
Munich Personal RePEc Archive

Trade-off analysis of cost and nutrient

efficiency of coffee farms in vietnam: A

more generalised approach

Ho, Thong Quoc and Hoang, Vincent and Wilson, Clevo

School of Economics, University of Economics, Ho Chi Minh City,

Viet Nam, School of Economics and Finance,Queensland University

of Technology, Centre for Agriculture and Bioeconomy, Queensland

University of Technology, Brisbane, Australia

8 February 2020

Online at https://mpra.ub.uni-muenchen.de/106898/

MPRA Paper No. 106898, posted 31 Mar 2021 11:36 UTC



1 

 

Trade-off analysis of cost and nutrient efficiency of coffee 
farms in Vietnam: A more generalised approach 

 
Ho, T. Q., Hoang, V.-N., & Wilson, C.  

Queensland University of Technology 
 

1 Introduction 

Analysis of economic and environmental performance of agricultural production has received 

increasing attention in both the theoretical and empirical literature (Aldieri et al., 2019). Several 

methodological approaches have been proposed to measure environmental efficiency and to analyse 

trade-offs between economic and environmental performance (e.g., Fang, 2020; Shuai and Fan, 2020; 

Azad and Ancev, 2014; Picazo-Tadeo and Prior, 2009; Reinhard et al., 2000). Within this literature 

strand, Coelli et al., (2007) offer a distinct approach that utilises the material balance principle to 

derive cost and environmental efficiency measures. Empirical applications of Coelli et al. (2007) for 

the purpose of environmental and economic analysis have flourished recently (Hoang and Alauddin, 

2012; Nguyen et al., 2012; Hoang and Rao, 2010). However, these empirical applications focus only 

on the economic and environmental trade-off of technically efficient farms, not all the farms.  

Recently Aldanondo-Ochoa et al. (2017) extended Coelli’s model to account for trade-off 

situations where farms are cost-constrained as well as environmentally constrained. Instead of 

focusing on improving both the cost and environmental efficiencies through increasing the technical 

efficiency (TE) of farms, Aldanondo-Ochoa et al. (2017) look at improving environmental efficiency 

by changing the combination of inputs for given levels of output and cost in their cost-constrained 

model. Similarly, their environmentally constrained model focuses on improving cost efficiency (CE) 

by changing the combination of inputs given the output level and a given environmental standard. To 

the best of our knowledge, however, the existing literature still places an emphasis on cost and 

environmental trade-offs facing technically efficient farms. It is noted that in most empirical analyses, 

there are more technically inefficient farms than technically efficient farms; hence improving the 
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performance of the latter group of farms would have more immediate impacts on the overall 

performance of the entire sector.  

To address this shortcoming in the existing literature, we propose a new way of analysing trade-

off within the conventional framework of Coelli et al. (2007). Our approach delivers the following 

extensions. First, the trade-off between cost and environmental efficiency can be existed for both 

technically efficient and technically inefficient farms. Second, our approach demonstrates that each 

category of farms has potential for further improvement in which no trade-off is encountered. Third, 

farms of different categories should adopt differing strategies for enhancing economic and 

environmental performance. We provide an empirical illustration of the proposed approach using 

coffee farming data in Vietnam.  

Specially, our approach demonstrates clearly that farms regardless of whether they are 

technically efficient or not, have different degrees of trade-offs with some technically inefficient 

farms having no trade-off. Allowing for these possibilities makes our approach a more generalised 

one in which we can categorise farms under the same production technology into four distinct 

production feasibility subsets. More importantly, this categorisation provides a useful approach for 

empirical analysis that aims at drawing policy implications. For example, empirical analysis can 

focus on differing options of management change in terms of input and output combinations which 

are available to different group of farms in order improve their performance. This approach is much 

more suitable than requiring all farms, especially technically inefficient farms, to follow a uniform 

strategy of improvement – that is, first improving technical efficiency then choosing better input 

combination. Additionally, our approach also demonstrates that farm managers can identify differing 

levels of cost/environmental trade-offs with respect to their own performance objectives. Such 

information could help farm managers to adjust their perceived notion of trade-offs. We demonstrate 

the empirical application of this new approach in the context of coffee farming in Vietnam.                                                                           

Overuse of chemicals in agricultural production has been identified as a main cause of 

environmental problems in many parts of the world  (Nguyen et al., 2012; Hoang & Coelli, 2011). In 

the context of coffee farming, the literature has reported on the environmental impact of intensive 

use of nutrients (e.g. fertilisers) in agriculture (Wu et al., 2018) and in major coffee producing 

countries such as Brazil, Costa Rica (Castro-Tanzi et al., 2012), Mexico (Eakin et al., 2009) and 

Vietnam (Amarasinghe et al., 2015). Overuse and inefficient use of chemical fertilisers has also 

caused many problems, i.e., environmental risks associated with poverty (Narloch and Bangalore, 

2018), food safety (Seok et al., 2018), air pollution (Paungfoo-Lonhienne et al., 2019) and water 

pollution (Kourgialas et al., 2017). While lower consumption of nutrients reduces pollution, this 

requires farmers to undertake better nutrient management practices. Several studies show that 

farmers, especially small holders, are reluctant to reduce the consumption of fertilisers in the belief 
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that it could reduce yields, thereby lowering profit (Jena et al., 2012; Ranjan Jena and Grote, 2017). 

This suggests that farmers might perceive the existence of a trade-off between environmental and 

economic outcomes. There is no previous empirical examination of such trade-offs in coffee 

production and therefore the present study aims to cover this omission. 

Empirically, this study makes two important contributions. First, we quantify the cost of 

becoming environmentally efficient and the environmental harm which results from becoming cost-

efficient for both technically efficient and inefficient farms in coffee farming. Second, our study 

presents the first empirical study examining both cost and nutrient efficiency of sustainability 

certified and non-certified farms in Vietnam. 

The rest of this paper is organised as follows. Section 2 briefly describes the material balance 

principle’s (MBP) environmental and efficiency measure. Section 3 presents a review of the existing 

literature on MBP-based trade-off analysis. Section 4 provides extra decompositions of trade-offs 

between cost and environmental performance. Section 5 presents the results of an empirical study in 

the context of Vietnam. Section 6 concludes the main findings, limitation and future research.  

2 The original MBP approach to cost and environmental efficiency measure 

Coelli et al. (2007) incorporated MBP in measuring environmental efficiency, hereafter known 

as nutrient-oriented environmental efficiency (NE) defined as the ratio of the minimum nutrient 

amount to the observed nutrient amount for any observed farm. In the input-oriented framework, the 

MBP model of Coelli et al. (2007) solves the following optimization problem: 

NC( , ) = { ' | , T}min y a a x x y
x  (1) 

where, the feasible production set1, T, is defined as:  

T = {(y, x): x can produce y} (2) 

NC is the total amount of nutrient in vector inputs (x) and NC = a’x in which the vector a 

denotes non-negative nutrient contents of each input in the input vector x. According to the MBP, 

nutrients consists of the inputs (fertilisers, land or water) which will be applied to the desirable 

outputs and the balance of the nutrients between inputs and outputs will ‘run-off’ to the environment. 

 

1 Rødseth, (2016) extended this model by accounting for pollutant control activities adopted by farmers. However, 

in an empirical context, the new technique is not applicable because pollutant control activities were not documented and 

the information on the nutrient change due to such activities was not available. 



4 

 

The balance of the nutrients has the potential to cause pollution, therefore, it is desirable to minimise 

the amount of nutrient balance. NE is defined as: 

NE NENC '
NE = =

NC '

a x

a x   (3) 

where NCNE is a solution to (1) and xNE is a vector of inputs where the nutrient amount in this 

vector is minimised, NCNE = a’xNE. Similarly, input-oriented TE is defined as: 

TE TE' NC
TE = = =

' NC
 a x

a x  (4) 

NE can be decomposed as follows into two components, TE and the input-oriented nutrient 

allocative efficiency, NAE: 

NE NE NETE

TE

NC ' ''
NE = = = × = TE×NAE

NC ' ' '

a x a xa x

a x a x a x
  (5) 

This way of decomposing NE into TE and NAE is identical to the decomposition of CE into 

TE and cost allocative efficiency (CAE): 

CE CETE

TE

' ''
CE = TE CAE

' ' '
=  = 

w x w xw x

w x w x w x
 (6) 

TE and CE can be estimated using a standard input-oriented approach, minimizing the input 

use given a level of output. NE is similar to CE in term of the estimation procedure where the vector 

of nutrient contents of the inputs, a, is used instead of input prices, w. 

3 Existing approach used to analyse trade-offs between cost and nutrient efficiency 

A trade-off between environmental and cost performance exists if farms aiming to increase 

their environmental performance incur higher levels of production costs (and vice versa). In a typical 

framework of MBP-based efficiency, the existing literature attempts to analyse such a trade-off by 

examining how farms are supposed to move to the technical efficient point (point B), the cost-

efficient point (point C) and the environmental efficient points as shown in Figure 1.  Farm A can 

become more technically efficient if it moves to point B, more cost efficient if it moves to point C 

and more environmentally efficient if it moves to point N. The information of the nutrient contents 

and price of inputs are used to construct iso-nutrient and iso-cost lines respectively.  
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Figure 1: A typical cost and nutrient efficiency trade-off analysis 

It is easy to see that for farm A, a movement towards point B captures an increase in its TE 

and therefore, total production cost and nutrient consumptions will decrease. Hence both cost and 

nutrient efficiency improves. A pathway from A to B represents a win-win outcome both for farms 

and the environment. However, a trade-off exists if farm B, wishing to achieve the minimum 

production cost (being cost efficient), decreases its environmental efficiency level. The degree of 

trade-off for each farm depends on their existing combinations of inputs and its targeted outcome. 

Particularly for technically efficient farms who stay on the iso-quant in Figure 1 within points C and 

N, being closer to point N (or and further away from point C) means smaller increases in the 

production costs if farms aim to move to the environmentally efficient point (i.e. less trade-offs). 

Empirically, Coelli et al. (2007) estimated a typical trade-off between points C and N for 183 Belgian 

pig farms from 1996 to 1997 in which movement from point C to point N could reduce 5.3% of 

nutrient input with a shadow cost of 27 euros per kg. Similar analysis for rice production in Korea is 

presented in Nguyen et al. (2012).  

The original model of Coelli et al. (2007), as pointed out by Aldanondo-Ochoa (2017), does 

not integrate cost considerations with respect to the environmentally allocative efficiency term (i.e. 

NAE in equation 5) just as the cost allocative efficiency term (i.e. CAE in equation 6) does not 

integrate environmental considerations. Aldanondo-Ochoa (2017) presents an extension of trade-off 

analysis in which the cost and nutrient consumption levels of technically efficient farms are applied 

as operational constraints for all other farms. When minimising total production cost, total nutrient 

consumption is constrained to be less than or equal to the nutrient level of the technically efficient 

farms. Similarly, in minimising total nutrient consumption, total production cost is constrained to be 

less than or equal to the cost level of the technically efficient farm. In a nutshell, the levels of 

production cost and nutrient consumption are used as the benchmark for all inefficient farms. By 

doing so, possible gains in the total allocative efficiency terms (i.e. NAE and CAE) can be further 
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decomposed into two components: one involves an economic- environmental trade-off and one does 

not. In the empirical examination of greenhouse horticultural production units in Spain, the authors 

showed that 44% of farms were using more nutrients than technically efficient farms but only 7.3% 

of farms had higher costs than the technically efficient farms. Extra decomposition of allocative 

efficiency suggested that, on average, farms can increase environmental allocative efficiency by up 

to 34% without incurring additional costs. 

4 A generalised approach to analysing cost environmental trade-offs 

What’s missing in the literature is the explicit focus on the trade-off analysis for technically 

inefficient farms. While existing approaches can benchmark technically inefficient farms against 

technical efficient farms, it is also possible to benchmark additionally against either nutrient or cost-

efficient farms. Implicitly, approaches to policy interventions, if any, are limited to making farms 

technically efficient first before analysis of trade-offs become useful. In this section, we provide a 

more elaborative approach to analysing trade-offs for inefficient farms. 

In Figure 2a, points C and N are two unique points at which the iso-quant is tangential to iso-

cost line C1 and the iso-nutrient line. At the cost-efficient point, an iso-nutrient line N2 can be 

constructed parallel to the iso-nutrient line N1. Similarly, the iso-cost line C2 is parallel to the iso-cost 

line C1 crossing the environmentally efficient point, N. These typical iso-cost and iso-nutrient lines 

and the iso-quant curve in Figure 2b divide the feasible production set T into four subsets, namely 
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Tn, Tc, Tt, and Ti. Farms belonging to each subset are hereby classified into four respective group N, 

C, T and I.2  

Figure 3 illustrates that farms belonging to each subset should have different strategies for 

better cost and environmental performance without necessarily moving towards to the technically 

efficient frontier (i.e. iso-quant). For farm i, either opting for CE or NE could result in a reduction in 

both production cost and nutrient consumption. As indicated in Figure 3a, this farm could move 

within the no trade-off region (shown as the blue region) to improve both cost and environmental 

performance. The broader “no trade-off” region of farm i presents a higher level of flexibility for the 

farm to improve performance.3 For farm t, there is always a trade-off if it insists on being cost efficient 

and environmentally efficient given these two efficient points, C and N, are outside the “no trade-

off” region illustrated in Figure 3b. For farm n, moving to point N will decrease total production costs 

and achieve the best possible NE; meaning there is no trade-off for this group if farms aim for 

environmental improvement only. If farm n aims at being cost efficient, there exists some level of 

 

2  Point n is a typical farm in group N in Figure 2b, representing farms using 𝑥1𝑛 and  𝑥2𝑛 inputs, [𝑥1𝑛, 𝑥2𝑛] ∈ Tn, 

Cn > C2 & N1 < Nn < N2.   c is a typical (technical inefficient) farm in group C, using  𝑥1𝑐  and  𝑥2𝑐  inputs, [𝑥1𝑐 , 𝑥2𝑐] ∈ Tc, 

C1 < Cc < C2 & Nc > N2.   t is a typical farm in group T, using 𝑥1𝑡  and  𝑥2𝑡  inputs, [𝑥1𝑡 , 𝑥2𝑡] ∈ Tt, C1 < Ct < C2 & N1 < Nt 

< N2.   i is a typical farm, representing farms using 𝑥1𝑖  and  𝑥2𝑖  inputs, [𝑥1𝑖 , 𝑥2𝑖 ] ∈ Ti, Ci > C2 & Ni > N2. Note that all 

technically efficient farms stay on the iso-quant.  
3  Note that any movement of the farm (regardless n, c, t and i) towards the iso-quant constrained between the two 

arrows in the blue region could improve cost performance, environmental performance or both. The pathway through the 

technically efficient point discussed in the existing literature is also included in this no trade-off region. As an empirical 

exercise, a directional distance function approach can be used to project farms onto the frontier with a pre-determined 

direction of movement as long as farms are projected towards the frontier within the no trade-off region.  

(a) (b) 

Figure 2: Cost-environment trade-off 
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trade-off as long as farm n move out of the blue “no trade-off” region shown in Figure 3c. For farm 

c, moving to point C attains maximum CE and reduces total nutrient consumption. In practice, farm 

c could at least maintain the same level of production cost and opt for a reduction in nutrient 

consumption and by doing so could become more cost and environmentally efficient. Farm c again 

has its own region of “no-trade-off” shown as the blue region in Figure 3d. Beyond this region these 

farmers must employ a larger production cost to reach an environmentally efficient operation.  

Our proposed approach to analysing trade-offs has several useful features. First, instead of 

imposing the common pathway transitioning through TE, farms - once being classified in different 

groups - are modelled so as to provide flexibility in choosing more acceptable strategies to improve 

economic and environmental performance. In particular, identifying the group membership of farms 

is useful for designing interventions targeting individual groups of farms rather than treating all farms 

indifferently. Second, a “no trade-off” region for each farm in fact represents a “win-win” set of 

strategies as both economic and environmental improvement can be obtained. Identification of such 

“no trade-off” regions for each farm can be important for stakeholders (e.g. farm managers, 

environmental groups, extension service providers and regulators). Third, this approach can be used 

Figure 3: No trade-off regions 
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to quantify the value of trade-offs. For example, farms in groups N and T need to incur higher levels 

of production cost to be environmentally efficient and therefore the additional cost can be used to 

infer the value of the shadow cost of improvement in environmental performance. In contrast, group 

C and T farms must use more nutrients (i.e. have a lower level of environmental standards or greater 

potential to cause environmental harm) to reach the cost-efficient operation. This trade-off results in 

a measure of harm to the environment caused by the improvement in CE. In our empirical application, 

we calculate both shadow cost and level of environmental harm for both technically efficient and 

technically inefficient farms, where applicable. 

5 Empirical study 

We use the dataset collected from a survey conducted in the largest coffee producing area in Vietnam. 

Ho et al., (2018) also provide a detailed description of coffee production in Vietnam, sampling 

procedures and the study site used to collect the data. 

5.1 Model specifications 

The differing ages of perennial trees are biologically associated with different doses of inputs, 

fertility, and yield (Hasnah et al., 2004; Ho et al., 2018); hence all production factors including one 

output (Y) and five inputs (x1-x5) have been were calculated per weighted tree as show in Table 1.4  

  

 

4  We use a nonlinear regression model to construct weights associated with different age ranges:  i.e., under eight 

years, from nine to fifteen years, from sixteen to twenty years and above twenty-one years. As well, Ho et al., (2018) 

provide details on how weights of coffee tree ages were constructed. 
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Table 1: Descriptive statistics of variables 

 variable label N Mean St. dev. Min Max 

Y Dried coffee output (kg/ weighted tree) 1,994 3.593 1.058 0.753 7.053 

x1 Labour (man-days/ weighted tree) 1,994 0.308 0.173 0.030 1.548 

x2 Land area (m2/ weighted tree) 1,994 10.485 1.660 2.519 18.593 

x3 Chemical fertilisers (kg/ weighted tree) 1,994 2.562 1.288 0.333 11.642 

x4 Irrigation water (m3/ weighted tree) 1,994 1.201 0.534 0.100 5.643 

x5 Other production cost (USD/ weighted tree) 1,994 0.451 0.389 0.027 3.896 

w1 Labour rate (USD/day) 1,994 6.593 0.887 4.444 15.556 

w2 Land and tree depreciation (USD/m2) 1,994 0.119 0.038 0.005 0.278 

w3 Price index of chemical fertilisers (USD/kg) 1,994 0.419 0.083 0.200 0.756 

w4 Irrigation water price (USD/m3) 1,994 0.000 0.000 0.000 0.000 

w5 Price index of other production cost (USD) 1,994 1.000 0.000 1.000 1.000 

a1 Eutrophying power of labour (kg/man-day) 1,994 0.000 0.000 0.000 0.000 

a2 Eutrophying power of land area (kg/m2) 1,994 0.009 0.000 0.009 0.009 

a3 
Eutrophying power of fertilisers (kg/kg of 

fertilisers) 1,994 0.609 0.156 0.118 1.120 

a4 Eutrophying power of water (kg/m3) 1,994 0.056 0.000 0.056 0.056 

a5 
Eutrophying power of other production cost 

kg/USD) 1,994 0.000 0.000 0.000 0.000 

 

The output (y) was measured in kilograms of dried coffee beans. Labour (x1) included both 

family and hired employment. Cultivated land area (x2) was measured in squared meters. The weight 

of chemical fertilisers (x3) was aggregated from different types of NPK fertilisers, urea, kali, 

potassium and other chemical fertilisers, using a price-weighted Fisher quantity index. Irrigation 

water amount (x4) was calculated using the information on total irrigation time and capacity of pumps. 

Other production costs (x5) were aggregated from costs, such as that for organic fertilisers5, 

machinery, fuels, and transportation.  

Input prices are derived from the collected data. First, for the price of labour (w1), we used 

labour rate for hired labour as the price of labour including family labour. Second, land rental and 

crop depreciation costs were used as the price of the cultivating area (w2). Although coffee tree 

density in the research region is roughly the same given that coffee trees are considered as a fixed 

asset, the price of land rentals and coffee tree depreciation cost vary. Such variation thus depends 

primarily on the potential coffee output. We found that the common rate for both land rental and crop 

depreciation was about 20% of the coffee output.  The price of the cultivation area including land 

rental and crop depreciation was accordingly calculated as 20% of total income from coffee divided 

 

5 Organic fertilisers could be modelled as a separate input to shed more light on how combinations of inorganic 

and organic fertilisers impact on efficiency. However, data on nutrient content were not available in the dataset used. 
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by the coffee output. Third, the price index of chemical fertilisers (w3) was estimated as the ratio of 

total costs of all chemical fertilisers to the Fisher quantity index of chemical fertilisers.  Given farmers 

freely extract water for irrigation the unit price of this input (w4) was set at zero. Last, other 

production costs were measured in monetary value, so we set the price of this input (w5) to be one. 

Following previous literature (Nguyen et al. 2012 and Hoang et al. 2013), we focus our analysis 

on nitrogen (N) and phosphorous (P) which are the primary cause of eutrophication in the water 

system. Labour (x1) and other production costs (x5) are assumed to have no nutrient content. The unit 

nutrient content of land area (a2), is assumed to be equal to a constant across different land plots. We 

followed Nguyen et al., (2012) in assuming the nutrient content of each square meter of cultivating 

land to be about 0.0092 kg of eutrophying power. Chemical fertilisers and irrigation water contain 

both N and P. As previous studies indicated that P has more eutrophying power than N (Gold and 

Sims, 2005), we used a fixed set of weights (1 for N and 10 for P) to aggregate total nutrient contents 

of chemical and irrigation water – similar to the methodology adopted by Hoang and Nguyen (2013).  

Information on the percentages of N and P were readily available for fertilisers but not for irrigation 

water. We used the result of a previous study (Ebina et al., 1983) which estimated that one cubic 

meter contained about 0.0202 and 0.0036 kilograms of N and P respectively. Thus, a4 was calculated 

to be 0.0202 +10 x 0.0036 =0.056 kg/ cubic metre.6  

 In the Data Envelopment Analysis (DEA) approach, it is important to specify whether the 

production technology exhibits variable return to scale (VRS) or constant return to scale (CRS). We 

estimated a Cobb-Douglas production function and tested for the null hypothesis of CRS7. At the 

10% level of significance we failed to reject the null hypothesis, hence a CRS model was selected. 

The CRS-DEA models of CE and NE are specified as: 

'{ : 0, 0, 0}min
c c

i i i i
  


− +  −  w x y Y x X

x,
  (7)  

'{ : 0, 0, 0}min
e e

i i i i
  


− +  −  a x y Y x X

x,
  (8)

 

 

6  This treatment may not be ideal, but farmers can manage to be more efficient in using irrigation water, therefore 

reducing consumption of nutrients. In addition, for a given plot, it may reasonably be assumed that there are no different 

irrigation water sources available with different levels of nutrient content. Thus, it is argued that choosing a constant for 

unit nutrient content of irrigation water is a reasonable assumption. 

7  The elasticity of scale was calculated to be 0.9940 (summation of all coefficients associated with input factors).  

The F test statistics = 0.1646 associated P-value = 0.6850. 
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5.2 Efficiency results 

In general, the empirical results indicate that both cost and environmental performance of 

coffee farmers are very low. This implies a great potential for inducing coffee farmers to enhance 

economic and environmental sustainability. The results are also in line with several previous studies 

which examined cost and environmental efficiency in agricultural production. For example, Wossink 

and Denaux (2006) found that the CRS environmental efficiency and the cost efficiency of pest 

control of conventional cotton farmers was 0.16 and 0.33 respectively.  Several studies also found 

very low level of cost and environmental efficiency (see, for example, Aldanondo-Ochoa et al., 2017; 

Nguyen et al., 2012).  

As shown in Table 2, the average CE scores in three crop years is estimated to be 45.8%, 45.6% 

and 44.8% respectively. The average is 45%, suggesting that, coffee farms could reduce total 

production costs by 55% without reduction in output level. Hence, holding output level and prices 

constant, farmers can convert these cost savings into significantly improved profit levels.  

Table 2: Cost and environmental efficiency measures 

  N Mean St. dev. Min Max 
Crop year 2012/13    

Technical efficiency (TE) 666 0.627 0.174 0.342 1.000 
Cost efficiency (CE) 666 0.458 0.148 0.071 1.000 

Cost allocative efficiency (CAE) 666 0.731 0.132 0.192 1.000 
Environmental efficiency (NE) 666 0.243 0.112 0.061 1.000 

Nutrient allocative efficiency (NAE) 666 0.388 0.136 0.107 1.000 
Crop year 2013/14    

Technical efficiency (TE) 679 0.625 0.172 0.319 1.000 
Cost efficiency (CE) 679 0.456 0.147 0.130 1.000 

Cost allocative efficiency (CAE) 679 0.732 0.131 0.239 1.000 
Environmental efficiency (NE) 679 0.175 0.091 0.039 1.000 

Nutrient allocative efficiency (NAE) 679 0.279 0.104 0.081 1.000 
Crop year 2014/15    

Technical efficiency (TE) 649 0.642 0.165 0.340 1.000 
Cost efficiency (CE) 649 0.448 0.148 0.144 1.000 

Cost allocative efficiency (CAE) 649 0.697 0.131 0.311 1.000 
Environmental efficiency (NE) 649 0.197 0.102 0.038 1.000 

Nutrient allocative efficiency (NAE) 649 0.307 0.122 0.074 1.000 
  

 Two primary components of cost inefficiency are technical inefficiency and cost allocative 

efficiency. The mean of TE scores for the entire period ranges from 62.5% to 64.2%, indicating the 

potential for a proportionate reduction in the consumption of all five inputs given a constant output. 

The average CAE scores were 73.1%, 73.2%, and 69.7% for the crop years 2012/13, 2013/14 and 
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2014/15 respectively. These results suggest that adjusting the combination of inputs are as important 

as reducing input consumption in terms of cost savings.  

The average NE scores of the three crop years were only 24.3%, 17.5%, and 19.7% 

respectively. This suggests that coffee farmers could successfully use input bundles that contain 

75.3%, 82.5% and 80.3% less eutrophying (i.e. polluting) power of nutrients. In this way, a 

remarkable potential to reduce the impact of nutrient balance on the water and soil environments is 

demonstrated. 

5.3 Analysis of cost savings and reduction in nutrient consumption 

Another main goal of this paper is to estimate cost and nutrient savings if farmers are to reach 

three operational efficiency targets: being technically efficient, being cost efficient, and being 

environmentally efficient. Table 3 summarises the relative changes in total production cost and total 

aggregate nutrient levels for three scenarios for all farms: (1) from the current operational level to a 

technically efficient operation; (2) from the current operation to a cost-efficient operation; (3) from 

the current operation to an environmentally efficient operation. 

Table 3: Cost and environmental performance 

   Original 
cost per 

unit 
output 

(USD/kg)  

Original 
nutrient 
per unit 

output 
(kg/kg) 

Changes in cost and nutrient (%) 

  
Current to 

TE 
 

Current to CE 
 

Current to NE 

Crop year/    
# of farms 

 
Nutrient/     

cost 
change 

 
Cost 

change 
Nutrient 

change 

 
Cost 

change 
Nutrient 

change 
           

2012/13 Mean 1.34 0.83 -37.27  -54.25 2.28  -1.81 -75.74 

n1 = 666 S.D. 0.45 0.46 (55.4)  (-94.9) (0.7)  (-1.2) (-174.6) 

           

2013/14 Mean 1.36 0.84 -37.47  -54.38 16.28  29.40 -82.48 

n2 = 679 S.D. 0.41 0.48 (56.6)  (-96.4) (4.7)  (17.6) (-236.6) 

           

2014/15 Mean 1.41 0.84 -35.80  -55.22 -39.18  21.34 -80.35 

n3 = 649 S.D. 0.42 0.48 (55.2)  (-95.3) (-22.0)  (13.1) (-199.9) 

           

All sample Mean 1.37 0.84 -36.86  -54.61 -6.44  16.35 -79.54 

N = 1,994 S.D. 0.43 0.47 (96.4)  (-165.5) (-3.7)  (16.9) (-335.6) 

Asymptotic t-statistics testing of the null hypothesis of changes in cost or nutrient equal zero are in parentheses   

 

First, the shift to a technically efficient operation, on average, could reduce cost and nutrient 

application by 36.8%, without reducing the coffee output. The average reduction in cost is equivalent 
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to US $0.50 per kg of coffee output, US $2,603 per farm or about US $1,764 per hectare8. This is 

based on the average planting area of farms in the sample which is about 1.55 hectares. The reduction 

in nutrients is equivalent to 0.31 kilograms per kilogram of coffee output or approximately 1,560 kg 

of eutrophying power per farm - 1,031 kg per hectare on average9. There is only a small difference 

across the three crop years. These potential reductions are due to potential improvement in TE: hence 

interventions on how to reduce waste in input consumption is crucial given it can bring substantial 

improvements to both economic and environmental efficiency.                                                                             

The movement from the current operation to the cost-efficient position could reduce the 

production cost by 54.6%, equivalent to, on average, US $3,856 per farm or US $2,547 per hectare. 

Being cost efficient also could reduce total aggregate nutrients by 6.4% on average. While cost 

changes are similar across the three years, changes in total consumption of nutrients associated with 

moving to cost efficient positions in the two latter crop years are higher than that in the first crop year 

(i.e. 2% increase in 2012/13 and 16% in 2013/2014). This means that, by choosing a cost-efficient 

bundle of inputs, farmers were likely to cause more damage to the surrounding environment. 

However, in the last crop year, use of the efficient bundle of inputs could also reduce aggregate 

nutrients by 39% (equivalent to an average of 1,658 kg of eutrophying power per farm and which 

could be released into to the surrounding environment).    

The movement from the current production scenario to an environmentally efficient one could 

reduce the farm’s eutrophying power by an average of 9.5% and would result in a 6.3% increase in 

total production cost. Such a movement would save over 3,000 kilograms of aggregate nutrients per 

farm, while requiring an extra cost of about US $670 per farm. In the last two sampled crop years, 

the results indicate that being more environmentally efficient is costly. The movement from current 

production to the environmentally efficient operation would effect a 75 to 80% nutrient reduction, 

while requiring an increase in production cost of 21.34% in 2014/15, 29.40% in 2013/14 and a 

decrease of 1.81% in 2012/13.                                                       

5.4 Trade-off analysis using group membership information 

Table 4 presents group membership as discussed in Figure 2 and changes in the levels of costs 

and nutrient consumption if all farms in each group are to be cost-efficient or environmentally 

efficient.  

 

8  In the sample, the number of weighted trees per farm is on average 1,482 tree, the average farm area is 1.514 

hectares per farm and average total cost per weighted tree is $4.765 US. Hence, US $2,603 = US $4.765 per weighted 

tree x 1,482 trees x 36.86%, and US $1,719 = 2,603/ 1.514.   

10 The average aggregate nutrients per weighted tree is 2.857 kg.  
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Table 4: Changes in cost and nutrient by different groups of farms 

Group 
Number 
of obs. 

Percentage 
(%) 

Current to CE Current to NE 

% in C % in N % in C % in N 

Group C 732 36.82 -54.81 -36.47 +32.45 -83.45 

Group N 118 5.94 -56.07 +39.96 -18.11 -69.56 

Group T 495 24.90 -49.86 +75.42 +50.47 -73.57 

Group I 643 32.34 -58.11 -44.57 -21.91 -81.94 

Total 1,988 100     
 

Group C accounts for 36.8% of the sample. These farms only face a trade-off when moving 

towards the environmentally efficient point. Thus, farms in this group may choose to move to the 

cost-efficient point (point C in Figure 2) to increase both cost and environmental efficiency. This 

could help reduce production costs by 54.8% and the level of nutrients by 36.5%.  

Group N consist of only 5.9% of the sample. These farms only face a trade-off between cost 

and nutrient consumption when moving to the cost-efficient point. However, if these farms move to 

the environmentally efficient point, they could also reduce their production costs. Thus, farms in this 

group may opt for environmental efficiency, thus decreasing their production costs. By doing so, they 

could save 18.1% of production costs and 69.6% of nutrient consumption. Alternatively, they may 

maintain the same level of nutrients and move to a lower level of production cost along their nutrient 

lines to improve their CE.  

Group I accounts for 32.3% of the sample. This group has great potential to reduce both cost 

and nutrient use, meaning there is no trade-off for farms in this group. This indicates that if farms in 

this group wish to increase CE, they can also gain environmental efficiency. Previous literature also 

evidenced that farmers could find a proper strategy towards replacing chemical fertilisers by use of 

other low nitrogen and phosphorus content fertilisers, i.e., organic fertilisers for enhancing better both 

economic and environmental performance (Paungfoo-Lonhienne et al., 2019). 

Farms in Group T account for 24.9% of the sample. Holding iso-cost C1 and iso-nutrient N1 

lines constant these farms cannot achieve cost efficient operation without increasing environmental 

pollution and vice versa, which suggests a trade-off between being cost efficient and environmentally 

efficient. This type of trade-off can only be relaxed if interventions are to change the relative prices 

of inputs, so that iso-cost and iso-nutrient lines merge. However, each farm does not necessarily face 

a trade-off, for example a farm can move to the iso-quant frontier as shown in Figure 3b within the 

no trade-off region. 

Calculating the cost of getting all farms to be environmentally efficient and the harm to the 

environment of getting all farms to be cost-efficient could be useful, for example in the context of 

policy design. To attain NE, all farms in group C and T representing 61% of the sample, must incur 
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a higher production cost (i.e. 32.4% and 50.5% increases for groups C and T respectively). To achieve 

CE, group N and T farms representing 30% of the sample, must consume more nutrients (39.9% and 

75.4% increases for group N and T respectively).  

In addition to TE improvement, farms in different groups can follow other paths to improve 

cost or environmental efficiency or both. Farms in group C can attain CE and also increase 

environmental performance although they must incur higher costs if they want to be more 

environmentally efficient. This means that farms in group C could be persuaded to reach CE by 

improving TE and CAE. In the same way, farms in group N could be targeted to improve TE and 

NAE so that their focus is on being environmentally efficient. Equally, farms in group I should 

increase TE, then NAE and CAE. Lastly, group T farms should only increase TE while at least 

maintaining the same level of production cost and nutrient consumption. Both group C and group I 

farms could aim at improving cost efficiency as a low-cost strategy, thus achieving a higher impact 

on environmental performance. Additionally, farms from groups N and I could also aim at improving 

environmental efficiency, thus enhancing higher impact on cost performance. This is in line with 

several previous studies, i.e. Danso et al. (2019). 

5.5 The role of the sustainability certification program  

Two primary objectives of certification schemes adopted by sampled farms are promoting 

environmentally friendly practices and enhancing economic viability. Thus, cost and environmental 

efficiency can be used as important indicators of the effect of certification schemes. As often used in 

the empirical efficiency literature, the Wilcoxon test10 was performed to examine the difference in 

the distribution of efficiency scores between the two groups of farms: certified and non-certified11 

Table 5 shows that certified farms outperformed non-certified farms in terms of TE and nutrient 

allocative efficiency, which explains why certified farmers have better cost and nutrient performance. 

These results could imply that certification programs could present both economic benefits to farmers 

and environmental benefits to the wider community. Note that the self-selection issue involving 

whether efficient farms opt to participate in the certification program is not controlled for in this study 

due to lack of data; hence interpretation of the results needs caution.  

 

 

10 It is also known as the Wilcoxon rank sum test which is commonly used in the efficiency literature to test 

differences between distribution of efficiency scores of a group and that of another group (see, for example, Pereira and 

Marques, 2017;  Choi et al., 2015; Asmild and Hougaard, 2006) 

11 Note that economic benefits of having certification can be due to many other factors such as price premiums 

although this lies outside of the scope of the present study. 
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Table 5: Efficiency between certified and non-certified groups 

Efficiency 
measures 

Certified farms  Non-certified farms  Wilcoxon  

n = 1,067   n = 927  Test 

Mean St. dev. Min Max  Mean St. dev. Min Max  (p-value) 

TE 0.649 0.178 0.319 1.000  0.611 0.160 0.341 1.000  0.0000 

CE 0.470 0.151 0.177 1.000  0.435 0.141 0.071 0.937  0.0000 

CAE 0.727 0.125 0.313 1.000  0.713 0.140 0.192 0.970  0.0743 

NE 0.238 0.119 0.052 1.000  0.218 0.095 0.042 1.000  0.0019 

NAE 0.365 0.133 0.100 1.000  0.359 0.127 0.089 1.000  0.5464 

  

Table 6 describes variations in the mean efficiency level between certified and non-certified 

farms over the three crop years. While the TE level increases overtime, cost and nutrient efficiency 

do not exhibit a consistent trend. In the first crop year, certified farms were more cost and 

environmentally efficient than their non-certified counterparts due to higher TE and cost and nutrient 

allocative efficiency. In the second crop year certified farms performed better than non-certified 

farms in terms of CE but mainly due to higher TE. In the last crop year, certified farms have higher 

CE which is mainly driven by cost allocative efficiency (i.e. cheaper combinations of inputs).  

Table 6: Efficiency between certified and non-certified farms over time 

 Certified production  
Non-certified 

production  
Wilcoxon test of certified 
vs non-certified (p-value) 

Crop   
year 

2012/ 
13 

2013/ 
14 

2014/ 
15  

2012/ 
13 

2013/ 
14 

2014/ 
15  

2012/       
13 

2013/       
14 

2014/ 
15 

# of farms 333 377 357  333 302 292     

TE 0.659 0.638 0.651  0.596 0.609 0.632  0.000 0.091 0.158 

CE 0.482 0.469 0.461  0.433 0.440 0.432  0.000 0.041 0.019 

CAE 0.734 0.738 0.708  0.729 0.724 0.683  0.826 0.412 0.023 

NE 0.276 0.210 0.232  0.236 0.194 0.221  0.000 0.255 0.546 

NAE 0.420 0.327 0.356  0.400 0.319 0.354  0.049 0.799 0.696 

 

6 Conclusions, policy implications and future research agenda 

This paper has proposed a more generalised approach to analysing trade-off between cost and 

environmental efficiency in the framework of the materials balance principle. This framework allows 

for differences in the operational objectives and improvement strategies of farmers rather than 

restricting them to follow the conventional pathway of first improving radial TE then improving 

allocative efficiency. Importantly, from an intervention perspective, the classification of farms into 

distinct groups and identification of no trade-off regions in this framework provide analysts with 

useful analytical tools. They can be used to provide valuable insights into what strategies would be 
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more acceptable for individual farmers or farmer groups if interventions are involved in promoting 

sustainable production.  

In our application to coffee farming in Vietnam, our paper shows that it is possible for farmers 

to reduce the consumption of inputs by a significant amount and consequently reduce production 

costs and the release of nutrient amount to the environment by 36.8%. Other words, it is possible to 

generate a savings of US $0.50 per kg coffee output ($2,603 per farm or about $1,764 per hectare) 

and reduce the aggregate nutrient application to 0.31 kilograms per kilogram of coffee output 

(equivalent to 1,560 kg of eutrophying power per farm or 1,031 kg per hectare). Reduction in input 

consumption has larger impacts on cost savings than alternating input combinations but less impacts 

on environmental efficiency than changing the combination of nutrient-containing inputs. 

Our empirical results also show that by striving to be cost-efficient this generates a significant 

saving in production costs but could lead to the consumption of more nutrients for more than 30% of 

surveyed farms (group N and T farms). Opting for the environmentally efficient operation also 

involves higher production costs for more than 60% of farms (group C and T). However, over 32% 

of farms (group I) could move either to cost- efficient or environmentally efficient operations without 

incurring a trade-off. It is shown that every inefficient farm has its own no trade-off region and this 

region allows more flexibility for farmers to opt for better cost and environmental performance 

simultaneously. However, there lacks knowledge about the farmers’ awareness of their trade-off 

situation, and this could lead to farmers using sub-optimal strategies in improving performance. This 

favours further research about farmers perception of their performance. From intervention 

perspective, policies including extension services could still focus on helping these farms to reduce 

the use of inputs and by doing so, both economic and environmental performance can be improved. 

Another notable finding is that cost and environmental efficiency varied across farms, crop-

years, sustainability certification status and regions. Generally, sustainability certified farms could 

perform better than their non-certified counterparts in both economic and environmental aspects. In 

the three sampled crop years, certified farms are found to be more cost-efficient than non-certified 

farms. But certified farms were more environmentally efficient than non-certified farms only in the 

first sampled crop year. Promoting environmentally friendly practices requires the involvement of 

government or better market condition for certified products.  

This empirical study has several limitations. First, panel data collected through the one-off 

surveying method often suffers from potential errors, especially with respect the technical 

information on the nutrient contents of inputs. Second, the DEA technique is not able to capture well 

stochastic data noise. Third, the data on the actual polluting powers of various nutrient components 

are not available at farm (slot) levels, hence caution is needed in interpreting the magnitude of 
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pollution. Future research could help overcome these shortcomings by utilising higher quality data. 

Our proposed approach could be integrated into smart farming or precise farming technologies (i.e., 

Boursianis et al., 2020) so that analysis on environmental and cost efficiency and the trade-offs can 

be analysed on a more regular and automatic manner. Finally, empirical results from this paper 

supports regular benchmarking practices for farms so that trade-off information can be a source of 

information for decision making.  
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