plane.
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n+Æ
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R

45

Æ

Case 2

Case 1-1-1

Case 1-1-2

Case 1-2-2

Case 1-2-1

1

1

Figure 3: Classifications of five cases according to the size of sc and sw

3.1 Case of relatively small worker saving rate

When sw < (n + δ)/R, kw converges to the steady-state value given by

k∗w =
swR

n + δ − swR
> 0. (31)

When kw converges to k∗w, by substituting equation (31) into equation (29), we can rewrite

the equation of motion of kc as

k̇c(t) = [scR − (n + δ)]

[

kc(t) +
swR − α(n + δ)

n + δ − swR

]

. (32)

From the no-arbitrage condition, we have

kc + k∗w >
α

1 − α
=⇒ kc > k∗w −

α

1 − α
=

α(n + δ) − swR

(1 − α)(n + δ − swR)
≡ k̂c. (33)

Therefore, to satisfy the non-arbitrage condition, kc must be larger than k̂c.

The value of kc, assuming that k̇c = 0, is given by

k̄c =
α(n + δ) − swR

n + δ − swR
. (34)
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From the above discussion, when sw < (n+δ)/R, we have four cases, Cases 1-1-1, 1-1-2,

1-2-1, and 1-2-2, as shown in Figures 4–7, respectively.
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Figure 4: Dynamics of kc in Case 1-1-1
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Figure 5: Dynamics of kc in Case 1-1-2
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Figure 6: Dynamics of kc in Case 1-2-1
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k



k
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Figure 7: Dynamics of kc in Case 1-2-2

In Case 1-1-1, kc continues to increase over time as long as the initial value satisfies

kc(0) > k̂c. In Case 1-1-2, kc continues to increase over time irrespective of the size of kc(0).

In Case 1-2-1, kc continues to decrease over time and approaches a constant k̂c. When kc

reaches k̂c, the no-arbitrage condition is violated, and the system switches to a new system

that does not include p. The long-run values are as follows:

kw = k∗w =
swR

n + δ − swR
, (35)

kc = k̂c =
α(n + δ) − swR

(1 − α)(n + δ − swR)
, (36)

p = 0. (37)
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Note that these values do not depend on the capitalists’ saving rate sc.

In Case 1-2-2, kc continues to decrease over time, approaching kc = 0. When kc = 0, we

have ac = p = [(1 − α)/α]k∗w − 1 > 0. The long-run values are as follows:

kw = k∗w =
swR

n + δ − swR
, (38)

kc = 0, (39)

p =
swR − α(n + δ)

α(n + δ − swR)
. (40)

Note that these values too do not depend on the capitalists’ saving rate sc.

Again, consider Case 1-2-1. As stated above, a regime switch occurs, and the system

becomes a Pasinetti vs. Samuelson–Modigliani system. The Case 1-2-1 condition can be

rewritten as

R <
n + δ

sc

≡ R1, (41)

R <
α(n + δ)

sw

≡ R2. (42)

Now, we have either R1 < R2 or R1 > R2, from which

R1 < R2 ⇐⇒ sw < αsc, (43)

R1 > R2 ⇐⇒ sw > αsc. (44)

The first condition is identical to that for the Pasinetti equilibrium, whereas the second con-

dition is identical to that for the dual equilibrium (Samuelson and Modigliani, 1966; Furuno,

1970). From Samuelson and Modigliani (1966) and Furuno (1970), the steady-state values

of kw and kc can be given as 8

kP
w =

(1 − α)sw

α(sc − sw)

(

αsc

n + δ

)1−α

, kP
c =

αsc − sw

α(sc − sw)

(

αsc

n + δ

)1−α

if sw < αsc, (47)

kD
w =

(

αsc

n + δ

)
1

1−α

, kD
c = 0 if sw > αsc, (48)

8These steady-state values are obtained by analyzing the following set of differential equations:

k̇c = [αsc(kc + kw)α−1 − (n + δ)]kc, (45)

k̇w =

[

sw(kc + kw)α
(

1 − α

kw

+
α

kc + kw

)

− (n + δ)

]

kw. (46)
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where P and D denote the “Pasinetti equilibrium” and “dual equilibrium,” respectively.

3.2 Case of relatively large worker saving rate

When sw > (n + δ)/R, kw continues to increase over time. Here, sc > (n + δ)/R also holds

because sc > sw by assumption. Furthermore, the dynamic system leads to

k̇c(t) = [scR − (n + δ)]kc(t) + (1 − α)(sc − sw)Rkw(t) − [αsc + (1 − α)sw]R + α(n + δ), (49)

kw(t) = kw(t̄) · exp{[swR − (n + δ)](t − t̄)}, (50)

where t̄ denotes the time when kw begins to increase exponentially.

Assume that at t = t̄, we have kw(t̄) = α/(1 − α). Then, at t = t̄, the intercept of k̇c = 0

becomes −swR + α(n + δ) < 0, which is assumed to be negative. The locus k̇c = 0 continues

to shift upward over time, and kc continues to increase. This case is shown in Figure 8.

O

k



�

k



�s

w

R + (n + Æ)

k



(0)

Figure 8: Dynamics of kc in Case 2

The discussions in Sections 3.1 and 3.2 lead to the following two propositions.

Proposition 1. When the capitalists’ saving rate is larger than the threshold level, their

own traditional capital and automation capital per capitalist continue to increase over time.

The workers’ own traditional capital either converges to a constant value or continues to

increase through time depending on whether the workers’ saving rate is lower or higher

than the threshold level.

Proposition 2. When the capitalists’ saving rate is less than the threshold level, both their

own and the workers’ own traditional capital per worker approach a constant value, and

two different long-run situations emerge. In one, the capitalists’ own per capita automation

capital approaches zero, and the economy becomes free of automation capital and converges
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to either the Pasinetti equilibrium or dual equilibrium. In the other, the capitalists’ own per

capita traditional capital approaches zero and automation capital approaches a positive

value.

4 Income distribution and growth

In this section, we analyze the income distribution and growth. For the analysis, we express

the input factor ratios in terms of kc and kw as follows:

P

Kc

=
1 − α

α
·

kc + kw − α

kc

, (51)

P

L
=

1 − α

α
(kc + kw) − 1, (52)

P

K
=

1 − α

α
−

1

kc + kw

, (53)

K

L
= kc + kw. (54)

When kc converges to constant values, these ratios also become constant, and, interestingly,

independent of sc, as k∗w and the long-run values of kc are independent of sc.

However, when kc continues to increase, these approach the following values.

P

Kc

→
1 − α

α
, (55)

P

L
→ +∞, (56)

P

K
→

1 − α

α
, (57)

K

L
→ +∞. (58)

From equation (55), capitalists allocate their saving between traditional and automation cap-

ital in the proportion of α to 1 − α over time.

The variables related to income distribution are calculated as

wL

Y
=

α

kc + kw

, (59)

RkK

Y
= α, (60)

RpP

Y
= 1 − α −

α

kc + kw

, (61)
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RkKc + RpP

Y
=

kc + (1 − α)kw − α

kc + kw

, (62)

wL + RkKw

Y
=
α(1 + kw)

kc + kw

. (63)

When kc converges to constant values, these ratios also become constant, and, interestingly,

independent of sc, as k∗w and the long-run values of kc are independent of sc.

However, when kc continues to increase, these approach the following values.

wL

Y
→ 0, (64)

RkK

Y
= α, (65)

RpP

Y
→ 1 − α, (66)

RkKc + RpP

Y
→ 1, (67)

wL + RkKw

Y
→ 0. (68)

From equations (67) and (68), the income gap between workers and capitalists approaches

the proportion of 0 to 1.

Summarizing the above discussions, we obtain the following proposition.

Proposition 3. When the capitalists’ saving rate is larger than the threshold level, the in-

come gap between workers and capitalists becomes polarized over time. However, when the

capitalists’ saving rate is smaller than the threshold level, the income gap between workers

and capitalists becomes constant over time.

The per capita output level can be given by

y ≡
Y

L
= Bk = αα(1 − α)1−α(kc + kw). (69)

Thus, when kc becomes constant over time, the per capita output stays constant. However,

if kc continues to increase, the per capita output growth rate will be as follows:

gy ≡
ẏ

y
=

k̇c + k̇w

kc + kw

=
kc

kc + kw

{

[scR − (n + δ)] + (1 − α)(sc − sw)R
kw

kc

−
[αsc + (1 − α)sw]R

kc

+
α(n + δ)

kc

}

+
kw

kc + kw

{

[swR − (n + δ)] +
swR

kw

}

. (70)
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=⇒ lim
kc→+∞

gy =
ȧc

ac

= scR − (n + δ) = scα
α(1 − α)1−α − (n + δ) ≥ 0. (71)

The long-run growth rate gy is increasing in sc, decreasing in n, and decreasing in δ. Note

that gy does not depend on the workers’ saving rate sw. Also, gy takes the minimum value

when α = 1/2 and the maximum value when α = 0, 1.

From the above discussions, we obtain the following proposition.

Proposition 4. When the capitalists’ saving rate is smaller than the threshold level, the

output per capita becomes constant. However, when the capitalists’ saving rate is larger

than the threshold level, the output per capita continues to increase at a constant rate over

time even without exogenous technological progress.

5 Numerical simulations

This section investigates the behavior of the main variables through numerical simulations,

setting reasonable parameters. As AI and robots are production factors requiring advanced

technology for production, we focus on the developed economies, with the parameters based

on previous studies and public data obtained from international organizations.

For the capitalists’ saving rate, we follow Saez and Zucman (2016), who estimate the

average saving rate of the top 1% of income since 1913 in the United States. They estimate

the saving rate as 20–25%, from which we set sc = 0.2.

For the workers’ saving rate, we follow Storm and Naastepad (2012), who estimate the

average propensity to save from wage income in 12 OECD economies at around 0.098 for

about 40 years. Thus, we set sw = 0.1. According to Lieberknecht and Vermeulen (2018),

the US saving rate of the top 1% of income is two times the average saving rate, which is

consistent with our setting.

For population growth rate, we employ international data obtained from the World Bank

2020. The average population growth rate of 37 OECD economies during the period 2000–

2019 is around 0.8%. Hence, we set n = 0.01. In addition, we normalize the initial-period

labor input as L(0) = 1.

For capital depreciation rate, we follow Prettner (2019). From the Bureau of Economic

Analysis (2004) data, we set δ = 0.07.

Finally, we set the capital share of income. The Databook of International Labour Statis-

tics published by The Japan Institute for Labour Policy and Training states that the labor

share of income in terms of factor prices in major developed countries 9 during the period is

9The major developed countries are the United States, the United Kingdom, Germany, France, Italy, Swe-

den, Canada, and Japan.
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about 68.2%. Therefore, we set the capital share of income to α = 0.3.

For the initial workers’ own per worker and capitalists’ own per capitalist traditional

capital values, we set kw(0) = 0.1 and kc(0) = 0.5, respectively. In this case, we have

k(0) = 0.6 > 0.428571 = α/(1 − α), meaning that the no-arbitrage condition holds at the

initial period.

Summarizing the above discussions, we obtain

sw = 0.1, sc = 0.2, α = 0.3, n = 0.01, δ = 0.07, kw(0) = 0.1, kc(0) = 0.5. (72)

The numerical simulation results are as follows.10

Figures 9 and 10 show that the workers’ (capitalists’) asset share increases (decreases)

initially. This occurs because aw rises faster than ac. While aw converges to a constant value,

ac increases at a constant rate. Therefore, the workers’ (capitalists’) asset share begins to

decrease (increase) at some point in time, and then converges to zero (unity).

Figure 9: Behavior of workers’ asset share
Figure 10: Behavior of capitalists’ asset

share

Figure 11 shows that the ratio of capitalists’ own traditional capital to own total capital

decreases at first, then increases, and finally converges to α = 0.3. This means that capitalists

divide their savings between traditional capital and automation capital investment in the

proportion α = 0.3 and 1 − α = 0.7 over time. This division depends on the transitional

dynamics.

Figure 12 shows that the share of traditional capital in the whole capital decreases and

converges to α = 0.3, implying that the share of automation capital in the whole capital

increases and converges to 1 − α = 0.7.

Figure 13 shows that the labor to sum of labor and automation capital ratio decreases

10Numerical simulations are conducted with the Wolfram Mathematica 10 software.
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Figure 11: Behavior of ratio of capitalists’

traditional capital to assets

Figure 12: Behavior of ratio of traditional

capital to the sum of traditional and automa-

tion capital

over time and converges to zero. This implies that labor becomes unnecessary relative to

automation capital.

Figure 14 shows that the per capita output growth rate decreases for a while, then begins

to increase at some point, and finally converges to a constant value over time. This behavior

depends on the initial conditions and parameter values. Nevertheless, it implies that although

advances in automation technology lead to sustainable economic growth over time, they lead

to a decline in economic growth along with the transitional dynamics.

Figure 13: Behavior of ratio of labor to sum

of labor and automation capital

Figure 14: Behavior of per capita output

growth

Figures 15 and 16 show the labor share of income and the rental share of automation

capital, respectively. The labor share of income decreases over time and converges to zero,

whereas the rental share of automation capital increases and converges to 1 − α = 0.7. The

remaining α = 0.3 is the capital share of income.

Figure 17 shows that the workers’ income share increases at first, then starts to decline,
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Figure 15: Behavior of labor share of in-

come

Figure 16: Behavior of rental share of au-

tomation capital

and finally converges to zero. The first-phase increase arises because the workers’ asset share

increases faster than capitalists’ asset share. However, as time passes, the workers’ asset

share converges to a constant value, but the capitalists’ asset share continues to increase, and

so the workers’ income share decreases. This means that advances in automation technology

increase the income disparity between workers and capitalists over time.

Figure 18 shows the growth rate of automation capital. This growth rate is closely related

to the per capita output growth rate. As gy = ȧc/ac in the long run, the growth rate of y is

equal to the growth rate of p. This is because we have ac = kc + p, and further, the growth

rates of kc and p are equalized. Thus, gy = gp in the long run.

Figure 17: Behavior of workers’ income

share

Figure 18: Behavior of growth of automa-

tion capital
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6 Conclusions

This study built a growth model with automation capital as a perfect substitute for human

labor, and investigated how advances in automation affect economic growth and income

distribution. For this, we first introduced two classes—workers and capitalists.

The study mainly showed that several long-run situations occur depending on the saving

rates of workers and capitalists. These can be summarized as follows.

When the capitalists’ saving rate is more than the threshold level, the per capita out-

put continues to increase over time irrespective of the workers’ saving rate. In this case,

the income disparity between the two classes continues to increase. These results suggest

that advances in automation technology lead to economic growth and affect the two groups

differently.

When the capitalists’ saving rate is less than the threshold level, two different long-run

situations occur depending on the workers’ saving rate. First, when the workers’ saving

rate is more than the threshold level, the capitalists’ traditional capital share becomes zero

over time, but their automation capital share becomes positive. In this case, the per capita

output growth rate is zero, and the income disparity between the two classes becomes con-

stant. Second, when the workers’ saving rate is less than the threshold level, the capitalists’

automation capital share becomes zero, and their traditional capital share approaches a pos-

itive constant value in finite time. In this case, the per capita output growth rate is zero,

while the income disparity between the two classes becomes constant. As time passes, a

regime switch occurs, the economy turns into an economy where the final good is produced

with labor and traditional capital, and then, the economy converges to either the Pasinetti

equilibrium or the dual equilibrium according to the sizes of the saving rates of workers and

capitalists.

To find the long-run situation that occurs, we carried out numerical simulations using

data from developed countries. From the results, the capitalists’ saving rate is higher than

the threshold level, and the above-mentioned result (1) holds; that is, automation capital

accumulates over time, the per capita output growth rate converges to a constant value, and

the income disparity between workers and capitalists continues to expand.

Note that capitalists own automation capital, whereas workers do not. This asset hold-

ings asymmetry in itself does not lead to an income gap between the two classes. Even if

the workers own automation capital in addition to traditional capital, we would obtain sim-

ilar conclusions. Our conclusions depend decisively on two assumptions, that is, the wage

income of workers decreases as the automation technology advances, and the saving rate

of workers is less than that of capitalists. These two assumptions result in the income gap

between workers and capitalists.
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In order to reduce the income disparity, we might tax the automation capital owned by

capitalists and re-distribute the tax revenue to workers. This policy is essentially the same

as workers owning automation capital, and as stated above, this might reduce the increase

in income disparity, but not the income disparity. However, the income disparity can be

reduced by increasing the workers’ saving rate and accumulating the human capital that

cannot be substituted by automation capital.
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