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sustainable development goals of zero hunger and no poverty 

Abstract 

Climate change is likely to worsen poverty, and agriculture-dependent groups and poorest 

countries are at the greatest risk.  Farmers’ have begun developing and implementing climate 

change adaptations. This study investigates the extent to which climate change adaptations by 

smallholder farmers have the potential to contribute to the UN’s sustainable development goals 

of no poverty (SDG 1) and zero hunger (SDG 2). To this end, the study measures the impact of 

such adaptations on food production using farm-level survey data from Nepal. We utilize a 

matching technique and stochastic production frontier model to examine the productivity and 

efficiency of farmers. Results reveal that the group of farmers adopting adaptations exhibit 

higher levels of productivity and technical efficiency in food production as compared to the 

non-adopters. It is evident from the results that policy makers should encourage farming 

households in climate change adaptations, which have the potential to enhance farmers’ 

productivity and efficiency in agriculture thereby contributing to two of the United Nations 

Sustainable Development Goals (SDGs) of eradicating hunger and poverty (SDG’s target 

indicators 2.3).  

Keywords: Adaptation; food security; production frontier; selection bias; sustainable 

development goals; Nepal.   
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1. Introduction 

Agriculture is highly dependent on climatic conditions. Several studies have indicated that most 

crops yields negatively respond to increases in temperature (Lobell & Field, 2007; Peng et al., 

2004; Ureta et al., 2020). Long term changes in climatic conditions is also likely to increase 

the occurrence of extreme weather events (Álvarez and Resosudarmo, 2019; Morton, 2007), 

can initiate and alter the timing of pest and disease outbreaks (Nelson et al., 2009), reduces 

water and nutrient use efficiency (Asplund et al., 2014) and increases yield variability (Torriani 

et al., 2007). Such effects are likely to further lower agricultural productivity (Coulibaly et al., 

2020; Liu & Dai, 2020; Moriondo et al., 2011; Olayide & Alabi, 2018; Sarker et al., 2014) and 

can undermine global efforts to reduce two of the UN’s Sustainable Development Goals 

(SDGs) of eradicating hunger and poverty.  

 

Adaptation plans have been initiated against the impacts imposed by climate change. In the 

agricultural sector, farmers have been employing diverse adaptation plans and strategies. Major 

agricultural adaptations exercised by smallholder farmers include adjustments in farm 

operations timing, on-farm diversification, and soil-water management through improved 

irrigation, reduced tillage, contour farming, etc.  (Below et al., 2012; Harmer & Rahman, 2014; 

Jawid and Khadjavi, 2019). It is uncertain how effective these plans and strategies are and will 

be in the future as little attention has been given on the monitoring and evaluation of 

smallholder farmers’ adaptations. Although a few studies have begun analyzing the impacts of 

adaptations on agricultural production (Challinor et al., 2014; Di Falco et al., 2011; Huang et 

al., 2015; Khanal et al., 2018; Khanal et al.,2019; Rosenzweig & Parry, 1994; Waha et al., 

2013), most analyses have considered only a few adaptation options and were focused on 

macro-level analysis. 
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Given this background, this study aims to investigate the extent to which climate change 

adaptations by smallholder farmers have the potential to contribute towards the sustainable 

development goals of zero hunger and no poverty. Specifically, the focus of this study is on the 

SDG target indicator 2.3 which is to double the small-scale framers’ agricultural productivity 

and incomes by 2030. In doing so, we first investigate how farmers perceive changes in climatic 

parameters over the years, and how such changes impact in agriculture. Then, we analyze the 

impact of farmers’ adaptation on farming households' efficiency and productivity in food 

production. Since smallholder farmers (less than 2ha) account for more than 80% of all farms 

worldwide (FAO, 2014), sustainable development goals of no poverty (SDG 1) and zero hunger 

(SDG 2) can be achieved if appropriate policies are designed to support these farmers to 

become more efficient and productive.  

 

We use Nepal as a case study country. Smallholder farmers in poor economies like Nepal are 

comparatively more impacted by changing climatic parameters (Bandara & Cai, 2014; Morton, 

2007; Dissanayake et al., 2019; Jawid and Khadjavi, 2019). In Nepal, agriculture contributes 

approximately one-third to the gross domestic product and employs about 70% of the country’s 

population (MoF, 2014). Nevertheless, the food insecurity issue is serious in Nepal. As of 2011, 

approximately 38% of the population was in food deficiency conditions (NPC, 2013). 

According to the Global Hunger Index (GHI) report 2015, Nepal is in the 58th position. The 

vulnerability of the country’s agricultural sector to climate change has been demonstrated by 

the severe effects of unfavorable weather conditions on crop production. In 2012/13, the rice 

cultivated area and production reduced by 7.1% and 11.3% respectively, as a result of limited 

monsoonal rains and longer periods of droughts. Likewise, inadequate winter rainfall resulted 

in a decline of maize production by 8.3% and millet by 3% (MoF, 2013). Rice could not be 

cultivated in about 50,000 hectares as a result of reduced rainfall in the year 2013/14 (MoF, 
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2014). A further effect of climate change is the trend of increasing temperatures – in Nepal’s 

case a rise between 0.04-0.06°C per year (MoE, 2010). Several studies have shown that 

although such long-term rises in temperature have a marginally positive effect in Nepal’s 

mountain regions, agricultural systems in most parts of the country are adversely affected 

(MoE, 2010). Thus, overcoming hunger and poverty in an agriculture dependent country such 

as Nepal needs minimizing the impacts of climate change and boosting agricultural 

productivity.   

  

A few methods can be utilized to assess the impact on agricultural production of innovations 

in the form of adaptation practices. The difference-in-difference methodology is one analytical 

tool that can be used (Yorobe et al., 2011; Duong & Thanh, 2019). However, the approach 

needs information on before and after analysis. In the case of present study, farmers have been 

employing diverse adaptation options at different temporal and spatial level, thus no common 

period of time can be taken into account. Moreover, another limitation of this approach is its 

inability to capture all the observed changes to the treatment as various external variables are 

affecting the changes (Bravo-Ureta et al., 2012). A better approach, therefore, is to compare 

the performance between two groups of farmers that are similar in every respect except for the 

adoption of adaptation practices. This can be done by using matching techniques, such as 

propensity score matching (PSM) (Caliendo & Kopeinig, 2008; Duong & Thanh, 2019). 

However, such an approach assumes that once observable characteristics are controlled for, the 

uptake of technology is random and is not associated with the outcomes (Abdulai & Huffman, 

2014). Moreover, this methodology fails to take into account the biases stemming from the 

unobservable factors (Mendola, 2007).  
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There are several studies that have analyzed technical efficiency (TE) in the agricultural sector 

(Coelli et al., 2002; Khanal et al., 2018b; Rahman & Rahman, 2009; Bidisha et al., 2018). An 

important issue prevalent in many such studies is that they compare the TE between two groups 

of farmers. However, farmers often self-select into a particular group (Bravo-Ureta et al., 2012; 

Rahman et al., 2009). Greene (2010) introduced a model that addresses the sample selection 

issue in the stochastic production frontier (SPF) framework.  Several studies employ Greene’s 

model to correct selection bias in the SPF (Rahman, 2011; Rahman et al., 2009). But while 

these models address the issue of sample selection, they do not take into account the biases 

arising from observable factors. Recently, a few studies have combined propensity score 

matching with the sample selectivity bias-corrected SPF developed by Greene (2010) to 

compare TE between treated and control samples (Bravo-Ureta et al.,2012; Villano et al., 2015; 

Abdulai & Abdulai, 2016). By combining the two techniques, these studies reported that both 

the observable and unobservable biases are controlled while comparing TEs between two 

groups.   

 

This study contributes to the existing literature in three strands.  First, this study examines the 

potential contribution of smallholder farmers’ climate change adaptations on sustainable 

development goals of zero hunger and no poverty.  While there are ample studies that assess 

the impacts of climate change on agriculture, only a few studies explicitly investigate the 

adaptations impact on agricultural outputs. Moreover, there are a few studies that have 

investigated whether on-farm climate adaptations by small holder farmers are effective in 

improving their efficiency and productivity in agricultural production. Second, we bring 

together the sample selectivity bias corrected SPF framework with PSM to compare technical 

efficiency and productivity of farmers who adopt and those who do not adopt adaptation 
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practices. Finally, this study provides empirical evidence from Nepal on smallholder farmers’ 

actions against climate change and impacts on their efficiency and agricultural productivity.  

 

2. Materials and methods 

2.1 Analytical strategy 

We model the uptake of climate change actions and farmers’ efficiency in agricultural 

production in a two-stage procedure. First, we utilized the PSM technique to select a sample of 

farming households that have adopted (adopters) and those who do not (non-adopters) of 

adaptation practices with comparable socio-economic characteristics, thus controlling for 

biases from observables. In the second stage, sample selectivity bias corrected SPFs1 are 

employed to estimate TE scores for both groups of farmers. Here the objective is to control for 

biases stemming from unobservable factors. The sample selectivity corrected SPF models, 

together with their associated error structures, can be presented in the following three 

equations2: 

 Sample selection: 𝑑𝑖 = 1[𝛼𝑧𝑖 + 𝑤𝑖 > 0], 𝑤𝑖 ∼ 𝑁[0,1]   (1) 

 SPF model:   𝑦𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖 , 𝜀𝑖 ∼ 𝑁[0, 𝜎𝜀2]    (2) 

    (yi, xi) are observed only when di = 1 

 Error structure:   𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖        (3) 

   𝑢𝑖 = |𝜎𝑢𝑈𝑖| = 𝜎𝑢|𝑈𝑖|, 𝑤ℎ𝑒𝑟𝑒𝑈𝑖 ∼ 𝑁[0,1] 

    𝑣𝑖 = 𝜎𝑣𝑉𝑖, 𝑤ℎ𝑒𝑟𝑒𝑉𝑖 ∼ 𝑁[0,1]  
 

1 Stochastic Production Frontier (SPF) Analysis and Data Envelopment Analysis (DEA) are the most commonly 
employed methods in analysing efficiency. The SPF is a parametric method that assumes a functional relationship 
between outputs and inputs. In contrast, DEA is a non-parametric method that utilizes mathematical programming 
methods to construct a piecewise frontier of the data. The DEA considers all deviations from the frontier are 
attributed to inefficiency whereas SPF analysis is able to separate technical inefficiency effect and random errors. 
In this study, the use of SPF analysis seems more appropriate, given that agricultural production is subject to 
heterogeneous environmental factors such as weather which are beyond the control of farmers.  

 
2 For a detailed model structure, refer Greene (2010) and Bravo-Ureta et al. (2012).  
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    𝑤𝑖𝑣𝑖 ∼ 𝑁2[(0,1), (1, 𝜌𝜎𝑣,𝑣 2 )] 
where d is a dichotomous variable that takes the value one for adopters and zero for non-

adopters; y represents output; z represents a set of explanatory variables incorporated in the 

sample selection equation and x represents the set of inputs in the production process. ε is a 

composite error term. The coefficients α and β are the parameters to be estimated; v is the two-

sided random error independent of the u, and u is a non-negative random variable representing 

inefficiency in production. Sample selection bias is said to occur when the noise in the 

stochastic frontier, vi, is correlated with wi in the sample selection equation. The parameter ρ 

indicates the presence or absence of selection bias. For detail explanation of the model see 

Greene (2010).  

 

2.2 Study site and data collection 

This study was conducted by selecting 720 farming households covering all three ecological 

regions in Nepal. First, two districts were purposively selected from each region. The selected 

districts are -Mustang and Rasuwa in the Mountain region; Kaski and Dhading in the Hill 

region, and Chitwan and Rupandehi in the Terai region. From each district, we selected two 

village development committees (VDCs)3 by following random procedure. In the next step, we 

selected four wards from each VDC randomly. Finally, 15 farming households were selected 

from each ward through simple random sampling. Of the total 720, we discard 16 observations 

in the analysis as some of the information related to input and output variables were missing in 

those observations. The survey was undertaken from October 2015 to January 2016. The 

interview was done in the Nepali language. For each household, it took around one hour to 

complete the interview.   

 

 

3 A VDC is a local level administrative unit that is similar to a municipality.  
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In addition to the household survey, focus group discussions (FGD) was carried out in each 

VDC to collect information related to village characteristics under study, farmers perceptions 

of long-term changes in the climatic condition and adaptation strategies. The identified 

adaptations were integrated into the survey questionnaire developed to investigate the actual 

adaptations by the farming households. For each stated impact of climate change, we asked if 

the particular farming household had made any adjustment or not. We also asked if farmers 

believe that employing adaptation practices in their farmlands helps to minimize the adverse 

impact of climate change on agriculture. We consider adapters as being only those households 

that had exercised a minimum of one of the identified adaptation measures and had stated that 

the adoption of the practices contributed to reducing the negative impacts of climate change 

and variabilities.  

 

2.3 Empirical strategy 

First, we employed PSM and obtained selection propensity scores. For this purpose, we 

implemented the nearest neighbor matching algorithms in which a maximum of five matches 

per adopter with maximum tolerance (caliper) of 0.01 is selected. Among the total observations 

of 704, the process resulted 433 matched observations, consisting 263 adopters and 170 non-

adopters. The summary statistics are reported in Table 1.  In the unmatched samples, we find 

significant differences in most of the variables. However, in the matched samples no significant 

differences are found between the means of observed variables of adopters and non-adopters. 

This suggests that the balancing condition of the covariates is satisfied (Leuven & Sianesi, 

2015).  

 

In the second step, we modelled the decision of the respondent to adopt adaptation practices or 

not. The behaviour of farmers in choosing adoption is described by an unobservable selection 
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function, Bi, which is hypothesized to be a function of explanatory variables describing 

respondents’ socio-economic characteristics. The model is expressed as:  

  Bi  =  𝛼0 + ∑ 𝛼𝑗𝑍𝑗𝑖 + 𝑤𝑖6𝑗=1        (4) 

where B is a binary variable that reflects a respondent’s choice to adopt adaptation practices 

(i.e., 1 for adopters and 0 otherwise),   is a constant term, j is a vector of unknown 

parameters and w is the error term distributed as N(0, σ2). Z is a vector of exogenous variables 

that represent household socio-economic characteristics which explain the decision to adopt or 

not. The empirical studies on farmers’ climate change adaptations indicate several factors 

affecting adaptation.  Studies report that better education of the agricultural producers is related 

with improved access to information on better farm practices indicating a greater likelihood of 

adopting adaptation practices by better-educated farmers compared to less educated ones 

(Deressa et al., 2009). The effects of farmers’ experience in farming on the adoption of improve 

agricultural practices are mixed, both positive (Hassan & Nhemachena, 2008) and negative 

(Anley et al., 2007; Nyangena, 2008). It has been discussed that farmers get information on 

better agricultural actions from agro-based groups and networks, consequently enhancing the 

possibility of adoption (Abdulai & Huffman, 2014). We included farm and household 

characteristics that are commonly used in the literature such as farming experience measured 

in years, households’ heads level of education measured in years, market distance from 

households in kilometers,  share of irrigated land measured as the ratio of irrigated land to the 

total land owned by the household, whether the household sold agriculture produce or not 

(dummy variable) and whether any member of the household has membership in an 

agricultural-related organization (dummy variable).  

 

In estimating the SPF model, the Cobb-Douglas (C-D) functional form was chosen to 

characterize Nepalese agricultural technology. The relevance of the C-D form was tested 
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relative to the commonly used translog function. However, the C-D specification resulted the 

more consistent outcomes for adopters and non-adopters. Moreover, the C-D production 

function has been commonly used due to its computational feasibility. Several studies have 

used C-D production function in analyzing TE in agriculture (Battese, 1992; Binam et al., 2004; 

Manjunatha et al., 2013; Mayen et al., 2010). The production behaviour postulating a Cobb-

Douglas SPF function for the adopters is as follows: 𝐿𝑛𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑗4𝑗=1 𝑙𝑛𝑋𝑖𝑗 + 𝑣𝑖−𝑢𝑖,     iff B = 1,       (5) 

where Y represents the output variable, X1-4 are the inputs used in producing the output, vi is the 

statistical noise and ui represents the inefficiency in production. The same specification is 

utilized in estimating the selectivity bias corrected SPF for the non-adopters. However, the 

dependent variable in equation 4 takes the value 1 for non-adopters and 0 for adopters. The 

output variable is calculated as the total returns from agricultural produce of the farming 

households measured in Nepali currency (NRs).  The input variables include area of farmland 

in hectare, labour in man days, chemical fertilizer in kilogram, and capital expenditure in 

agriculture production measured in Nepalese rupees. In the estimation, we follow the steps by 

Bravo-Ureta et al. (2012) which are summarized in Table 2.  

 

3. Results and discussions 

3.1 Farmers’ perceptions of climate change, associated impacts and adaptations 

Figure 1 shows the perceptions of sampled farming households regarding the trends in climatic 

parameters. Majority of the farmers reported that both the summer and winter season 

temperature have increased as compared to 15-20 years before. Similarly, most farmers 

perceived that duration of summer season and unpredictability of local weather have increased 

over the years.  60% of the responded sample experienced an increase in the winter season 

temperature in recent years. 95% perceived that the summer season temperature has increased. 
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Similar findings on farmers perceptions of increase in temperature in Nepal have been reported 

by other studies (Manandhar et al., 2011; Piya, Maharjan, et al., 2012). Moreover, farmers’ 

perceptions are consistent with scientific observations which are reporting measurable 

temperature rises in Nepal (Chaudhary & Bawa, 2011). Farmers’ perception of precipitation 

was measured in terms of their views on changes in rainfall and snowfall quantity. About 58% 

of the sampled farmers stated reduced precipitation in their locality in recent years. While 56% 

of respondents stated increased unpredictability of the weather patterns, 41% noticed no change 

in predictability.  

 

When asked about the impacts of the above changes in agricultural outputs, most (95%) of the 

respondents reported that climate change has adversely affected their agriculture. A few of 

them (5%) reported that there was no impact of those changes. About 85% of the respondents 

said that they have experienced more drought and 80% reported that the water available for 

irrigation has been reduced over the years. Almost 78% of respondents stated an increased 

occurrence of flooding and landslides and a majority reported an increase in pest infestations 

in crops (83%). About 75% of the respondents experienced the encroachment of invasive 

species in their farmlands.   Similarly, about 82% of them reported that their farm-land soil has 

been degraded. A total of 74% stated that there has been a decline in agricultural productivity 

over the recent years as a result of the climate-related changes and variability.   

 

Farmers in the study area have undertaken several adaptation measures against impacts 

imposed by climate change and variability. The study findings revealed that approximately 

91% of farms had employed a minimum of one measure against the impacts imposed by climate 

change (Figure 2). We find that 53% of farming households had made adjustments in their crop 

species and varieties, 51% had adopted agricultural practices related to soil and water 
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management, 48% had made changes in fertilizer application, 45% had made changes in farm 

operations timing, and 18% had adjusted off-farm activities. This study’s expanded analysis 

encompassed three adaptation measures: crop/varietal adoption, farm operations’ time 

adjustments, and soil-water management. Farming households who practiced one or more of 

these three adaptation strategies in their farmlands and those who stated that the adoption of 

these strategies reduced the negative climate change impacts are termed as adopters, and 

otherwise non-adopters. Out of the 704 farming households, 468 belong to the adopter 

category. It is equally important to examine the impact of each adaptation type on the efficiency 

and productivity. However, most of the farmers had undertaken more than one adaptation 

simultaneously. Among the 263 adopters in the matched sample, about 8% had undertaken 

crop/varietal adoption only, 6% had undertaken soil-water management only, and 4% had 

undertaken farm operations’ time adjustments only. Moreover, 49% had adopted combinations 

of two adaptations and 33% had adopted all three adaptation measures (Figure 3). In cases 

where farmers had adopted more than one adaptation strategy, we believe that if we try to 

conduct the analysis using any one adaptation category at a given time, then we are likely to 

ignore those who adopted more than one of these three options. This is because analysing any 

one adaptation option implies that we are treating each adaptation as mutually exclusive.  

However, this is not the case as revealed by our survey results. 

 

3.2 Econometric results 

The results of the self-selection model using both unmatched and matched samples are reported 

in Table 3. The results show that the matching technique minimizes the variability between the 

adopters and non-adopters. This is indicated by the lower number of significant variables for 

the matched sample as compared to that of unmatched. The results indicate that both farming 

experience and educational levels are significant factors in farmers’ decisions to uptake 
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adaptations. As expected, more experienced farmers are more likely to adopt adaptation 

measures. This finding is in line with that of Deressa et al. (2009) and Hassan and Nhemachena 

(2008). Our result supports the findings that, farming household heads with higher levels of 

education are more probable to uptake adaptation measures (Deressa et al., 2009; Seo & 

Mendelsohn, 2008). Furthermore, our findings reveal that households with a higher percentage 

of irrigated land and those which sold agriculture produce are more likely to adopt adaptation 

measures. Contrary to our expectations, households having any members associated with  agro-

based organizations is inversely related to the use of adaptation practices implying that 

agricultural-related groups and networks are not adequately supporting farmers to enhance 

skills and knowledge on climate change adaptation.   

 

Table 4 presents the results of the conventional and sample selection bias-corrected SPFs for 

unmatched samples while Table 5 presents the same for the matched samples. In both cases, 

the coefficient for the selectivity variable, ρ, is significant for the adopters. This reveals the 

existence of selection bias in this analysis justifying the use of the sample selectivity bias-

corrected SPFs. The estimates of ‘sigma v’ are significantly different from zero in all the 

models. The estimates of ‘sigma u’, is statistically significant for adopters in the matched 

sample implying the presence of an inefficiency component. The sum of the estimated 

parameters associated with all the inputs is less than one in all the frontiers, implying decreasing 

returns to scale (DRS). This indicates the use of some of the inputs surpass the scale efficient 

point for the existing technology. Since the farmers analysed in this study are smallholders with 

the average landholdings of 0.56ha, the DRS is most likely to be associated with labour use. 

This is indicated by the labour use rate of 105 man-days/ha in our study (Table 1) which is 

relatively greater than other studies on smallholder framers (e.g., Gedara et al., 2012; Villano 

et al., 2015). Nevertheless, the DRS has been reported in previous studies on small-scale 
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farmers (e.g., Gedara et al., 2012; John and Seini, 2013) including for a study in Nepal 

(Shrestha et al., 2014).  

 

We undertook three hypothesis tests in investigating the productivity differential between 

adopters and non-adopters. First, the mean output of the adopters was found to be significantly 

different than that of non-adopters (Table 1). Second, the pooled model results reveal 

significant differences between the two groups. This was indicated by the statistical 

significance of the parameter for adaptation. Third, we utilized a likelihood-ratio (LR) test to 

investigate whether the two groups of farmers share the same technology. The null hypothesis 

of the test is that stochastic production frontier models for the adopters and non-adopters are 

the same. The estimated LR test rejects the null hypothesis in both unmatched and matched 

samples, suggesting significant technological differences between the adopters and non-

adopters. This justifies the necessity to estimate separate frontiers for each group of farmers.  

 

Summaries of TE scores for all the estimated models are reported in Table 6. Average TE levels 

range from 0.71 for the non-adopters using conventional SPF to 0.88 for the adopters, also 

using the conventional SPF. The TE scores of farmers in this study are comparable to those 

from other studies in Asian countries. For instance, the mean TE of farmers is found to be 0.81 

in Vietnam (Khai & Yabe, 2011), and ranges from 0.80 to 0.91in South-East China (Tan et al., 

2010), 0.83 in India (Tadesse & Krishnamoorthy, 1997), 0.72 in Sri Lanka (Gedara et al., 2012)  

and between 0.74 and  0.67 in urban and rural areas in Nepal (Piya et al., 2012). The average 

TE score from the P-U model is 0.73. When comparing the TE scores from this model between 

the two groups of farmers, we found that, on average, adopters (0.78) are 11% more efficient 

than non-adopters (0.67). Similarly, the average TE score for the P-M model is 0.87. 

Comparing TE scores from this model show that adopters (0.84) are 5% more efficient than 
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non-adopters (0.89). In both these models, the average TE score of adopters is found to be 

significantly (P<0.01) higher than that of non-adopters.  

 

The results of the sample selectivity bias-corrected SPF models show higher estimates of TE 

of adopters in all cases. This implies that adopters are performing better than non-adopters 

when comparing TE scores within their own cohorts.  The results further reveal that the 

implementation of the matching procedure minimizes the efficiency gap between adopters and 

non-adopters (Table 6). Moreover, the TE gap between the two groups reduces even further by 

the employment of the sample selectivity bias correction technique. Figure 4 depicts how 

correcting for both types of biases affect TE levels.  

 

Finally, we compared the output between the two groups of farming households. This was done 

after both the observable and unobservable biases are controlled for. In doing so, we obtained 

the predicted frontier output using the sample selectivity corrected SPF. As presented in Table 

7, the average output gap is 15% in favour of adopters. This suggests that adopters are not only 

performing better as indicated by higher TE scores, they are also operating at a higher level of 

output.   

 

4. Conclusions and policy implications 

The overarching objective of this study is to assess whether the adoption of climate change 

adaptation practices contributes to increased food production that supports the global efforts to 

eradicate hunger and poverty - two of the United Nations Sustainable Development Goals 

(SDGs). For this purpose, we first investigated farmers’ perceptions of changes in the climatic 

parameters, the impacts of climate related changes in agriculture, and farmers’ actions against 

those impacts. Then, we investigated whether adoption of adaptation practices impact on 
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farming households’ productivity and efficiency in agricultural production. We employed an 

emerging framework that combines impact evaluation techniques with the SPF model. A 

matched group of adopters and non-adopters of adaptation practices is obtained utilizing PSM 

method to correct for biases based on observed characteristics. In addition, the possible self-

selection arising from unobserved characteristics are taken into account by employing Greene’s 

(2010) sample selectivity corrected SPF method. The analysis confirms that selection bias was 

present; thus, suggesting for the combined framework.  

 

The results reveal that Nepalese farmers have the potential to enhance agricultural production 

under existing technology and inputs levels. When biases arising from both observable and 

unobservable sources are ignored, on average adopters are found to be 11% more efficient than 

non-adopters. Moreover, when the biases stemming from observable sources only are 

addressed, the adopters are found to be 5% more efficient than non-adopters. Even after 

correcting for both sources of bias, average TE was consistently greater in the case of adopters 

than non-adopters. However, the TE gap between adopters and non-adopters is reduced in the 

matched sample. Additionally, the sample selectivity bias corrected SPF further decreases the 

TE gap between adopters and non-adopters. Even though the TE gap of the matched selectivity 

model is shown to be the narrowest, what is important is the net gap after controlling for all 

observable and unobservable biases. In brief, it is evident from the study that, even after 

correcting for both observed and unobserved sources of bias, farming households adopting 

adaptation practices are more technically efficient than households not adopting adaptation 

practices. Our analysis also suggests that adopters perform better than non-adopters in terms of 

agricultural output. In Nepal, about 80% of the population lives in rural areas whose main 

economic base is agriculture. Thus, in a country like Nepal where economic development 

greatly depends on its agricultural sector, alleviating hunger and poverty is likely to occur if 



18 

 

priority is given to increasing agricultural productivity. In this context, our findings provide 

empirical evidence that adaptation to climate change make agricultural production systems 

more productive. 

 

At a time when more than 800 million people suffer from chronic hunger and many of them 

being subsistence producers (FAO, 2014), this study demonstrates that there is significant 

potential to improve agricultural productivity if smallholder farmers are able to adapt to the 

impacts imposed by climate change. Regarding policy implications, this study suggests that 

policy makers should formulate policies to encourage farming households to undertake climate 

change adaptation practices which have the potential to enhance farmers’ productivity and 

efficiency in agricultural production. There is, therefore, a need for additional investment to 

promote farmers’ adaptation practices and to reduce the adverse impacts imposed by changes 

in the local climatic conditions. This needs to be demonstrated by conducting detailed studies 

and showing that existing adaptation practices are indeed contributing toward enhancing 

farmers’ performance in agriculture production. In this regard, this study presents an empirical 

framework that can be employed in a range of developing countries in examining the impacts 

of climate change adaptations on food production. However, judging from the current and 

potential future contribution of farmers’ adaptations to sustainable development goals of 

eradicating hunger and poverty, more effort will be required in monitoring and evaluating 

various adaptation strategies to support boosting agricultural production. In the case of the 

present study, adaptation was integrated into the models as a binary variable. However, 

different types of adaptation can have different levels of impacts on farmers’ productivity and 

efficiency. Further research is, therefore, recommended to examine the impacts of particular 

adaptation practices on food production. The interest of farmers’ adaptations for sustainable 

development is likely to increase because of the clear connection between sustainable 
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development goals and what agriculture can contribute towards achieving them. Thus, farmers 

need to be involved to play active roles and their skills and knowledge need to be taken into 

account in climate adaptation planning.  
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Table 1. Descriptive statistics of variables 

Variables Pooled Adopters Non-adopters Test of 

means  

Mean Std. dev. Mean Std. dev. Mean Std. dev.  

Unmatched sample        

Production (NRs/ha) 90584.93 83231.43 100745.1 80528.41 79904.04 68934.07 2.507*** 

Land (ha) 0.56 0.62 0.62 0.69 0.43 0.40 3.921*** 

Labour (man-days/ha) 105.52 86.73 116.13 98.55 96.72 83.78 3.813*** 

Fertilizer (kg/ha) 245.80 447.86 260.35 401.86 242.92 363.58 1.934** 

Capital (NRs/ha) 7495.92 16060.93 7947.68 11931.26 6396.26 7409.23 1.822** 

Farming experience (years) 24.15 13.42 24.93 13.47 22.58 13.22 2.213** 

Education (years) 6.63 4.21 6.83 4.15 6.21 4.30 1.865** 

Distance to market (km) 8.07 10.51 8.35 11.58 7.51 7.94 1.006 

Share of irrigated land (%) 60.89 28.72 63.42 26.89 55.87 31.49 3.319*** 

Sold agriculture produce 

(dummy) 

0.52 0.48 0.60 0.49 0.36 0.48 6.235*** 

Membership (dummy) 0.62 0.50 0.59 0.47 0.68 0.43 2.502*** 

Adaptation (dummy) 0.66 0.47      

Observations 704  468  236   

Matched Sample        

Production (NRs/ha) 94873.58 95396.58 97738.06 73258.67 93478.41 113129.2 0.777 

Land (ha) 0.53 0.48 0.53 0.51 0.49 0.42 1.417 

Labour (man-days/ha) 106.91 92.54 109.13 135.33 98.61 130.69 1.259 

Fertilizer (kg/ha) 261.43 419.90 269.74 390.00 257.51 489.74 0.905 

Capital (NRs/ha) 6245.08 7524.04 6425.72 7724.76 6029.33 7116.17 1.328 

Farming experience (years) 24.18 13.20 24.48 13.03 23.71 13.48 0.593 

Education (years) 6.72 4.14 6.80 4.07 6.58 4.24 0.540 

Distance to market (km) 7.73 10.26 7.69 11.19 7.78 8.66 0.088 

Share of irrigated land (%) 62.05 27.77 63.37 26.34 69.99 29.81 1.239 

Sold agriculture produce 

(dummy) 

0.48 0.50 0.49 0.50 0.45 0.49 1.028 

Membership (dummy) 0.66 0.46 0.64 0.46 0.66 0.46 0.092 

Adaptation (dummy) 0.61 0.49      

Observations 433  263  170   

*** and ** denote 1% and 5% level of statistical significance. 
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Table 2. Estimation steps 

Step 

no.  

Action Outcome 

1 All available data are used to estimate a 

pooled unmatched SPF model (P-U) 

where the dichotomous factor adaptation 

(1 for adopters, 0 for non-adopters) is 

included as a regressor. 

The overall farm performance 

examined, accounting for 

technological change attributable to 

the adoption of adaptation practices. 

The model ignores any type of bias.  

2 Two separate SPF models are estimated 

using the unmatched subsamples, one 

for adopters (U-A) and the second for 

non-adopters (U-N).  

TE score distribution within each 

group of farmers compared. These 

models also ignore any type of bias.  

3 Two separate SPF models are re-

estimated with correction for selectivity 

bias, one for adopters (U-A-S) and the 

other for non-adopters (U-N-S). 

TE scores compared among farmers in 

each category where biases arising 

from unobservable characteristics are 

taken into account.  

4 All available data are used to implement 

the propensity score matching.   

Propensity scores calculated which 

were the basis for matching adopters 

and non-adopters.  

5 Re-estimated the pooled SPF model but 

using only the matched subsamples (P-

M) and adaptation dummy variable is 

included as a regressor.   

The overall farm performance 

analyzed, accounting for the biases 

arising from observed sources.  

6 Two separate SFP models are estimated 

using the matched subsamples; one for 

adopters (M-A) and the other for non-

adopters (M-N) without correction for 

selectivity bias. 

TE scores distribution among farmers 

within each category compared, 

accounting for biases arising from 

observed sources.   

7 Two separate selectivity bias corrected 

SPF models are estimated using the 

matched subsamples; again one for 

adopters (M-A-S) and the other for the 

non-adopters (M-N-S).  

TE scores distribution among farmers 

within each category compared 

correcting for biases stemming from 

both observed and unobserved 

sources. 
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Table 3. Estimations from the probit selection equation 

Parameter Unmatched sample Matched sample 

Coefficients S.E. Coefficients. S.E. 

Constant -0.615**    0.245 -0.330          0.329 

Farming 

experience 

0.012***    0.004 0.007          0.006 

Education 0.043***    0.013 0.034*          0.018 

Distance to 

market 

0.006    0.005 0.001          0.006 

Share of 

irrigated land 

0.004**    0.002 0.002          0.002 

Sold agriculture 

produce 

0.541***    0.103 0.244*         0.126 

Membership -0.253**    0.112 -0.048          0.135 

Log likelihood  -418.103  -286.522  

Chi-square 61.84***  13.07**  

N 704  433  

***, ** and * denote 1%, 5% and 10% level of statistical significance 
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Table 4. Parameter estimates for the conventional and sample selectivity bias corrected SPF models: unmatched sample 

Variables Conventional SPF Bias-corrected SPF 

Pooled (P-U) Adopters (U-A) Non-adapters (U-N) Adopters (U-A-S) Non-adopters (U-N-S) 

Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. 

Constant 0.771*** 0.255 8.173*** 0.485 6.329*** 0.493 8.410***       0.498 6.383***       0.515 

Land 0.259*** 0.044 0.263*** 0.053 0.275** 0.089 0.258***       0.041   0.347***       0.083 

Labour 0.295*** 0.051 0.205*** 0.063 0.287*** 0.075 0.221***       0.056 0.283***       0.074 

Fertilizer 0.090*** 0.024 0.117*** 0.019 0.059 0.053 0.112***       0.029 0.081          0.068 

Capital 0.208*** 0.039 0.168*** 0.052 0.237** 0.083 0.149***       0.036 0.161***       0.033 

Adaptation 0.137** 0.066         

Returns to 

scale 

0.852  0.753  0.858  0.740  0.873  

Log 

Likelihood 

-802.395  -481.205  -289.946  -665.345  -547.951  

Gamma 0.785*** 0.054 0.322*** 0.058 0.519*** 0.140     

Sigma square 2.167*** 0.501 0.476*** 0.032 1.154*** 0.296     

Sigma u       0.281          0.484 0.334       0.268 

Sigma v       0.680***       0.053 0.656***       0.127 

RHO (ρ)       -0.509***         0.092 0.207       0.516 

N 704  468  236  468  236  

*** and ** denote 1% and 5% level of statistical significance 
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Table 5. Parameter estimates for the conventional and sample selectivity bias corrected SPF models: matched sample 

Variables Conventional SPF Bias-corrected SPF 

Pooled (P-M) Adopters (M-A) Non-adopters (M-N) Adopters (M-A-S) Non-adopters (M-N-S) 

Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. 

Constant 7.142*** 0.748 7.542*** 2.321 6.428*** 0.596 7.794***       0.537 6.912***      1.485 

Land 0.269*** 0.068 0.243** 0.096 0.272** 0.105 0.263***       0.059 0.291***       0.076 

Labour 0.315*** 0.089 0.184*** 0.047 0.307*** 0.081 0.237***       0.084 0.365***       0.112 

Fertilizer 0.102** 0.036 0.084*** 0.016 0.084 0.070 0.085**        0.043 0.093          0.086 

Capital 0.217** 0.106 0.272 0.197 0.215** 0.084 0.219***       0.055 0.167**        0.058 

Adaptation 0.115* 0.059         

Returns to 

scale 

0.903  0.783  0.878  0.804  0.916  

Log 

Likelihood 

-501.508  -263.401  -212.415  -398.589  -375.075  

Gamma 0.556*** 0.161 0.453*** 0.133 0.394*** 0.112     

Sigma square 0.613*** 0.051 0.420*** 0.112 0.803*** 0.185     

Sigma u       0.5224*         0.262 0.482         0.421 

Sigma v       0.667***      0.056 0.893***       0.172 

RHO (ρ)       0.451***         0.121 -0.294          0.730 

N 433  263  170  263  170  

***, ** and * denote 1%, 5% and 10% level of statistical significance
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Table 6. TE levels and differentials across models 

Category Index Conventional SPF Sample selection SPF 

Pooled Adopters Non-adopters Test of TE 

distributiona 

Adopters Non-adopters Test of TE 

distribution 

Mean SD Mean SD Mean SD  Mean SD Mean SD  

Unmatched sample  TE 0.73 0.11 0.88 0.09 0.71 0.15 P = 0.000 0.84 0.02 0.77 0.12 P = 0.000 

Differentialb 23.94%       9.09%     

Matched sample TE 0.87 0.06 0.88 0.09 0.74 0.14 P = 0.000 0.86 0.02 0.82 0.03 P = 0.000 

Differential 18.91%       4.88%     
aA Kruskal-Wallis test was used to determine if TE distributions are significantly different between the adapters and non-adapters.  We also used 

a t-test to compare the TE scores between adopters and non-adopters. The mean TE scores were found significantly different in all four cases 
bTE differential was measured as the percentage increase in TE between adapters and non-adapters. 
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Table 7. Predicted frontier output after bias correction for matched sample 

Category Mean output (NRs/ha) Std. dev 

Adopters 108664.78 74414.92 

Non-adopters 94229.53 69780.81 

Percent differential 15.32  
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Fig 1. Respondents’ perceptions of local climatic conditions 
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Fig 2. Adaptation strategies 
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Fig 3. Extent of adaptations amongst the matched adopters (n = 263)  
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Fig 4. Distribution of efficiency scores for extreme models 
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