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Abstract

To understand decision-making, it is important to determine the degree to which

individuals are confident in making choices. In place of self-reported confidence state-

ments, on which most studies have relied, this study examines an incentivized measure

to elicit quantitative decision confidence theoretically and experimentally. We demon-

strate the feasibility of this measure in a setting where individuals are allowed to choose

randomization probabilities for two options according to which they may receive ei-

ther option. Our theoretical analysis demonstrates that individuals randomize when

they are not 100% confident about their choices, and the randomization probability

reveals their level of decision confidence. We tested this inference in an experiment

that elicited both confidence statements and randomization probability from our sub-

jects. Our experimental results provide strong evidence that one could interpret the

randomization probability for an option as the probabilistic confidence of choosing

that option.
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1 Introduction

Although they are ignored in standard economics, there are many important life decisions

that people are unable to make with full confidence. This is because many choices involve

trade-offs between conflicting objectives, and resolving these trade-offs is difficult. Studies

have increasingly shown that decision confidence – or the lack of it – has the potential to

explain a wide range of anomalies, such as the WTA-WTP gap (Dubourg et al., 1994),

preference reversals (Butler and Loomes, 2007), stochastic choices (Agranov and Ortoleva,

2017), insensitivity to variation in probabilities (Enke and Graeber, 2019), and many other

violations of standard decision theory (Butler and Loomes, 2011). The widespread influence

of confidence on decision-making and behaviour suggests that policy design should account

for decision confidence in order to improve decision-making and social welfare.1

Given the important role of decision confidence in decision-making, there is increasing

interest in its elicitation. Most existing studies have elicited decision confidence using

non-incentivized self-reported confidence statements. For example, Dubourg et al. (1994,

1997) allowed subjects to indicate whether they were unsure of their choices. Butler and

Loomes (2007) and Butler and Loomes (2011) asked subjects to indicate their decision

confidence about their choice between two options in the ordinal terms of surely, probably,

and unsure. Instead of asking subjects to state how confident they were, Cohen et al.

(1987), Cubitt et al. (2015), and Enke and Graeber (2019) obtained confidence intervals

from their subjects. Cohen et al. (1987) and Cubitt et al. (2015) had subjects report

the range of choices over which they were unsure of their preferences, whereas Enke and

Graeber (2019) had subjects report the range of values over which they were certain of

their preferences.

We build on these studies to propose an incentivized quantitative measure to elicit deci-

1For example, insofar as individuals feel less confident about their choices when excessive options are
available, it may be better to limit the number of investment options in retirement plans (Iyengar and
Lepper, 2000; Iyengar et al., 2004; Iyengar and Kamenica, 2010)
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sion confidence. Instead of requiring subjects to commit to one option out of two available

options, this measure allows the individual to choose the randomization probabilities ac-

cording to which she receives each option. We show theoretically and experimentally that

the individual may prefer to randomize when she is not 100% confident in choosing one

option over the other and that the randomization probabilities vary according to how

confident she is about this decision.

Theoretically, we capture the lack of confidence about choices by assuming that an indi-

vidual has multiple selves. Each self represents one particular way to trade off between

conflicting objectives, and different trade-offs imply different optimal choices. The more

strongly the multiple selves disagree with each other, the less confident the individual feels

about choosing one option over the other. Furthermore, the individual dislikes disagree-

ment among the multiple selves, because individual decision-making in the presence of

multiple selves is similar to group decision-making, which requires members with different

opinions to reach a consensus. In both situations, stronger disagreement requires more

time and cognitive effort for decision-making. Our theoretical analysis demonstrates that

randomization reveals the individual’s lack of confidence in choosing one option over the

other because randomizing reveals her preference to "hedge" across multiple selves when

they disagree with each other. Moreover, the randomization probability assigned to each

option measures the level of decision confidence about that option, with a smaller random-

ization probability for an option indicating weaker confidence in choosing that option over

the other.

We tested the link between randomization probability and decision confidence in an ex-

periment. The experiment requires subjects to make a choice between pairs of options: a

lottery x and a sure payment y. The choice between a lottery and a sure payment involves

a trade-off between risk and return, as in many investment decisions. For each lottery x,

we kept the lottery the same in each pair and varied the sure payment y with 13 possible

values in a random sequence. Subjects first made a standard binary choice in which they

chose either the lottery x or the sure payment y. To elicit subjects’ decision confidence,

we followed Dubourg et al. (1994) and Butler and Loomes (2007) by allowing subjects to

state how confident they were about each choice (surely, probably, or unsure). After the
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binary choices and confidence statements were made, subjects proceeded to the randomized

choices, in which they chose a randomization probability 0 ≤ λ ≤ 1 with which they would

receive x (and with probability 1− λ receive y) for each pair of options, again in random

sequence. The binary choices, confidence statements, and randomization probabilities al-

lowed us to test for the presence of a systematic relationship between the randomization

probabilities and confidence statements. We further checked the robustness of this rela-

tionship by varying across four different lotteries of different cognitive demands and two

experimental conditions in which half of the subjects were provided with the simulated

experience of a lottery and the other half did not.

Our experimental results suggest a systematic relationship between randomization prob-

abilities and confidence statements. We find an economically important and statistically

significant correlation between subjects’ randomization probabilities and confidence state-

ments (median Spearman correlation of 0.85). The randomization probability associated

with an option increases as the stated confidence for that option increases from "Unsure"

to "Probably" to "Surely." The results suggest empirical validity in interpreting random-

ization probability as probabilistic confidence, in the sense that assigning a randomization

probability of 0.5 to an option corresponds to being 50% confident in choosing that option

over the other. Additionally, the confidence intervals – the range of sure payments y for

which subjects do not feel fully confident about their choices – identified from randomiza-

tion probabilities are close to those identified from confidence statements. These findings

are largely robust to lottery types and the provision of experience sampling. Further anal-

ysis also suggests that subjects’ randomization pattern is consistent with our theoretical

analysis, but not with indifference, errors, or nonlinear probability weighting (Kahneman

and Tversky, 1979; Quiggin, 1982; Tversky and Kahneman, 1992). Overall, our results

suggest that randomization probability serves well as an incentivized quantitative measure

of decision confidence about choices.

Our study contributes to the literature on decision confidence in several ways. First,

our measure substantiates and complements the earlier non-incentivised measures. If dif-

ferent measures aiming to capture decision confidence are systematically related, we are

more confident that they indeed capture what we intend to capture. Our measure further
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complements earlier measures because proper material incentives improve data quality

by motivating subjects to devote more time and cognitive effort to making the choices.

Second, our measure is quantitative and continuous, offering flexibility for data analysis.

For example, depending on the needs of the research, we can focus on variant confidence

intervals, such as 90% or 95%. Achieving the same flexibility with confidence intervals

revealed from self-reported statements might be difficult, because such confidence intervals

might not be sensitive to manipulation. Indeed, Enke and Graeber (2019) elicited confi-

dence intervals of 70%, 90%, 95%, 99%, and 100% via confidence statements and found

that subjects are unresponsive to the manipulation and always report similar confidence

intervals. Furthermore, the quantitative randomization probability and its associated lot-

tery outcomes are objective. They can be compared across individuals when needed.2

Self-reported confidence statements are, however, subjective and could have a different

meaning for different individuals.3 For example, some consider a probabilistic confidence

level of 68% sufficient for stating "sure,” whereas others may require 85%. Finally, deci-

sion confidence is traditionally an intuitive idea with many different interpretations, and

our theoretical analysis provides a concrete conceptual definition.4 We show that decision

confidence revealed through randomization probability is the (expected) utility difference

weighted by a measure of disagreement among multiple selves.

Although our paper builds directly on studies of decision confidence (Dubourg et al., 1994,

1997; Butler and Loomes, 2007, 2011; Cubitt et al., 2015), it is also closely related to

studies that have investigated preference uncertainty, convex preferences, and/or conflicts

in choices (Bewley, 2002; Eliaz and Ok, 2006; Ok et al., 2012; Cerreia-Vioglio et al., 2015;

Qiu and Ong, 2017; Cerreia-Vioglio et al., 2019; Agranov and Ortoleva, 2020). In particular,

both Qiu and Ong (2017) and Agranov and Ortoleva (2020) allowed subjects to assign

randomization probabilities to the two options that they face in a decision. Qiu and Ong

2Needless to say, comparing any measures across individuals can be problematic and requires a strong
motivation.

3Indeed, our experimental result presented in Appendix D suggests that different individuals could
associate the same confidence statement with different probabilistic confidence levels.

4For example, decision confidence could be related to the utility difference between options (as the
strength of preferences in Butler et al., 2014). Although the two are clearly related, the utility difference
does not directly translate into decision confidence. The utility difference between two sure payments of
10 euro and 10.01 euro is small, but subjects are likely to be 100% confident about their preferences.
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(2017) discussed how randomization reveals a difficult trade-off between conflicting values

in choices, whereas Agranov and Ortoleva (2020) investigated the ranges of values for

which subjects randomize between two options and related these ranges to certainty bias

and nonmonotonic choices. Our study contributes to this line of research by showing how

randomization may also be related to decision confidence and how eliciting randomization

probabilities may be an alternative measure of decision confidence.

The paper proceeds as follows. Section 2 describes the experimental procedure. Section 3

provides the theoretical basis for how randomization probability may be linked to decision

confidence. The results are reported in Section 4. Finally, Section 5 concludes the study.

2 Experimental design

The experiment consisted of eight treatments of four lotteries (with different cognitive de-

mands) × two conditions (with/out experience sampling). We describe the general struc-

ture of the experiment in all treatments before detailing the conditions of each treatment.

2.1 General structure of the experiment

Subjects faced a pair of options in each decision: option x (a lottery) and option y (a

sure payment). Within each treatment, option x was kept the same, whereas option y

went through a random sequence of 13 possible values, which were lottery dependent.

For each pair of options, subjects needed to make three decisions. First, subjects made

a binary choice in which they chose either x or y. Next, subjects reported their level

of confidence about their binary choice. They could report "Surely x," "Probably x,"

"Unsure," "Probably y" and "Surely y", statements that were also used in, e.g., Dubourg

et al. (1994) and Butler and Loomes (2007). Finally, they made randomized choices in

which they chose a randomization probability λ according to which they receive x (and

hence with chance 1− λ receive y). For example, a value of λ = 0.75 means subjects may
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Figure 1: An example of the decision screen, where option x is a lottery to gain 9 euro
with a chance of 50% and 1 euro with a chance of 50%. Option y is a sure payment and
varies across choices. Subjects had to move the slider to determine the randomization
probability. The randomization probability changed at an increment of 1%. Changes in
the randomization probability were reflected in the descriptions below the slider.

receive x with a chance of 75% and receive y with a chance of 25%.5 The randomization

probability changes at an increment of 1%. Figure 1 shows an example of the decision

screen for a randomized choice.

The three sets of decisions were made in two stages. In each treatment, subjects stated

the binary choice and then provided their confidence statements for each pair of options

in the first stage. When all the binary choices and confidence statements were made, they

went on to the randomization stage, in which they assigned a randomization probability

for each pair of options x and y.

2.2 Treatments

There were two types of treatment variations in our experiment: four lotteries with different

cognitive demands and the condition of allowing for or not allowing for sampling potential

outcomes of the lottery.

5In the experiment, we explain the chance as a computer drawing a random number between 1 and 100.
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We vary cognitive demand for decision-making by changing the number (two or four) and

the payoff (loss or gain) domain of the lottery outcomes. This allows us to examine whether

the association between confidence and randomization, if present, is robust to the different

levels of cognitive demand required for different lotteries. There were four lotteries, and all

subjects went through them in a sequence randomized across subjects. Subjects completed

all the decisions as described in the previous subsection associated with each lottery before

moving on to the next lottery.

The baseline lottery is a simple lottery with two outcomes (gain 9 euro with a chance of 50%,

and gain 1 euro with a chance of 50%). Because some studies have shown that people find

it hard to evaluate lotteries with more outcomes and dislike them (Huck and Weizsäcker,

1999; Sonsino et al., 2002; Moffatt et al., 2015), we introduce a second lottery with four

outcomes, which we refer to as the complex lottery (gain 9.75 euro with a chance of 20%,

gain 7.50 euro with a chance of 30%, gain 2.50 euro with a chance of 30%, and gain 0.25

euro with a chance of 20%).6 The third and fourth lottery are similar to the simple lottery

in the number of outcomes, but they involve potential losses. Establishing the association

between confidence and randomization in lotteries involving losses is important in view of

evidence showing that people behave differently when faced with losses compared to gains

(Gonzalez et al., 2005; Pabst et al., 2013) and that they face emotional trade-off difficulty

with losses (Luce et al., 1999). The third lottery, which we refer to as the loss lottery,

has all its outcomes in the domain of losses: lose 9 euro with a chance of 50% and lose

1 euro with a chance of 50%. This lottery is constructed by subtracting 10 euro from

payoffs of the simple lottery. The fourth lottery – the mixed lottery – involves both payoff

domains (gain 4 euro with a chance of 50%, and lose 4 euro with a chance of 50%). This

lottery is constructed by subtracting 5 euro from the payoffs of the simple lottery. Because

there may be losses in these two lotteries, subjects received an initial endowment for these

two lotteries to prevent them from incurring out-of-pocket losses (an initial endowment

of 10 euro for the loss lottery and of 5 euro for the mixed lottery). To make the initial

endowment salient, a 10-euro bill and 5-euro bill was displayed on the decision screens for

the loss lottery and mixed lottery, respectively. Table 1 summarizes the different lotteries

6The simple and the complex lotteries have the same expected value. The standard deviation of the
simple lottery is 4.0, slightly larger than that of the complex lottery (3.6).
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Lotteries Option x Option y

The simple lottery (50%, 9 ; 50%, 1 )
Receiving y for sure
(y is between 0 and 10 )

The complex lottery
(20%, 9,75 ; 30%, 7,50 ; Receiving y for sure
30%, 2,50 ; 20%, 0,25 ) (y is between 0 and 10 )

The loss lottery (50%, -9 ; 50%, -1 )
Receiving y for sure
(y is between -10 and 0 )

The mixed lottery (50%, 4 ; 50%, -4 )
Receiving y for sure
(y is between -5 and 5 )

Table 1: Summary of options x and y in the four lotteries. In the simple lottery and the
complex lottery, y takes the value of Y ∈ {0, 2, 3, 3.5, 4, 4.5, 5.0, 5.5, 6, 6.5, 7, 8, 10}, in the
loss lottery y is each value in Y minus 10, and in the mixed lottery y is each value in Y

minus 5.

and the set of sure payment amounts for y in the experiment.

The second type of treatment we introduce in the experiment examines whether allowing

subjects to experience the potential outcomes of the lotteries improves their confidence

in decision-making. Previous experiments have found that trading experience reduces the

WTA-WTP gap (List, 2003, 2011) and that simulated experience makes subjects feel more

informed about their decisions and encourages them to take more risks (Bradbury et al.,

2014). We adopt the experience sampling approach of Hertwig et al. (2004). Experience

sampling is consistent with a notion in accumulator models that contemplatesthat the util-

ity distribution of the alternative is built on past experiences (Busemeyer and Townsend,

1993).

Half of the subjects were assigned to the experience sampling treatment. After a lottery

was explained to these subjects and before they had to make choices between the lottery

and the sure payment, they viewed a screen on which they had to click a button to generate

the potential outcomes of the lottery. A bar chart on the same page recorded each lottery

outcome that was simulated and illustrated the frequency of each lottery outcome. Subjects

had to click 20 times to complete the experience sampling exercise, at which point they

could proceed to making their choices. At the 20th click, the final bar chart displayed

the distribution of the lottery outcomes the same as the probability distribution of the

lottery.For example, the simulated 20 outcomes of the complex lottery were always 4 times

9.75 euro, 6 times 7.50 euro, 6 times 2.50 euros, and 4 times 0.75 euro. Subjects went

through experience sampling for each lottery and made decisions for that lottery before
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Figure 2: An example of the screen on which subjects are allowed to sample outcomes
of the simple lottery. The final bargraph of the sampled outcomes is displayed on the
subsequent decision screens.

going through experience sampling for the next lottery. To remind the subjects about the

simulated experience of a lottery, the bar chart showing the distribution of outcomes for

that lottery was made available at the side of the decision screens when subjects made

their binary choices and the randomization probabilities between that lottery and the sure

payment.

2.3 Sample and procedure

The experiment was conducted with a sample of 205 subjects of the DISCON lab at

Radboud University. Invitations were sent in batches via ORSEE (Greiner, 2015). About

half of the subjects were male and about half were female. The experiment was conducted

using Qualtrics, and lasted approximately 20 minutes. Subjects made binary choices,

confidence statements, and randomization probabilities for 13 pairs of options for each

lottery. Examples from the experimental materials can be found in Appendix D.
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Each student received a participation fee of 1 euro and monetary compensation based on

their binary and randomization decisions in the experiment. Specifically, for each subject,

one decision out of all the binary and randomization decisions was randomly selected for

payment. We made the payment via bank transfers.

3 Theoretical analysis

In this section, we demonstrate the concrete link between decision confidence and the

randomization probability in the randomized choices. Building on Cerreia-Vioglio et al.

(2015) and Klibanoff et al. (2005), we propose an approach to capturing the decision-

making of an individual who might have limited confidence for some choices. We then

show the link between randomization probability and decision confidence. We discuss

alternative interpretations of randomization, such as indifference, errors, and nonlinear

probability weighting, in subsection 4.2.

3.1 Decision-making with limited confidence

Standard economics assumes that a unique utility function (subject to positive affine trans-

formation) captures the individual’s preference. The individual always makes choices with

full confidence. It can be shown that under standard economic models, the individual

chooses λ∗ ∈ (0, 1) at most once in the 13 choice pairs in most treatments.7

When the individual might feel unsure about her choices, the assumption of a unique utility

function is no longer appropriate. To accommodate the possibility that a decision-maker

might not be fully confident about her choices, we assume the individual has multiple

utility functions that we call multiple selves, with each self representing one particular

way to trade off between conflicting objectives in choices. Such a modelling technique is

popular in models of incomplete preferences (see e.g., Bewley, 2002; Dubra et al., 2004;

7Such models include the expected utility theory, cumulative prospect theory (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992), and rank dependent utility theory (Quiggin, 1982). Appendix B
discusses this claim in more detail.
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Cerreia-Vioglio et al., 2015). The individual is fully confident about her choices when all

selves choose in the same way. The individual is not fully confident about her choices when

some selves choose one option but others choose other options.

Specifically, let uτ denote the utility function of the self τ and Γ denote the set of selves.

Let π denote the probability distribution over Γ . Given a utility function uτ , we follow

the standard assumption that the self behaves according to the expected utility theory

(EUT). Let EUτ (l) denote the expected utility of an option l ∈ L. We further assume

that the individual dislikes disagreement among selves, because arriving at a choice in the

presence of multiple selves with different preferences is, in essence, similar to situations

in which a group of people with different opinions tries to reach a consensus. The more

strongly members disagree with each other, the more difficult it is for the group to make

compromises and agree on a single opinion. Aversion to disagreement among selves can

then be interpreted as the cost of forcing different selves to make compromises and agree

on a single choice. With the above assumptions, we can write the individual’s preference

over an option l as

V (l) =

∫

Γ

φ [EU τ (l)] dπ, (1)

, where concave φ(·) implies an aversion to disagreement – deviations from the mean

expected utility – among different selves. Similar to the connection between the concavity

of utility function and risk aversion, the concavity of φ(·) implies that the individual places

more weight on the selves who give a lower value to l.Such a cautious attitude is consistent

with Levitt (2020), who showed that subjects who experience difficulty in making a decision

are often excessively cautious with respect to maintaining the status quo.

Equation 1 extends directly from Cerreia-Vioglio et al. (2015) and Klibanoff et al. (2005).

It can be seen as a smooth version of the cautious expected utility model (Cerreia-Vioglio

et al., 2015). It is also a parallel of the smooth ambiguity model of Klibanoff et al. (2005),

in which the state space is the set of multiple selves. Indeed, in ambiguity models of

multiple priors, an individual is unsure about the probability distribution of the states of

nature and has multiple priors. In the current approach, an individual is unsure about her
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utility function and has multiple selves.

3.2 Linking the randomization probability to decision confidence

We are now ready to establish the link between decision confidence and the randomization

probability in the randomized choices. In particular, we will show that a smaller ran-

domization probability for an option is associated with lower confidence in choosing that

option.

Specifically, recall that in our mechanism the individual chooses a randomization prob-

ability λ ∈ [0, 1] and builds a lottery (λ, x; (1 − λ), y): she receives x with probability

λ and y with probability 1 − λ. Because for any given self τ the individual’s pref-

erence over the lottery (λ, x; (1 − λ), y) satisfies EUT, we have EUt [λx+ (1− λ)y] =

λEUt(x) + (1 − λ)EUt(y).
8 The individual’s decision is then to maximize her utility by

choosing the optimal randomization probability 0 ≤ λ ≤ 1:9

Maxλ V [λx+ (1− λ)y] =

∫

Γ

φ [λEUτ (x) + (1− λ)EUτ (y)] dπ.

In the experiment, y is a sure payment. Sure monetary payments are probably the easiest

options to evaluate, and we thus assume the individual is always confident about her

evaluation of a sure payment: EUτ (y) = u(y), ∀τ ∈ Γ when y is a sure payment. In this

case, the optimal λ is simply:10

λ∗ ≈
1

−φ′′[u(y)]
φ′[u(y)]

×
∆u

σ2
x

(2)

, where ∆u = Et [EUt(x)] − u(y) captures the expected utility difference of x and y,

σ2
x = Et [EUt(x)− Et(EUt(x))]

2 is the standard deviation of EUt(x) and approximates

8When x is a lottery, (λ, x; (1− λ), y) is a compound lottery. We follow EUT and assume reduction of
compound lotteries for these choices.

9Taking Cerreia-Vioglio et al. (2015) literally, the negative certainty independence axiom implies no
preference for randomization when a lottery is matched with a sure payment.

10More precisely, because 0 ≤ λ ≤ 1, λ∗ ≈ min

{

max

{

0, 1

−
φ′′[u(y)]

φ′[u(y)]

× ∆u

σ2
x

}

, 1

}

. The detailed derivation

is presented in Appendix A.
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Figure 3: The optimal λ∗ depending on the value of y. The figure is produced by assuming
φ(EUt) = 1 − e−EUt , Prob(u1) = 0.5, Prob(u2) = 0.5, EU1(x) = 1,EU2(x) = 0, and
EU1(y) = EU2(y) = y. The optimal randomization probability λ∗ = −ln( y

1−y
).

how strongly different selves disagree with each other. Similarly to decision-making under

risk, −φ′′(u(y))
φ′(u(y)) can be interpreted as a metric of attitudes toward disagreement among

selves.

To see the link between the randomization probability λ and decision confidence, note that

intuitively the individual should be less confident about choosing x when x becomes less

attractive relative to y and should be more uncertain about her evaluation of x. Equation

2 reflects this intuition exactly: Weaker confidence in choosing x is associated with smaller

randomization probability for x (λ is small when ∆u is small and σ2
x is large). It is in this

sense that we state λ∗ reveals and measures confidence in choices.

As a concrete illustration, consider the following numerical example: The individual has

two selves t = 1, 2, and considers them equally likely. Option x is a lottery, and EU1(x) = 1

and EU2(x) = 0. Option y is a sure payment, and u1(y) = u2(y) = y. The function

φ(EUt) = 1−e−EUt , where the concavity of φ(·) captures her attitude toward the disagree-

ment among multiple selves. The decision utility of choosing option y is V (y) = 1 − e−y,

and the decision utility of choosing option x is V (x) = 0.5(1 − e−1) + 0.5 × 0 = 0.316.

When y is sufficiently similar to x (0.27 < y < 1
2), the individual will have incentive to
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randomize over x and y. The decision utility of such a lottery is V (λx + (1 − λ)y) =

0.5
[

1− e−[λ×1+(1−λ)×y]
]

+ 0.5 ×
[

1− e−[λ×0+(1−λ)×y]
]

. A simple calculation shows that

the optimal λ∗ = −ln( y
1−y

), subject to 0 ≤ λ∗ ≤ 1. Figure 3 shows the relationship be-

tween the optimal λ∗ and y. As one can see, when y becomes more attractive, the value of

λ∗ decreases. Moreover, λ∗ approaches 0.5 when the two options become similar in terms

of their decision utilities (V (y) = 0.314 versus V (x) = 0.316).

4 Experimental results

We report our experimental results in two steps. First, we link randomization probabili-

ties directly to self-reported confidence statements and show that there exists a systematic

relationship between the two. Second, we discuss alternative interpretations of random-

ization and show why randomization is unlikely to reflect indifference, errors, or nonlinear

probability weighting.

4.1 Randomization probabilities and confidence statements

We provide four empirical observations that are consistent with a systematic relationship

between randomization probabilities and confidence statements. First, we show that there

is an economically important and statistically significant correlation between randomiza-

tion probabilities and confidence statements. Second, we demonstrate that it is empirically

valid to interpret randomization probability directly as probabilistic confidence. Third,

around the sure payments where subjects switched between the lottery and the sure pay-

ments (switching choices),we find that subjects tended to report the least confidence about

their choice and choose randomization probabilities around 0.5. Finally, we compare the

confidence intervals defined by randomization probabilities and confidence statements and

show that they are closely related to each other. Because these results are robust to the four

lotteries and the experience sampling condition, most of the results discussed henceforth

are based on the aggregated data from all lotteries and experimental conditions. Where

relevant, we briefly discuss the presence of treatment differences. The detailed results for
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Simple Complex Loss Mixed

No experience sampling
10th percentile 0.60 0.69 0.67 0.35

median 0.91 0.90 0.90 0.85
90th percentile 0.97 0.97 0.97 0.96

Experience sampling
10th percentile 0.60 0.63 0.65 0.47

median 0.93 0.88 0.87 0.81
90th percentile 0.97 0.96 0.97 0.95

Table 2: Nonparametric Spearman correlation at the 10th percentile, median, and 90th
percentile by lottery and experience sampling conditions

each lottery and the experience sampling conditions that are not presented in this section

are provided in the Appendix.

Our first result summarizes the correlation between randomization probabilities and con-

fidence statements.

Result 1. Across all lotteries and experience sampling conditions, there exists an econom-

ically important and statistically significant correlation between randomization probabilities

and confidence statements.

Support: To compute the correlation between the randomization probabilities and the

confidence statements, we assigned values to the confidence statements of "Surely x,"

"Probably x," "Unsure," "Probably y," and "Surely y” on a scale of 5 to 1, with "Surely

x"’ taking the value of 5 and "Surely y" taking the value of 1. For each subject, we com-

puted the nonparametric Spearman correlation for each lottery. A positive correlation is

consistent with our hypothesis that the more confident the subject is about choosing the

lottery over the sure payment, the higher the randomization probability she assigns to x.

The pooled median Spearman correlation across lotteries and subjects is 0.85 (p < 0.01),

with a correlation of 0.93 at the 90th percentile and a correlation of 0.67 at the 10th

percentile.11 Table 2 reports the 10th percentile, medians, and 90th percentile of the cor-

relations for the four lotteries in the two experimental conditions. Across lotteries and

conditions, median correlations range from 0.81 to 0.93. When we examine the correlation

at the 10th percentile, correlation is above 0.60 for most lotteries.12 Overall, the high

11Three subjects did not vary their confidence statements, and thus no correlation can be estimated.

12This is true except for the mixed lottery, which showed a markedly weaker correlation between confi-
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Figure 4: Histograms of randomization probability of each confidence statement across
lotteries and conditions. The x-axis is the randomization probability (0 ≤ λ ≤ 1).

correlation found between confidence statements and randomization probabilities is con-

sistent with a systematic relationship between randomization probabilities and confidence

statements.

Our second result demonstrates how randomization probabilities vary with confidence

statements.

Result 2. Randomization probabilities relate systematically to confidence statements, with

a high randomization probability for an option corresponding to high confidence in choosing

that option. Furthermore, it is empirically valid to interpret randomization probability for

an option directly as the probabilistic confidence of choosing that option.

Support: We look at the mean randomization probability that corresponds to each confi-

dence statement. On aggregate, consistent with our hypothesis, the randomization proba-

bility for x decreases with the confidence about choosing x: The randomization probability

is 0.89 for "Surely x," 0.70 for "Probably x," 0.54 for "Unsure," 0.33 for "Probably y,"

and 0.11 for "Surely y." Figure 4 shows the histograms of the randomization probabilities

across the five confidence statements. The randomization probabilities show a clear shift

from the right to the left as we move from "Surely x" to "Surely y."

dence statements and randomization probabilities.
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Figure 4 shows that the majority of the decisions (64%) for which subjects chose "Surely x"

were given the randomization probability of 1 for x and that the majority of the decisions

(63%) for which subjects chose "Surely y" were given the randomization probability of

0 for x. The reverse is also true. Among the decisions in which subjects assigned a

randomization probability of 1 for x, 78% had "Surely x" as the corresponding confidence

statement. 83% of the decisions in which subjects assigned a randomization probability of 0

for x were rated "Surely y." These results show a strong association between randomization

probability and confidence statements at the extreme ends.

Compared to "Surely x," the distribution of the randomization probability correspond-

ing to the confidence statement "Probably x" is also skewed to the left. However, the

randomization probability for "Probably x" does not have a clear peak, as "Surely x"

does.Likewise, the randomization probability distribution corresponding to the confidence

statement "Probably x" is skewed to the right but without a clear peak. The results suggest

that subjects may have less consensus over the randomization probabilities associated with

"Probably x" and "Probably y" than over those associated with "Surely x" and "Surely

y," even though there is general agreement that the randomization probabilities associ-

ated with "Probably x" are smaller than those of "Surely x" and that the randomization

probabilities associated with "Probably y" are larger than those of "Surely y."

Finally, the randomization probability distribution corresponding to "Unsure" is a bell-

shaped distribution, with a clear peak between 0.4 to 0.5. The results suggest that the

consensus over the randomization probability associated with "Unsure" is weaker than

the consensus over that associated with "Surely x" and "Surely y" but stronger than the

consensus over that associated with "Probably x" and "Probably y". The positive rela-

tionship between the randomization probability for x and the confidence in choosing x is

observed for all lotteries and experience sampling conditions. Table 3 reports the mean

and standard deviation of the randomization probability for each confidence statement in

aggregate and for each lottery and experience sampling condition. The mean randomiza-

tion probability for each confidence statement does not differ significantly across lotteries.

Experience sampling also does not appear to have any effect on the relationship between

the randomization probability and the confidence statements.
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Conditions Lotteries Surely x Probably x Unsure Probably y Surely y

Aggregate
0.89 0.70 0.54 0.33 0.11

(0.22) (0.21) (0.22) (0.22) (0.20)

No
Simple

0.92 0.72 0.50 0.35 0.10
(0.20) (0.20) (0.23) (0.22) (0.18)

Complex
0.90 0.72 0.56 0.34 0.11

(0.19) (0.19) (0.20) (0.19) (0.20)

sampling

Loss
0.92 0.72 0.52 0.31 0.08

(0.17) (0.20) (0.23) (0.23) (0.18)

Mixed
0.88 0.71 0.53 0.35 0.12

(0.26) (0.22) (0.23) (0.27) (0.24)

Sampling

Simple
0.87 0.68 0.55 0.31 0.10

(0.24) (0.19) (0.19) (0.19) (0.19)

Complex
0.86 0.67 0.51 0.32 0.12

(0.23) (0.21) (0.20) (0.19) (0.19)

Loss
0.89 0.70 0.57 0.33 0.08

(0.19) (0.22) (0.23) (0.23) (0.16)

Mixed
0.88 0.71 0.55 0.34 0.12

(0.24) (0.22) (0.23) (0.24) (0.25)

Table 3: Mean randomization probability at each confidence level for the four lotteries
in the two experience sampling conditions. The values in parentheses are the standard
deviations of randomization probabilities.

In addition, we found that the association between the randomization probabilities and

the confidence statements is broadly consistent with the way probabilistic confidence levels

were implemented empirically in other studies. For example, Vanberg (2008) used the

probabilistic confidence of 0.85 as the cutoff level between sure and probably, 0.68 as the

cutoff level between probably and unsure, and 0.50 as unsure (Vanberg, 2008, Footnote 10).

These values correspond to the mean randomization probabilities reported above for each

confidence statement. For example, the mean randomization probability on aggregate

is 0.89 for "Surely x," 0.70 for "Probably x," and 0.54 for "Unsure." Because we did

not intentionally prime subjects to relate the randomization probability of choosing x

to the probabilistic confidence of choosing x, the similarities in the empirical findings

of the two measures in two separate studies suggest that a common cognitive pathway

may have been responsible for both types of decision, linking randomization probability

to confidence. In particular, it is empirically valid to interpret randomization probability

directly as probabilistic confidence (e.g., a randomization probability 0.8 of choosing an

option corresponds to being 80% confident about choosing that option).
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We proceed to check the connection between subjects’ behaviour around the switching

choices in the binary choices and their corresponding randomization probabilities. Recall

that subjects faced 13 binary choices. Subjects may prefer the lottery x over y in some

choices and prefer y over x in others. If subjects are confident about their choices, they may

switch from preferring x to preferring y at one value of y (one switching point). However,

when subjects are not fully confident about their choices, they may switch between x to

y multiple times (multiple switching points). Among the 205 subjects who participated in

the experiment, 140 switched multiple times for at least one of the four lotteries.13

Due to the prevalence of multiple switching points, we study the switching decisions of

each subject at two levels of sure payments: y is the highest sure payment amount at and

below which subjects consistently preferred x over y; ȳ is the lowest sure payment amount

at and above which subjects consistently chose y over x. We henceforth refer values of y

between y and ȳ as the switching range. Because utility of x and utility of y are the closest

within the switching range, we postulate that subjects were less likely to be fully confident

about their choices when y was between y and ȳ and were hence more likely to randomize

between x and y facing these values compared to other values of y. Result 3 summarizes

this result.

Result 3. Subjects were less confident about their choices within the switching range, and

they chose a randomization probability around 0.5 when they were least confident.

Support: Across lotteries and experience sampling conditions, the median confidence state-

ments were "Probably x" at y and "Probably y" at ȳ, with "Unsure" selected for 20% of

values of y within the switching range. 73% of all confidence statements within the switch-

ing range were "Probably x," "Unsure," or "Probably y," compared to 45% of confidence

statements outside the switching range. These confidence reports support our hypothesis

that subjects were less confident about their choices within the switching range.

Examining the randomization probabilities at y and ȳ, we find that across treatments

subjects assigned a median randomization probability of 0.62 to x (0.38 to y) at y, and a

13Specifically, there were 36 subjects who switched multiple times for the simple lottery, 50 for the
complex lottery, 56 for the loss lottery, and 98 for the mixed lottery. In the no sampling condition and
sampling condition, 71 and 69 subjects switched multiple times, respectively.
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median randomization probability of 0.39 to x (0.61 to y) at ȳ. In other words, subjects

were more likely to choose a randomization probability which lies between 0.39 to 0.62 for

x for a choice they were less confident about. The median randomization probability for

all the choices that fall within the switching range, y to ȳ, is 0.5.

This result is consistent with the example in Section 2.2, in which individuals choose

λ∗ = 0.5 when the decision utilities from x and y were close. This result holds for all

lotteries and experimental conditions. Table 5 in the Appendix reports subjects’ confidence

statements and randomization probabilities corresponding to the switching ranges for the

four lotteries and the experience sampling conditions.

Consistent with the above result, Figure 5 shows that higher proportions of subjects ran-

domize and choose "Probably x," "Unsure," and "Probably y" around the switching choices

than for y values further away from the switching range. In addition, the proportion of

subjects choosing a randomization probability between 0.15 and 0.85 closely matches the

proportion of subjects choosing "Probably x," "Unsure," or "Probably y" (see Table 6 in

the Appendix for the exact proportion at each value of y). This result provides further

support for Result 2 to interpret randomization probability as the probabilistic confidence

of choices.

There is growing interest in finding ways to elicit confidence intervals, that is, the range

of values between which subjects do not feel fully confident about their choices (Cohen

et al., 1987; Butler and Loomes, 2011; Cubitt et al., 2015; Enke and Graeber, 2019). These

studies have relied mostly on self-reported confidence statements to determine these con-

fidence intervals. We show that randomization probabilities offer an alternative approach

to determining the confidence intervals. Result 4 summarizes the findings.

Result 4. On average, the confidence intervals defined by confidence statements are closely

related to the confidence intervals defined by randomization probabilities of 0.15 < λ < 0.85.

Support: There are two ways to define the confidence intervals: using the self-reported

confidence statements and defining them as the interval for which subjects do not consis-

tently state "Surely x or y", or using the randomization probability and defining it as the
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Figure 5: Proportion of subjects’ decisions corresponding to different levels of randomiza-
tion and confidence statements at the values of y.

interval for which subjects give randomization probabilities not consistently outside the

given threshold (0 < λ < 1 or 0.15 < λ < 0.85). Before we report the results, recall that

the y values of the loss lottery and mixed lottery are simply those of the simple lottery and

complex lottery subtracted by 10 euro and 5 euro, respectively. To make the confidence

intervals across lotteries comparable, we add 10 and 5 to the confidence intervals of the

loss lottery and the mixed lottery, respectively. Taking 0 < λ < 1 to define the confidence

interval based on randomization probabilities, we find a larger interval than the confidence

interval defined by the confidence statements. On aggregate, the confidence interval de-

fined by randomization probabilities (0 < λ < 1) ranges from 2.0 to 7.0. By contrast, the

confidence interval corresponding to the confidence statements "Probably x," "Unsure,"

and "Probably y" ranges from 3.0 to 6.5. This is not surprising, because as we reported

above, the confidence statements of "Probably x" and "Probably y" correspond to less

extreme randomization probabilities (See result 2). Once we restrict the randomization

probabilities to the same values defining the confidence thresholds in Vanberg (2008), that

is, 0.15 < λ < 0.85, we obtain a confidence interval that ranges from 3.0 to 6.5, similar

to the confidence interval defined by the confidence statements. Looking at the confi-
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dence intervals for each subject, we see that the median interval defined by the confidence

statements is 4.5. For the confidence intervals defined by the randomization probabilities

(0 < λ < 1 and 0.15 < λ < 0.85), we find a median confidence interval of 6 and 4.5, re-

spectively. A two-sided Wilcoxon signed rank sum test of the confidence intervals derived

from confidence statements and randomization probabilities shows a significant difference

between the confidence statements and randomization probabilities with 0 < λ < 1. Even

though the median ranges are the same, we find an economically weak (mean values of 4.73

for confidence statements and 4.27 for randomization probabilities) but statistically signif-

icant difference between the confidence intervals derived from the confidence statements

and the randomization probabilities with 0.15 < λ < 0.85 (p < 0.01). This is probably

due to the high power from the large sample and the paired test. The similarity between

the two confidence intervals derived from confidence statements and randomization prob-

abilities with 0.15 < λ < 0.85 is robust to the type of lotteries and experience sampling

conditions. Table 7 in the Appendix reports the confidence intervals defined by random-

ization probabilities and confidence statements for the four lotteries and the experience

sampling conditions separately.

4.2 Alternative interpretations of randomization

We have interpreted randomization as a lack of decision confidence in the face of preference

uncertainty. Our theoretical analysis provides an explicit link between the randomization

probability and decision confidence. Our experimental results show a systematic relation-

ship between randomization probabilities and confidence statements. However, subjects

might randomize for reasons other than decision confidence, and the above relationship

could be merely a coincidence. In this subsection, we consider interpretations of random-

ization other than decision confidence. Overall, these alternative interpretations suggest

either randomization at most once or no systematic relationship between randomization

probabilities and confidence statements.

The first alternative interpretation of randomization is indifference. In expected utility

theory, individuals can choose any randomization probability when they consider two op-
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Randomization The number of subjects who chose randomization
Interval 0 times 1 time 2 times or more 3 times or more

0 < λ < 1 2 1 202 196

0.15 < λ < 0.85 3 1 201 196

0.32 < λ < 0.68 9 3 193 188

Table 4: The distribution of subjects who chose 0 < λ < 1, 0.15 < λ < 0.85, and
0.32 < λ < 0.68 zero times, one time, two times or more, and three times or more across
the four lotteries and two experimental conditions. The results for the two conditions and
four lotteries separately are in Table 8 in the Appendix.

tions indifferent, and indifference arises only in one pair of x and y. Our next result shows

that most of our subjects randomize more than once.

Result 5. Inconsistent with expected utility theory, the majority of subjects randomized

over x and y at least over two values of y.

Support: Table 4 shows that the majority (over 99% on aggregate) of subjects assigned a

randomization probability strictly within 0 and 1.0 to y two times or more in at least one

lottery or experimental condition. Table 8 in the Appendix reports the results for the two

conditions and four lotteries separately. As we can see, the vast majority (more than 86%)

of subjects assigned a randomization probability strictly within 0 and 1 to y two times or

more in all lotteries and conditions. This is inconsistent with the prediction of standard

economic models, according to which subjects randomize at most once.

The second possibility is that those randomization choices were random errors. If so, there

should be no relationship between randomization probabilities and confidence statements,

which is inconsistent with our results in the previous section. Furthermore, Result 6 below

shows that despite the random sequence in which the different values of y were presented,

the randomization probabilities of choosing x decreased monotonically with the value of y.

In addition, there is evidence that randomization probabilities and confidence statements

responded to experimental treatments.

Result 6. Consistent with our theoretical analysis, the randomization probability of choos-

ing x decreased with the value of y; and there is evidence that the confidence intervals in

the complex lottery, the loss lottery, and the mixed lottery were wider than those in the

simple lottery.
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Figure 6: Median randomization probabilities that subjects assign to x, as a function
of the value of y, for the four lotteries across the two conditions. For the simple and
complex lottery, y takes the value of Y ∈ {0, 2, 3, 3.5, 4, 4.5, 5.0, 5.5, 6, 6.5, 7, 8, 10}, for the
loss lottery y is each value in Y minus 10, and for the mixed lottery y is each value in Y

minus 5. The figure for each condition separately can be found in the Appendix.

Support: Figure 6 reports the median randomization probability of choosing x in rela-

tion to y in the four lottery treatments. As we can see, despite the random sequence in

the randomized choices, subjects’ λ∗ decreased monotonically with the value of y in all

treatments. This result is consistent with Equation 2 and Figure 3.

To investigate the treatment differences across the experience sampling conditions and

lotteries, we compare the confidence intervals obtained from the self-reported confidence

statements and randomization probabilities (0 < λ < 1 or 0.15 < λ < 0.85) across treat-

ments. We hypothesized that subjects experience less decision confidence for the complex

lottery, the loss lottery, and the mixed lottery compared to the simple lottery. Using the

confidence intervals defined by confidence statements, we find some evidence that the con-

fidence intervals of the complex lottery, the loss lottery, and the mixed lottery were wider

than those of the simple lottery (one-sided Wilcoxon signed rank sum tests, p = 0.06 for

the comparison of the complex versus the simple lottery, p < 0.01 for the comparison of the

loss lottery and the mixed lottery versus the simple lottery). Using the confidence intervals
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defined by randomization probabilities, we find that confidence intervals of the complex

lottery are wider than those of the simple lottery for both 0 < λ < 1 and 0.15 < λ < 0.85

(one-sided Wilcoxon signed rank sum test, p < 0.05 and p < 0.01, respectively). However,

we find no significant differences for the loss lottery and the mixed lottery compared to

the simple lottery (one-sided Wilcoxon signed rank sum test, p > 0.10). In light of the

numerical simulations in Appendix B, we think risk attitude in the loss domain may distort

confidence-driven randomization. We further hypothesized that subjects who were allowed

to gain experience with the lottery outcomes perceive more decision confidence than those

who did not get to sample outcomes. However, we do not find any significant differences

between the sampling and no sampling conditions for any of the confidence intervals (one-

sided Wilcoxon rank sum test, p > 0.10 for all tests). In Table 9 in the Appendix, the

comparisons for all treatments and conditions are summarized.

The third interpretation of deliberate randomization can be found in nonexpected utility

theories, in particular nonlinear probability weighting. Allowing for sufficient flexibility,

subjects could randomize multiple times when they face a sequence of randomization de-

cisions between x and y. To examine whether nonlinear probability could account for the

randomization pattern in our experiment, we use the most popular parametric forms in

the literature. If nonlinear probability weighting is responsible for randomization, as pos-

itive theories that aim to capture individuals’ actual choices, those forms should be able

to account for the randomization pattern of a large proportion of subjects. However, our

numerical calculation in the Appendix B suggests that probability weighting is unlikely to

be the driving factor for subjects’ randomization. In fact, individuals behaving according

to the popular parametric probability weighting functions should not randomize in the

simple lottery and in the complex lottery. They may randomize when losses are involved,

due to the convex value function in the loss domain. In that case, they are more likely to

randomize in the loss lottery than in the mixed lottery. These predictions are inconsistent

with our experimental results.

Result 7. Nonlinear probability weighting is unlikely the main reason for randomization.

Support: see the numerical calculations in the Appendix B.
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5 Conclusion

We have shown in this study that letting individuals assign randomization probabilities

according to which they receive each option is an incentive-compatible way to elicit decision

confidence. We show the link between randomization probability and decision confidence

theoretically in a framework extended from Cerreia-Vioglio et al. (2015) and Klibanoff

et al. (2005) and demonstrate this relationship empirically through an experiment.

Our experimental results provide strong evidence that one could interpret the randomiza-

tion probability for an option as the probabilistic confidence of choosing that option. We

find that the majority of subjects randomize frequently, and the randomization pattern

is consistent with our theoretical analysis. We further find that randomization probabili-

ties are highly correlated and vary systematically with self-reported qualitative confidence

statements in our experiment, with high randomization probabilities for options associated

with statements indicating higher confidence. Our further examination of alternative in-

terpretations of randomization suggests that indifference, errors, and nonlinear probability

weighting are unlikely to be driving factors. Overall, our results suggest that decision

confidence can be meaningfully and accurately inferred from randomization probability.
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Appendices

A Derivation of the optimal λ∗

Taking first order derivative of the optimisation equation gives:14

dV [λx+ (1− λ)y]

dλ
=

∑

T

φ′ [λEUt(x) + (1− λ)u(y)]× [EUt(x)− u(y)] dπ(t) = 0.

In some cases, preferences of x over y can be straightforward, e.g., when options can be

ordered by some dominance rules. For example, when options x and y are risky lotteries and

option x first degree stochastically dominates option y, it seems natural that individuals

have EUt(x) > u(y), for ∀t ∈ T . Since φ′ [λEUt(x) + (1− λ)u(y)] > 0, this leads to a

positive first order condition and, hence, λ = 1. Unfortunately, two options cannot in

general be ordered via simple dominance rules. In such situations the choice of λ would

give insights on decision confidence between x and y.

Note that EUt(x) is a random variable governed by the probability distribution π. Let

X = EUt(x), and ∆t = X − u(y). With these notations, we have

φ′ [λEUt(x) + (1− λ)u(y)] = φ′ [u(y) + λ∆t] .

We are mostly interested in the scenario where the individual finds choices between x and

y difficult, i.e., when the two options are close. Specifically, we are interested in those

situations where ∆t is small relative to X and u(y). When this is the case, we can use the

14The second-order derivative is

d2V [λx+ (1− λy)]

dλ2
=

∑

T

φ
′′ [λEUt(x) + (1− λ)u(y)]× [EUt(x)− u(y)]2 dπ(t).

Since φ(·) is concave, φ′′(·) is negative. We are interested in situations where options x and y are
not the same, i.e., EUt(x) 6= u(y) for some t ∈ T . Together we have φ′′ [λEUt(x) + (1− λ)u(y)] ×

[EUt(x)− u(y)]2 ≤ 0, and the inequality is strict for some t ∈ T . Consequently, d2V [λx+(1−λy)]

dλ2 =
∑

T φ′′ [λEUt(x) + (1− λ)u(y)] × [EUt(x)− u(y)]2 dπ(t) < 0. This ensures we are indeed seeking for the
maximum.
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Taylor expansion and obtain

φ′ [u(y) + λ∆t] = φ′(u(y)) + φ′′(u(y))λ∆t +O (λ∆t) ≈ φ′(u(y)) + φ′′(u(y))λ∆t,

where O (λ∆t) is the sum of the terms that have λ∆t with a power of two or higher. The

above first order condition can then be written as

dV [λx+(1−λ)y]
dλ

=
∑

T φ′ [u(y) + λ∆t] ∆tdπ(t),

≈
∑

T [φ′(u(y)) + φ′′(u(y))λ∆t] ∆tdπ(t)

= Et [φ
′(u(y))∆t] + λEt

[

φ′′(u(y))∆2
t

]

= 0,

where Et(·) is the expectation operator with respect to the distribution π. Solving for λ,

and we have:

λ∗ ≈ min







max







0,
1

−φ′′[u(y)]
φ′[u(y)]

×
∆u

σ2
x −∆2

u







, 1







≈ min







max







0,
1

−φ′′[u(y)]
φ′[u(y)]

×
∆u

σ2
x







, 1







,

where ∆u = Et [EUt(x)] − u(y) is the (expected) utility difference of x and y, σ2
x =

Et [EUt(x)− Et(EUt(x))]
2 is the standard deviation of EUt(x).

B Predictions under CPT and RDU.

Predicted randomization pattern under CPT and RDU: under popular para-

metric forms and parameters, subjects do not randomize in the simple lottery

and the complex lottery. They may randomize when losses are involved, due

to the convex value function in the loss domain, and they are more likely to

randomize in the loss lottery than in the mixed lottery.

Support: When x is a lottery and y is a sure payment, randomization over x and y creates

a compound lottery. Let v(·) denote the value function, V (·) denote the prospect value of

a lottery, w(·) denote the probability weighting function. If we assume compound inde-

pendence (Segal, 1990), an axiom weaker than reduction of compound lotteries, it can be

easily shown that individuals have no strict incentive to randomize. To see this, note that
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under compound independence subjects evaluate the compound lottery by first evaluating

the simple lottery x and obtain the prospect value V (x). Then, subjects evaluate the

simple lottery (λ, V (x); 1− λ, y) as:

V (λ, V (x); 1− λ, y) = w(λ)V (x) + [1− w(λ)]V (y) = V (y) + w(λ) [V (x)− V (y)] ,

where V (x) (V (y)) is the prospect value of x (y, respectively).

If we assume reduction of compound lotteries, in principle it is possible for individuals to

have a preference to randomize. For example, when the probability weighting function is

concave. To examine whether non-linear probability could account for the randomization

pattern in our experiment, we use the most popular parametric forms in the literature

and adopt the median estimated parameters to calculate the optimal randomization prob-

ability between the lottery and the sure payment. If non-linear probability weighting is

responsible for randomization, median estimations which intend to capture average group

behavior should account for the randomization pattern of a large proportion of subjects.

Our numerical calculations below show that, with most empirical parameters of the proba-

bility weighting function, subjects do not randomize in the simple lottery and the complex

lottery. They may randomize when losses are involved, due to the convex value function in

the loss domain, and they are more likely to randomize in the loss lottery than in the mixed

lottery. However, these predictions are clearly inconsistent with our experimental results.

Table 8 suggests that subjects did not randomize more frequently in the loss lottery and

mixed lottery than in the simple lottery and the complex lottery. Furthermore, Figure 8

suggests that the randomization probabilities that subjects chosen were comparable across

lotteries.

In the calculation below we assume the value function:

V(x) =











x0.88, x > 0

−2(−x)0.88, x < 0
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Figure 7: Calculations of optimal randomization probabilities. In the calculation we as-
sume the value function: v(x) = x0.88, x ≥ 0, and = −2(−x)0.88, x < 0. The probability

weighting function: w(p)+ = w(p)− = 0.88p0.65

[0.88p0.65+(1−p)0.65]1/0.65
. We tried a number of forms

and different parameter values. The results are qualitatively the same under all popular
specifications.

The probability weighting function:

ω(p)
+ = ω(p)

− =
0.88p0.65

[0.88p0.65 + (1− p)0.65]
1

0.65

.

We tried a number of forms and different parameter values. The results are qualitatively

the same under all popular specifications. Figure 7 summarizes our calculations.

Consider first the simple lottery x = (10, 0.5; 0, 0.5). When a subject assign random-

ization probability λ to x (and 1 − λ to y), the reduced compound lottery is: L =
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(0.5λ, 10; 1− λ, y; 0.5λ, 0). The decision utility of the lottery is:

V (L) = w(0.5λ)v(10) + [w(1− 0.5λ)− w(0.5λ)] v(y) + [1− w(1− 0.5λ)] v(0)

= w(0.5λ)v(10) + [w(1− 0.5λ)− w(0.5λ)] v(y),

where the last equation obtains by making the standard assumption of v(0) = 0. For the

complex lottery the compound lottery is L = (0.2λ, 10; 0.3λ, 7.50; 1− λ, y; 0.3λ, 2.5; 0.2λ, 0.25)

when 2.5 < y < 7.5, and the decision utility is:

V (L) = w(0.2λ)v(10) + [w(0.5λ)− w(0.2λ)] v(7.5) + [w(1− 0.5λ)− w(0.5λ)] v(y)

+ [w(1− 0.2λ)− w(1− 0.5λ)] v(2.5) + [1− w(1− 0.2λ)] v(0.25).

For the loss lottery the reduced compound lottery is L = (0.5λ,−10; 1− λ, y; 0.5λ, 0). The

decision utility of the lottery is:

V (L) = w(0.5λ)v(−10) + [w(1− 0.5λ)− w(0.5λ)] v(y).

For the mixed lottery the reduced compound lottery is L = (0.5λ, 5; 1− λ, y; 0.5λ,−5), the

decision utility of the lottery is:

V (L) = w(0.5λ)v(−5) + w(0.5λ)v(5) + [w(1− 0.5λ)− w(0.5λ)] v(y).
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C Tables and figures

Condition Treatment
Behavior around the switching choice

Randomization probability Confidence statements
y ȳ y ȳ

Aggregate 0.62 0.39 Probably x Probably y

No sampling

Simple 0.67 0.46 Probably x Probably y

Complex 0.63 0.43 Probably x Probably y

Loss 0.55 0.38 Probably x Probably y

Mixed 0.67 0.37 Probably x Probably y

Sampling

Simple 0.60 0.40 Probably x Probably y

Complex 0.60 0.35 Probably x Probably y

Loss 0.58 0.40 Probably x Probably y

Mixed 0.69 0.30 Probably x Probably y

Table 5: Behavior around the switching choice. The value y is the sure payment at and
below which subjects consistently choose x and switch to y for the first time when y is
just above y; and the value ȳ is the sure payment at and above which subjects consistently
choose y and choose x for the last time when y is just below ȳ. The reported valued values
are medians across subjects.
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Value y
Randomization intervals Confidence statements

(1>λ>0) (0.85>λ>0.15) (0.68>λ>0.32) Probably or unsure Unsure

0 0.04 0.03 0.01 0.04 0.01

2 0.51 0.21 0.06 0.31 0.02

3 0.74 0.50 0.15 0.59 0.07

3.50 0.80 0.63 0.26 0.73 0.11

4 0.84 0.75 0.44 0.78 0.17

4.50 0.84 0.77 0.53 0.82 0.24

5 0.83 0.78 0.59 0.78 0.31

5.50 0.84 0.77 0.55 0.78 0.20

6 0.78 0.68 0.41 0.68 0.11

6.50 0.73 0.61 0.28 0.61 0.08

7 0.65 0.45 0.13 0.41 0.04

8 0.45 0.16 0.04 0.16 0.01

10 0.03 0.02 0.02 0.02 0.00

Table 6: Proportion of decisions made that correspond to the different levels of randomiza-
tion and confidence statements for each value of y. The values of y of the loss and mixed
lottery can be obtained by subtracting 10 euro and 5 euro respectively.

Treatments
Mean Confidence intervals

switching Randomization
Confidence statements

value (0 < λ < 1.0) (0.15 < λ < 0.85)

No
Simple 4.5 [2.0, 7.0] [3.5, 6.5] [3.0, 6.5]

Complex 4.8 [2.0, 7.0] [3.0, 6.5] [3.0, 6.5]

sampling
Loss +10 5.2 [3.0, 7.0] [3.5, 7.0] [3.0, 7.0]
Mixed +5 5.0 [3.0, 7.0] [3.0, 7.0] [3.0, 7.0]

Sampling

Simple 4.6 [2.0, 7.0] [3.0, 6.5] [3.0, 6.5]
Complex 4.8 [2.0, 7.0] [3.0, 6.5] [3.0, 6.5]
Loss +10 5.5 [3.0, 8.0] [3.5, 7.0] [3.5, 7.0]
Mixed +5 5.2 [3.0, 8.0] [3.0, 7.0] [3.0, 7.0]

Table 7: Mean value in the switching range and confidence intervals across treatments.
The value in the switching range is the mean of the ys in the switching range. The
confidence intervals are the median values of y and ȳ in which subjects choose 0 < λ < 1,
0.15 < λ < 0.85, and in which subjects reports “Probably x”, “unsure”, and “Probably
y”. The values of y for the loss and mixed lottery have been adjusted by +10 and +5
respectively to reflect the same range as the simple and complex lottery.
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Condition Treatments
The number of subjects who chose

λ∗ ∈ (0, 1) for
0 time 1 time 2 times or more 3 times or more

No
Simple 2 6 97 95

Complex 4 1 100 95

sampling
Loss 3 3 99 95

Mixed 6 6 93 89

Sampling

Simple 6 1 93 89
Complex 3 5 92 89

Loss 6 4 90 89
Mixed 9 5 86 83

Table 8: The distribution of subjects who chose 0 < λ < 1 for zero time, for one time, for
two times and more, and for three times and more for different lotteries and conditions.
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Figure 8: Boxplots of the randomization probability of choosing x, given each confidence
statement. The thick line is median, the upper and lower bars are 2nd and 3rd quantiles,
respectively. The upper panel is for the no sampling condition, and the lower panel is for
the sampling condition.
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Figure 9: Median randomization probabilities that subjects assign to x, as a function of the
value of y, for the four lotteries in the two conditions. For the simple and complex lottery,
y takes the value of Y ∈ {0, 2, 3, 3.5, 4, 4.5, 5.0, 5.5, 6, 6.5, 7, 8, 10}, for the loss lottery y is
each value in Y minus 10, and for the mixed lottery y is each value in Y minus 5.
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Figure 10: A boxplot of the randomization probability of choosing x across lotteries and
conditions, given each confidence statement. The thick line is median, the upper and lower
bars are 2nd and 3rd quantiles, respectively. More detailed figures for each lottery and
condition are presented in Figure 8 in Appendix.

D Additional results: the subjectivity of confidence state-

ments

In the introduction we point out that confidence statements are self-reports, and there

is no universal understanding of confidence statements such as surely, probably, or un-

sure. Therefore, these statements could have different meaning for different individuals.

To examine this hypothesis we look at the randomization probabilities at each level of

confidence. Our following result summarizes this finding.

Result 8. Given any confidence statement, there is substantial heterogeneity in the ran-

domization probability among subjects.

Support: Figure 10 gives the boxplot of the randomization probability of choosing x in

treatment 1. Figure 8 in Appendix gives the boxplots of the other treatments. As we

can clearly see, there is substantial variation of randomization probabilities across subjects

at each confidence level. As we can also see from Table 3, the standard deviation of the

randomization probabilities at each confidence level is substantial in all treatments, ranging
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from 0.11 to 0.20. The above results suggest that subjects indicating the same confidence

level chose substantially different randomization probabilities.

Result 8 does not necessarily mean confidence statements are not informative. Results 2

to 4 suggest that confidence statements are surprisingly consistent. The problem is rather

that each subject has her/his own subjective interpretation of confidence levels such as

surely or probably, which might obscure the relationship between confidence statements

and subjects’ actual behavior. Moreover, the subjective interpretation of confidence levels

might differ across tasks. For example, some subjects need to be 90% sure or higher to

make the statement of surely, others might state surely with 80% confidence. Additionally,

subjects might want to be highly certain for easy tasks to make the statement of surely,

while they can be much more tolerant for difficult tasks. These issues make between-

individual comparisons of confidence statements difficult,
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E Experimental materials

Figure 11: Welcome screen of the experiment.
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Figure 12: Informed consent.
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Figure 13: Introduction screen of the mixed lottery in the no sampling condition.

Figure 14: Introduction screen of the loss lottery in the sampling condition.
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Figure 15: Example of the decision screen for the binary choices and confidence statements
for the mixed lottery in the no sampling condition.
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Figure 16: Example of the decision screen for the binary choices and confidence statements
for the loss lottery in the sampling condition.

47



Figure 17: Explanation of randomization decisions.
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Figure 18: Example of the decision screen for the randomization choices for the complex
lottery in the no sampling condition.
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Figure 19: Example of the decision screen for the randomization choices for the loss lottery
in the sampling condition.
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Figure 20: Demographic questions asked at the end of the experiment.
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Confidence statements Wilcoxon tests

Condition Treatment Median Mean (sd)
Comparison Comparison
to simple to sampling
lottery condition

No sampling

Simple 4.5 4.35 (1.69) - p > 0.10
Complex 4.5 4.62 (1.91) p = 0.08 p > 0.10

Loss 4.5 4.82 (1.76) p < 0.01 p > 0.10
Mixed 5.0 5.18 (1.95) p < 0.01 p > 0.10

Sampling

Simple 4.5 4.44 (2.10) - -
Complex 4.5 4.49 (1.83) p > 0.10 -

Loss 5.0 4.85 (2.00) p < 0.05 -
Mixed 5.0 5.07 (2.21) p < 0.01 -

Randomization probability: 0 < λ < 1 Wilcoxon tests

Condition Treatment Median Mean (sd)
Comparison Comparison
to simple to sampling
lottery condition

No sampling

Simple 5.5 5.20 (1.98) - p > 0.10
Complex 5.5 5.41 (1.96) p = 0.07 p > 0.10

Loss 5.5 5.16 (2.00) p > 0.10 p > 0.10
Mixed 5.0 4.94 (2.32) p > 0.10 p > 0.10

Sampling

Simple 6.0 5.39 (2.20) - -
Complex 6.0 5.67 (2.19) p < 0.05 -

Loss 6.0 5.32 (2.23) p > 0.10 -
Mixed 6.0 5.47 (2.46) p > 0.10 -

Randomization probability: 0.15 < λ < 0.85 Wilcoxon tests

Condition Treatment Median Mean (sd)
Comparison Comparison
to simple to sampling
lottery condition

No sampling

Simple 4.0 4.03 (1.93) - p > 0.10
Complex 4.5 4.45 (1.77) p < 0.01 p > 0.10

Loss 4.0 4.05 (1.76) p > 0.10 p > 0.10
Mixed 4.5 4.08 (2.17) p > 0.10 p > 0.10

Sampling

Simple 4.5 4.32 (1.89) - -
Complex 4.5 4.60 (2.01) p = 0.06 -

Loss 4.5 4.14 (1.97) p > 0.10 -
Mixed 5.0 4.53 (2.24) p > 0.10 -

Table 9: Comparison of confidence intervals defined by confidence statements and ran-
domization probabilities across treatments and conditions. The median an mean values
are based on the confidence intervals computed for each subject. The comparison of the
lotteries is based on a one-sided Wilcoxon signed rank sum test. The comparison of the
(no) sampling conditions is based on a one-sided Wilcoxon rank sum test.
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