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In this paper we ask how technological differences in manufacturing across countries can
best be modeled when using a standard production function approach. We show that it
is important to allow for differences in technology as measured by differences in parame-
ters. Of similar importance are time-series properties of the data and the role of dynamic
processes, which can be thought of as aspects of technological change. Regarding the
latter we identify both an element that is common across all countries and a part which is
country-specific. The estimator we develop, which we term the Augmented Mean Group
estimator (AMG), is closely related to the Mean Group version of the Pesaran (2006)
Common Correlated Effects estimator. Once we allow for parameter heterogeneity and
the underlying time-series properties of the data we are able to show that the parameter
estimates from the production function are consistent with information on factor shares.

JEL classification: C23, O14, O47
Keywords: Manufacturing Production; Parameter Heterogeneity; Nonstationary Panel
Econometrics

∗We are grateful to Stephen Bond for helpful comments and suggestions. Previous versions of this
paper have been presented at the Gorman Student Research Workshop and the Productivity Workshop,
Department of Economics, University of Oxford. All remaining errors are our own. The first author
gratefully acknowledges financial support from the Economic & Social Research Council (ESRC).

†Correspondence: St. John’s College, Oxford OX1 3JP; markus.eberhardt@economics.ox.ac.uk



Introduction

“As a careful reading of Solow (1956, 1970) makes clear, the stylized facts for which this
model was developed were not interpreted as universal properties for every country in the
world. In contrast, the current literature imposes very strong homogeneity assumptions
on the cross-country growth process as each country is assumed to have an identical [. . . ]
aggregate production function.”
Durlauf, Kourtellos, and Minkin (2001, p.929)

“In some panel data sets like the Penn-World Table, the time series components have
strongly evident nonstationarity, a feature which received virtually no attention in traditional
panel regression analysis.”
Phillips and Moon (2000, p.264)

Why do we observe such dramatic differences in productivity across countries in the
macro data? This question has been central to the empirical investigation of growth
over the past twenty years. As the above quotes indicate the importance of parameter
heterogeneity and variable nonstationarity have not been major concerns in this empirical
investigation. In this paper we argue that many of the puzzles that have been thrown
up by the use of econometric techniques that ignore these issues can be resolved once we
allow for the relevance of both factors in datasets where the time-series dimension is of
importance.

The possibility that technology differences across countries may be an important part of
the growth process has been recognised in both the theoretical and empirical literature.
There is a strand of the ‘new growth’ literature which argues that production functions
differ across countries and seeks to determine the sources of this heterogeneity (Durlauf et
al., 2001). The model by Azariadis and Drazen (1990) can be seen as the ‘grandfather’ for
many of the theoretical attempts to allow for countries to possess different technologies
from each other (and/or at different points in time).1 The empirical implementation of
parameter heterogeneity has primarily occurred in the empirical convergence literature,
with factor parameters initially assumed group-specific (e.g. Durlauf & Johnson, 1995;
Caselli, Esquivel, & Lefort, 1996; Liu & Stengos, 1999) and more recently country-specific
(Durlauf et al., 2001).

In the long-run, macro variable series such as gross output or capital stock often display
high levels of persistence, such that it is not unreasonable to suggest for these series to be
nonstationary processes (Nelson & Plosser, 1982; Granger, 1997; Lee, Pesaran, & Smith,
1997; Canning & Pedroni, 2004; Pedroni, 2007).2 In addition, a number of empirical pa-
pers report nonstationary evolvement of Total Factor Productivity, whether analysed at
the economy (Coe & Helpman, 1995; Kao, Chiang, & Chen, 1999; Bond, Leblebicioglu,
& Schiantarelli, 2004) or the sectoral level (Bernard & Jones, 1996; Funk & Strauss, 2003).

1Further examples of theoretical papers on factor parameter heterogeneity in the production function
are Murphy, Shleifer, and Vishny (1989), Durlauf (1993) and Banerjee and Newman (1993).

2Although economic time-series in practice are usually not precisely integrated of any given order, it
is for our purposes sufficient to assume that real value series typically behave as I(1) (Hendry, 1995).
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As a result, any macro production function is likely to contain data for at least some
countries with nonstationary observables and/or TFP processes. In a time-series model,
regressing nonstationary output on nonstationary input variables and processes in a linear
model is a valid estimation strategy if and only if the regression error terms turn out
to be stationary I(0), i.e. in the presence of a cointegrating relationship between inputs
and output. If this is not the case, regression estimates will be spurious (Granger &
Newbold, 1974). For the macro production function to make econometric sense in the
context of nonstationary variables it must be seen as representing a cointegrating rela-
tionship between output and ‘some set of inputs’ (Canning & Pedroni, 2004; Pedroni,
2007). This relationship could apply to all countries in the same way, implying that all
economies had the same long-run equilibrium trajectory and thus production technol-
ogy. Alternatively, each country could follow a different long-run trajectory, equivalent
to factor parameter heterogeneity across countries. If country variable series are station-
ary the problem of noncointegration and spurious results does not arise. In practice, we
are likely to be confronted with a mixture of countries in terms of the time-series prop-
erties of their variable series, and the empirical implementation will need to recognise this.

In the next section we set out a model which is sufficiently general to encompass both these
concerns. Section two discusses the empirical implementation of this general framework,
presenting a number of standard and novel estimation strategies. In section three we
apply our model to an unbalanced panel dataset for manufacturing (UNIDO, 2004) to
estimate production functions for 38 countries over the period from 1970 to 2002. We
have chosen a sectoral data set as once we can show that parameter heterogeneity matters
at this level of aggregation the expectation is that these issues will matter even more for
aggregate economy analysis. Section four concludes.
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1 A general empirical framework for cross-country

production analysis

This section introduces a general empirical specification and comments on the insights
gained from macro factor income share data for production function parameter estimates.
We assume panel data for N countries, with a time-series dimension T which may vary
across countries (unbalanced panel). For the empirical production function let

Oit = αi Lit + βi Kit + γi Mit + A0,i + µit + uit (1)

uit = ρi ui,t−1 + εit (2)

for i = 1, . . . , N ; t = 1, . . . , T . O represents gross output, L labour force, K capital stock
and M material inputs (all in logarithms). These represent the observable variables of
the model, while country-specific TFP level A0,i and its evolvement µit are not observed.
This framework can represent N country equations, or a single pooled equation.
Much of the microeconometric literature on production functions adopts gross-output
based models (Basu & Fernald, 1995), but at the macro level, specification using value-
added (Y in logs) as dependent variable are more common:

Yit = αva
i Lit + βva

i Kit + Ava
0,i + µva

it + uit (3)

The error structure remains as in equation (2). Our notation in (3) indicates that para-
meter values and interpretation will differ between a value-added based and gross-output
based empirical specification, but under certain assumptions we can transform results to
make them directly comparable.3

We maintain the following assumptions for the general production function model and
the data it is applied to:

A.1 The parameters αi, βi, γi, ρi are random coefficients (scalar), µit is a random vector
(dto. for the equivalents in the VA specification). All of them have individual means
and finite variances. Most generally, we can specify TFP evolvement µit to have a
country-specific as well as a common element: µit ≡ [µ1

it + µ2
t ].

A.2 Error terms εit ∼ N(0, σ2).

A.3 Observable inputs Xit = {Lit, Kit, Mit}, output Oit (Yit) and µit are not a priori

assumed to be stationary I(0) variables/processes.

In econometric terms, this allows for factor parameter heterogeneity across countries,
country fixed effects (A0,i), and dynamic evolvement (TFP ‘growth’) which is either
country-specific (µit) or globally common (µit ≡ µt ∀ i) or both (µit ≡ [µ1

it + µ2
t ]∀ i). This

evolvement is not constrained to linearity, and may be nonstationary. The error specifi-
cation in (2) allows for two cases, ρi < 1 and ρi = 1. If variable series are nonstationary,

3If we assume constancy of the material-output ratio, then results are directly comparable (Söderbom
& Teal, 2004). In our notation: βva

i = βi/(1 − γi) and in analogy for αva
i .
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these correspond to equation (1) cointegrating and not cointegrating for each country i,
respectively. Similarly for the VA production function in (3). Thus our empirical frame-
work provides maximum flexibility with regards to time-series properties of the variable
series investigated.

In economic terms, the above frameworks in (1) and (3) are as general as possible, allow-
ing for individual countries to possess idiosyncratic production technologies with regard
to factor parameters, TFP levels and TFP evolvement. This specification allows for com-
mon and/or country-specific evolvement (µit ≡ [µ1

it + µ2
t ]).

Conducting empirical growth analysis has an advantage over many other empirical exer-
cises, in that we already know parts of the answers we are seeking: the values for αva and
βva in the above value-added based production function (3) should be equal to the labour
and capital shares in income. Macroeconomic data for labour are available through the
aggregate data on wages and welfare payments to labour. Whilst country data shows
high persistence over time, there is considerable variation in the factor shares across

countries, with labour share ranging from 5% to 80% of aggregate value-added (from UN
(2004) national accounts data). Gollin (2002) attributes this to the mismeasurement of
labour income in small firms, which is particularly the case in Less Developed Countries
(LDCs), and concludes that adjusted labour shares are in a range of 65% to 80% in the
majority of countries. Thus, while we would expect some variation in factor shares in in-
come across countries, cross-country average capital shares should be around .3 and labour

shares around .7 of value-added. These averages will act as benchmarks of comparison
for the consistency of our technology estimates with factor shares.

2 Empirical implementation of a cross-country macro

production function model

We assume an unbalanced panel dataset where some countries display nonstationary
processes in inputs and output while others do not. First we discuss the investigation
of variable time-series properties; the following sections present various empirical imple-
mentations in the pooled regression and averaged country-regression case respectively.
We focus on the gross-output specification to save space — the exposition applies equally
to the value-added framework.

2.1 Investigation of variable time-series properties

A panel where the time-series dimension T is reasonably long opens up the opportunity to
use both country-specific tests from the time-series literature as well as panel-based tests.4

Time series unit root and cointegration tests can suffer from weak power given short T ,

4See Choi (2007), Breitung and Pesaran (2005) or Smith and Fuertes (2004, 2007) for a discussion of
the latter.
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while panel tests cannot shake off an inherent difficulty of interpretation (Maddala, 1999),
whereby the null of nonstationarity for all countries is contrasted with an alternative that
at least one country is stationary. Further, test results are often highly sensitive to the
number of lags (of the differenced dependent variable) included.
We adopt estimation methods which are robust to the potential for nonstationarity and
cointegration within some, but not all, countries in the panel. This approach is less
dependent on crucial assumptions about the data which are difficult to test.

2.2 Pooled estimation approach

2.2.1 Pooled estimators in levels

A standard starting point for empirical analysis are the pooled OLS Θ̂POLS and Fixed

Effects Θ̂FE estimators.5 The latter can be implemented either via LSDV or variables
in deviations from countries’ period means (X̃it = Xit − T−1

∑

t Xit, henceforth: mean-
deviations). Under the assumption of variable stationarity this provides estimates of
parameter averages across countries, the average of country-specific TFP evolvements
over time, and (in the Fixed Effects case) country-specific TFP levels. The regression
equation for these two approaches is

Oit = πL Lit + πK Kit + πM Mit + π0

{

+
N

∑

i=2

π0,i

}

+
T

∑

t=2

πtDt (4)

where we have homogeneous factor parameters πL, πK , πM corresponding to the fac-
tors labour, capital and materials (L, K, M respectively, all in logs), a vector of (T − 1)
year dummies D with corresponding parameters πt, and in the FE case N intercepts π0,i.

6

Building on the principal component analysis approach adopted in Coakley, Fuertes, and
Smith (2002), the Common Correlated Effects estimator Θ̂CCE developed by Pesaran
(2006) accounts for a common dynamic process and cross-sectional dependence in the
panel by including cross-section averages of all observable variables in the regression
equation. An extension by Kapetanios, Pesaran, and Yamagata (2006) shows that this
approach is robust to the unobserved common factor(s) being nonstationary I(1).
The pooled OLS and Fixed Effects versions of the estimator, Θ̂CCEP and Θ̂CCEFE, are
easily adapted from equation (4) using cross-section averages (denoted by bars)

Oit = πL Lit + πK Kit + πM Mit + π0

{

+
N

∑

i=2

π0,i

}

(5)

+πŌ Ōt + πL̄ L̄t + πK̄ K̄t + πM̄ M̄t

where in the CCEP case we have a single intercept π0 ∀ i, whereas in the CCEPFE case
we have N intercepts π0,i. The second line represents the cross-section averages at time t

5In the following we use Θ = {α, β, γ, . . .} to represent all model parameters.
6For POLS there is a single intercept π0 ∀ i.
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for each of the variables (X̄t = N−1
∑

i Xit).
7 Regression estimates for πL, πK , πM from

these two estimators are identical to those from a pooled OLS and FE estimations with
(T − 1) year dummies, respectively.

Either of these approaches using a pooled specification in levels neglects any influence of
variable time-series properties on the consistency of the estimates. Once (some) variable
series are nonstationary and factor parameters differ across countries the pooled regression
by construction leads to nonstationary error terms if the factor inputs are nonstationary,
since they contain (one or more of)

(αi − πL) Lit (βi − πK) Kit (γi − πM) Mit (µit − πt) (6)

where αi, βi, γi and µit are the ‘true’ country-specific parameters. Each of the four terms
in equation (6) is a linear combination of a (potentially) nonstationary variable/process
and thus will (potentially) be nonstationary itself. Under standard assumptions the
nonstationarity in the error terms leads to the breakdown of the cointegrating relationship
and manifests itself in spurious regression results, regardless of the number of time-series
observations (Engle & Granger, 1987). Given the breakdown of cointegration in the
presence of nonstationary error terms, we would expect any pooled panel estimation to
yield spurious results if variables were nonstationary and parameters heterogeneous across
countries.8

We have thus shown that in the presence of nonstationarity in the variable series for
some countries, pooling across countries with heterogeneous production technology leads
to spurious regression results.

2.2.2 Pooled estimators in first differences

The guiding principle for this approach is expressed by Smith and Fuertes (2004, p.40,
change of notation for consistency):

“. . . if it is known that ρi = 1 [errors are I(1)] in most cases the sensible procedure would be
to use first differenced data which will produce

√
T -consistent (individual OLS) estimates of

Θi and
√

NT -consistent (pooled OLS) estimates of a common Θ or mean of Θi.”

As we showed above the pooled model(s) in (4) have nonstationary error terms by
construction if the regressors are nonstationary and the production process differs across
countries. Simply differencing the model equation renders all elements stationary, such

7Note that if we include one (OLS) or N (FE) intercepts, it is necessary to set the cross-section
averages for the base year to zero. In an unbalanced panel, with different base years across countries it
may be preferable to transform all variables into mean-deviations.

8A recent development in econometric theory implies that this conclusion needs qualification. Phillips
and Moon (1999, p.1091) show that pooled regressions of level equations with I(1) errors will yield
consistent estimates of “interesting long-run relations” between input variables and output provided
N, T are large enough and N/T → 0 (see also Kao, 1999; Phillips & Moon, 2000; Smith & Fuertes,
2004). When the latter condition is violated, the spurious regression bias can dominate and the pooled
regression results remain distorted. Arguably, in the context of cross-country development analysis, the
condition N/T → 0 is hardly ever likely to hold, such that the Phillips and Moon (1999) result does not
affect the bias in the pooled production function regression.
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that we can apply OLS to compute Θ̂∆OLS, an estimate of the unweighted mean of the
country cointegrating coefficients (Smith & Fuertes, 2004). If sample country variables
represent a mix of stationary and nonstationary series, then using first differences OLS
represents a loss of information for those level series already stationary. However, this
situation contrasts with much more serious problems if variable series remain in levels
but actually evolve in a nonstationary fashion.

Common TFP evolvement can be implemented in the first difference equation via a set of
(T −1) year dummies. The underlying TFP evolvement in levels can be either stationary
or nonstationary. At the same time, the set of year dummies also captures country-specific

TFP evolvement, be it stationary or nonstationary. The pooled regression equation in
first difference is

∆Oit = πL ∆Lit + πK ∆Kit + πM ∆Mit +
T

∑

t=2

πt ∆ Dt (7)

where we have (T −1) year dummies D in first difference9 with corresponding parameter
vector πt, and factor parameters πL, πK , πM . The emphasis of this estimation approach
is by design on common or average TFP growth across countries. Note that the inclusion
of year dummies is widespread in the econometric analysis of micro-panels, whereas in
macro-panels researchers prefer to take the data in deviation from cross-section means to
account for common processes. The latter transformation is however only equivalent if
variables are stationary and technology is homogeneous across countries (Pedroni, 1999,
2000; Smith & Fuertes, 2007).

In practice the estimator in equation (7) yields identical results to the first difference
CCEP estimator Θ̂∆CCEP , which we develop a in analogy to the Pesaran (2006) CCEP
estimators in levels:

∆ Oit = πL ∆Lit + πK ∆Kit + πM ∆Mit (8)

+πŌ Ōt + πL̄ L̄t + πK̄ K̄t + πM̄ M̄t

where the second line represents the cross-section averages at time t for each of the vari-
ables in first difference (X̄t = N−1

∑

i ∆Xit). The estimates for πL, πK , πM will be the
same as those from the first difference approach with year dummies, which suggests that
the inclusion of year dummies in equation (7) relaxes the assumption of cross-sectional
independence of the variables in standard panel estimation.

9The advantage of using first differenced dummies is that the associated parameter vector πt describes
a level evolvement over time t, whereas parameter estimates on standard level dummies in a growth
regression provide a vector of year-on-year growth rates.
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2.3 Averaging of country-specific estimates

2.3.1 The Mean Group and Swamy RCM estimators in levels

Pesaran and Smith (1995) introduce the Mean Group (MG) estimator Θ̂MG for the study
of stationary panels. This constructs simple mean estimates (Θ̂MG = N−1

∑

i Θ̂i) across
the respective parameter estimates derived from N separate country regressions

Oit = πL,iLit + πK,iKit + πM,iMit + π0,i + πit (9)

where π0,i and πi represent country-specific TFP level and growth rate, and the subscript i
indicates that all parameters can vary across countries by construction.

In a nonstationary panel this estimator represents an unweighted average of estimated
cointegrating coefficients and thus requires the existence of a cointegrating relationship
within each country (Phillips & Moon, 2000). In the case of heterogeneous cointegra-
tion, the individual Θi is estimated consistently in the time-series regression as T → ∞.
Subsequent averaging over N provides a T

√
N -consistent estimate of the mean of the

cointegrating relations across countries (Smith & Fuertes, 2007).
The validity of this statement hinges on each country regression correctly specifying the
cointegrating relationship. With reference to cross-country production function estima-
tion, we need to stress that correct specification of the TFP evolvement in each country
regression is a crucial requirement for the MG estimator to provide an unbiased mean
estimate: since TFP evolvement is potentially nonstationary (Lee et al., 1997; Bond et
al., 2004), its misspecification will lead to noncointegration in the individual country re-
gression, and thus to biased MG estimates.
The most general estimation approach would be the inclusion of sets of year dummies in
each country regression, thus allowing for idiosyncratic nonlinear TFP evolution. Given
the dimensionality problem in the individual country regression, this is of course not
possible. The inclusion of a linear trend in each country regression to capture TFP
evolvement saves on degrees of freedom, but leads to noncointegration if the ‘true’ TFP
process is nonstationary.10

Thus the MG estimator can only provide a consistent estimate of the average cointegrat-
ing relationship across countries if the (idiosyncratic and/or common) TFP evolvement is
modeled correctly and countries cointegrate heterogeneously. If TFP evolvement is non-
stationary and common to all countries, we cannot detect it using country regressions.
In this case the country regression is misspecified and contains nonstationary errors, thus
leading to noncointegration and biased MG estimates.

10The transformation of variables into deviations from the cross-section mean at time t (henceforth:
‘demeaning’) is sometimes raised as equivalent to year dummies in accounting for common dynamic
processes, with particular reference to the MG estimator (Lee et al., 1997). This transformation is
however only equivalent to year dummies if all parameter coefficients are homogeneous across countries
Pedroni (2000) — otherwise, using data in deviations from the cross-sectional mean adds new (nonsta-
tionary) error terms in a pooled regression (Coakley, Fuertes, & Smith, 2006).
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A closely related estimator which provides a variation on the averaging of country esti-
mates is the Swamy Random Coefficients Model (RCM) estimator Θ̂RCM . This represents
a feasible GLS estimator, which is equivalent to using a weighted average of the individual
OLS country estimates (Swamy, 1970) — the weights are measures of precision of the
individual county estimate. The conditions for the MG estimator to produce consistent
results also apply to the Swamy RCM estimator.

2.3.2 The Mean Group and Swamy RCM estimators in first differences

We can provide a variation on the Mean Group estimator by transforming the levels model
in equation (9) into a model in first differences. This yields N regression equations

∆ Oit = πL,i∆ Lit + πK,i∆ Kit + πM,i∆ Mit + πi (10)

where πi is a country-specific drift term and the subscript i indicates that all parameters
can vary across countries by construction. The First Difference Mean Group estimator
Θ̂∆MG is a simple average of the country estimates, like in the levels case.

In contrast to the specification in levels in (9) we do not require the cointegrating relation-
ship to be correctly specified in this model: since all variables and processes are in first
differences, the error terms will be stationary by construction. Like in the levels model,
this approach views each country i in isolation, neglecting any common dynamic effects
across countries (common ‘TFP’) and/or cross-sectional dependence. Further, it discards
information about the long-run which is contained in the levels series and reduces the
precision of country estimates if variable series in levels are already stationary — as can be
assumed for some countries in a ‘diverse’ panel from developing and developed countries.
The argument extends to the First Difference Swamy estimator Θ̂∆RCM .

2.3.3 Accounting for common effects in the levels specification

In the presence of nonstationary variables, it is crucial for both the MG and Swamy RCM
estimators that individual country equations cointegrate. We propose that by making
use of an earlier result from the pooled regression in first differences we can include ad-
ditional information in the country regression: the TFP evolvement across all countries
obtained from the year dummies (henceforth: ‘common dynamic process’) can be argued
to represent an average of the country-specific nonstationary processes omitted from the
estimation model. An alternative justification for the inclusion of the common dynamic
process in each country regression is the assumption that some TFP evolvement may be
common to all countries (e.g. non-rival knowledge). In the following we remain agnostic
about the true nature of this process. The assumptions of this approach imply that the
common dynamic process is part of the cointegrating relationship (Pedroni, 2007).
In addition, we can account for any stationary variables omitted from the country re-
gression by including a linear trend term: if omitted variables evolve relatively smoothly
over time, the trend term will pick up this evolution. If any omitted variables are con-
stant over time, their impact will be captured by the intercept term. This implies that

9



our Augmented Mean Group (AMG) estimator Θ̂AMG is suited for use in panels with
a mixture of countries with stationary and nonstationary variable series. It allows for
country-specific TFP levels and flexible TFP evolution over time and across countries.11

Formally, stage one is as described in equation (7) — the vector of year dummy estimates
πt represents the common dynamic process (henceforth: µ̂•

t ). For the second stage re-
gression we have two options: we can include µ̂•

t as an additional regressor in the country
regression, or we can subtract the common dynamic process from the dependent variable,
which imposes the common process on each country with a unit coefficient.12 Here we
specify N country regressions in which we adopted the latter implementation

{Oit − µ̂•
t} = πL,i Lit + πK,i Kit + πM,i Mit + π0,i + πit (11)

where π0,i is the country intercept and πi is the country-specific parameter on a linear
trend t. Subsequently we average across the N country estimates as in the MG case.
If the panel is made up of a mixture of some countries with stationary and others with
nonstationary variable series, the AMG estimator arguably will yield unbiased country
estimates since the augmented country equations are seen as cointegrating relations of
nonstationary variables or as relations of stationary variables. The argument extends to
the Augmented Swamy RCM estimator Θ̂ARCM .

The Mean Group version of the Common Correlated Effects (CCEMG) estimator Θ̂CCEMG

similarly accounts for one or more unobserved common factor(s) and cross-sectional de-
pendence in the panel by including cross-section averages of all variables in the individual
country regression. Resulting country parameter estimates are then averaged across the
sample as in the standard MG case. The omitted common ‘factor(s)’ (in a principal
component analysis sense) can be nonstationary processes, and can have differential im-
pact on individual countries. The N CCE country regression equations in levels are

Oit = πL,i Lit + πK,i Kit + πM,i Mit + π0,i + πit (12)

+πŌ,i Ōt + πL̄,i L̄t + πK̄,i K̄t + πM̄,i M̄t

where the second line represents the cross-section averages at time t for each variable
(X̄t = N−1

∑

i Xit). Averaging across country coefficients yields the CCEMG estimates.

11An alternative econometric approach by Pedroni (2000), as applied in Pedroni (2007), makes use of
the nonstationarity and cointegration properties of the data and averages country regressions estimated
using Fully-Modified OLS (FMOLS). This procedure requires that all country variable series are non-
stationary and cointegrated. The empirical strategy is thus to select a sample to suit the requirements
of the estimation method since otherwise the desirable properties of the Pedroni (2000) estimator (prime
amongst these superconsistency) cannot be assumed to hold. This is in contrast to the approach taken in
the AMG, ARCM and CCEMG estimators, which are hypothesised to apply to ‘mixed’ panels of country
data where some, but not all, countries display variable nonstationarity. The latter estimators also allow
for cross-section dependence in the panel and a common TFP evolvement to impact country production.

12The former implies µ̂•
t represents common TFP evolvement available to, but not necessarily adopted

by each country, or a proxy for nonstationary variable(s) omitted from the model. The latter implies the
existence of a global TFP process (e.g. non-rival knowledge) which affects all countries equally.
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In comparison to the AMG approach, the CCEMG estimator is relatively data-intensive,
since the inclusion of the averages in each country regression reduces the number of de-
grees of freedom considerably. In relatively short country time-series this could lead to
loss of precision in the country estimates.

In the context of nonstationary country variable series, each country equation in the
models in (11) and (12) cointegrates if the unobserved common TFP evolvement is part
of the cointegrating vector (Pedroni, 2007). We have added a country-specific linear
trend to capture stationary processes omitted from the regression specification. If some
omitted variables evolve relatively smoothly over time, the trend term πi will pick up this
evolution. The AMG, ARCM and CCEMG estimators further allow for cross-sectional
dependence in the panel.
With reference to the general empirical framework we introduced in equation (1), the
Θ̂AMG, Θ̂ARCM and Θ̂CCEMG estimators augmented with a country trend allow for

(i) heterogeneous factor parameters,
(ii) TFP evolution which is common and/or country-specific,
(iii) nonstationary evolvement of all variables and processes, and
(iv) cross-section dependence in the panel.

2.3.4 Accounting for common effects in the specification in first differences

Similar to applying µ̂•
t in the country equations in levels, we can use ∆µ̂•

t in the country
equations in first difference. For the option where we impose this common process with
a unit coefficient we get N country equations

{∆Oit − ∆µ̂•
t} = πL,i ∆Lit + πK,i ∆Kit + πM,i ∆Mit + πi (13)

where πi is a country-specific drift term to capture other omitted variables. All variables
and processes, including ∆µ̂•

t , are stationary by construction. The simple average of the
country coefficients yields the First Difference AMG estimator Θ̂∆AMG. Similarly for the
First Difference Augmented Swamy RCM estimator Θ̂∆ARCM .
In analogy to the treatment in levels, we can construct the N CCE country regressions
in first difference for the Θ̂∆CCEMG estimator

∆ Oit = πL,i ∆Lit + πK,i ∆Kit + πM,i ∆Mit + πi (14)

+πŌ,i Ōt + πL̄,i L̄t + πK̄,i K̄t + πM̄,i M̄t

where X̄t = N−1
∑

i ∆Xit. These averages capture cross-section dependence in the panel
as well as common factors, whereas πi captures country-specific omitted variables. All
variables are stationary by construction.

These estimators allow for parameter heterogeneity as well as common and country-
specific TFP processes, while addressing the nonstationarity issue. Differencing however
discards long-run information, which may impact the precision of their estimates.
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3 Empirical results

3.1 Data

For our empirical analysis we use aggregate sectoral data for manufacturing from devel-
oped and developing countries for 1970 to 2002 (UNIDO, 2004). Following data con-
struction and cleaning our sample represents an unbalanced panel of 38 countries with an
average of 23 time-series observations (n=872 observations).13 For a detailed discussion
and descriptive statistics see Appendix A. Note that all of the results presented are ro-
bust to the use of the data constructed without application of the cleaning rules — this
‘raw’ sample has almost 1,200 observations for 48 countries.

3.2 Time-series properties of the data

We carry out a number of unit root tests, including simple AR(1) regressions, country-
specific time-series tests (ADF, KPSS) and panel unit root tests of the first and second
generation (Breitung & Pesaran, 2005) — see section B in the appendix. Ultimately,
in case of the present data dimensions and characteristics, and given all the problems
and caveats of individual country unit root tests as well as panel unit root tests, we can
conclude most conservatively that nonstationarity cannot be ruled out in this dataset.
Investigation of the time-series properties of the data was not intended to select a subset
of countries which we can be reasonably certain display nonstationary variable series as
in Pedroni (2007); instead, our aim was to indicate that the sample is likely to be made
up of a mixture of some countries with stationary and and others with nonstationary
variable series.

3.3 Pooled regressions

We estimate pooled models with variables in levels or first difference, including (T − 1)
year dummies or period-averages as in Pesaran (2006) to identify what we term the com-
mon dynamic process. The slope coefficients on the factor inputs and the year dummies
are restricted to be identical across all countries.
Our results presented in Table 1 are for the following estimators: for the data in levels
[1] the pooled OLS estimator (POLS), and [2] the Pesaran (2006) common correlated
effects estimator in its pooled version (CCEP). For both models we also estimate versions
allowing for country fixed effects: [3] FE and [4] CCEPFE. For the data in first difference
we run [5] OLS (∆OLS), and [6] the equivalent CCE estimator (∆CCEP).
The POLS results in column [1] indicate that leaving out country-specific intercepts yields
severely biased results. Implied capital coefficients in the FE model in [3] are surpris-
ingly even further inflated. The fixed effects are highly significant (F (37, 799) = 133.3,
p = .00), which confirms heterogeneous TFP levels. Residual tests following Arellano and
Bond (1991) show autocorrelation or unit roots in the errors for both sets of estimates.

13Empirical analysis is carried out using STATA versions 9 and 10.
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The OLS estimation in first difference in column [5] implies a VA-equivalent capital coef-
ficient of around .3, thus in line with the observed macro data on factor share in income.
The AR(1) test indicates first order serial correlation, which is to be expected given that
errors are now in first differences, but no higher order autocorrelation. The first differ-
ence model in [5] does not reject constant returns to scale, contrary to all models in levels.

Table 1: Pooled regressions (unrestricted returns to scale)

Pooled regression specification♮

dependent variable: log output (lO) in [1]-[4], ∆log output in [5] & [6]

[1] [2] [3] [4] [5] [6]
regressors† POLS CCEP∗ FE∗∗ CCEPFE ∆OLS ∆CCEP

log labour (α̂) .0169 .0169 .0957 .0957 .1498 .1498
t-stat (2.70) (2.74) (8.44) (8.58) (3.43) (3.49)

log capital (β̂) .0333 .0333 .2074 .2074 .0603 .0603
t-stat (2.96) (3.01) (17.27) (17.56) (1.77) (1.80)

log materials (γ̂) .9566 .9566 .7377 .7377 .8074 .8074
t-stat (69.45) (70.61) (55.81) (56.73) (26.52) (26.99)

intercept .4565
t-stat (8.86)

period-average lO 1.000 1.000 1.000
t-stat (3.07) (5.77) (6.41)

period-average lL -.0169 -.0957 -.1498
t-stat (0.31) (1.84) (2.23)

period-average lK -.0333 -.2074 -.0603
t-stat (0.36) (3.77) (1.09)

period-average lM -.9566 -.7377 -.8074
t-stat (3.14) (6.02) (6.67)

sum of coeff. 1.01 1.01 1.04 1.04 1.02 1.02
F -Test for CRS (p) 6.5 (.02) 6.7 (.01) 34.3 (.00) 34.5 (.00) 0.4 (.53) 0.4 (.53)

labour coeff. (VA)‡ .390 .390 .365 .365 .778 .778
t-stat (3.15) (3.20) (9.45) (9.60) (4.51) (4.59)

capital coeff. (VA)‡ .767 .767 .791 .791 .313 .313
t-stat (9.17) (9.32) (29.24) (29.72) (1.68) (1.71)

obs (countries) 872 (38) 872 (38) 872 (38) 872 (38) 807 (38) 807 (38)

Arellano-Bond Serial Correlation Test, H0: no serial correlation in the residuals

AR(1) (p) 16.0 (.00) 16.0 (.00) 11.2 (.00) 11.3 (.00) -3.8 (.00) -3.8 (.00)
AR(2) (p) 16.0 (.00) 16.0 (.00) 7.6 (.00) 7.6 (.00) -0.8 (.42) -0.8 (.42)

♮ Values in parentheses are absolute t-statistics. [1], [3], and [5] include (T − 1) year dummies.
† For columns [5] & [6] all variables are in first differences. The CCE estimators include cross-section
period averages of output (lO), labour (lL), capital stock (lK) and materials (lM), all in logs.
∗ Note the missing intercept term: we can include this if we set the cross-section averages for the base
year 1970 to zero. In either case the factor parameters are identical to those in column [1].
∗∗ Implemented via manual ‘within’ transformation and a full set of year dummies (Bond et al., 2004).
‡ These are derived as αva = α/(1 − γ) for labour, in analogy for capital (Söderbom & Teal, 2004). In
practice we computed them using the nlcom command in STATA.

The Pesaran (2006) CCEP estimator provides for some interesting insights: firstly, as
expected the coefficients in columns [2], [4] and [6] are identical to the corresponding
pooled regressions with year dummies. Secondly, the coefficients on the cross-section av-
erages of variables follow a particular pattern, ‘mirroring’ coefficients on labour, capital
and materials, with a unit parameter on log output14 — in the following we do not report
estimates for the period-averages.

14This makes sense: we are regressing log output for country i at time t on the period average of all
countries at time t, where the latter also contains the value for country i
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We obtain identical results for models in [1], [3], and [5] if we use data in deviation from
the cross-sectional mean instead of using a set of year dummies (results not presented).15

Under intercept and factor parameter heterogeneity, given nonstationarity in (some of)
the country variable series, the pooled levels estimators yield spurious results. Estimates
of around .8 (VA-equivalent) suggest that this is the case in our models [1]-[4].16

In the same econometric setup, the difference estimators converges to the mean of the
individual country cointegrating relations, E(Θi), at speed

√
TN (Smith & Fuertes, 2004).

Given that the preferred model in first differences does not reject constant returns to
scale (CRS), we impose this on all models — given that we are investigating a ‘global’
production function, the assumption of constant returns should be far from controversial.
Table 2 presents these results.

Table 2: Pooled regressions (restricted returns to scale)

Pooled regressions (CRS imposed)♮

dependent variable: log output per worker (lo) in [1]-[4], ∆log output per worker [5] & [6]

[1] [2] [3] [4] [5] [6]
regressors† POLS CCEP FE∗ CCEPFE ∆OLS ∆CCEP

log capital/worker (β̂) .0342 .0342 .1946 .1946 .0451 .0451
t-stat (3.08) (3.13) (15.97) (16.24) (1.42) (1.42)

log materials/worker (γ̂) .9579 .9579 .7531 .7531 .8074 .8074
t-stat (71.29) (72.51) (55.78) (56.74) (26.44) (26.93)

intercept .5191
t-stat (10.56)

We do not report the coefficients for the period averages in [2], [4] and [6] to save space.

capital coeff. (VA)‡ .812 .812 .788 .788 .233 .234
t-stat (9.92) (10.01) (26.15) (26.60) (1.40) (1.42)

obs (countries) 872 (38) 872 (38) 872 (38) 872 (38) 807 (38) 807 (38)

Arellano-Bond Serial Correlation Test, H0: no serial correlation in the residuals

AR(1) (p) 16.7 (.00) 16.7 (.00) 10.7 (.00) 10.8 (.00) -3.7 (.00) -3.7 (.00)
AR(2) (p) 16.7 (.00) 16.7 (.00) 7.8 (.00) 7.8 (.00) -0.8 (.44) -0.8 (.44)

See Table 1 for all notes and additional information.

Imposition of CRS alters the results to an extent, although our preferred estimator in
[5] still has capital and materials coefficients within the 95% confidence intervals of the
unrestricted equation. The capital coefficient is now somewhat lower at .05, just outside
the 10% level of statistical significance. The VA-equivalent capital coefficient for this
model is reduced to .23. The imprecision might arise from the fact that the capital
coefficient in a gross-output based model is relatively modest, below .1, which may make
it more difficult to distinguish statistically from zero. If we regress growth in value-added
per worker on growth in capital per worker and a set of year dummies we obtain a capital
coefficient of .328 (t = 3.17). The VA-based models (see Table C-1 in the appendix)
replicate the patterns of results in Tables 1 and 2.

15Replacing year dummies with cross-sectionally demeaned data is only valid if parameters are homo-
geneous across countries (Pedroni, 1999, 2000) — in the pooled regressions we force this homogeneity
onto the data, such that identical results are to be expected.

16Note that t-values are invalid for the estimations in levels if error terms are nonstationary (Coakley,
Fuertes, & Smith, 2001; Kao, 1999), i.e. potentially for all models [1]-[4].
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Our pooled regression analysis suggests that time-series properties of the data play an
important role in estimation: the levels regressions, where some country variable series
may be I(1), yield VA-equivalent capital coefficients of around .8. We suggest that the
bias is the result of nonstationary errors, which are introduced into the pooled equation
by the imposition of parameter homogeneity on heterogeneous country equations. In
contrast, the regressions where variables are in first difference and thus stationary have
yielded capital parameters broadly consistent with factor shares. This pattern of results
fits the case of level series being I(1) in at least some of the countries in our sample.

3.4 Country regressions

We now relax the assumption that all countries possess the same production technology,
and allow for country-specific slope coefficients on factor inputs. At the same time, we
maintain that a common dynamic process and/or cross-sectional dependence have to be
accounted for in some fashion.

3.4.1 Accounting for common TFP evolvement

Following our discussion above, the ∆OLS regression represents the only pooled model
which estimates a cross-country average relationship safe from difficulties introduced by

nonstationarity. We therefore make use of the year dummy coefficients derived from
our preferred pooled regressions (∆OLS, column [5] in Table 2 for the restricted model
with CRS imposed, and in Table 1 for the model with unrestricted returns to scale,
respectively) to obtain what we term the ‘common dynamic process’ µ̂•

t . Figure 1
illustrates the evolvement paths of the common dynamic process for these two gross-
output based specifications.17

Figure 1: Evolvement of the ‘common dynamic process’ µ̂•
t
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17A VA-equivalent path scales the year dummies by 1/(1 − γ̂) to account for material inputs. The
resulting TFP evolvement path is very similar to that derived from a VA specification (not presented).
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The graphs show severe slumps following the two oil shocks in the 1970s, while the
1980s and 1990s indicate considerable upward movement.18 We favour the ‘measure
of ignorance’ (Abramowitz, 1956) interpretation of TFP, such that a decline in global
manufacturing TFP as evidenced in the 1970s should not be interpreted as a decline in
knowledge, but a worsening of the global manufacturing environment.

Each country regression equation in levels can be augmented with this common process.
In practice, we have a choice over the way in which we model the common dynamic
process to affect each country, if indeed it has any impact at all:

(a) Oit = αi Lit + βi Kit + γi Mit + A0,i + µit + uit (15)

(b) {Oit − µ̂•
t} = αi Lit + βi Kit + γi Mit + A0,i + µit + uit (16)

(c) Oit = αi Lit + βi Kit + γi Mit + A0,i + µit + κiµ̂
•
t + uit (17)

(a) is the standard MG estimator with a country-specific linear trend and no common
dynamic process. The AMG estimator in (b) imposes the common dynamic process µ̂•

t

with a unit coefficient, whereas in (c) it is included as a regressor. In (b) and (c) we allow
for a country-specific TFP trend in addition to any global process.

The econometric interpretation of these alternatives is as follows: for options (b) and (c)
the inclusion of µ̂•

t can account for nonstationary processes omitted from the individual
country-regression and enables country equations with nonstationary factor variables to
cointegrate — in either case, we require µ̂•

t to be part of the cointegrating relation (Pe-
droni, 2007). Option (a) in contrast does not account for any common dynamic process
or cross-section dependence and we would therefore expect that (some of) the country
regressions will yield spurious estimation results.

The t-statistics for the country-regression averages reported in all tables below represent
measures of dispersion for the sample of country-specific estimates.19 We provide an
additional statistic (1/

√
N)

∑

i ti, constructed from the country-specific t-statistics (ti),
which indicates the precision of the country estimates for capital (and materials).
Given the earlier findings we impose CRS on each country regression20 — this decision
is discussed in more detail below. For ease of comparison we report both the results of
the regressions based on gross-output and value-added models. These will turn out to be
qualitatively very similar throughout.

18µ̂•
t is ‘sample-specific’: for years where data coverage is good, it can be interpreted as ‘global’,

whereas for years from 2000 (9 countries have data for 2001, 2 for 2002 which is omitted from the graph)
this interpretation collapses.

19They simply indicate whether the mean of this dispersion is significantly different from zero.
20The common TFP evolvement is in analogy derived from a pooled regression in first difference where

CRS is imposed.
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3.4.2 Models with country-specific TFP growth — option (a)

In Table 3 we present the average estimates from [1] the standard Mean Group (MG)
estimator, and [2] the Swamy (1970) Random Coefficient Model estimator (RCM). We
also apply these two estimators to the data in first differences in [3] & [4].

Table 3: Country regressions (CRS) without µ̂•
t — Option (a)

Average coefficients from country regressions (CRS imposed)♮

estimates presented are unweighted means of the country coefficients†

[1] [2] [3] [4]
MG RCM ∆MG ∆RCM

Gross output specification
dep. variable lo lo ∆lo ∆lo

log capital/worker (N−1
∑

β̂i) .0658 .0812 .0556 .0562
t-stat (1.99) (2.27) (2.37) (1.94)

log materials/worker (N−1
∑

γ̂i) .7183 .7352 .7603 .7745
t-stat (26.61) (26.25) (37.71) (32.56)

trend/drift term (N−1
∑

µ̂i) .0040 .0032 .0024 .0030
t-stat (3.14) (2.33) (2.05) (1.98)

intercept (N−1
∑

Â0,i) 2.6264 2.3071
t-stat (7.03) (5.74)

capital/worker (VA) mean‡ .234 .307 .232 .249
t-stat (2.09) (2.41) (2.40) (1.97)

(1/
√

N)
∑

i tβ̂,i 9.52 10.67 4.14 6.76

(1/
√

N)
∑

i tγ̂,i 87.27 96.44 80.59 99.44

Value-added specification
dep. variable ly ly ∆ly ∆ly

log capital/worker (N−1
∑

β̂va
i ) .2240 .3117 .1916 .2151

t-stat (2.21) (2.88) (2.15) (2.06)

trend/drift term (N−1
∑

µ̂va
i ) .0157 .0132 .0155 .0171
t-stat (4.13) (3.26) (4.57) (3.78)

intercept (N−1
∑

Âva
0,i) 7.2014 6.3153

t-stat (6.66) (5.47)

(1/
√

N)
∑

i tβ̂va,i 15.03 15.87 4.87 6.62

obs (countries) 872 (38) 872 (38) 807 (38) 807 (38)

♮ Values in parentheses are absolute t-statistics. These were obtained by regressing the N country
estimates on an intercept term, except for the Swamy t-stats, which are provided by xtrc in STATA and
represent

P
i
(Σ̂ + V̂i) where Σ̂ is a measure of dispersion of the country OLS estimates and V̂ is the

variance of the N OLS estimates scaled by
P

x2

i
.

† We report averaged t-statistics for country-specific t-statistics ti of the factor estimates at the
bottom of each panel.
‡ This is obtained using a non-linear combination of the capital and materials coefficients accounting
for the precision of these estimates.

With the exception of the Swamy estimates in levels, the gross-output as well as the
VA-based model results have average capital coefficients somewhat below the macro evi-
dence of around .3, but in comparison with the pooled regression results, these estimates
represent dramatic improvements. The pattern of averaged t-statistics indicates that the
country estimates are more precise in the regression models in levels.
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3.4.3 Models with common and country-specific TFP growth — option (b)

We present averaged country regression results for option (b) in Table 4. We estimate
[1] the Augmented Mean Group (AMG) estimator developed above; [2] the Mean Group
version of the Common Correlated Effects estimator (CCEMG); and [3] the Swamy
Random Coefficient Model estimator, augmented with the ‘common dynamic process’
(ARCM). We also apply the same estimators to the data in first differences [4]-[6].
As can be seen, the factor parameter estimates are now relatively stable across the differ-
ent estimators and specifications, implying a VA-equivalent capital coefficient of around
1/3. All estimates lie within each other’s 95% confidence interval.21

Table 4: Country regressions (CRS) with µ̂•
t — Option (b)

Average coefficients from country regressions (CRS imposed)♮

estimates presented are unweighted means of the country coefficients

[1] [2] [3] [4] [5] [6]
AMG CCEMG∗ ARCM ∆AMG ∆CCEMG ∆ARCM

Gross output specification
dep. variable♯ lo-µ̂•

t lo lo-µ̂•
t ∆lo-∆µ̂•

t ∆lo ∆lo-∆µ̂•
t

log capital/worker (N−1
∑

β̂i) .0734 .0726 .0869 .0662 .0863 .0623
t-stat (2.28) (2.21) (2.50) (3.02) (3.63) (2.27)

log materials/worker (N−1
∑

γ̂i) .7435 .7406 .7616 .7814 .7570 .7943
t-stat (28.17) (29.91) (26.32) (38.39) (36.50) (33.24)

trend/drift term (N−1
∑

µ̂i) .0006 .0037 -.0003 -.0011 -.0017 -.0003
t-stat (0.45) (2.83) (0.25) (0.99) (0.72) (0.22)

intercept (N−1
∑

Â0,i) 2.3002 1.9817
t-stat (5.81) (4.69)

We do not report estimates on the period averages in [2] and [5] to save space.

capital/worker (VA) mean‡ .285 .280 .364 .303 .355 .303
t-stat (2.35) (2.29) (2.59) (3.15) (3.46) (2.36)

(1/
√

N)
∑

i tβ̂,i 9.70 8.89 11.50 5.15 5.05 6.75

dto. bootstrap (1,000 reps) 1.78 3.31 1.17 2.92

(1/
√

N)
∑

i tγ̂,i 97.21 86.14 104.26 85.73 73.53 99.44
dto. bootstrap (1,000 reps) 18.04 32.73 17.46 47.07

Value-added specification
dep. variable♯ ly-µ̂•

t ly ly-µ̂•
t ∆ly-∆µ̂•

t ∆ly ∆ly-∆µ̂•
t

log capital/worker (N−1
∑

β̂va
i ) .3130 .2898 .3872 .2878 .2849 .2967

t-stat (3.28) (2.94) (3.80) (3.65) (3.35) (3.14)
trend/drift term (N−1

∑

µ̂va
i ) -.0016 .0140 -.0036 -.0019 -.0000 -.0001
t-stat (0.47) (3.56) (0.99) (0.63) (0.01) (0.03)

intercept (N−1
∑

Âva
0,i) 6.2147 5.4834

t-stat (6.16) (5.09)

We do not report estimates on the period averages in [2] and [5] to save space.

(1/
√

N)
∑

i tβ̂va,i 17.89 15.40 19.31 7.58 6.13 9.60

dto. bootstrap (1,000 reps) 5.10 4.70 1.77 4.26

obs (countries) 872 (38) 872 (38) 872 (38) 807 (38) 807 (38) 807 (38)

See also Table 3 for notes and additional information.
♯ We subtract the common dynamic trend µ̂•

t
from log output (log value-added) per worker for country i in models [1] and [3], and

the common growth rate ∆µ̂•

t
from output growth in models [4] and [6].

∗ Variables were transformed (within-group transformation) to do away with the intercept term.
† We report averaged t-statistics for country-specific t-statistics ti of the factor estimates at the bottom of each panel. We also
provide averaged t-statistics based on country regression with bootstrapped standard errors (1,000 replications).

21We present the pooled and averaged country regression results (options (a) and (b)) for the ‘raw’
sample (n = 1, 194, N = 48) in Tables C-4 and C-5 in the appendix, respectively. Even though this
sample is about 35% larger, the estimates are virtually identical to those in Table 4.
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The kernel densities for the capital and materials coefficients in the gross-output models
with µ̂•

t imposed are presented in Figure D-1 in the appendix — these provide little evi-
dence of outliers. The value-added based estimates similarly confirm a capital coefficient
around .3, with kernel density estimates indicating almost perfectly normal distribution
for the AMG and ARCM estimators (not reported).

The models where µ̂•
t is included as additional regressor, option (c), yield very similar

result for the factor parameters and are therefore not reported separately. Note that the
averaged coefficients (mean of κ̂i) on the additional regressors (µ̂•

t or ∆µ̂•
t ) are close to

unity, in particular in the specifications in first differences.22

The additional average t-statistics constructed follow the same pattern as that described
in the previous table. We also report these statistics for the case where individual country
parameter t-statistics are based on standard errors which were bootstrapped using 1,000
replications. As can be seen, this yields some low t-statistics for the capital coefficients in
the AMG estimations. Qualitatively, though, there is an almost perfect match between
the AMG mean estimates and their CCEMG cousins — since the latter do not include
stochastic variables in the regression equation (no µ̂•

t ) there should be no concern about
the validity of their standard errors. We take this close match (which also applies to the
country trends/drifts) as an indication that the AMG and ARCM estimates are robust.

The mean trend/drift coefficients across countries are insignificant in all models presented
with the exception of the levels CCEMG (for both VA and gross-output) — we would
expect a zero average since these values represent deviations from the common (average)
TFP evolvement µ̂•

t . For the models in levels, the majority of country-specific trend terms
tend to be statistically significant,23 whereas this is only the case for a maximum of one
in four drift terms in the first difference models.24 The CCEMG trends are systematically
higher than the AMG and ARCM trends — the difference between the two is however
found to be the common TFP growth µ̂•

t . Once we adjust each AMG and ARCM country
trend estimate the three levels estimators yield very similar results (not presented).
In Figure D-2 in the appendix we present country-specific TFP levels and growth rates
for the AMG value-added specification.25 The first graph shows the computed base and
final year TFP levels,26 ranked by magnitude of the latter: the US, Ireland, Finland, and
South Korea hold the top spots, whereas Bangladesh, Sri Lanka, Indonesia, and Fiji are

22Coefficients on the µ̂•
t terms in models with additional country trend for (i) gross-output models:

MG .775, RCM .792, ∆MG .960, ∆RCM .846; (ii) value-added models: MG .793, RCM .817, ∆MG .989,
∆RCM .852.

23For the gross-output models: [1] AMG, 23 country trends have t > 1.645 (10%), for [2] CCEMG 24
and for [3] ARCM 22. In the VA models, the numbers are 25, 25 and 24 respectively.

24For [4] ∆AMG, we have 5 country trends with t > 1.645 (10%), for [5] ∆CCEMG 9 and for [6]
∆ARCM again only 5. In the VA-specification, these numbers are 5, 8 and 7 respectively.

25We prefer to present the VA results since all gross-output results need to be scaled by 1/(1 − γ̂i).
26The base-year and final year TFP levels are computed as

β̂va
i (K/L)0,i + Âva

0,i and β̂va
i (K/L)0,i + Âva

0,i + µ̂iτ + µ̂•
τ

respectively, where τ is the total period for which country i is in the sample and µ̂•
τ is the accumulated

common TFP growth for this period τ . Base and final year differ across countries (see Table A-1).
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at the bottom. The second graph ranks countries by their average annual TFP growth
rates, derived from the trend estimates in the country regressions: South Korea, Ireland,
Singapore and Malta top the rankings, whereas Panama, Bangladesh, Fiji and Guatemala
are at the bottom.27

We briefly review the results for country regressions where the data was first trans-
formed into deviations from the cross-sectional mean to account for any common dy-
namic process. The averaged results for this exercise are presented in Table C-2 in the
appendix. Here, all estimators (MG, Swamy) and specifications (levels, FD) yield capital
coefficients between .42 and .55 (VA-equivalent). We take these results as an indication
of factor parameter heterogeneity, since the transformation of variables into deviations
from the cross-section mean introduces nonstationarity into the errors if the underlying
production technology differs across countries (Pedroni, 1999, 2000).

3.4.4 The importance of constant returns to scale

Further investigation reveals that the imposition of constant returns to scale plays an
important role. We repeat the regressions where the country equation is augmented with
the common dynamic process and a linear trend, equivalent to option (b) above, but with
all variables in ‘raw’ form, rather than in per worker terms. Results are presented in
Table C-3 in the appendix.
The failure to impose constant returns to scale leads to severely biased results in the levels
specifications, whereas in the first difference specification the MG and Swamy estimates
are relatively close to the hypothesised capital parameter of .3 (VA-equivalent). The
averaged capital coefficients for all specifications in first differences are much less precise
than in previous results, and their 95% confidence intervals include the mean estimates
of our preferred specification (b) where CRS is imposed. An explanation for the inflated
average CCEMG estimate may be sought in the number of parameters estimated, 8 per
country equation, thus more than in any other model so far.

3.5 Robustness and Diagnostics

3.5.1 Dynamic specification; testing parameter heterogeneity

The static empirical model adopted in our general framework assumes that the regres-
sors Xit are orthogonal to the error terms uit. Our serial correlation tests for the pooled
models in first difference suggest that ∆Xit⊥∆uit, evidenced by the lack of higher order
autocorrelation, but this in itself is not an entirely convincing test. We can specify the
model in a dynamic form so as to allow for serial correlation explicitly. This approach
requires us to instrument for the lagged dependent variable in the pooled model in first

27The graph also shows common TFP growth, which differs by country depending on the country-
specific time-series dimension. Total country TFP growth per annum is the sum of the common and the
idiosyncratic components.
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difference — it becomes evident that our instrumentation is weak, although in the VA-
model the the Cragg-Donald statistic does reject the weak instrument null (F = 28.88,
critical value for 10% is 19.93). AMG regressions in levels for gross-output and value-
added (results not reported) qualitatively replicate the results in the static models. The
long-run capital coefficients in these models are next to identical to those in the static
specifications. We take this result as an indication that potential serial correlation does
not grossly distort the results for the static pooled model in first differences.

The individual country coefficients emerging from the regressions in section 3.4 imply con-
siderable parameter heterogeneity across countries. However, this apparent heterogeneity
may be due to sampling variation and the relatively limited number of time-series observa-
tions in each country individually (Pedroni, 2007). We therefore carried out a number of
formal parameter heterogeneity tests for the results from the AMG, ARCM and CCEMG
estimations in levels and first difference. The results (not reported) suggest that para-
meter homogeneity is rejected. Systematic differences in the test statistics for levels and
first difference specifications however indicate that nonstationarity may drive some of
these results. Nevertheless, even if heterogeneity were not very significant in qualitative
terms, our contrasting of pooled and country regression results has shown that it nev-
ertheless matters greatly for correct empirical analysis in the presence of nonstationary
variables.

3.5.2 Other potential sources of endogeneity

The issue of distinction between correlation and causation is commonly raised in applied
econometrics. In our case, it is natural to ask whether higher capital investments may
not be caused by a higher growth rate, rather than exclusively the other way round (re-
verse causality). In a pooled regression of heterogeneously cointegrated groups there is
correlation between the errors and the regressors by construction, since regression errors
contain shares of the independent variables — in the levels equation this leads to the
breakdown of the cointegrating relationship.

We carry out a number of endogeneity tests for specifications in levels and first differences
following and expanding on Wooldridge (2002, p.285), using pooled and heterogeneous
factor parameter regression models. The results from these tests (not reported) are some-
what mixed, rejecting factor exogeneity in some cases/countries but not in others — if
we focus on country-specific results, the vast majority of country-specific tests cannot re-
ject factor exogeneity. However, variable nonstationarity may affect the validity of these
tests, which were devised with stationary data in mind. Traditionally, the endogeneity of
factor variables was seen as one of the major reasons for the empirical puzzle of inflated
capital coefficients (Caselli et al., 1996). Our approach has shown that we can arrive at
factor parameters consistent with macro data if we make allowances for heterogeneity
and nonstationarity. A corollary of our findings may be that other sources of endogeneity
may not exert strong bias on the estimation results.
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It is questionable whether a valid instrumentation strategy can be developed at the macro-
level, as it is difficult to think of exogenous variables which could act as valid instruments
(a sentiment echoed in Caselli et al., 1996). Further, ‘own-instrumentation’ via lags of
levels and/or differences like in the Arellano and Bond (1991) and Blundell and Bond
(1998) estimators is not appropriate in moderate to long panels such as the present one:
the wealth of instruments becomes a curse, with overfitting bias severely influencing the
results (Bowsher, 2002). In addition there are serious concerns about the informativeness
of instruments in the case where variables are nonstationary.

4 Overview and conclusions

In this paper we have investigated how technology differences in manufacturing across
countries should be modeled. We began by presenting an encompassing empirical frame-
work which allowed for the possibility that technology parameters differ and that there
are both effects common to all countries and factors which are country-specific. We have
introduced the Augmented Mean Group estimator (AMG), which is conceptually close
to the Mean Group version of the Pesaran (2006) Common Correlated Effects estimator
(CCEMG). Both of these estimators allow for a ‘common dynamic process’, a globally
common, unobserved factor or factors, which in the context of production functions can
be interpreted as common TFP evolvement or an average of country-specific evolvement
paths of omitted variables. The AMG, ARCM and CCEMG estimators allow for consis-
tent estimation when cross-sectional dependence takes this form.

Our empirical findings for a manufacturing panel dataset indicate that allowing for factor
parameter heterogeneity, a ‘common dynamic process’ across all countries and linear
country-specific TFP growth terms yields factor parameter averages across countries of
around 0.3 (VA-equivalent). This empirical finding is close to macro data on capital share
in income of around 1/3 and is replicated using the CCEMG approach. These results
contrast with our pooled estimates, assuming parameter homogeneity, which gave capital
coefficients of around 0.8. The ‘common dynamic process’ extracted is argued to be in
line with historical events. The country-specific linear trends, which capture stationary
processes omitted from the model, are statistically significant in the majority of countries.

The model we have presented is agnostic with respect to what may determine the magni-
tudes of factor coefficients and country TFP growth terms, or the evolvement of common
TFP. From an econometric point of view, it would seem that the AMG, ARCM and
CCEMG estimators allow us to specify the cointegrating vector to be made up of factor
inputs, output and the unobserved common dynamic process. Failing to allow for all three
crucial elements of empirical specification — parameter heterogeneity, common dynamic
process and country specific technology change — is likely to result in seriously biased
estimates of the production technology. In light of the quotes from Durlauf et al. (2001)
and Phillips and Moon (2000) this paper began with, we suggest that the assumptions
of parameter homogeneity and variable stationarity are rejected by the data.
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Appendix

A Data construction and descriptives

Data for output, value-added, material inputs and investment in manufacturing, all in current local cur-
rency units (LCU), are taken from the UNIDO Industrial Statistics 2004 (UNIDO, 2004), where material
inputs were derived as the difference between output and value-added. The labour data series is taken
from the same source, which covers 1963-2004. The capital stocks are calculated from investment data
in current LCU following the ‘perpetual inventory’ method developed in Klenow and Rodriguez-Clare
(1997) and described in detail in Söderbom and Teal (2003). In this process we apply some mechanical
rules regarding the average investment/value-added ratio and the imputed base-year capital/value-added
ratio. It is important to reiterate that all results presented are robust to the omission of these and the
cleaning rules defined below.

In order to make data in monetary values internationally comparable, it is necessary to transform all
values into a common unit of analysis. We follow the transformations suggested by Martin and Mitra
(2002) and derive all values in 1990 US$,a using current LCU and exchange rate data from UNIDO, and
GDP deflators from the UN Common Statistics database (UN, 2005), for which data are available from
1970-2003.
Since our model is for a small open economy, we prefer using market exchange rates to purchasing-power-
parity (PPP) adjusted exchange rates, since the latter are more appropriate when non-traded services
need to be accounted. All monetary values are thus derived from constant local currency units and made
internationally comparable by the application of a single LCU-US$ exchange rate.

In order to address the most serious issues of measurement error we used the capital-to-materials ratio
(K/M) to define a rule, bounded as 0.02 < K/M < 2. In a final step we exclude all countries for which
we have less than ten time-series observations. The resulting panel is unbalanced and has gaps within
individual country time-series. We have a total of n = 857 observations from N = 38 countries, which
have a time-series dimension between T = 13 and T = 33, with average T = 23. The country-specific
information (number of observations, first and final year in the dataseries) is contained in table A-1.

Table A-2 provides the descriptive statistics for the variables in logs used in our regressions (panel 3).
The second line for each variable here presents the log value in first differences, as applied in our preferred
OLS regression. Log variables in first difference are of course equivalent to the raw variable growth rate.
For reference we also present the descriptives for the raw data in levels (panel 1) and in per worker
terms (panel 2). It can be seen that the mean value-added (VA) per worker is around US$25,000 in 1990
value-terms.

aMartin and Mitra (2002) apply a single exchange-rate (that for 1990) to the whole data series,
whereas for instance Larson, Butzer, Mundlak, and Crego (2000) apply the annual exchange rate. The
latter approach is deemed less appropriate, since the variable series would also capture international
price and exchange rate movements.
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Table A-1: Sample — number of observations, first and final year†

Country Code levels first diff. ‘raw’
(n = 872) (n = 807) (n = 1, 194)

obs. first yr final yr obs. obs. first yr final yr

Australia AUS 20 1970 1993 17 20 1970 1993
Austria AUT 19 1974 2000 15 30 1970 2000
Belgium BEL 15 1970 1984 14 28 1970 1997
Bangladesh BGD 14 1970 1992 12 14 1970 1992
Bolivia BOL 11 1987 1997 10 11 1987 1997
Barbados BRB 24 1970 1995 21 26 1970 1995
Canada CAN 21 1970 1990 20 21 1970 1990
Chile CHL 24 1975 1998 23 25 1974 1998
Colombia COL 30 1970 1999 29 30 1970 1999
Cyprus CYP 33 1970 2002 32 33 1970 2002
Ecuador ECU 19 1973 1991 18 30 1970 1999
Egypt EGY 26 1970 1995
Spain ESP 26 1979 1995 25 26 1970 1997
Finland FIN 23 1970 2000 21 28 1970 2000
Fiji FJI 25 1970 1994 24 25 1970 1994
France FRA 26 1970 1995
Great Britain GBR 23 1970 1992
Guatemala GTM 16 1973 1988 15 16 1973 1988
Hungary HUN 26 1970 1995
Indonesia IDN 26 1970 1995 25 26 1970 1995
India IND 32 1970 2001 31 32 1970 2001
Ireland IRL 22 1970 1991 21 22 1970 1991
Iran IRN 18 1970 2001 15 24 1970 2001
Israel ISR 12 1989 2001 10 13 1989 2001
Italy ITA 25 1974 2000 22 31 1970 2000
South Korea KOR 31 1970 2001 29 31 1970 2001
Sri Lanka LKA 20 1970 2000 17 20 1970 2000
Luxembourg LUX 23 1970 1992
Morocco MAR 17 1985 2001 16 17 1984 2001
Mexico MEX 16 1984 2000 14 16 1983 2000
Malta MLT 32 1970 2001 31 32 1970 2001
Malaysia MYS 27 1970 2000 24 28 1970 2001
Netherlands NLD 24 1970 1993
Norway NOR 28 1974 2001 27 32 1970 2001
New Zealand NZL 18 1970 1989 17 21 1970 1990
Panama PAN 26 1973 2000 23 30 1970 2000
Philippines PHL 26 1970 1995 25 26 1970 1995
Poland POL 31 1970 2000
Portugal PRT 30 1971 2000 29 31 1970 2000
Senegal SEN 16 1974 1990 14 17 1970 1990
Singapore SGP 33 1970 2002 32 33 1970 2002
Sweden SWE 18 1970 1987
Swaziland SWZ 24 1970 1995
Tunisia TUN 21 1970 1997 19 21 1970 1997
Turkey TUR 27 1970 1997 25 27 1970 1997
USA USA 26 1970 1995 25 26 1970 1995
Venezuela VEN 26 1970 1998
Zimbabwe ZWE 23 1970 1996 20 27 1970 1996

average T 23 21 25

† Recall that the panel is unbalanced, and that some countries have missing observations in their
time-series. levels and first diff. refer to the samples for pooled and country regressions in levels and first
differences respectively. ‘raw’ refers to the levels dataset where we do not apply our cleaning algorithms.
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Table A-2: Descriptive statistics

(1) Raw data: monetary values in constant 1990 US$

Variable Mean Median Std. Dev. Min. Max.

output 1.40e+11 2.27e+10 4.53e+11 2.39e+08 3.15e+12
Growth rate 0.051 0.043 0.099 -0.437 1.001

value-added 5.57e+10 3.05e+10 6.85e+09 5.70e+07 1.50e+12
Growth rate 0.047 0.041 0.120 -0.571 0.927

labour 1,408,990 446,525 3,213,541 6,723 19,667,000
Growth rate 0.024 0.013 0.086 -0.388 0.781

capital 1.09e+11 1.53e+10 3.21e+11 1.40e+08 2.27e+12
Growth rate 0.05 0.042 0.044 -0.024 0.478

materials 8.41e+10 1.47e+10 2.52e+11 1.44e+08 1.65e+12
Growth rate 0.052 0.042 0.107 -0.393 1.031

(2) Raw data in per worker terms: monetary values in constant 1990 US$

Variable Mean Median Std. Dev. Min. Max.

output/worker 69,512 49,922 52,121 4,711 286,509
Growth rate 0.026 0.026 0.083 -0.445 0.850

VA/worker 24,036 16,793 18,779 1,660 91,011
Growth rate 0.023 0.026 0.104 -0.903 0.744

capital/worker 60,031 38,967 54,935 2,007 270,976
Growth rate 0.026 0.028 0.084 -0.680 0.454

materials/worker 45,475 33,826 34,445 2,596 195,497
Growth rate 0.028 0.027 0.095 -0.538 0.879

(3) Data in logs: levels and in per worker terms

Variable Mean Median Std. Dev. Min. Max.
log output 23.620 23.838 2.094 19.292 28.779

per worker 10.835 10.824 0.853 8.458 12.566
log value-added 9.739 9.731 0.903 7.415 11.419

per worker 9.739 9.731 0.903 7.415 11.419
log labour 12.786 13.009 1.762 8.813 16.794
log capital 23.374 23.45 2.148 18.758 28.451

per worker 10.588 10.573 0.968 7.605 12.510
log materials 23.196 23.41 2.084 18.783 28.132

per worker 10.411 10.428 0.852 7.862 12.183
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B Variable time series properties

As a first step we carry out ‘näıve’ AR(1) regressions ln Zit = ρ ln Zi,t−1 + vit where vit = εit + ηt for
Zit as output, value-added capital, labour and materials, following Bond (2002). This approach imposes
a homogeneous autoregressive parameter ρ on all country series, which is clearly restrictive, but provides
crude insights into the data properties. Year dummies are included in all four regression models (pooled
OLS, fixed effects, Difference GMM and Systems GMM) to account for possible common development in
the variable series (ηt, not constrained to linearity). The results for levels and per capita transformations
of the variables (not reported) provide evidence that the data series are extremely persistent and for a
considerable number of countries are likely to constitute unit root processes.

Since the time dimension of the panel is sizeable (T ranges from 13 to 33, average T = 23), we carry
out Augmented Dickey-Fuller (Dickey & Fuller, 1979) and KPSS (Kwiatkowski, Phillips, Schmidt, &
Shin, 1992) tests for the variable series within each individual country.b We use this combination of tests
since the ADF test has the null of nonstationary variable series, whereas the KPSS test has the null of
stationary variable series. The results for variables in levels and in per worker terms (not reported) show
that for the majority of countries the ADF tests cannot reject nonstationarity, whereas the majority of
country KPSS tests reject the null of level stationarity — these results are stronger for variables in per
worker terms than for those in levels.c The overall pattern of test results is reversed when we run ADF
and KPSS tests on variables in first-difference (not reported), indicating that variable series are indeed
stationary in first differences.
Our dataset is an unbalanced panel with missing observations — properties that may affect the unit root
tests. A simulation exercise by Ryan and Giles (1998) suggests that (with respect to the ADF tests)
filling the gaps with the last known observation produces more powerful unit root tests in comparison
with tests where gaps were ignored.d We carried out ADF tests for the altered dataset (levels, first
difference) and obtained very similar patterns of rejection as when testing original data with gaps (not
reported). Thus the results from these country unit-root tests are a further indication of the potential
for integrated processes in our data.

Next we applied panel unit root tests to the data. It is important to stress that rejection of the unit
root null hypothesis does not imply that the panel is stationary, but rather that the variable series does
not follow a unit root process in all countries. We first present the results for the Maddala and Wu
(1999) panel unit root test, and the working paper version of the Im, Pesaran, and Shin (1997) test,
both of which do not account for cross-sectional dependence. Results in Table B-1 show that for the
‘levels’ variable series these tests cannot agree on the level of integration prevalent in the data. For the
per capita variable series, however, neither test can reject the null hypothesis that all countries have I(1)
series.
Over the past decade panel unit root tests which explicitly allow for cross-sectional dependence in the
variable series have been developed. These include a simple augmentation to the Im et al. (1997) panel
unit root test (Im, Pesaran, & Shin, 2003), and the Pesaran (2007) ADF test (CIPS). In addition to
cross-section dependence these tests allow for the alternative that a fraction of countries, rather than
all, are stationary. For the former we are required to use a balanced panel; we therefore use a balanced
subset of the sample where missing values have been filled in using the last non-missing observation (see
above), which considerably reduces our sample size (T,N = 22, 22; n = 484) compared to the unbalanced
panel (Tmax = 33, N = 38; n = 872).

bWhereas the STATA command for ADF allows us to run country regressions with gaps in the data,
this is not possible for the KPSS tests. We therefore reduce the sample to contain only time-series
without gaps. This reduces the overall sample to 732 observations.

cThe results are largely replicated by country-specific Phillips and Perron (1988) tests for all variables
in levels and per worker terms (not reported). This uses Newey-West standard errors to account for serial
correlation, while the augmented Dickey-Fuller test uses additional lags of the first-difference variable.

dThey also point out that regular Dickey-Fuller critical values remain valid for either approach.
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Table B-1: First generation panel unit root tests

Im, Pesaran & Shin (1997) and Maddala and Wu (1999) I(1) tests♯

no adjustment for cross-sectional dependence

variable (in levels)† lO lY lL lK lM

IPS Test statistic −1.68 −1.08 −1.98 −2.09 −1.51
Reject H0 of unit root no no yes yes no

MW Test statistic 106.70 65.43 142.10 60.13 75.74
Reject H0 of unit root yes no yes no no

variable (in per worker terms)† lo ly lk lm

IPS Test statistic −0.81 −1.01 −0.81 −1.10
Reject H0 of unit root no no no no

MW Test statistic 28.38 59.64 26.85 30.79
Reject H0 of unit root no no no no

† We test output (lO), VA (lY), labour (lL), capital (lK) and materials (lM) in levels and per worker
terms (all in logs).

♯ The IPS and MW statistics are constructed as P = −2
P

i
log(pi) for the former and t̄ = N−1

P
i

ti

for the latter, where ti are the country ADF statistics (t-values) and pi the corresponding p-values.
For the Im et al. (1997) test the critical values (-1.78 for 5%, -1.72 for 10% significance level —
distribution is approximately t) are reported in Table 2, Panel A of their paper (we used
T = 25, N ≈ 40). For the Maddala and Wu (1999) test the critical values are 97.35 for 5% and 92.16

for 10% — distribution is χ2(2N).

Table B-2: Second generation panel unit root tests

Im, Pesaran & Shin (2003) and Pesaran (2007) panel unit root tests
H0: unit root process; augmentation with 2 lags unless indicated

variable (in levels)† lO lY lL lK lM

IPS test♯ t − bar −0.68 −0.86 −1.23 −0.45 −0.78
Reject H0 of unit root no no no no no

IPS test♯ Wt − bar (p-value) 3.75 (1.00) 3.04 (.99) 1.06 (.86) 4.90 (1.00) 3.27 (.99)

Pesaran CIPS (p-value) 1.02 (.85) 3.11 (.99) 2.22 (.99) 8.14 (1.00) 0.94 (.83)
Pesaran CIPS w/ ‘ideal’ augmentation♮ (p) 4.34 (1.00) 11.01 (1.00) 3.34 (1.00) 9.82 (1.00) 4.57 (1.00)

variable (in per worker terms)† lo ly lk lm

IPS test♯ t − bar −0.89 −0.93 −1.14 −1.09
Reject H0 of unit root no no no no

IPS test♯ Wt − bar (p-value) 2.73 (.99) 2.51 (.99) 1.49 (.93) 1.77 (.96)

Pesaran CIPS (p-value) 4.91 (1.00) 5.01 (1.00) 5.65 (1.00) 3.43 (1.00)
Pesaran CIPS w/ ‘ideal’ augmentation♮ (p) 5.14 (1.00) 8.72 (1.00) 8.87 (1.00) 5.82 (1.00)

† See Table B-1 for further details.
♯ Reduced sample: balanced panel where gaps are filled with last non-missing observations (n = 484, T = 22). The
critical values are now −1.85 and −1.78 for 5% and 10% respectively.
♮ We used the lag-lengths determined from AIC in ADF tests of variables in deviation from the cross-sectional means.

We reiterate the difficulties relating to panel unit root tests (Smith & Fuertes, 2004, 2007), in particular
in a (relatively) short, unbalanced panel with gaps like in our own case. The difficulties of these tests to
produce meaningful results is highlighted by the Pesaran (2007) CIPS test results in Table B-2, for which
computed p-values are unity for all variable series in per worker terms — ‘perfect’ certainty is never a
good sign in a stochastic world. Results are contingent on the inclusion of lags: for augmentation with
one lag or none, nonstationarity cannot be rejected with sensible p-values less than unity (except for log
capital where p=1). Thereafter, p-values are unity throughout. If we apply the CIPS test to data in first
difference, we reject nonstationarity throughout if we augment with one lag (or none); for more lags the
p-value jumps to unity (not reported). The Im et al. (2003) tests cannot reject the nonstationarity null,
either — again with ‘perfect’ certainty in case of the log capital series.
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C Additional tables

Table C-1: Pooled regressions for value-added specifications

Pooled regressions (VA-based model)♮

dependent variable: log value-added (lY) [1]-[4], ∆log value-added [5] & [6]

[1] [2] [3] [4] [5] [6]
regressors† POLS CCEP∗ FE∗∗ CCEPFE ∆OLS ∆CCEP

log labour (α̂) .1896 .1896 .3644 .3644 .6814 .6814
t-stats (8.92) (9.07) (11.66) (11.86) (6.38) (6.50)

log capital (β̂) .8317 .8317 .7908 .7908 .3841 .3841
t-stats (57.31) (58.29) (34.54) (35.13) (3.16) (3.22)

intercept .6231
t-stats (3.76)

We do not report the coefficients for the period averages in [2], [4] and [6] to save space.

sum of coeff. 1.02 1.02 1.16 1.16 1.07 1.07
F -Test for CRS (p) 4.2 (.04) 4.3 (.04) 53.5 (.00) 45.3 (.00) 0.4 (.52) 0.4 (.51)

obs (countries) 872 (38) 872 (38) 872 (38) 872 (38) 807 (38) 807 (38)

Arellano-Bond Serial Correlation Test, H0: no serial correlation in the residuals

AR(1) (p) 16.4 (.00) 16.4 (.00) 11.2 (.00) 11.2 (.00) -3.2 (.00) -3.2 (.00)
AR(2) (p) 16.0 (.00) 15.9 (.00) 7.9 (.00) 7.9 (.00) -1.6 (.12) -1.6 (.12)

Pooled regressions (VA-based model) with CRS imposed♮

dependent variable: log value-added per worker (ly) [1]-[4], ∆log value-added per worker [5] & [6]

[1] [2] [3] [4] [5] [6]
regressors† POLS CCEP∗ FE∗∗ CCEPFE ∆OLS ∆CCEP

log capital/worker (β̂) .8379 .8379 .7848 .7848 .3271 .3271
t-stats (63.34) (64.51) (32.17) (32.74) (3.15) (3.21)

intercept .8250
t-stats (5.25)

We do not report the coefficients for the period averages in [2], [4] and [6] to save space.

obs (countries) 872 (38) 872 (38) 872 (38) 872 (38) 807 (38) 807 (38)

Arellano-Bond Serial Correlation Test, H0: no serial correlation in the residuals

AR(1) (p) 17.4 (.00) 17.4 (.00) 10.6 (.00) 10.6 (.00) -3.2 (.00) -3.2 (.00)
AR(2) (p) 16.9 (.00) 16.9 (.00) 7.9 (.00) 7.9 (.00) -1.5 (.13) -1.5 (.13)

♮ Values in parentheses are absolute t-statistics. †For columns [5] and [6] all variables are in first differences.
∗ Note the missing intercept term: we can include this if we set the cross-section averages for the base year 1970 to
zero. In this case the factor parameters are identical to those in column [1], but the coefficient on the cross-section
averages no longer follow the pattern in [2]. ∗∗ Implemented via manual ‘within’ transformation and a full set of year
dummies (Bond et al., 2004).
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Table C-2: Country regressions — data in deviations from X-section mean

Average coefficients from country regressions (CRS imposed) — ‘demeaned’ data♮

estimates presented are unweighted means of the country coefficients

[1] [2] [3] [4]
MG RCM ∆MG ∆RCM

Gross-output specification
dep. variable lo lo ∆lo ∆lo

log capital/worker .1147 .1190 .0895 .0727
t-stat (5.62) (5.14) (4.89) (3.28)

log materials/worker .7703 .7818 .8185 .8286
t-stat (26.47) (24.60) (34.64) (30.61)

trend/drift term -.0010 -.0009 -.0016 -.0005
t-stat (1.36) (1.05) (2.29) (0.46)

intercept .0105 .0060
t-stat (0.38) (0.21)

capital/worker (VA) mean .499 .545 .493 .424
t-stat (7.59) (6.91) (5.91) (4.01)

parameters estimated 4 4 3 3

(1/
√

N)
∑

i tβ̂,i 16.25 18.14 7.81 9.27

(1/
√

N)
∑

i tγ̂,i 84.43 98.47 88.02 95.27

Value-added specification
dep. variable ly ly ∆ly ∆ly

log capital/worker .5172 .5619 .5458 .5254
t-stat (12.57) (11.89) (11.70) (9.51)

trend/drift term -.0016 -.0012 -.0024 -.0003
t-stat (0.83) (0.55) (1.39) (0.08)

intercept .0490 .0539
t-stat (0.57) (0.60)

parameters estimated 3 3 2 2

(1/
√

N)
∑

i tβ̂va,i 32.33 40.33 21.59 27.33

obs (countries) 872 (38) 872 (38) 807 (38) 807 (38)

♮ Factor and output variables are transformed into deviations from the cross-section mean of the
sample at time t. All variables in columns [3] and [4] are in first difference.
Note that specification without a country-specific trends leads to even larger capital coefficients in
both gross-output and value-added models.
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Table C-3: Country regressions (unrestricted returns to scale)

Average coefficients from country regressions (unrestricted returns to scale)♮

estimates presented are unweighted means of the country coefficients

[1] [2] [3] [4] [5] [6]
regressors† AMG CCEMG∗ ARCM ∆AMG ∆CCEMG ∆ARCM

Gross-output specification

dep. variable♯ lO-µ̂•
t lO lO-µ̂•

t ∆lO-∆µ̂•
t ∆lO ∆lO-∆µ̂•

t

log labour (N−1
∑

α̂i) .1419 .1362 .1429 .1533 .1549 .1485
t-stat (5.05) (3.75) (4.55) (6.10) (4.44) (4.72)

log capital (N−1
∑

β̂i) .2011 .1418 .1550 .0846 .1911 .0613
t-stat (2.50) (2.99) (1.82) (1.51) (1.52) (0.90)

log material (N−1
∑

γ̂i) .7718 .7531 .7791 .7804 .7612 .7942
t-stat (35.15) (29.72) (31.47) (37.57) (37.13) (32.50)

trend/drift term (N−1
∑

µ̂i) -.0043 -.0001 -.0033 -.0007 -.0130 -.0001
t-stat (1.35) (0.42) (0.96) (0.33) (1.04) (0.04)

intercept (N−1
∑

Â0,i) -.9214 .0490
t-stat (0.55) (0.03)

We do not report estimates on the period averages in (2) and (5) to save space.

labour coeff. (VA-equiv) mean‡ .622 .551 .647 .698 .645 .722
t-stat (5.75) (4.08) (5.19) (7.40) (5.67) (5.61)

capital coeff. (VA-equiv) mean‡ .882 .574 .702 .385 .800 .298
t-stat (2.58) (3.37) (1.88) (1.54) (1.50) (0.91)

F -test CRS (p) 2.96 (.09) 0.57 (.45) 1.17 (.28) 0.14 (.70) 0.71 (.40) 0.00 (.95)

(1/
√

N)
∑

i tα̂,i 14.29 11.18 17.47 10.38 9.91 14.42

(1/
√

N)
∑

i tβ̂,i 6.67 13.58 8.49 2.03 2.63 3.33

(1/
√

N)
∑

i tγ̂,i 96.07 83.51 111.11 81.05 66.09 98.61

Value-added specification

dep. variable♯ lY-µ̂•
t lY lY-µ̂•

t ∆lY-∆µ̂•
t ∆lY ∆lY-∆µ̂•

t

log labour (N−1
∑

α̂va
i ) .6673 .6132 .6539 .7362 .6564 .7144

t-stat (7.07) (5.57) (6.42) (10.03) (8.42) (7.91)

log capital (N−1
∑

β̂va
i ) .6805 .7399 .5923 .3079 .3813 .2738

t-stat (2.50) (8.02) (2.54) (1.65) (1.56) (1.22)
trend/drift term (N−1

∑

µ̂va
i ) -.0155 .0000 -.0114 -.0012 -.0210 .0023
t-stat (1.70) (0.05) (1.16) (0.15) (0.82) (0.23)

intercept (N−1
∑

Âva
0,i) -2.0510 .2473

t-stat (0.45) (0.05)

We do not report estimates on the period averages in (2) and (5) to save space.

F -test CRS (p) 3.63 (.06) 32.89 (.00) 1.58 (.21) 0.09 (.76) 0.03 (.87) 0.00 (.95)

(1/
√

N)
∑

i tα̂va,i 23.58 18.73 26.67 21.03 18.37 26.20

(1/
√

N)
∑

i tβ̂va,i 13.39 36.00 14.24 1.82 1.60 4.28

obs (countries) 872 (38) 872 (38) 872 (38) 807 (38) 807 (38) 807 (38)

See Table 3 for notes and additional information.

Table C-4: Pooled Regressions (Value-Added) — ‘raw’ sample

Pooled VA regressions (CRS imposed)♮

dep. var.: log value-added per worker (ly) [1]-[4], ∆log value-added per worker [5] & [6]

[1] [2] [3] [4] [5] [6]
POLS CCEP FE CCEPFE ∆OLS ∆CCEP

log capital/worker .7895 .7895 .7273 .7273 .3195 .3195
t-stat (72.97) (73.94) (28.99) (29.36) (3.61) (3.61)

intercept 1.1474
t-stat (8.47)

obs (countries) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,128 (48) 1,128 (48)

♮ All variables in [5]&[6] are in first differences. We do not report period average estimates in [2], [4] and [6].
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Table C-5: Averaged Country Regressions (VA) — ‘raw’ sample

Average coefficients from VA country regressions (CRS imposed)♮

estimates presented are unweighted means of the country coefficients

[1] [2] [3] [4]
MG Swamy ∆MG ∆Swamy

Option (a): no common dynamic process
dep. variable♯ ly ly ∆ly ∆ly

log capital/worker (N−1
∑

β̂va
i ) .1789 .2691 .1642 .2085

t-stat (2.25) (3.31) (1.93) (2.13)
trend/drift term (N−1

∑

µ̂va
i ) .0174 .0148 .0161 .0171
t-stat (5.95) (4.77) (5.60) (4.42)

intercept (N−1
∑

Âva
0,i) 7.6528 6.7191

t-stat (9.05) (7.35)

(1/
√

N)
∑

i tβ̂va
i

12.42 20.34 4.81 6.91

# of sign. µ̂i (at 10%) 39 27 14 15

[1] [2] [3] [4] [5] [6]
AMG CCEMG∗ ARCM ∆AMG ∆CCEMG ∆ARCM

Option (b) : µ̂•

t
imposed, country-trends included

dep. variable♯ ly-µ̂•
t ly ly-µ̂•

t ∆ly-∆µ̂•
t ∆ly ∆ly-∆µ̂•

t

log capital/worker (N−1
∑

β̂va
i ) .2896 .2877 .3557 .2734 .3203 .3053

t-stat (3.95) (3.62) (4.49) (3.52) (4.02) (3.37)
trend/drift term (N−1

∑

µ̂va
i ) .0001 .0155 -.0018 -.0011 .0015 -.0001
t-stat (0.04) (5.41) (0.66) (0.44) (0.30) (0.03)

intercept (N−1
∑

Âva
0,i) 6.3823 5.7380

t-stat (8.42) (6.98)

(1/
√

N)
∑

i tβ̂va
i

16.55 15.34 20.34 8.30 7.11 9.15

# of sign. µ̂i (at 10%) 28 32 27 6 8 16

obs (countries) 1,194 (48) 1,194 (48) 1,194 (48) 1,194 (48) 1,128 (48) 1,128 (48)

D Additional graphs

Figure D-1: Kernel densities for factor parameter estimates (gross-output)
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(iv) AMG (CRS) - FD specification
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(vi) ARCM (CRS) - FD specification

Kernel density plot for capital (β̂i) and material (γ̂i) coefficients from the country regressions
(gross-output based analysis, CRS and common dynamic process imposed, country trends included).
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Figure D-2: Adjusted TFP levels and growth rates pa (VA specification)
(computed from AMG estimates in Table 4)
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