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A forbidden zone theorem, hypothesis, and applied mathematical 

method and model are introduced in the present article. The method and 

model are based on the forbidden zones and hypothesis. The model is 

uniformly and successfully applied for different domains. The ultimate 

goal of the research is to solve some generic problems of behavioral 

economics.  
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1. Introduction. Motivations and sources  

1.1. Preliminaries. Main contributions. Organization of the article  

 

Random variables whose values lie within a finite interval and whose 

variances are non-zero are analyzed in the present article. Such r.v.s can represent 

diverse types of data and information including measurement data. A theorem is 

proven that establishes the existence of certain non-zero boundary bounds (or 

forbidden zones) on the expectations of these r.v.s.  

The theorem provides mathematical support for the analysis (see, e.g., [26]) of 

well-known generic problems (see, e.g., [30] of behavioral economics, and mainly 

for a behavioral idea (hypothesis) of presupposed biases, and applied mathematical 

method (approach) and models.  

Two main contributions of the article can be preliminary noted.  

1) A necessity of corrections for situations that satisfy the theorem.  

2) A mathematical model that is uniformly true for different domains. 

The article is organized as follows.  

Section 1 presents its motivations and sources.  

Section 2 presents the forbidden zone theorem.  

Section 3 presents practical examples of the forbidden zones.  

Section 4 presents the hypothesis.  

Section 5 presents the mathematical method.  

Section 6 presents the mathematical models.  

Section 7 presents a particular consequence of a special model and 

practical numerical examples of its application for different domains.  

Section 8 presents general consequences of the theorem and method.  

Section 9 presents conclusions.  

The Appendix presents lemmas for the theorem.  
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1.2. Moments, functions, utility, noise, biases. Review of the literature  

 

Diverse bounds on moments and functions of r.v.s are considered in a wealth 

of works, see, e.g., [15], [19], [33], [36]. The works [40], [45], and, especially, [8] 

consider the closest mathematical situations to that analyzed here. Additionally, the 

discrete part of the proof in the Appendix can be considered as another variant of 

the proof in [8]. The continuous and mixed parts of the proof in the Appendix can 

be considered as its developments.  

Mathematical aspects of utility are considered in, e.g., [7], [9], [16], [37]. 

Works [1] and [48] provide one of the two starting points for the theorem.  

Noise and its influence are the subject of a wealth of works.  

Channel capacity and noise are considered in a lot of works, see, e.g., [14], 

[44], [46], [55]. Channel capacity is in a sense similar to the allowed zone that is 

complementary to the considered forbidden zones.  

Some qualitative influences of noise are analyzed as well. For example, 

stabilization and synchronization by noise are considered in a number of works, see, 

e.g., [4], [6], [13], [21]. Noise as a possible cause of some periodic behavior is 

considered in, e.g., [23], [42].  

So the cited articles and also, in a sense, this one show that noise can exert not 

only a quantitative but also some qualitative influence.  

Diverse types of biases are considered in a wealth of works. For example:  

behavioral biases are considered in,  e.g., [32], [56];  

psychological biases are considered in, e.g., [38], [50];  

home biases are considered in, e.g., [17], [18], [22];  

anchoring biases are considered in, e.g., [25], [52];  

confirmatory biases are considered in, e.g., [3], [10];  

optimism biases are considered in, e.g., [11], [53];  

present biases are considered in, e.g., [34], [54].  

The nearest to the items of this article are:  

hypothetical biases (see, e.g., [35], [39]), [49],  

and pull-to-center biases (and close items such as newsvendor problem), see, 

e.g., [2], [5], [24], [57].  
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1.3. Practical need for such considerations  

 

A man as an individual actor is a key subject of economics and some other 

sciences. There are a number of problems concerned with the mathematical 

description of the behavior of an individual. Examples of these are the 

underweighting of high and the overweighting of low probabilities, the Allais 

paradox, risk aversion, loss aversion, equity premium puzzle, fourfold pattern of 

risk preferences, etc.  

 

1.3.1. Choices between uncertain and sure games  

 

One of the problems of this mathematical description is a comparison of 

choices between uncertain and sure games.  

The essence of the above examples of the problems consists in biases of 

choices of people (subjects) for the uncertain and sure games in comparison with 

the predictions of the theory of probability. These problems are generic and well-

known. They are the most important in behavioral economics in utility and prospect 

theories and also in psychology, decision theory, and the social sciences. They are 

pointed out in a wealth of works.  

For example, we see in [30] page 222:  

 “A long series of modern challenges to utility theory, starting with the paradoxes of 

Allais (1953) ..., have demonstrated inconsistency in preferences”  

For example, we see in [31], page 265:  

“PROBLEM 1: Choose between  

A: 2,500 with probability .33, // 2,400 with probability .66, // 0 with probability .01;  

B: 2,400 with certainty.  

N = 72 [18] [82]”  

My note. This is the clear inconsistency:  18%  for “A,” that is less than  82%  for 

“B” (for  72  trials) in opposition with the expectations  2,500×.33+2,400×.66 = 

2,409,  that is more than  2.400.   

For example, we see in [47], page 974:  

“... a choice between two lotteries R’ (for “riskier”) and S’ (for “safer”). R’ gave a 

0.2 chance of winning £10.00 and a 0.75 chance of winning £7.00 (with the residual 

0.05 chance of winning nothing); S’ gave £7.00 for sure.”   

My note.  R’ = £10.00×0.2+£7.00×0.75 = £7.25  and  S’ = £7.00.  Here the 

expectations are R’ = £7.25, that is more than  S’ = £7.00, but the results were 13 

choices for R’ that is less than 27 choices for S’.  
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1.3.2. Behavior of subjects in different domains  

 

An additional and, probably, a lot harder problem is, moreover, the radically 

different behavior of people (subjects) in different domains.  

Thaler wrote in 2016 in [51], pages 1581–1582 (the boldfaces are my own):  

“Kahneman and Tversky’s research documented numerous choices that violate any 

sensible definition of rational. ... subjects were risk averse in the domain of 

gains but risk seeking in the domain of losses.”  

My note: at high probabilities.  

For example, the data in [31], page 268 Table 1 can be represented as:  

Problem 3: (4,000 at 0.80) > (3,000 at 1.00) leads to choices [20%] < [80%].  

Problem 3’: (-4,000 at 0.80) < (-3,000 at 1.00) leads to choices [92%] > [8%].  

My note. These data lead to the undoubted deduction of the clear inconsistency 

between the behavior of subjects in the domains of gains and losses.  

This article is motivated in large measure by the need for mathematical 

support for the performed analysis (see, e.g., [26]) of the influence of the scatter and 

noisiness of data. This analysis is mathematically supported here. It has explained 

the above problems, at least partially or qualitatively.  

 

 

1.4. Two ways. Variance, expectation, and forbidden zones  

 

Many efforts have been made to explain the above generic problems.  

One of the possible ways to explain them has been widely discussed, e.g., in 

[12], [29], [43]. It consists in paying proper attention to imprecision, noise, 

incompleteness, and other reasons that can cause spread of data.  

Another possible way is to consider the vicinities of the boundaries of the 

probability scale, e.g., at  p1.  So [1] and [48] emphasized a fundamental 

question: whether Prelec’s function (see [41]) is equal to 1 at  p = 1.  

In any case, one may suppose that a synthesis of these two possible ways can 

be of some interest. This idea of a synthesis turned out to be useful indeed. It has 

successfully explained, at least partially, the underweighting of high and the 

overweighting of low probabilities, risk aversion, and some other problems (see, 

e.g., [26]). There are also works providing experimental support of this synthesis 

(see, e.g., [27], [47]).  

Here it is proved that bounds on the variances and ranges of random variables 

lead to bounds (or forbidden zones) for their expectations near the boundaries of the 

ranges (intervals). The role of noise, as a possible cause of these zones, and their 
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possible influence on the results of measurements near the boundaries of the 

intervals are considered in a preliminary way also.  

Keeping in mind the above bounds in, e.g., [15], [19], [33], [40] for functions, 

various functions of the expectations of r.v.s can be also investigated.  

 

 

2. Theorem  

2.1. Preliminaries  

 

Let us consider a set  {Xi},  i = 1, … , n,  of random variables  Xi  whose 

values lie within an interval  [a, b].  For the sake of simplicity,  Xi, µ i, σi
2  and 

similar symbols will often be written without the subscript  “i.”   

If there is at least one discrete value of  X,  then let us denote the discrete 

value(s) of  X  by  {xk}, ,,...,1 Kk =   where  1≥K ,  and the probability mass 

function (PMF) by  pX(xk).  If there are none, then let us ignore all the expressions 

involving discrete value(s).  

If there are continuous values of  X,  then let us denote them by  x  and the 

probability density function (PDF) by  fX(x).  If there are none, then let us ignore all 

the expressions involving continuous values.  

Under the normalizing condition  
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let us consider the expectation and variance of  X,  and their relations.  

In connection with the terms “bound” and “forbidden zone,” the abbreviation 

“rµ” (arising from the first letter  “r”  of the term  “restriction”) will be used here, 

due to its consonance  with the usage in previous works.  

Non-trivial forbidden zones of non-zero width will sometimes be referred to 

as non-zero forbidden zones.  

 

 

2.2. Maximality of the variance  

 

A proof is given in [8] that, for the variance  σ2  of a discrete random variable 

with range  [a, b]  and expectation  µ ,   

))((2 µµσ −−≤ ba .        (2)  

An alternate proof is given in the Appendix that this inequality holds also for any 

real-valued random variable  Xi  as in above subsection 2.1.  
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2.3. Existence theorem  

 

Theorem 1. Consider a set  {Xi},  i = 1, … , n,  of random variables  Xi  whose 

values lie within an interval  [a, b].  If  0 < (b-a) < ∞  and there exists a forbidden 

zone (or lower bound) of a non-zero width  σ2
min  for the variances  σi

2  of  Xi,  such 

that for all  i,   

0min
22 >≥σσ i ,        (3)  

then certain forbidden zones (or boundary bounds, or restrictions) of a non-zero 

width  rµ  exist for the expectations  μi  of each  Xi  such that  

brbraa i <−≤≤+< )()( µµ µ .      (4)  

Proof. Inequalities (2) and (3) lead to  ))((0
2

min
2

iii ba µµσσ −−≤≤< .  At, 

e.g., the boundary  a,  this leads to  σ2
min ≤ σ2

i ≤ (μi-a)(b-a)  and  

ab
a

ab
a

i

i −
+≥

−
+≥ min

22 σσµ .  

At the boundary  b,  the considerations are similar and give  

ab
b

ab
b

i

i −
−≤

−
−≤ min

22 σσµ .  

Defining the bounds (restrictions)  rµ  on the expectation  μi  as  

abab
r

i

−
≤

−
≡

2
min

2 σσ
µ ,        (5) 

we obtain the inequalities  µµ µ rbra i −≤≤+ .   

Due to  0 < (b-a) < ∞  and  σ2
min > 0, the bounds  rµ  are non-zero and this 

leads to the inequalities  

b
ab

b
ab

aa i <







−

−≤≤







−

+< min
2

min
2 σµσ

     (6)  

those are equivalent to (4).         □  
 

 

2.4. Comments to the theorem  

 

We see that the particular bounds for the expectation of some a particular r. v.  

are determined by its variance.  If the variance is non-zero, then these bounds are 

non-zero also. If the minimal variance  σ2
min  for the set of random variables  {Xi}  

is non-zero, then the common bounds for the set of all  Xi  are non-zero as well. 

These bounds cannot be less than  rµ  in (5).  
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The boundary bounds (restrictions)  rµ  can be considered as some forbidden 

zones of the width  rµ  for the expectations of the random variables  Xi  near the 

boundaries of the interval  [a, b].  Consequently the allowed zone for the 

expectations of  Xi  is located in the center of the interval. The allowed zone is 

compressed by the forbidden zones (in comparison with the entire interval), and the 

expectations are biased from the boundaries to the middle of the interval (in 

comparison with the case of zero forbidden zones). This is similar to the pull-to-

center biases, see, e.g., [2], [24], [57].  

The importance of this simple theorem lies in its particular and general 

consequences that are used and/or considered in next sections.  

 

 

3. Practical examples of the occurrence of the forbidden zones  

3.1 Practical examples of the forbidden zones. Boat and waves  

 

Consider a calm or mirror-like sea and a small rigid boat or any other small 

rigid floating body at rest in the sea. Suppose that this boat or body rests right 

against (or is constantly touching) a rigid moorage wall. As long as the sea is calm, 

the expectations of their sides can touch the wall.  

Suppose there is a heavy sea. Consider a small rigid boat or any other small 

rigid floating body which oscillates on the waves in the heavy sea. Suppose that this 

boat or body oscillates on the waves near this rigid moorage wall.  

When the boat is oscillated by sea waves, then its side oscillates also (both 

up–down and left–right) and it can touch the wall only in the (nearest) extremity of 

the oscillations. Hence the expectation of the side cannot touch the wall. Hence the 

expectation of the side is biased away from the wall.  

So, one can say that, in the presence of waves, a forbidden zone exists 

between the expectation of the side and the wall.  

This forbidden zone biases the expectation away from the wall. The width of 

the forbidden zone is roughly one-half of the amplitude of the oscillations.  

 

 

3.2. Practical examples of the forbidden zones. Washing machine, drill  

 

Consider a washing machine or drill (or any other rigid body) that can vibrate 

when it works. Suppose its edgeless rigid side (or some rigid limiter of the 

movement of its side) is located near a rigid surface or wall.  

If the machine or drill is at rest, then the expectation of this side can be located 
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right against (be constantly touching) the wall.  

If the machine or drill vibrates, then the expectation of this side is biased and 

kept away from the wall due to the vibrations.  

So, in the presence of the vibrations, a forbidden zone exists between the 

expectation of the side of the rigid body and the rigid wall. This is evidently true for 

any rigid body near any rigid surface or wall.  

 

 

3.3. Vibration suppression. Sure games  

 

Vibrations or oscillations can be suppressed by means of some efforts of some 

forces. Such efforts can be, e.g., physical in the case of physical vibrations.  

A vibrating rigid body can be pressed by some means. In this case the 

corresponding forbidden zone can be suppressed either partially or even totally, 

depending on the parameters of the suppression.  

This suppression can correspond to the case of sure games (and outcomes) in 

behavioral economics, decision theory, the social sciences, etc.  

In behavioral sciences, the term “sure” presumes usually that some efforts are 

applied to guarantee the sure games in comparison with the uncertain ones. Due to 

these guaranteeing efforts, the widths of the forbidden zones and, hence, the biases 

for the sure games can be less than the widths and biases for the corresponding 

uncertain games. In the limiting case, when the efforts are sufficiently hard, there 

are no forbidden zones for the sure games.  

So, sure games are guaranteed by some efforts. Due to these efforts, the 

forbidden zones and biases for the sure games can be suppressed and reduced.  

 

 

4. Hypothesis of presupposed biases  

4.1. Preliminary remark  

 

First of all, the above hard, complex, and old problems evidently cannot be 

solved by any single article. Such a solution needs a lot of elaborated works of a 

sufficient number of high-powered research teams. Hence and especially keeping in 

mind the above statement “… numerous choices … violate any sensible definition 

of rational” of a Nobel Laureate in this field in [51], I may formulate a principle of 

gradualism for the present research and article. This principle can sound like “stage 

by stage and step by step.”  

Hence the applied mathematical method (or approach) that will be proposed in 
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the present article should be only a preliminary stage for subsequent verifications, 

changes, modifications and refinements by a sufficient number of independent 

research teams. So for such a preliminary stage, some good step can be even the 

above theorem with its consequences, and a collection of some suppositions and 

mathematical relations.  

 

 

4.2. Behavioral hypothesis  

 

The practical examples of the previous section evidently illustrate possible 

forbidden zones of the theorem. Similar examples are widely disseminated in real 

life. Due to this dissemination, subjects (people) can keep in mind the feasibility of 

such forbidden zones and the biases of the expectations caused by the zones. This 

can influence the behavior and choices of the subjects.  

In consequence of this consideration, I propose a statement that can be named 

as a behavioral hypothesis:  

“People, as economic subjects, behave and decide (at least to a 

considerable degree) as if there were some presupposed (hypothetical) biases of 

the expectations for games.”  

Note. This hypothesis can be supported by the reason that such biases may be 

proposed and tested even from a purely formal point of view.  

This hypothesis can be found in hidden forms in the literature or derived from 

it (see, e.g., [26], [31], [51], etc.) in this particular field, and in an explicit form in 

neighboring fields (see, e.g., [35], [39]). Nevertheless one should state it in an 

explicit form and emphasize it.  

 

 

5. Mathematical method of biases of expectations (MMBE)  

5.1. Propositions  

 

Two main propositions can be suggested for a mathematical method of 

solution of the above problems. The first one is the above hypothesis. Shortly it is:  

Proposition 1. Presupposed (Hypothetical) biases of the expectations.  

Or in details: “Subjects behave and decide (at least to a considerable degree) 

as if there were some presupposed biases of the expectations for games.”  

Due to this proposition, the method (approach) can be called an Applied 

Mathematical Method of Biases of Expectations, or AMMBE, or shortly MMBE. 

The MMBE is to explain not only the objective situations but also and mainly the 
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subjective behavior and choices of subjects.  

The second main proposition is:  

Proposition 2. Explanation by the forbidden zones of the theorem.  

That is these biases (real biases or subjective reactions and choices of the 

subjects) can be explained (at least to a considerable degree) with the help of the 

forbidden zones of the theorem.  

 

 

5.2. Notation  

 

One can introduce following denotations.  

Denote the real expectations for the games by  

sureµ        and       uncertainuncert µµ ≡ .  

Denote the presupposed biases (of the expectations) that are required to obtain 

the data corresponding to the choices of the subjects by  

. .ch uncert choice uncertainµ µ− −∆ ≡ ∆     and    . .ch sure choice sureµ µ− −∆ ≡ ∆ .  

That is the resulting expectations (i.e., expectations including these biases) for the 

observed choices of the subjects can be written as  .uncert ch uncertµµ −+ ∆   for the 

uncertain games and as  .sure ch sureµµ −+ ∆   for the sure ones.  

 

 

5.3. General relations of the MMBE  

 

Let us consider some essential features of the examined situations and, using 

the above notations, develop some relations.  

1. Condition for the MMBE. Due to the first main proposition, the method of 

biases of expectations can be useful only if these biases for the choices for the 

uncertain (see the third relation below) games are non-zero  

.| | 0ch uncertµ−∆ >     or    .sgn ( ) 0ch uncertµ−∆ ≠ .     (7) 

2. Forbidden zones as, at least, one of the origins of biases. The presupposed 

bias  Δch-µ.uncert  may be introduced and considered purely formally. The question is 

not only whether  Δch-µ.uncert  can explain the problems. Due to the above second 

proposition,  Δch-µ.uncert  itself should be explained by the forbidden zones of the 

theorem, at least partially.  

First of all, the theorem should be applicable. Therefore inequalities (3), that is  

0min
22 >≥σσ ,  of the non-zero minimal variance are required to be true.  

Further, let us denote the bias caused by the forbidden zone of the theorem by  
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Δtheorem.  The sign of the presupposed bias should coincide with that for the bias 

caused by the theorem  

.sgn ( ) sgn ( )ch uncert theoremµ−∆ = ∆ .  

Then the conditions for the explanation can be written as  Δch-µ.uncert ≈ Δtheorem  

in the case when the forbidden zones are the main source of the biases. If these 

zones are only one of the essential sources of the biases, then these conditions can 

be represented as  Δch-µ.uncert = O(Δtheorem).   

So the relations of the explanation by the theorem are  

0min
22 >≥σσ     and also    .ch uncert theoremµ−∆ ≈ ∆   

or at least  . ( )
ch uncert theorem

Oµ−∆ = ∆ .       8)  

3. Biases for sure games. The above considerations about noise suppression 

and sure games emphasize the condition that the sure games are guaranteed by 

some guaranteeing efforts. Due to these efforts, the biases for the sure games can be 

suppressed and reduced. They can be moreover equal to zero.  

Therefore I assume that the presupposed biases of the data for the sure games 

are equal to zero or, more generally, are strictly less than the presupposed biases for 

the corresponding uncertain games.  

So, the relation for the sure and uncertain games is  

. .| | | |
c ch sureh uncert µµ− −∆ > ∆ .       (9)  

 

 

5.4. Restrictions. One of the main questions  

 

There are two causes of restrictions on the method and models.  

First. Evidently, if  σmin  0  then, due to (5),  rµ/σmin  0  as well.  

Second. The preliminary estimate [28] shows that the real relative biases are 

sometimes comparable with the upper bound of the relative biases that can be 

derived from biases (5) guaranteed by the theorem.  

Due to these two reasons, and also from general and formal points of view, 

one may suppose: “In general cases, along with the non-zero minimal variance, 

other sources of the biases cannot be excluded so far.” Hence, general models can 

be considered at present as only preliminary ones. So, one of the main questions is 

to determine whether the forbidden zones can lead to sufficiently high values for the 

biases (for both low and high minimal variances). So, one of the main questions of 

future research is to analyze the possible widths of the forbidden zones for various 

types of distributions.  
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5.5. First stage. Qualitative problems, models and explanations  

 

Due to the above principle of gradualism, the first stage of the approach 

(method) can be constituted by qualitative models. That is one can both deal with 

qualitative problems and give qualitative explanations.  

The statements of this first stage can be formulated as follows:  

Qualitative problems. Only qualitative problems will be considered.  

Qualitative analysis. Only a qualitative analysis will be performed.  

Qualitative explanation. Only qualitative explanations of the existing 

problems will be given. No predictions will be made in during this first stage.  

Choices of subjects. The method and models will explain mainly the 

subjective behavior and choices of subjects.  

 

 

6. Qualitative mathematical models. Novelty  

6.1. Need for qualitative models  

 

First of all, is there a real need for qualitative models?  

Suppose you are considering a confused situation where you know the exact 

magnitude of some effect, which can be either positive or negative, but you cannot 

predict its sign. Evidently the goal is, first of all, to understand and explain the 

origins of the effect and predict its sign, and only then to calculate its exact 

magnitude.  

The literature analysis states that this problem of the determination of the 

signs was posed not later than in 1979 (see, e.g., [31] page 268 ”The reflection 

effect”), but is still unsolved (see, e.g., [51] pages 1581–1582 “violate any sensible 

definition of rational. ... subjects were risk averse in the domain of gains but risk 

seeking in the domain of losses”). So the theory takes into account the observed 

signs of the biases but does not explain them, and there is a need for such an 

explanation.  

 

 

6.2. Elements of a general qualitative model  

 

First let us define what problems can be named here as qualitative. 

Definition 1. A qualitative problem is defined for the purposes of the present 

article and research as the problem such that the sign of the difference between the 
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resulting expectations for the choices of the subjects (people) for the uncertain and 

sure games is distinct from the sign of the difference between the real expectations 

for these games.  

This type of problems is chosen as the example that is usual in experiments 

(see, e.g., [31], [47], [51]). It can make manifest a qualitative representation of the 

problems and can be a background for further research. Such problems will be the 

item of the first stage of the MMBE.  

So the inalienable feature of the analyzed qualitative problems is the necessary 

change of the sign. There can be only three combinations of the signs: the 

expectation for the uncertain game (or outcome) can be greater than, less than, or 

equal to that for the sure game. So, the signs of their differences can be 

correspondingly positive, negative, or zero.  

In other words, when the difference between the real expectations is, e.g., 

positive (that is,  sgn (µuncert - µ sure) > 0),  then, to obtain the observed data, the 

difference for the choices (resulting expectations) should be non-positive, that is, 

sgn (µuncert + Δch-µ.uncert - µ sure – Δch-µ.sure) ≤ 0. When it is negative, then the 

difference for the choices should be non-negative. When the difference between the 

real expectations is equal to zero, then the difference for the choices should be 

undoubtedly positive or negative.  

This feature can be represented by  

. .sgn ( ) sgn ( )uncert sure uncert ch uncert sure ch sureµ µµ µ µ µ− −− ≠ + ∆ − −∆ .  (10)  

To overcome the real difference between the expectations for the uncertain 

and sure games, the absolute value of the presupposed bias for the uncertain game 

should be evidently not less than this real difference. That is  

.| | | |unch ceunce rt s ert urµ µ µ−∆ ≥ − .       (11)  

So, relations (10) and (11) constitute an addition to the method. The sum can be 

named as a preliminary general qualitative mathematical model.  

Note. Relation (11) implies, in particular, that if  uncert sureµ µ= ,  then (11) 

takes the form of (7) (that is  .| | 0ch uncertµ−∆ > ).  For the other problems (11) takes the 

form  .| | | |ch uncert uncert sureµ µ µ−∆ > − .   

The trial examples of [28] of applications of the general model show that it 

can qualitatively explain the practical examples cited here. Nevertheless, this 

preliminary general qualitative mathematical model still needs proofs.  
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6.3. Special qualitative mathematical model (SQMM)  

 

A preliminary estimate of [28] restricts applications of the general model. One 

of the main questions for future research is to analyze the possible widths of the 

forbidden zones for various types of distributions.  

Let us consider the qualitative problems under the special condition  

uncert sureµ µ=          (12) 

This special condition and relation assert that the expectations for the uncertain 

games are exactly equal to the expectations of the corresponding sure games. This is 

the well-known and important case of real experimental situations. Here (12) 

(keeping in mind (7)) substitutes (10) and (11).  

Such a special situation enables avoiding the constraints of preliminary 

estimate [28] of the secure upper bound (5) for the bias, and making this special 

model less formal. The biases can be selected to be much less than the secure upper 

bound (5), and the suppositions will be simpler.  

This Special Practical Qualitative Mathematical Model (SPQMM or shortly 

SQMM) can be considered as a first step of the first stage of the approach (method) 

MMBE.  

 

 

6.4. Novelty  

 

The literature analysis including the above citation from [51], leads to the 

reliable statement that the forbidden zones, theorem, hypothesis, method, and 

models introduced here have not been described before and are new.  

The responses and comments of journals’ editors and reviewers on the articles 

related to this research confirm this statement.  

 

 

7. Particular consequence. Practical numerical examples  

for different domains  

 

The above theorem leads to both particular and general consequences. They 

will be considered in this and next sections.  
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7.1. Particular consequence. Mathematical support for the analysis  

 

Some well-known generic problems (see, e.g., [30]) were analyzed in, e.g., 

[26]. The problems include examples of typical paradoxes of prospect theories such 

as the underweighting of high and the overweighting of low probabilities, risk 

aversion, etc. The analysis was performed for the purposes of behavioral 

economics, psychology, decision theory, and the social sciences.  

The analysis explained, at least partially or qualitatively, the analyzed 

paradoxes. Experimental and analytical works (see, e.g., [47] and [26]) devoted to 

the experimental methods of behavioral economics support it as well.  

The analysis used the idea of the considered forbidden zones of the theorem. 

The r.v.s considered in the theorem include those used in this analysis.  

So the theorem supports analysis [26]. This mathematical support can be 

considered as a particular consequence of the theorem.  

 

 

7.2. Practical numerical example. First domain. Gains  

 

Suppose that the parameters of the special practical qualitative mathematical 

model for the gains are: the presupposed bias for the choices for the uncertain game 

is equal to $2, and for the sure game it is equal to $1.  

The typical examples (see, e.g., [31] and [47]) can be simplified to the special 

qualitative situations similar to that of the preceding section and [26].  

Imagine that you face the following pair of concurrent games (a sure game 

and an uncertain game). Choose between:  

A) A sure gain of $99. 

B) A 99% chance to gain $100 and a 1% chance to gain or lose nothing.  

 

7.2.1. Ideal case  

 

In the ideal case, without taking into account the dispersion of the data, the 
expectations  µ sure  and  µuncert  are equal to each other: $99 100% $99sureµ = × =   

and  $100 99% $99uncertµ = × = .   

So, in the ideal case we have  

99$99$ = ,  

that is, the uncertain and sure games are equally preferable.  
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7.2.2. Forbidden zones  

 

In the real case, one should take into account some dispersion of the data, and 

hence the minimal non-zero variance (3) caused by this dispersion, and the 

forbidden zones (4) caused by this variance, at least for the uncertain games. 

Let us consider the real case of a non-zero variance of the data, the 

corresponding forbidden zones, and presupposed biases.  

The biases are  Δch-µ.uncert = $2  and  Δch-µ.sure = $1.  So we have  µ sure – Δch-µ.sure 

= $99×100% - $1 = $98  and  µuncert – Δch-µ.uncert = $100×99% - $2 = $97.  The 

expectation  µuncert  is biased more than  µ sure  and  

97$98$ > .  

We see the clear and evident difference between the resulting expectations 

(with their biases caused by the forbidden zones of the theorem) and its 

correspondence with the salient and unequivocal choices of the subjects.  

 

 

7.3. Practical numerical example. Second domain. Losses 

 

The case of gains has been explained many times, and in a lot of ways. But a 

uniform explanation for both gains and losses, without any additional suppositions 

(as, e.g., in [31]), had not been nevertheless recognized by the author of the present 

article (see a slightly similar work [20]).  

SQMM turns out to be useful for such a uniform explanation.  

Let us consider the case of losses under the same suppositions as for the case 

of gains.  

Imagine that you face the following pair of concurrent games (a sure game 

and an uncertain game). Choose between:  

A) A sure loss of -$99. 

B) A 99% chance to lose -$100 and a 1% chance to lose or gain nothing.  

 

7.3.1. Ideal case  

 

In the ideal case,  $99 100% $99sureµ = − × = −   and  µuncert = -$100×99% = -

$99.  So they are exactly equal to each other:  

99$99$ −=− .  

Therefore the both choices (games) should be equally preferable.  
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7.3.2. Forbidden zones  

 

The forbidden zone biases the expectation from the boundary of the interval to 

its middle (see also, e.g., [2], [5], [57]). Therefore, at high probabilities, the biases 

are subtracted from the absolute values for both cases, gains and losses. That is, due 

to the opposite signs of the values for gains and losses, the bias is subtracted for the 

gains and added for the losses.  

Note. This is not a supposition but a rigorous conclusion. Hence the 

conditions of the SQMM are naturally uniform for more than one domain.  

Let us consider the forbidden zones under the same suppositions as for the 

gains, that is for the same, uniform parameters.  

The biases are  Δch-µ.uncert = $2  and  Δch-µ.sure = $1.  So we have  µ sure + Δch-

µ.sure = -$99×100% + $1 = -$98  and  µuncert + Δch-µ.uncert = -$100×99% + $2 = -$97.  

The expectation  µuncert  is biased more than  µ sure  and  

97$98$ −<− .  

The expectation for the uncertain game is biased more than that for the sure 

one, as was also the case for the gains, but here the bias increases the preferability 

of the uncertain loss and it is (due to the obvious difference between the resulting 

expectations) more preferable than the sure one.  

We see the clear difference between the resulting expectations and its 

correspondence with the salient preferences and choices. So the SQMM provides 

the explanation for the domain of losses as well. Moreover, this explanation is 

uniform for the both domains of gains and losses.  

 

 

8. General consequences  

8.1. Necessity of corrections  

 

The expectations of r.v.s cannot lie within the forbidden zones.  

Suppose a situation of an uncertain game at very high or very low 

probabilities. Suppose that without taking into account the theorem, the expectation 

is calculated to lie within this zone. If the situation satisfies the conditions of the 

theorem, then this calculation should necessarily be corrected.  

So the descriptions of situations of uncertain games should be necessarily 

corrected when these situations satisfy the conditions of the theorem, at least within 

the forbidden zones.  
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8.2. Possible additional tools for various theories and models  

 

The ideas, considerations and results of the present article can be used in 

various theories and models of behavioral sciences. In particular the relations and 

formulae (5)-(12) can be used as additional mathematical tools.  

For example, relations (7) and (9) can be combined in a relation  

. .| | | | 0c uncert suh ch reµ µ− −∆ > ∆ ≥ ,       (13)  

that is more compact than the sum of (7) and (9). This relation can be especially 

useful near the boundaries of the probability scale, that is at very high and very low 

probabilities.  

For another example, the existence of the non-zero forbidden zones leads to 

the necessity of essential revision of the form of the probability weighting curve (or 

Prelec curve), see, e.g., [41].  

 

 

8.3. Possible description of the influence of noise  

 

Let us make some preliminary considerations for possible general 

consequences of the theorem for a mathematical description of noise.  

If some type of noise leads to some non-zero minimal variance (3) for the 

considered set of random variables, then this non-zero minimal variance (and, 

consequently, this type of noise) leads to the above non-trivial forbidden zones (4) 

for the expectations of these variables. If some type of noise leads to an increase in 

the value of this minimal variance, then the width of these forbidden zones 

increases also.  

If this noise leads to a non-zero minimal variance  σ2
min : σ2

i > σ2
min > 0  for 

the set  {σ2
i}  of variances of the random variables Xi, then the theorem predicts 

there will be forbidden zones whose width  rµ.noise  is not less than  
2

min
.noise

r
b a

µ
σ

≥
−

.  

So, the proven theorem can be a preliminary step towards a general 

mathematical description of the possible influence of noise near the boundaries of 

finite intervals.  

Some general questions concerning this item can arise. For example, general 

determinations of level, strength, power, etc. of noise are needed. They should lead 

to the general determination of the non-negligible noise.  

There are many types of noise. Another thing that is needed is the 
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specification of common widespread types of measurement noise those can lead to a 

certain non-zero minimal variance of the measurement data in the usual 

circumstances and environments.  

Due to the general character of the above questions and due to the demand for 

widespread experimental support, there is a need for a variety of research teams to 

give reliable answers to these questions.  

 

 

8.4. Biases of measurement data  

 

Let us preliminary consider potential general consequences of the theorem for 

a general mathematical description of the biases of data.  

The forbidden zones (4) can lead evidently to some biases in measurements.  

Suppose a set (like the above  {Xi})  of series of measurements whose data all 

lie within a common finite interval. The set of the data series forms the set of their 

expectations. If there is some non-zero minimal variance of the data such that the 

inequality (3) is true for the data of any series, then there exist forbidden zones (4) 

for the set of the expectations of the series.  

The allowed zone for the expectations is compressed by the forbidden zones 

(in comparison with the entire interval), and the expectations are biased from the 

boundaries to the middle of the interval (in comparison with the case of zero 

forbidden zones), see also the pull-to-center bias, e.g., [2], [24], [57].  

An analysis of the biases in the expectations of the data needs much more 

volume than the present article permits. Nevertheless some possible results of such 

an analysis can be briefly outlined.  

These biases can possess the following features:  

1) They have opposite signs near the opposite boundaries.  

2) Their moduli are decreased from the boundaries to the middle.  

3) They are directed from the boundaries to the middle (of the interval).  

When the minimal variance of the data is equal to zero (that is when (3) is not 

true), then the expectations of the data of measurements can touch the boundaries of 

the interval. When the above (non-trivial) forbidden zones exist and are not taken 

into the consideration, then the predicted results are located closer to the boundaries 

than in the real case. Hence the predicted results are biased in the comparison with 

the real ones.  

We will now look at a particular example of these biases. If the minimal 

variance (3) of the data is non-zero, that is if  σ2 > σ2
min > 0  is true, then the 

theorem predicts (5), i.e. near the boundaries of intervals the biases are  
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ab
bias −

≥∆ min
2

||
σ

.  

So, the theorem, and its consequences and applications can be considered as a 

preliminary step to the general mathematical description of the biases of 

measurement data near the boundaries of finite intervals.  

 

 

9. Conclusions  

 

Theorem 1 is presented in this article. The theorem proves the existence of the 

forbidden zones for the expectations of the random variables. This proof can be 

applied to various types of data. The theorem leads to the three main results 

(contributions) of the present article.  

One can summarize these three main new results as follows.  

1) The necessity of corrections of descriptions, at least within the forbidden 

zones (i.e., at very high and very low probabilities), for any situation that satisfies 

the conditions of the theorem.  

2) Estimate (6)  

b
ab

b
ab

aa i <







−

−≤≤







−

+< min
2

min
2 σµσ

  

for the forbidden zones and their widths.  

3) The special qualitative mathematical model (SQMM) that is uniformly true 

for more than one domain.  

The relations of the SQMM can be compiled as follows:  

Relations (7) for the non-zero biases  

.| | 0
ch uncertµ−∆ >     or    .sgn ( ) 0ch uncertµ−∆ ≠ .  

Relations (8) for the theorem and choices  

0min
22 >≥σσ   and   

.ch uncert theoremµ−∆ ≈ ∆     or at least    . ( )
ch uncert theorem

Oµ−∆ = ∆ .  

Relation (9) for the choices for the sure and uncertain games  

. .| | | |ch uncert ch sureµ µ− −∆ > ∆ .  

And relation (12) for the special qualitative problems  

uncert sureµ µ= .  

The SQMM is a qualitative model both for practical estimation of special 

qualitative situations and for determination of the turning points in the conditions of 

quantitative experiments and situations.  

At least one of the main goals for future research is to analyze the possible 
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widths of the forbidden zones for various types of distributions.  
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A. Appendix. Lemmas  

 

Let us prove three lemmas for theorem (1). Namely let us prove that the 

maximal variance of any discrete or continuous or real valued random variable 

whose values lie within a finite interval is not more than the variance of the discrete 

random variable whose probability mass function has only two non-zero values, 

which are located at the boundaries of the interval.  

 

 

A1. Lemma 1: Discrete part  

 

Lemma 1. If the values of a random variable  X  lie within an interval  [a, b] : 

0 < (b-a) < ∞,  (1) holds, and the variance of  X   can be represented as   
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Proof. Consider the difference between these transformed and initial 

expressions for the discrete part of the variance for the cases  xk ≥ µ   and  xk ≤ µ .   

Case  xk ≥ µ .  

If  a ≤ µ  ≤ xk ≤ b,  then  
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So in the case  xk ≥ µ ,  the difference between the transformed and initial 

expressions for the discrete part of the variance is non-negative.  

Case  xk ≤ µ .   

If  a ≤ xk ≤ µ  ≤ b,  then, analogously to the above case,  
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So in the case when  xk ≤ µ ,  the difference between the transformed and initial 

expressions for the discrete part of the variance is non-negative also.  

Maximality.   

So the difference  
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is non-negative for any  xk  such that  a ≤ xk ≤ b. 

Let us estimate the difference between the transformed and initial expressions 

for the discrete part of the variance  

2 2 2
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a b x p x

b a b a
µ µ µ

∈

− − − + − − − − − 
∑ .  

Every member of the sum is non-negative. Hence the total sum is non-negative as 

well. Lemma 1 has been proved.                    □ 

So, the variance of any discrete random variable whose values lie within a 

finite interval is not more than the variance of the discrete random variable (with the 

same expectation) which has only two values at the two boundary points of the 

interval. And the discrete part of the variance of  X  is not more than the variance 

for the PMF (with the same norm and expectation as for this discrete part) which 

has only two values, located at  a  and  b.   
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A2. Lemma 2: Continuous part  

 

Lemma 2. If the values of an r.v.  X  lie within  [ , ] :a b  0 ( )b a< − < ∞ ,  

condition (1) holds, and the variance of  X  can be represented as (14), then 
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Proof. Let us find the difference between these transformed and initial 

expressions for the continuous part of the variance. Let us consider separately the 

cases  x ≥ µ   and  x ≤ µ .   

Case  x ≥ µ .   

If  a ≤ µ  ≤ x ≤ b,  then, analogously to the above cases, for   




















−
−

−
−
−

−≥−−





−
−

−+
−
−

−
2

2222 )()()()(
µ
µµµµµ

b

x

ab

ax
bx

ab

ax
b

ab

xb
a   

we have   

0)(

2

2 ≥



















−
−

−
−
−

−
µ
µµ

b

x

ab

ax
b .  

So in the case when  x ≥ µ ,  the difference between the transformed and initial 

expressions for the continuous part of the variance is non-negative.  

Case  x ≤ µ .   

If  a ≤ x ≤ µ  ≤ b,  then considerations that are entirely analogous to the above 

cases lead to the conclusion  
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So in the case when  x ≤ µ   the difference between the transformed and initial 

expressions for the variance is non-negative as well.  

Maximality.  

Let us estimate the difference between the transformed and initial expressions 

of the continuous part of the variance  
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Since the integrand is non-negative for every point in the scope of the limits of 

integration, the integral is non-negative as well. The difference between the 

expressions is therefore non-negative.  

Lemma 2 has been proved.                          □ 
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So, the variance of any continuous random variable whose values lie within a 

finite interval is not more than the variance of the discrete random variable (with the 

same expectation) which has only two values located at the two boundary points of 

the interval.  

And the continuous part of the variance of  X  is not more than the 

corresponding part (with the same norm and expectation as for this continuous part) 

of the variance of the probability mass function which has only two values located 

at the boundary points  a  and  b.   

 

 

A3. Lemma 3: General mixed case  

 

Lemma 3 (General mixed case). If the values of a random variable  X  lie 

within an interval  ∞<−< )(0:],[ abba ,  normalizing condition (1) holds, and the 

variance of the variable  X  can be represented as   
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then the following inequality is true   
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Proof. The discrete part of this inequality has been proved (by means of 

lemma (1)) to be true independently of its continuous part for any combination of 

norms within the framework of normalizing condition  (1).  

The continuous part of this inequality has been proved (by means of lemma 

(2)) to be also true independently of its discrete part for any combination of norms 

within the framework of normalizing condition (1).  

Therefore the sum of these two parts is true as well.  

So lemma (3) has been proved.              □ 

So in any case, the variance is maximal for the PMF that has only two values 

located at the two boundary points of the interval.  
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The transformations that are considered in lemmas (1) and (2) evidently do 

not change the expectation of the variable  X.  The expectation of the PMF for these 

two boundary points is therefore equal to the expectation of the initial random 

variable. Any two-point PMF  pab ≡ pab(a) + pab(b)  is determined by its expectation 

(and these two points).  

So  pab(a) = (b-µ)/(b-a),  and  pab(b) = (µ-a)/(b-a), and   

))(()()(][ 222 µµµµµµµ −−=
−
−

−+
−
−

−=− ba
ab

a
b

ab

b
aXEab .  

This expression agrees naturally with the result of [8] for discrete variables. 

So, Lemma 1 can be treated as another version of this result and Lemma (3) can be 

treated as its expansion.  

So the variance of any random variable whose values lie within a finite 

interval  [a, b]  is not more than that in inequality (2), that is,   

))((][ 2 µµµ −−≤− baXE .  
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