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Abstract

This work analyses the role of asymmetry in beliefs for price dynamics in a cobweb
model with heterogeneous expectations and evolutionary selection of predictors. While
heterogeneous but symmetric beliefs result in the rational expectations equilibrium
price, the effect of asymmetry depends on whether predictors on one side or the other
of rationality have a larger support. A support skewed towards predictors that are
anchored to past prices can be destabilizing, and the interaction with the evolutionary
selection mechanism can lead to complex dynamics in prices; a support skewed towards
predictors that overshoot price changes leads instead to price stability, irrespective
of the underlying evolutionary dynamics. The design of the set of beliefs allowed to
compete on the market is thus crucial for the possible outcomes of the model. One could
interpret a skewed support in terms of sentiments, intended as one-sided systematic
biases in expectations.
Key words: expectations; heterogeneity; evolutionary dynamics; sentiments.
JEL classification: C62, D83, D84, E32.
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1 Introduction

This paper looks at the impact of asymmetry in agents’ beliefs distribution on equilibrium

outcomes in a cobweb economy with heterogeneous expectations and evolutionary selection

of predictors.

In their seminal paper, [4, Brock and Hommes (1997)] - B&H hereafter - show how

highly irregular price dynamics can emerge in a simple cobweb market where agents can

switch between rational and naive predictors. After defining the concept of an adaptively

rational equilibrium (ARE), where agents adapt their beliefs over time by choosing from a

finite set of different predictors according to a discrete logit model, they then show how, in a

simple cobweb model where agents can choose between rational (at a cost) and naive (free)

expectations, agents keep switching between these two predictors, leading to complex and

even chaotic price dynamics.

This paper characterizes the shape of the finite set of different predictors among which

agents can choose in terms of their forecast errors, and show that such shape is crucial for

the outcomes of the model. A symmetric beliefs space, precisely defined below, gives rise

to an equilibrium where prices are at their rational expectations equilibrium (REE) level,

while the outcome under an asymmetric set of predictors depends crucially on which side of

the rational predictor the set is skewed towards. Depending on this, prices can show either

smooth convergence to the REE value, or complicated dynamics of the type depicted in

B&H.

The fact that a symmetric beliefs space leads to rational aggregate expectations is not

surprising. The coexistence of individual heterogeneity and aggregate rationality was con-

templated since the onset of the rational expectations paradigm, with [11, Muth (1961)]

acknowledging such possibility, with the caveat:: "Allowing for cross-sectional differences in

expectations is a simple matter, because their aggregate effect is negligible as long as the de-

viation from the rational forecast for an individual firm is not strongly correlated with those

of the others." It will be shown in this paper that a key feature in heterogeneous expecta-

tions leading to aggregate rationality is the distribution of the forecast errors, rather than

their independence: if forecast errors are symmetric around zero, in aggregate expectations

are rational, and prices are at the REE level. If forecast errors are not symmetric, complex

price dynamics of the type reported in B&H can, but do not necessarily, emerge in a cobweb

1
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model. The side of the asymmetry becomes then crucial in determining admissible equilibria

of the model.

The analysis in this paper shows indeed that, depending on the side of the asymmetry,

the reduced form AR(1) coefficient on prices can be constrained in a region that makes prices

stable, or can be allowed to move from a stable to an unstable region, opening the door to

complex dynamics. As a logit model of evolutionary selection of beliefs based on forecast

errors (directly or indirectly, for example through profits) implies that the distribution of

beliefs preserves the same asymmetry as the set of available predictors, the characterization

of such set allows to understand whether complex dynamics can emerge or not in the model.

The asymmetry in the distribution of beliefs, and thus in forecast errors, interacts with

the negative feedback from expectations and determines prices: when there is a prevalence

of beliefs that are anchored to the past, such beliefs tend to be destabilizing, and the evolu-

tionary dynamics on predictors can lead to complex price dynamics. Beliefs that overshoot

price changes are, instead, stabilizing, so a set of predictors that forces aggregate beliefs to

show this property leads to stable prices, irrespective of the specific evolutionary dynamics

on beliefs induced by the logit model.

An important message that emerges from this analysis is that care has to be taken in

designing the support for predictors when employing evolutionary selection mechanisms on

beliefs, since this largely determines the outcomes that are admissible in the model. There

might be perfectly sound motivations for choosing a set of predictors that lead to forecast

errors more predominant one side or the other of rationality, for example if one aims at

capturing the idea of sentiments in beliefs, where aggregate expectations are systematically

overestimating or underestimating actual realized outcomes. In such cases, the evolution-

ary mechanism allows for heterogeneous beliefs dynamics while preserving the aggregate

sentiment.

1.1 Review of the literature

After being proposed in B&H, the concept of evolutionary dynamics on predictors has been

applied and extended in various directions in economics. For example, [2, Branch (2002)]

extends the original B&H analysis allowing for three types of beliefs: rational, naive and

adaptive expectations, while [6, Brock et al (2005)] introduce the concept of a large type

limit to study an evolutionary heterogeneous market system with many different strategy

types.

Within a cobweb model, [10, Hommes and Wagner (2010)] find that the rational ex-
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pectations steady state is eductively stable but not evolutionary stable when producers can

choose between three strategies: optimistic, fundamentalist and pessimistic. Building on

these results, [12, Naimzada and Pireddu (2020)] add rational producers in the market and

find that while rational agents enlarge the local stability region of the steady state, they also

lead to complex dynamics.

Evolutionary selection of beliefs and the ARE concept have also been used to study the

interplay of beliefs and outcomes in other economic settings besides the cobweb model. For

example, [5, Brock and Hommes (1998)] and ([9, Gaunersdorfer (2000)]) find similar com-

plex dynamics emerging in an asset pricing model, where the feedback from expectations

to prices is positive. Using similar mechanisms, [8, De Grauwe and Grimaldi (2006)] find

complex dynamics in exchange rates and [7, De Grauwe (2011)] generates endogenous waves

of optimism and pessimism in a macroeconomic model. [3, Branch and MCGough (2016)]

find cycles and chaotic dynamics in a monetary model when traders switch between (costly)

rational and (costless) adaptive predictors and [1, Agliari et al. (2017)] propose an applica-

tion of the ARE concept to a New Keynesian macroeconomic model of inflation and output,

showing the impact of such beliefs dynamics on the stability and uniqueness of equilibrium.

None of these works seem to motivate the choice of the set of predictors made available to

agents in terms of the ensuing distribution of forecast errors, nor to discuss how such choice

is relevant for their results. It is the aim of this paper to address this issue.

2 A motivating example

As a motivating example for the analysis that follows, I consider the B&H framework with

two predictors and show simulations of price dynamics when the set of available predictors

is modified in two simple ways, by either adding or substituting one of the available options.

Rational and naive predictors could be represented, parsimoniously, as

pei,t = αipt−1 + (1− αi) pt, i = 1, 2 (1)

with α1 = 1, α2 = 0. The naive predictor is then characterized by α1 = 1 and the rational

one by α2 = 0. Consider now a third predictor, derived by setting α3 = −1. Agents using

this predictor would make the same forecast errors as those using α1, the naive agents, but

with a reversed sign. In fact, from (1)

εi,t = p
e
i,t − pt = αi (pt−1 − pt) ,
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so ε1,t = (pt−1 − pt) and ε3,t = − (pt−1 − pt): ex post, once pt is realized, forecast errors ε1,t

and ε3,t have the same size, but opposite sign. While naive agents undershoot price changes

in their forecasts, agents with a negative value for αi overshoot those changes (more on this

later), forecasting prices that are higher than actual ones when prices increase, and lower

than actual ones when they decrease.

Following B&H, I also assume the cost for using a naive predictor is zero, while there is

a positive cost for using the rational predictor. As the predictor characterized by α3 = −1

leads to forecast errors of the same size as those from the naive predictor, I also set their

cost to zero. It is equally costly to obtain forecasts with the same accuracy.

I then simulate the model under three different settings: i) the original B&H setting, with

only predictors characterized by α1 and α2 available; ii) a setting where all three predictors,

with α1, α2 and α3, are available; iii) a setting where only predictors with α2 and α3 are

available.

Starting with the B&H setting, I set all parameters as in the original work, in order to

replicate their Fig. 8.1 Results are shown in Figure (1), which in the top panel shows the

time series of prices, while in the bottom panel shows the reduced form AR(1) coefficient on

prices. Price dynamics replicate exactly those in Fig. 8 of B&H, top panel, where cycles in

prices emerge.

Keeping all parameters fixed, I then simulate the model under the two alternative scenar-

ios, first with three available predictors, characterized by αi = {−1, 0, 1} and then with two

options, characterized by αi = {−1, 0}. Results are reported in Fig 2 and Fig 3, respectively.

It can be seen that the behavior of prices is very different in these two cases compared to

the first one: with three predictors, prices drop immediately to their REE, remaining there

ever after; with two predictors, converge to the REE is instead smooth, but rapid, and once

again prices do not move from equilibrium once there.

The set of available predictors, thus, seems to have a major impact on the price dynamics,

and the aim of this work is to shed some light on the relationship between the two. In

particular, I will characterize the shape of the set of available predictors, how this impacts

on the distribution of beliefs and how such distribution determines the law of motion for

prices.

1Specifically, in terms of the model presented below, parameter values are set as follows: a = 0, z = 0.5;
b = 1.35; C = 1;β = 3.8, where β represents the "intensity of choice" parameter in the discrete logit model
for beliefs switching.
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Figure 1: Prices and AR(1) coeficient on prices. B&H setting.
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Figure 2: Prices and AR(1) coeficient on prices with three predictors: naive, rational and
contrarian.
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Figure 3: Prices and AR(1) coeficient on prices with two predictors: rational and contrarian.

3 The model

3.1 A cobweb model

In this section, following B&H, I derive a cobweb model with heterogeneous agents, where

firms need to decide how much to produce based on the expected selling price.

The profit function for a generic firm of type i (where the type will then represent the

predictor the firm uses) is specified as

πi,t = ptsi,t − c (si,t) , (2)

where πi,t are profits, pt is the selling price at time t and si,t is the quantity the firm produces

and sells at time t. The cost function c (.) is quadratic

c (si,t) =
s2i,t
2b
,

with b > 0.

As firms need to produce before knowing the selling price, maximizing expected profits

w.r.t. si,t gives rise to a linear supply curve

si,t = bp
e
i,t,

where pei,t is the expected selling price at time of production for a firm of type i. Aggregating



Beliefs asymmetry and price stability in a cobweb model

over firms, supply St is then given by

St =

n∑

i=1

µi,tsi,t,

where µi,t represents the relative number of firms of the same type.

Demand Dt is assumed linear in prices

Dt = a− zpt,

with a ≥ 0 and z > 0 parameters.

Putting together demand and supply, setting a = 0 for simplicity and defining B = −b/z,

the cobweb model can then be summarized as

pt = Bp
e
t , (3)

with

pet =

n∑

i=1

µi,tp
e
i,t.

Since B < 0, the cobweb model features negative feedback from expectations to outcomes:

higher expected prices mean higher production, which lowers actual prices. Under rational

expectations, there is only one equilibrium, pt = 0, for B 6= 1. For the non generic case

B = 1, instead, any pt is an equilibrium.

3.2 Expectations

In B&H, a large part of the paper is devoted to derive and characterize complex dynamics

for the case with two predictors available to firms, pe1,t = pt−1 and p
e
2,t = pt, with p

e
1,t cor-

responding to naive expectations and pe2,t to rational expectations (RE). Naive expectations

are free to obtain, while RE entail a cost C > 0. Firms switch between the two forecasting

rules based on profits, and the switching is modeled using a discrete logit model. In the

REE, the two predictors deliver the same (correct) forecast, pt = 0, though one at a cost.

B&H show that, under certain conditions (in particular, B < −1 and C high enough), cycles

and even chaotic dynamics can emerge in this setting.

The purpose of this work is to clarify the relationship between the available predictors

and market outcomes. As costs affect the relative selection of different predictors under

evolutionary schemes, an assumption needs to be made about their relative cost: I will
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model such costs as linear in the distance of each predictor from RE, but results are robust

to alternative choices.

In order to capture the range of different predictors available for selection, I model them

as a linear combination of past and current prices. Agents can thus choose among a finite

set of n predictors represented by

pei,t = αipt−1 + (1− αi) pt, i = 1, 2, ..., n. (4)

Each of the n predictors available is thus characterized by a different αi, with αi ∈ S ⊂ R.

Here S is the support interval for αi, defined as S = [−l, r] , r, l ≥ 1. The n values αi are

chosen to be equally spaced over S, with α1 = −l and αn = r.
2 Such modelling device allows

for a parsimonious parameterization of expectations. Care has to be taken, in designing

the space S, in case one wants to make sure the rational predictor is included among the n

available predictors.

Restricting S = [0, 1] forces expectations to be a convex combination of past and actual

prices, but there is no reason why agents should not be able to use a predictor which forecasts

a price outside this range.

A useful way to rewrite (4) is

pei,t = pt − αi (pt − pt−1) ,

which shows that positive values of αi lead to underestimation when prices are increasing

and overestimation when they are decreasing. Such beliefs are thus anchored by past values

and undershoot price changes, in both directions. A negative value for αi, instead, has the

opposite effect, giving rise to expectations that are "extreme", as they overshoot the direction

of movement of prices (up or down).

One can then write the forecast errors εi,t as

εi,t ≡ p
e
i,t − pt = −αi (pt − pt−1) .

An interesting empirical question that could help design the beliefs space of agents is

whether the sign of the forecast errors tends to be the same as that of (pt−1 − pt): that

is, whether or not people’s expectations tend to be anchored by current values and forecast

errors tend to fall predominantly on one side. In the absence of any such evidence, it would

be perhaps advisable to allow forecast errors to fall equally on either side of zero.

2Restricting l = 0, r = 1 and n = 2 leads to the B&H setting, where αi = {0, 1}.
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I then denote as µi,t the relative fraction of firms at time t using a specific predictor,

characterized by αi, with
n∑

i=1

µi,t = 1. Then, aggregating

pet =

n∑

i=1

µi,t (αipt−1 + (1− αi) pt)

pt−1

n∑

i=1

µi,tαi + pt

n∑

i=1

µi,t (1− αi)

= pt +

n∑

i=1

µi,tαi (pt−1 − pt) (5)

and substituting into (3)

pt = B

[

pt−1

n∑

i=1

µi,tαi + pt

n∑

i=1

µi,t (1− αi)

]

= B

(
n∑

i=1

µi,tαi

)

pt−1 +B

(
n∑

i=1

µi,t (1− αi)

)

pt

=

B

(
n∑

i=1

µi,tαi

)

1−B

(
n∑

i=1

µi,t (1− αi)

)pt−1. (6)

It will be convenient to denote the reduced form AR(1) coefficient on prices as Ωt; that

is:

Ωt ≡

B

(
n∑

i=1

µi,tαi

)

1−B

(
n∑

i=1

µi,t (1− αi)

) =
B

(
n∑

i=1

µi,tαi

)

(1−B) +B

(
n∑

i=1

µi,tαi

) . (7)

Equation (6) shows the law of motion for prices, given a certain distribution of beliefs, char-

acterized by
n∑

i=1

µi,tαi. While parameters αi, i = 1, .., n, depend on the set of predictors made

available to agents, the fractions µi,t will depend on the evolutionary mechanism adopted.

Before looking at it, though, I will discuss briefly in the next Section the choice of modelling

predictors according to (4).
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3.3 Representing expectations

In this section I motivate the choice of representing different predictors, and thus expecta-

tions, according to (4) by looking at two different alternative representations of heterogeneous

beliefs that might seem more intuitive, but that would not be suitable for the analysis of

this paper. These two examples help clarifying the desirable properties that an expectations

representation should feature in studies where the interplay of beliefs and outcome is to be

analysed.

The main reason for modelling expectations according to (4) is that such representation

offers a parsimonious way to model a class of beliefs where the degree of rationality is

characterized by one parameter only and prices depend on the aggregation of heterogeneous

beliefs in the population.

One could, for example, think of modelling different predictors as

pei,t = pt + αi,

where αi would represent the forecast error for predictor i. Rational firms would then be

characterized by αi = 0. The problem with this representation is that individual forecast

errors (and the ensuing profits for a firm) would be exogenous and independent of price

movements, so there would not be any endogenous dynamics in the evolutionary selection of

beliefs. Moreover, prices would always be equal to the constant α/(1 − B), where α is the

aggregation of the (exogenous) individual forecast errors.

Another possibility would be to represent expectations according to

pei,t = αipt.

Rational firms would now be characterized by αi = 1, and forecast errors would be equal

to (αi − 1) pt. Now individual forecast errors do depend on price movements but, with this

specification, pt = 0, independently of agents’ beliefs. Price dynamics are thus trivial, no

matter what beliefs agents hold.

Neither of these representations, thus, would be suitable for a setting where one wants to

analyse the interplay of beliefs and outcomes. Of course, one can come up with an infinite

number of alternative representations, some of which might well offer useful insights, but I

believe that equation (4) offers a sensible and parsimonious way to think about the issues at

the core of this paper.
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4 Evolutionary dynamics on beliefs

Having defined the set of predictors available to firms, it is now necessary to specify how

such predictors are selected. Following B&H, I assume that the fraction of firms using each

predictor i at time t, µi,t, is determined endogenously through a simple discrete logit model

based on relative profits, with no memory:

µi,t+1 =
exp (βπ̃i,t)∑

j

exp (βπ̃j,t)
, (8)

where

π̃i,t = πi,t − C (αi) (9)

represents overall profits once the cost of using a certain predictor is accounted for. Next

period predictors are thus chosen according to their relative performance this period.

The last term in (9) represents the cost of using the predictor characterized by αi. As

said before, I model such costs as a linear decreasing function of the distance between αi and

0, which characterizes the RE predictor: the cost of a predictor, thus, increases (linearly)

with its degree of rationality, as, e.g., agents need to acquire and process more information

for it. In particular, the cost of the least rational predictor(s) available, characterized by

the largest αi in absolute value, is normalized to zero, and the cost of the rational predictor

(αi = 0) is fixed to the level C̄, that is C (max(l, r)) = 0 and C (0) = C̄:
3

C (αi) = C̄ −
|αi| C̄

max(l, r)
.

Overall profits are thus given by

π̃i,t = ptbp
e
i,t −

(
bpei,t

)2

2b
− C̄ +

|αi| C̄

max(l, r)
.

Using (4) to substitute out expectations and (6)-(7) to represent prices, and denoting ᾱ =

3Alternative cost functions, such as the quadratic one

C (αi) = C̄ −
α2
i
C̄

ᾱ
,

could be assumed, and all results in this paper would hold. In general, any cost function that implies the
same cost for predictors with the same accuracy would lead to equivalent results.
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max(l, r), one obtains

π̃i,t =
b

2
Ω2tp

2

t−1 − α
2

i

(
b

2
(1− Ωt)

2 p2t−1

)
+ C̄

(
|αi|

ᾱ
− 1

)
, (10)

which shows that predictors characterized by the same |αi| lead to the same profits.

If one looks at mean squared errors, then, it can be seen that also the accuracy of forecasts

is the same for equal |αi|:

MSEi,t ≡
(
pei,t − pt

)2
= α2i (pt−1 − pt)

2 (11)

= α2i (Ωt − 1)
2 p2t−1. (12)

Moreover, the accuracy of forecasts is monotonic and decreasing in |αi|, with a maximum at

the rational predictor (αi = 0).

The fact that two predictors with equal |αi| have the same performance, both in terms of

MSE and in terms of profits, justifies the idea of allowing predictors with both positive and

negative values for αi to coexist in the set of available options. For example, allowing the

existence of a predictor characterized by αi = −1 in addition to one with αi = 1 simply means

to allow agents to use a predictor with the same forecast error as the naive expectations,

only "on the other side" of rationality.

Equation (8) then implies that predictors generating the same profits (or the sameMSE)

are adopted by the same number of agents, for any finite value of β. Given that, as seen,

profits depend on the absolute value of the forecast error, two predictors characterized by

the same |αi|, if both available, will be adopted by the same fraction of firms at each time.

In other words, if the support of predictors is symmetric, so is the distribution of firms

adopting those predictors, and an asymmetric set of predictors translates into an asymmetric

distribution of firms, for any finite value of β.

While the size of the forecast errors depends on |αi|, their sign depends on the sign

of αi: a positive αi generates a negative forecast error if prices increase (i.e., prices are

underestimated) and a positive error if prices decrease (prices are overestimated), while

a negative αi leads to a positive error if prices increase (prices are overestimated) and a

negative error of prices decrease (prices are underestimated). A positive αi, thus, means

that expectations are anchored to past values (undershooting any price change), while a

negative one means they are overshooting price changes (in both direction).

For example, consider the set of predictors represented by αi = {−1, 0, 1}, which gen-

erates expectations pei,t = {−pt−1 + 2pt, p t, pt−1}, with forecast errors equal to
(
pei,t − pt

)
=
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{−∆p,t, 0,∆p,t}, with ∆p,t = pt − pt−1. In the first case p
e
1,t = −pt−1 + 2pt = pt + ∆p,t =

pt−1+2∆p,t: agents expect twice the change in prices that actually takes place. In the third

case, instead, pe1,t = pt−1 = pt − ∆p,t: agents’ forecasts miss out completely the change in

prices that is going to happen.

To sum up, a set of predictors {αi, i = 1...n}, chosen to be equally spaced over the closed

interval S ⊂ R, gives rise to a distribution of beliefs, through (8). As (8) gives equal weight

to predictors with the same |αi|, whether the distribution of beliefs is symmetric or not will

be determined by the shape of the set S.

5 Beliefs distribution and market outcomes

5.1 Symmetry and equilibrium

I now define precisely what is meant here by symmetry (and asymmetry) of beliefs or pre-

dictors and derive implications for price dynamics and equilibrium. As said before, the set

of available predictors gives rise to a distribution of beliefs in the economy through (8). As

predictors with the same |αi| imply forecast errors of the same magnitude, the distribu-

tion of beliefs will preserve the same (a)symmetry as that of the set of available predictors.

The notion of (a)symmetry can thus be applied equivalently to the set of predictors, to the

distribution of beliefs or to that of forecast errors.

Taking the rational predictor as the reference point, with a zero forecast error, symmetric

forecast errors in available predictors require that for any predictor characterized by αi = a,

a ∈ R+, a "mirror" predictor characterized by αj = −a is also available for selection. In

terms of the set S, this translates into the requirement l = r.

For any finite intensity of choice, β, a symmetric set S = [−l, r], l = r, translates into a

symmetric beliefs distribution, since any two predictors characterized by αi = a and αj = −a

are adopted by the same proportion of agents. It also gives rise to a symmetric distribution

of forecast errors, centered at zero.

A useful way to summarize whether a distribution of beliefs is symmetric or not is through

the following measure:

λt ≡

n∑

i=1

µi,tαi. (13)

It is clear that a symmetric distribution is characterized by λt = 0. It is also clear from (7)

that λt = 0 implies Ωt = 0 and thus, from 6, pt = 0. A symmetric distribution of beliefs thus
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leads to an aggregate expected price equal to its REE value, which is a stable fixed point of

the system.

Proposition 1 An heterogeneous expectations cobweb model with evolutionary dynamics
over predictors symmetrically distributed around the rational one is equivalent to an ho-
mogeneous, rational expectations cobweb model. The market is stable at the REE equilibrium
pt = 0.

From (8) and (13), it is clear that symmetry in beliefs is both a necessary and sufficient

condition for λt = 0, for any finite β. Since any predictor will be adopted by a strictly positive

fraction of agents, and this fraction is the same for any two predictors characterized by αi = a

and αj = −a, all pairs of terms where both αi = a and αj = −a are available cancel out:

the sign of λt is then characterized by those predictors (αi) for which a "mirror" counterpart

is not available. In other words, (8) imposes the same mass µi on beliefs with the same

absolute forecast error: their values will cancel out, and only forecast errors of predictors

that don’t have a counterpart will contribute to characterize aggregate expectations, and

thus price dynamics.

5.2 Asymmetry and dynamics

Having defined symmetry in beliefs, it is straightforward now to present the concept of an

asymmetric distribution of beliefs, arising from an asymmetric support set S with l 6= r.

If |l − r| is large enough compared to n, the largest interval between [−l, 0) and (0, r] will

include more predictors. In particular, this requires |l − r| > l+r
n−1
, which I will assume to be

always the case whenever l 6= r.4 In this case, then, λt 6= 0, with the sign of λt depending on

which side of rationality includes more predictors: beliefs are not symmetrically distributed

around the rationality and, in aggregate, expectations differ from the rational expectations

price.

According to (8), predictors characterized by the same |αi| will get chosen by the same

fraction of agents: if S is not symmetric around zero, there will be predictors on one side of

rationality that don’t have the corresponding predictor on the other side: since all predictors

are chosen by a positive fraction of agents for finite β, and predictors with the same absolute

value for αi get the same relative selection, the largest interval between [−l, 0) and (0, r],

4This assumption simplifies the exposition as it ensures that the largest interval includes at least one
more predictor, thus allowing to characterize the distribution of predictors in terms of the boundaries of set
S.
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including more predictors, will determine the overall sign of λt. In other words, forecast

errors are not equally distributed around zero, and so they don’t aggregate up to zero.

It is essential at this point to characterise the sign of λt and, through it, pin down

possible values for Ωt. Clearly, a positive λt means that there are more predictors available

with positive αi than with negative αi. The following Proposition lays out the ensuing

restrictions on Ωt and the induced properties of prices.

Proposition 2 If the set S = [−l, r], l, r > 0, is asymmetric around zero, with |l − r| > l+r
n−1
,

two cases arise:
i. For l > r, λt < 0 and 0 < Ωt < 1: prices evolving according to (6) converge to their REE
value of zero over time.
ii. For l < r, λt > 0 and Ωt ∈ (−∞,+∞). Prices evolving according to (6) can display
complex dynamics under an evolutionary selection mechanism for beliefs like (8).

The proof is straightforward and goes as follows.

Noting that (8) determines the same µi,t for predictors characterized by the same absolute

value for αi, it is clear that all the terms in λt for which both αi = a and αj = −a exist

cancel out, and the sign of λt will depend on the relative size of l and r: if l > r, there will

be more terms with negative than with positive αi and λt < 0, while if l < r, positive terms

will instead dominate and λt > 0. We thus have two possible scenarios:

• Case 1: l > r =⇒ λt < 0.

If λt < 0 then 0 < Ωt < 1 (since B < 0, Bλt > 0, Bλt < (1−B (1− λt))) and prices

converge monotonically to zero, the REE equilibrium.

• Case 2: l < r =⇒ λt > 0.

When λt > 0, the characterization of Ωt is more complicated. First note that in this

case Bλt < 0. It it also trivially true that Bλt < (1−B (1− λt)), as the inequality

reduces to 0 < 1 − B, which is always satisfied in a cobweb model (B < 0). The sign

of the denominator in Ωt, though, cannot be characterized uniquely and two cases are

possible:

- Bλt < (1−B (1− λt)) < 0: then Ωt > 1 and prices are unstable.

- Bλt < 0 < (1−B (1− λt)) : then Ωt < 0, and prices could be stable or unstable,

depending on whether −1 < Ωt < 0 or not.

The alternating between stable and unstable regions for Ωt as µi evolves gives rise to

the irregular behavior described by B&H. In particular, when a large proportion of firms are

using the more rational predictors, the distribution of beliefs shifts closer to zero and λt takes
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on small positive values, determining small negative values for Ωt: price dynamics become

stable, inducing agents to adopt less rational predictors, thus increasing λt and driving Ωt

into the unstable region, with either Ωt < −1 or Ωt > 1, which in turn leads then firms to

switch to more rational predictors, and so on.

5.3 Discussion

Having presented Proposition 2, it is useful now to discuss some of its implications and delve

some more into the properties of the relationship between beliefs and prices, that is, of the

function Ωt (λt).

If λt < 0 then 0 < Ωt < 1 and prices converge monotonically to zero, the REE equilibrium.

In this case the evolutionary dynamics on predictors do not matter, as they preserve λt < 0

and thus price stability. The intuition is straightforward: when more firms use a predictor

characterized by a negative αi than by a positive αi, aggregate expectations overshoot any

price change. This means that when prices are decreasing, on average firms expect prices

to be lower than they turn out to be, which induces them to produce less, thus keeping

prices up. Similarly if prices are increasing, firms expect a larger rise than what actually

happens, thus increasing production and keeping prices low: again, prices are stabilized.

Due to the negative feedback on prices, expectations that overshoot price changes have a

dampening effect in a cobweb model, generating a contraction mapping on prices. The

evolutionary dynamics on predictors in this case do not matter, since λt remains negative

and thus 0 < Ωt < 1, no matter what the distribution of µi is.

One might wonder why this stable behavior is not found in B&H: the answer is that it

is explicitly ruled out by their assumptions A2 and A2’, which make the equilibrium price

p = 0 not stable and thus imply that Ωt must be greater than one in absolute value at p = 0.

Assumption A2 ensures such instability for the case where all costs C (αi) = 0, ∀αi, and

agents are uniformly distributed over the predictor space, with all fractions of agents fixed

at 1/n, while assumption A2’ ensures the instability when there are different costs and all

agents use the cheapest predictor. In both cases, a support of beliefs with l < r, which would

generate λt < 0 and price stability, is ruled out.

The second case, with λt > 0, is more complicated, and thus more interesting. For a

given cobweb model (that is, for a given B < 0), as λt increases (more firms adopting less

rational predictors) Ωt turns from a stable to an unstable region, first crossing the threshold

of −1, and then becoming positive and larger than 1.

As prices become unstable, more people will be driven to use a more rational predictor, so
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λt decreases towards zero and the system returns temporarily to stability with −1 < Ωt < 0.

As λt approaches zero (more and more firms use the more rational predictors, characterized

by values of αi close to zero, both positive and negative) and the price converges towards

its REE, the advantage of using the more rational, and more costly, predictors vanishes

and more and more firms start using the cheaper and less accurate predictors, leading λt to

increase once again. This is the B&H story of complex dynamics, and the intensity of choice

parameter β, determining the rate of switch among predictors, acquires now relevance in

determining these dynamics.

At this point, it is useful to investigate further the relationship between λt and Ωt, since

λt is characterized by the shape of the beliefs distribution and Ωt determines the dynamics

of prices. From (7) and (13)

Ωt =
Bλt

1−B +Bλt
,

and it can be seen that there is a vertical asymptote at λt = 1−
1

B
, where Ωt tends to −∞

or +∞ infinity, depending on whether convergence is from the right or the left. Specifically

lim
λt→1−

1

B

+

Bλt
1−B +Bλt

= ∞,

lim
λt→1−

1

B

−

Bλt
1−B +Bλt

= −∞.

Moreover, there is a horizontal asymptote at Ωt = 1: for λt → ±∞, Ωt → 1 from below

or above, that is

lim
λt→∞

Bλt
1−B +Bλt

= 1+,

lim
λt→−∞

Bλt
1−B +Bλt

= 1−.

Fig. (4) depicts the relationship between and λt and Ωt.

It is also possible to determine the point where the system changes from stable to unstable:

for 0 < λt <
1

2
− 1

2B
, −1 < Ωt < 0 and prices are stable, while for 1

2
− 1

2B
< λt < 1 − 1

B
,

Ωt < −1 and prices are unstable. The point (λt,Ωt) =
(
1

2
− 1

2B
,−1

)
is thus the crucial point

where prices change from stable to unstable, and the switching back and forth across this
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Figure 4: Relationship between λt and Ωt.

point is what generates the complex dynamics in prices described in B&H. Since

lim
B→−∞

1

2
−
1

2B
=

1

2

lim
B→0−

1

2
−
1

2B
= +∞,

this means that as B takes on larger and larger negative values the system can be destabilized

for milder asymmetries in beliefs, while values of B closer to zero require stronger beliefs

asymmetries in order for the market to be destabilized.

Before concluding this discussion, a few words should be spent over the role played by the

intensity of choice parameter β. Such parameter is key for the complex dynamics depicted

in B&H, and it is clear from the above analysis that its key role is limited to the case where

λt > 0, as it governs the switch from a region of stability to one of instability for prices, as

λt jumps from one side to the other of the threshold 1

2
− 1

2B
. For a given set of available

predictors {α1, ..., αn}, in fact, the condition l < r ensures that λt > 0, but the precise

value of λt depends on the distribution of µi, which represent the weights on αi in λt, and

such distribution depends on β. The intensity of choice is instead irrelevant for the case

where λt 6 0, as the system is in this case stable for any dynamics on beliefs, i.e., for any

distribution of µi. In other words, changes in µi do not affect the sign of λt when l ≥ r

and thus Ωt remains constrained in the stable region 0 6 Ωt < 1 (with equality holding for

symmetric beliefs, i.e., λt = 0).
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5.4 Asymmetric support of predictors and sentiments

While a symmetric support for predictors allows agents to make forecast errors that fall

equally on both sides of zero, there might be valid reasons to assume that, in certain settings,

predictors falling on one side of rationality are more prevalent than those falling on the other

side. In particular, one could interpret an asymmetric support for beliefs as a way to capture

a prevailing sentiment in an economy, intended as one-sided systematic biases in expectations.

Evolutionary dynamics over an asymmetric support ensure that agents can switch predictors

over time, but the aggregate sentiment remains unchanged as it is determined by the shape of

the support set. Designing a skewed support S, thus, allows for a parsimonious way to model

sentiments in an economy, while allowing evolutionary forces to operate on the distribution

of predictors in the population.

Under this interpretation, in a cobweb model, bullish beliefs when prices are increasing

and bearish beliefs when prices are decreasing are stabilizing (this happens when λt < 0,

that is, l > r). The negative feedback from expectations to actual prices, in fact, ensures

that the overshooting in expected price changes has a dampening effect on price dynamics.

The evolutionary dynamics on predictors, then, capture the adjustment of individual beliefs,

within the aggregate sentiment defined by S.

On the other hand, when l < r, that is, when aggregate expectations are bullish at times

of decreasing prices and bearish when prices are increasing, sentiments are destabilizing if

strong enough. As seen above, for mild sentiments (when 0 < λt <
1

2
− 1

2B
) the AR(1)

coefficient on prices (Ωt) is between −1 and 0 and there is oscillatory convergence of prices

to the REE value, while for stronger sentiments (λt >
1

2
− 1

2B
) the AR(1) coefficient is larger

than 1 in absolute value and prices become unstable. In this case, the evolutionary selection

of predictors, through (8), generates dynamics in λt that, interacting with actual prices, give

rise to the complex dynamics characterized in B&H, while preserving the general nature of

the sentiments.

6 Conclusions

Looking back at the motivating example in Section (2), one can now see that if there were,

for example, three predictors available, with say αi =
{
0, 1

2
, 1
}
, representing beliefs that are

rational, naive and half-way through the two, complex dynamics would still emerge. Indeed,

no matter how many predictors one includes with αi ∈ [0, 1], irregular dynamics in prices

would still emerge. On the other hand, if one allows enough predictors with forecast errors
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that fall on the other side of zero (that is, if one allows enough predictors with αi < 0),

then stable prices can obtain. The shape of the set of beliefs allowed to compete under

evolutionary dynamics is thus crucial for the outcomes of the model.

An essential element required in order to have cycles and complex dynamics in prices

in the original B&H work is the difference in cost among predictors: if the cost of using

different predictors is the same, in fact, the homogeneous equilibrium where all agents use

the rational predictor would prevail. In order to have irregular price dynamics, an unstable

homogeneous equilibrium is needed: since the fundamental equilibrium with rational agents

is always stable (see B&H, Theorem 3.1), costs need to be introduced in order to destabilize

it. But, as shown here, costs alone do not suffice to destabilize the market: one also needs a

set of available predictors skewed in one particular direction.

These results highlight the importance of the set of predictors, or heuristics, allowed to

compete under evolutionary schemes, as this determines the distribution of beliefs, which

in turns restricts possible market outcomes. A skewed support for beliefs could be intro-

duced, for example, with the purpose of capturing the idea of sentiments, where aggregate

expectations are tilted to one side or the other of the rational predictor, due to optimism or

pessimism of economic agents. Evolutionary forces then work on the skewed support, but

cannot change it, and thus the general behavior of the system is, to some extent, prede-

termined. Being aware of this link between available strategies and admissible outcomes is

important when employing evolutionary dynamics as a way to study the interplay of beliefs

and market outcomes.
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