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Abstract This paper aims to capture characteristic agglomeration patterns in popula-

tion data in Germany from 1987 to 2011, encompassing pre- and post-unification pe-

riods. We utilize a group-theoretic double Fourier spectrum analysis procedure (Ikeda

et al., 2018) as a systematic means to capture characteristic agglomeration patterns

in population data. Among a plethora of patterns to be self-organized from a uni-

form state, we focus on a megalopolis pattern, a rhombic pattern, and a core–satellite

pattern (a downtown surrounded by hexagonal satellite cities). As the technical con-

tribution of this paper, we newly introduce a principal vector as a superposition of

these patterns in order to grasp the multi-scale nature of agglomerations. Benchmark

spectra for these patterns are advanced and are found in the population data of Ger-

many in 2011. An incremental population is investigated using this principal vector

to successfully detect a shift of predominant population increase/decrease patterns in

the pre- and post-unification periods.
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1 Introduction

In this paper, a systematic methodology to capture characteristic agglomeration pat-

tens in population data is proposed using and extending a group-theoretic double

Fourier spectrum analysis procedure (Ikeda et al., 2018). This methodology is put to

use in the population data in Germany during the pre- and post-reunification periods

(from 1987 to 2010) to demonstrate the occurrence of a phase shift in the predominant

agglomeration pattern.

Christaller (1933) envisaged the existence of hexagonal distributions of cities

and towns in Southern Germany. Thereafter, several attempts to simulate the self-

organization of central place systems have been conducted through modeling of eco-

nomic mechanisms of agglomerations (e.g., Eaton and Lipsey, 1975; Clarke and Wil-

son, 1983; Sanglier and Allen, 1989; Munz and Weidlich, 1990; Fujita et al., 1999;

Tabuchi and Thisse, 2011; Banaszak et al., 2015). Hexagonal patterns on a hexago-

nal lattice were shown to exist theoretically and were numerically simulated (Ikeda

and Murota, 2014; Ikeda et al., 2014, 2017). The reemergence of central place theory

with its complements, such as NEG models, has come to be acknowledged (Mulligan

et al., 2012). Bridging empirics and theory is regarded as an important topic (e.g.,

Stelder, 2005; Bosker et al., 2010). The evolution of network analysis in geography

was reviewed by Ducruet and Beauguitte (2014). The role of spatial topology in the

core-periphery model was studied by Barbero and Zofı́o (2016). There are studies

related to Germany, which is the target of this paper: German division and reunifica-

tion by Redding and Sturm (2008) and the city size distribution of West Germany by

Bosker et al. (2008) and Findeisena and Südekum (2008).

Despite these studies, the measuring of spatial agglomeration patterns in actual

population data remains a difficult problem. As described in central place theory

(Christaller, 1933; Lösch, 1940), the real-world spatial agglomeration patterns form

the hierarchical structure of centers and subcenters. As a result, measurement be-

comes scale-dependent; in data at a given scale, some centers can be easily identified

while some lower-level subcenters are not.

As an attempt to handle such a multi-scale nature of spatial agglomeration pat-

terns and to capture characteristic agglomeration patterns in population data with a lot

of noise, Ikeda et al. (2018) introduced the group-theoretic Fourier analysis and found

hexagonal patterns in population data in Southern Germany and Eastern USA. In this

work, a hexagonal lattice was employed in line with the seminal works of Christaller

(1933) and Lösch (1940). Moreover, they elaborately assembled the Fourier basis

into several groups to express hexagonal modes to be self-organized from the uniform

state, as envisaged in central place theory. The difference in the spatial frequency of

the Fourier modes is used to express different levels of city hierarchy in the underly-

ing central place system. This contrasts with a customary double Fourier series in a

square lattice that cannot express such self-organizing hexagons. The basis vectors of

the group-theoretic Fourier series were found to coincide with the eigenvectors of an

adjacency matrix in spatial statistics, which are known to capture distinctive spatial

patterns with associated spatial autocorrelation distances (Tiefelsdorf and Griffith,

2007). Then the Fourier terms associated with negative eigenvalues of the adjacency

matrix were cut to filter noise in the population data.
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This paper aims to capture characteristic agglomeration patterns in population

data in Germany from 1987 to 2011, using and extending the spectrum analysis pro-

cedure by Ikeda et al. (2018). First, as the technical contribution of this paper, we

newly introduce a principal vector as a superposition of a few Fourier modes in order

to grasp the multi-scale nature of agglomerations. Modes with the first few largest

eigenvalues of the adjacency matrix are used in the principal vector not only to filter

noise but to capture important agglomeration patterns. Next, we set forth a megalopo-

lis pattern, a rhombic pattern, and a core–satellite pattern (a downtown surrounded by

hexagonal satellite cities) as the target of the spectrum analysis and observe bench-

mark spectra for these patterns. We found that only four spectra are predominant

for these three prototype patterns. Such predominant spectra are actually found in

the population data in Germany in 2011 and agglomeration patterns are successfully

grasped by the principal vector with only these four terms, while Ikeda et al. (2018)

employed as many as 15 modes as candidates. Last, an incremental population during

the pre- and post-reunification periods (from 1987 to 2011) is investigated to detect

a shift of the predominance of a megalopolis pattern around Frankfurt to that of a

core-satellite pattern for several large cities.

This paper is organized as follows. Group-theoretic spectrum analysis procedure

is presented in Section 2. Hexagonal distributions of cities are detected in the popu-

lation data of Germany in Section 3.
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2 Group-theoretic Fourier spectrum analysis

We introduce the bifurcation mechanism of the self-organizing hexagons on an n × n

hexagonal lattice with periodic boundary conditions and an oblique discrete Fourier

series on this lattice, as a summary of Ikeda and Murota (2014) and Ikeda et al.

(2018). It is to be emphasized that this Fourier series was elaborately constructed so

as to be compatible with the bifurcation mechanism to engender hexagonal patterns,

whereas a more customary double Fourier series in a square lattice lacks in such

compatibility.

2.1 Group-theoretic Fourier series and self-organizing patterns

An n × n finite hexagonal lattice with periodic boundary conditions represents uni-

formly distributed n × n discrete places (see Fig. 1 for an example of n = 3). The

places are indexed by (n1, n2) and the population distribution vector is indexed as

λ = (λn1n2
| n1, n2 = 0, . . . , n − 1).

The population distribution vector λ on the n×n hexagonal lattice (n is a multiple

of 6) can be expanded to a group-theoretic oblique discrete Fourier series as (Ikeda

and Murota, 2014)

λ =

3
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+
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Fig. 1: (a) 3×3 hexagonal lattice. (b) Spatially repeated 3×3 hexagonal lattices using

periodic boundary conditions.
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with Fourier coefficients c
(m)

i
and c

(k,ℓ)

i
. This is not a naı̈ve Fourier series but is elabo-

rately rearranged and regrouped associated with the bifurcation mechanism. In (1), k

and ℓ denote wave numbers of the Fourier basis vectors, which are given by

q
(1)

1
=

1

n
(1, . . . , 1)⊤ = ⟨1⟩,

[q
(2)

1
, q

(2)

2
] = [ ⟨cos(2π(n1 − 2n2)/3)⟩, ⟨sin(2π(n1 − 2n2)/3)⟩ ] ,

[q
(3)

1
, q

(3)

2
, q

(3)

3
] = [ ⟨cos(πn1)⟩, ⟨cos(πn2)⟩, ⟨cos(π(n1 − n2))⟩ ] ,

[q
(k,0)

1
, . . . , q

(k,0)

6
]

= [ ⟨cos(2πk n1/n)⟩, ⟨sin(2πk n1/n)⟩, ⟨cos(2πk(−n2)/n)⟩,

⟨sin(2πk(−n2)/n)⟩, ⟨cos(2πk(−n1 + n2)/n)⟩, ⟨sin(2πk(−n1 + n2)/n)⟩ ]

for 1 ≤ k ≤
n

2
− 1,

[q
(k,k)

1
, . . . , q

(k,k)

6
]

= [ ⟨cos(2πk(n1 + n2)/n)⟩, ⟨sin(2πk(n1 + n2)/n)⟩, ⟨cos(2πk(n1 − 2n2)/n)⟩,

⟨sin(2πk(n1 − 2n2)/n)⟩, ⟨cos(2πk(−2n1 + n2)/n)⟩, ⟨sin(2πk(−2n1 + n2)/n)⟩ ]

for 1 ≤ k ≤
n

2
− 1, k ,

n

3
,

[q
(k,ℓ)

1
, . . . , q

(k,ℓ)

12
]

= [ ⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩, . . .

⟨cos(2π(−(k + ℓ)n1 + ℓn2)/n)⟩, ⟨sin(2π(−(k + ℓ)n1 + ℓn2)/n)⟩ ]

for 1 ≤ ℓ ≤ k − 1, 2k + ℓ ≤ n − 1.

Here, for a vector (g(n1, n2) | n1, n2 = 0, 1, . . . , n − 1), we use the notation ⟨g(n1, n2)⟩

for its normalization (||⟨g(n1, n2)⟩|| = 1).

Self-organizing bifurcating patterns from a uniform state (q
(1)

1
≡ ⟨1, . . . , 1⟩⊤) were

presented (Ikeda and Murota, 2014). We are particularly interested in a core–satellite

pattern and a series of hexagons in central place theory. These patterns are given by

special combinations of the basis vectors as

q
µ

hexa
=



























































q
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6
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(2)

Here µ is either (1), (2), (3), or (k, ℓ). Some of these hexagons are shown in Fig. 2.

In addition to these hexagons, a “core–satellite pattern” (Fig. 2(d)) for q
(2,1)

hexa
plays

a vital role in the search for distributions of cities. This pattern represents a circle

(core place) surrounded by six smaller ellipses (periphery places).
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(f)

(Megalopolis)

(a)

(Nine hexagons)

(d)

(Rhombic)

(c)

(Three hexagons)

(b)

(Twelve hexagons)

2,2

(Core-satellite pattern)

(e)

Fig. 2: Hexagonal and core–satellite patterns (shifted to the center of the domain) on

an 18 × 18 hexagonal lattice. A blue hexagonal area denotes a positive component, a

yellow one indicates a negative one, the magnitude of the component increases as the

color becomes darker, and a red line is used to clarify spatial patterns.

2.2 Group-theoretic spectrum analysis procedure

A group-theoretic spectrum analysis procedure is introduced in this section as a sys-

tematic tool to capture characteristic agglomeration patterns in the statistical data of

population (Section 3).

We reassemble the double Fourier components1 in (1) as

q
µ =

M(µ)
∑

i=1

c
µ

i
q
µ

i
, µ ∈ R, (3)

in which µ is either (1), (2), (3), or (k, ℓ), R is the whole set of µ, and M(µ) (= 1, 2, 3, 6,

or 12) is the number of basis vectors q
µ

i
for µ. This assemblage is compatible with

the bifurcation mechanism (Section 2.1), and the vector q
µ for appropriately chosen

c
µ

i
can represent hexagonal patterns q

µ

hexa
in (2). Then the double Fourier series in (1)

is rewritten as

λ =
∑

µ∈R

q
µ. (4)

This is employed in the spectrum analysis (Section 3).

The component vectors q
µ of (4) depicted in Fig. 2 do indeed look like agglomer-

ation patterns. Yet some component vectors with high spatial frequencies (e.g, Fig 3)

1 These are so-called isotypic components in group-theoretic bifurcation theory (Golubitsky et al.,

1988).
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Fig. 3: Hexagonal patterns with higher frequencies associated with the eigenvectors

on an 18×18 hexagonal lattice. A blue hexagonal area denotes a positive component,

a yellow one indicates a negative one, and the magnitude of the component increases

as the color becomes darker.

are not realistic as spatial agglomeration patterns. To filter such vectors, we resort to

an adjacency matrix that has come to be used in spatial statistical studies (Dray et

al., 2006; Murakami and Griffith, 2015). Eigenvectors of this matrix corresponding

to large eigenvalues are known to capture cluster or agglomeration effects (Tiefels-

dorf and Griffith, 2007), which the central place theory describes. In our analysis,

these eigenvectors, which are often called spatial eigenvectors, are put to use in the

selection of the principal components that can express agglomeration effects.

An adjacency matrix A = {ai j | i, j = 1, . . . ,N} of the n × n hexagonal lattice

network, which is defined as ai j = 1 if i and j are connected and ai j = 0 otherwise,

takes the form:

A =
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. (6)

It is noteworthy that the eigenvectors q
µ

i
of A are also the eigenvectors of the Jacobian

matrix J of the governing equation, thereby related to self-organizing patterns (Ikeda

et al., 2018).
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With resort to the eigenvalues ξµ = (q
µ

i
)⊤Aq

µ

i
of the adjacent matrix A, we would

like to depict a subset for large eigenvalues, that is,

R∗ = {µ | ξµ ≥ ξ∗ and µ , (1)} (7)

as principal components for some threshold value ξ∗; µ = (1) associated with the

uniform distribution is excluded here and in the remainder of this paper since we

target not uniformity but heterogeneity due to spatial agglomerations. Then we define

the principal vector for these components as

q
∗
m =
∑

µ∈R∗

q
µ, (8)

where m denotes the number of terms involved in the summation on the right hand

side. In application, it is vital to choose the number m of the terms appropriately as

q
∗
m with too small m may fail to capture spatial distribution property and q

∗
m with too

large m is subject to noise.

The eigenvalues ξµ of the adjacent matrix A for an 18 × 18 lattice (n = 18) are

listed in Table 1 in a decreasing order. The eigenvectors with larger wave numbers k

and ℓ, which have higher spatial frequencies with a larger number of agglomerated

zones, tend to have smaller eigenvalues. These eigenvectors with noise-like patterns

(Fig. 3) are systematically excluded by focusing on the principal components in (7).

The hexagonal and core–satellite patterns in Figs. 2(a)–(d) are associated with the first

to the fourth largest positive eigenvalues and play an important role in the description

of the real population data (Section 3), whereas those in Figs. 2(e)–(f) associated with

the fifth to the sixth largest positive eigenvalues are presented here for reference.
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Table 1: Order of the eigenvalues ξµ of the 18 × 18 adjacency matrix A (Ikeda et al.,

2018)

Order µ Eigenvalue Name Corresponding figure

1 (1,0) 5.76 Megalopolis Fig. 2(a)

2 (1,1) 5.29 Three hexagons Fig. 2(b)

3 (2,0) 5.06 Rhombic Fig. 2(c)

4 (2,1) 4.41 Core satellite Fig. 2(d)

5 (3,0) 4.00 Nine hexagons Fig. 2(e)

6 (2,2) 3.41 Twelve hexagons Fig. 2(f)

7 (3,1) 3.23

8 (4,0) 2.69

9 (3,2) 2.18

10 (4,1) 1.88

11 (5,0) 1.31

12 (3,3) 1.00

13 (4,2) 0.88

14 (5,1) 0.53

15 (6,0) 0.00

16 (4,3) −0.18

17 (5,2) −0.35

18 (6,1) −0.65

19 (7,0) −1.06

20 (4,4) −1.18

21 (5,3) −1.23

22 (6,2) −1.35

23 (7,1) −1.53

24 (8,0) −1.76

25–29 (5,4), (7,2), (6,3), (8,1) −2.00

(3) −2.00 k = 4 system

30 (8,8) −2.23

31 (7,3) −2.41

32 (6,4) −2.53

33 (5,5) −2.57

34 (7,7) −2.72

35 (6,5) −2.88

36 (2) −3.00 k = 3 system
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2.3 Benchmark spectra for important spatial patterns

In preparation for the application of the spectrum analysis to real data, we set forth

a megalopolis pattern, a rhombic pattern, and a core–satellite pattern (a downtown

surrounded by hexagonal satellite cities) in Fig. 2 as the target of the spectrum anal-

ysis and observe benchmark spectra for these three patterns. In particular, we would

like to determine a sufficient number m of terms to be included in the principal vector

q
∗
m =
∑

µ∈R∗ q
µ in (8) to express these patterns unambiguously.

Megalopolis patterns are shown at the left of Fig. 4, whereas the associated group-

theoretic Fourier spectra are shown at the right. The full agglomeration in Fig. 4(a)

displays an almost flat spectrum distribution without a predominant spectrum. When

the patterns become more diffused from (b) to (c), we can see the predominance of

the spectrum for (k, ℓ) = (1, 0) accompanied by that for (1, 1) as the second largest

one. We can thus regard the predominance of the spectrum of (1, 0) to signify the

presence of a megalopolis pattern, whereas the emergence of the spectrum of (1, 1)

as its byproduct.

A core–satellite pattern and its spectrum are shown in Fig. 5(a). We can see the

emergence of the predominant spectrum (k, ℓ) = (2, 1), whereas even the second and

the third predominant ones for (1, 1) and (4, 0) are quite small in magnitudes. This

is an idealistic benchmark for a core–satellite pattern. By contrast, real data often

features two predominant spectra for (k, ℓ) = (2, 1) and (1, 0) (cf., Fig. 9(c) and also

Ikeda et al., 2018). As a possible scenario of this, we consider the development of an

industrial belt between the core place and a satellite place in the core–satellite pattern

shown in Figs. 5(b) and (c). In association with the formation of an industrial belt

from (a), via (b), to (c), we can see the predominance of the spectrum for (2, 1) with

byproducts of the spectra for (1, 0) and (1, 1).

For the rhombic pattern (four hexagons) shown in Fig. 6(a), (2, 0) has the largest

spectrum. In the patterns in Figs. 6(b) and (c), for which one city has larger popu-

lation in comparison with the other three cities, the spectra for (1, 0) and (2, 0) are

predominant and the spectrum for (1, 1) appears as a byproduct.

Thus the spectra for (k, ℓ) = (1, 0), (1, 1), (2, 0), and (2, 1) can characterize the

existence of spatial patterns of megalopolis, core–satellite, rhombic, and so on. More-

over, these four spectra correspond to the first to the fourth largest eigenvalues of the

adjacency matrix A (Table 1). Accordingly, we choose the principal vector in (8) as

q
∗
4 =
∑

µ∈R∗

q
µ, R∗ = {(1, 0), (1, 1), (2, 0), (2, 1)}. (9)

The spatial patterns expressed by the principal vectors q
∗
4

for the megalopolis, core–

satellite, and rhombic patterns are depicted in Fig. 7(a)–(c) and are capable of cap-

turing their agglomeration properties. We employ the principal vector q
∗
4

determined

in this manner to the spectrum analysis of Germany in Section 3, for which q
∗
4

is

ensured to contain sufficient number of terms in comparison with q
∗
m (m ≥ 5).

In particular, the principal vector q
∗
4

is suitable for the description of the industrial

belt pattern in Fig. 7(d), which is a superposition of the megalopolis pattern q
(1,0) and

the core–satellite pattern q
(2,1), and cannot be expressed only by an individual pattern.

In this regard, the principal vector q
∗
m is suitable for the description of real data, in

which mixed patterns with different sizes are often observed (Section 3).
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(a) Megalopolis pattern (Fig. 4(c)) (b) Core–satellite pattern (Fig. 5(a))

(c) Rhombic pattern (Fig. 6(a)) (d) Industrial belt pattern (Fig. 5(c))

Fig. 7: The principal vector q
∗
4

for spatial patterns. A blue hexagonal area denotes a

positive component, a yellow one indicates a negative one, and the magnitude of the

component increases as the color becomes darker.
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3 Group-theoretic spectra for hexagonal distributions of cities in Germany

Although hexagonal distributions of cities and towns in Southern Germany were en-

visaged by Christaller (1933), the existence of such distributions in the real world

remains to be verified in a more systematic manner. As a step towards this verifica-

tion, a core–satellite pattern in Southern Germany in the population data in 2011 was

sought for in Ikeda et al. (2018). In this paper, this search is extended twofold: (1)

the area for search is extended northwards and (2) the time evolution of the spectra

between 1987–2011, which comprises an era of post-reunification, is investigated.

As a methodological contribution of this paper, the principal vector q
∗
m in (8),

which is a sum of several vectors q
µ in (3), is introduced to capture spatial patterns,

whereas Ikeda et al. (2018) relied solely on an individual q
µ, which is an authentic

self-organizing pattern bifurcating from the uniform state. The usefulness and supe-

riority of q
∗
m is to be demonstrated in the remainder of this section. Based on the

benchmark spectrum analysis in Section 2.3, we employ q
∗
4

(m = 4) in (9) as the

principal vector to capture characteristic agglomerations.

3.1 Setting of the group-theoretic spectrum analysis

We employ the population data map shown in Fig. 8 obtained using the Mercator

projection. This map contains Germany and neighboring countries. Fig. 8 (a) denotes

the population in 2011, (b) the increment of population during 1987 to 2000,2 and (c)

that during 2000 to 2011. During this period, Germany underwent an up and down of

2 Although the population map in Eastern Germany is not fully covered due to the lack of data in 1987,

it does not affect the results of this section.

Table 2: Original sources of population data.

Country Data bank (Date, Type) and Internet address

Germany Statistisches Bundesamt Deutschland

(1987/5/25, Census; 2001/12/31, Estimate; 2011/05/09, Census)

https://www.destatis.de/EN/Homepage.html

Austria Statistik Austria (1991/5/15, 2001/5/15, 2011/10/31, Census)

http://www.statistik.at/web de/statistiken/index.html

Belgium Statistics Belgium (2010/01/01,Estimate)

http://statbel.fgov.be/en/statistics/figures/

France Institut National de la Statistique et des Études Économiques

(1990/3/5, 1999/3/8, Census; 2012/01/01, Estimate)

http://www.insee.fr/fr/

Netherlands Centraal Bureau voor de Statistiek (2011/01/01,Estimate)

http://statline.cbs.nl/StatWeb/publication/?VW=T&DM=SLNL&PA=70233ned&LA=NL

Switzerland Swiss Statistics (1990/12/4, 2000/12/5, 2010/12/31, Census)

http://www.bfs.admin.ch/bfs/portal/en/index.html

Luxembourg Le Portail des Statistiques du Luxembourg

(1991/3/1, 2001/2/15, 2011/02/01, Census)

http://www.statistiques.public.lu/en/index.html
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(a) Population in 2011

(b) Increment between 1987 to 2000 (c) Increment between 2000 to 2011

Fig. 8: The population data map for Germany and neighboring countries. In (a), a blue

circle denotes the size of population. In (b) and (c), a blue circle denotes a positive

component, a yellow circle indicates a negative one, and the area of a circle expresses

the magnitude of the incremental population.

population from 77.7 million, via 82.1 million, to 80.2 million. We can see an overall

increase of population shown by blue circles in Western Germany during 1987 to

2000; however, there is a mixture of increase and decrease (shown by yellow circles)

there during 2000 to 2011.

The population data were taken from the City Population website (http://www.

citypopulation.de/), which is based on the original sources listed in Table 2. The

latitude and longitude of a location were acquired by GoogleMap and Nominatim

of OpenStreetMap (https://nominatim.openstreetmap.org/).

On the map in Fig. 8(a), two rhombic regions, which cover most of Germany, were

chosen based on a series of preliminary analyses: Region 1 encompassing Southern

Germany and Region 2 encompassing Middle Germany. These regions were overlaid

by an 18× 18 regular-triangular mesh and the population was allocated to the nearest

node to arrive at the discretized population distribution (e.g., Fig. 9(b) for Region 1).
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3.2 Southern Germany (Region 1) in 2011

Group-theoretic Fourier spectrum analysis of the discretized population data in Fig. 9(b)

of Southern germany (Region 1) in 2011 was conducted to obtain the spectrum in

Fig. 9(c),3 which plots the squared magnitudes ||qµ||2 (µ ∈ R) of the assembled Fourier

terms in (4); the red bars correspond to the spectra for ξµ with the first to the fourth

largest eigenvalues.

There are two distinct peaks of the spectrum for the megalopolis pattern q
(1,0)

and for the core–satellite pattern q
(2,1), similarly to the benchmark spectrum for the

industrial belt for a core–satellite pattern (Fig. 5(c)). The megalopolis pattern in

Fig. 9(d) expresses a large agglomeration along an industrial belt between Frank-

furt and Stuttgart. The core–satellite pattern in Fig. 9(e) with seven blue circular or

elliptic zones captures agglomeration at the four larger cities, München, Frankfurt,

Stuttgart, and Nürnberg, which form a clear rhombic shape. Saarbrücken is another

place of agglomeration in this pattern. Yet we encounter a problem in that Zürich is

located at the middle of two elliptic zones of agglomeration, which express a chain

of cities: Konstanz, Zürich, and Mulhouse. Thus the core–periphery pattern is de-

viated from the real population distribution in the south, although it is an authentic

self-organizing pattern bifurcating from the uniform state.

In a further search of agglomeration patterns, we resort to the principal vector q
∗
m

in (8). Recall that

q
∗
4 =
∑

µ∈R∗

q
µ, R∗ = {(1, 0), (1, 1), (2, 0), (2, 1)}

in (9) with m = 4 terms is set forth to characterize agglomeration patterns based on

the analysis of the benchmark spectra (Section 2.3). The spatial patterns q
µ for µ =

(1, 0), (1, 1), (2, 0), and (2, 1) are presented in Figs. 9(d)–(g) and those for µ = (3, 0)

and (2, 2) in (h) for reference.

In order to testify the sufficiency the use of m = 4 terms, the vector q
∗
m for the

present case is observed for various values of m, as depicted in Fig. 10; the pattern

for q
∗
4

looks quite close to that for q
∗
5
, thereby ensuring that m = 4 is already large

enough to grasp agglomeration characteristics. Note that the number m = 4 is very

small in comparison with the total number of 18 × 18 (= 324) terms of the Fourier

analysis. The distribution becomes more scattered for larger m (= 15, 35).

The principal vector q
∗
4

(Fig. 11(a)), which is the superposition of these four

components, displays several blue circular or elliptic zones of agglomeration. This

expresses a spatial pattern for which Stuttgart is surrounded by several agglomerated

places: Frankfurt, Nürnberg, München, Zürich, an so on. This pattern is close to the

pattern envisaged by Christaller (Fig. 11(b)), in which Stuttgart is surrounded by five

places. Thus the principal vector proposed in this paper is capable of capturing spa-

tial agglomeration patterns, and is more flexible than the use of a single term q
∗
1

in

Ikeda et al. (2018), in which q
(2,1) for the core–periphery pattern was chosen as the

predominant pattern and the number of satellite places were fixed to be six.

3 In this figure and in the remainder of this paper, the squared magnitude ||q(1) ||2 for the uniform distri-

bution is suppressed since such a distribution is not of interest in the present study.
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(a) Population map and Region 1 (red rhombus) (b) Discretized population

(c) Spectrum (d) q
(1,0) (Megalopolis, 1st largest ξµ)

(e) q
(2,1) (Core–satellite, 4th largest ξµ) (f) q

(1,1) (2nd largest ξµ)

(g) q
(2,0) (3rd largest ξµ) (h) q

(3,0) and q
(2,2) (5th and 6th largest ξµ, respectively)

Fig. 9: Spectrum analysis of Region 1 for Southern Germany in 2011. In (c), the red

bars correspond to the spectra with the first to the fourth largest eigenvalues ξµ and the

brown bars to others. In (d)–(h), a blue hexagonal area denotes a positive component,

a yellow one indicates a negative one, and the magnitude of the component increases

as the color becomes darker.
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m = 1 m = 2 m = 3

m = 4 m = 5 m = 6

m = 7 m = 15 m = 35

Fig. 10: Vectors q
∗
m for principal components for Region 1. A blue hexagonal area de-

notes a positive component, a yellow one indicates a negative one, and the magnitude

of the component increases as the color becomes darker.

Stuttgart
Nurnberg

Munchen

Frankfurt

Zurich

Strasbourg

Strasbourg

Zurich

Frankfurt

Stuttgart

Munchen

Nurnberg

(a) Principal vector q
∗
4

(b) Christaller’s distribution

Fig. 11: Comparison of principal vector q
∗
4

of Region 1 with Christaller’s distribution

of cities (Christaller, 1966, p.224–225). At the left, a blue hexagonal area denotes a

positive component, a yellow one indicates a negative one, and the magnitude of the

component increases as the color becomes darker.
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3.3 Time evolution in Southern Germany (Region 1) during 1987 to 2011

We observe the time evolution of the spectra for the incremental population in South-

ern Germany (Region 1) during the periods 1987–2000 and 2000–2011, which con-

tain an epoch-making event of the German reunification in 1990. In the period 1987–

2000, an increase of the population is spread over the northern part of the region

(Fig. 12(b)). As shown in Fig. 12(c), there is a strong spectrum for the megalopolis

pattern q
(1,0), whereas other spectra are similar to those for 2011 in Fig. 9(c).

Such similarity can be also seen in the principal vector q
∗
4

for the present case

in Fig. 12(d) and that in 2011 in Fig. 11(a). The four rhombic cities, München,

Frankfurt, Stuttgart, and Nürnberg, display an increase of population proportional

to the population in 2011. On the other hand, other agglomerated places, such as

Saarbrücken, Strasbourg, and Zürich, display a smaller increase of population. The

increase of population in the four large cities can be characterized by the megalopolis

pattern q
(1,0) in Fig. 12(e), which expresses an agglomeration around the northeastern

part of the region encompassing the four large cities.

A phase shift of population increase pattern can be observed in the period 2000–

2011; the core–satellite pattern q
(2,1) becomes the strongest spectrum (Fig. 13(e)),

following the predominance of the megalopolis pattern q
(1,0) during 1987–2000. This

core–satellite pattern indicates current and future trends of agglomeration to core

places, such as München, Frankfurt, Stuttgart, Nürnberg, and so on. The center of

this pattern is located on München and an agglomeration to München can be also

seen from q
∗
4

in Fig. 13(d). In this manner, the core of agglomeration shifted from

Frankfurt and Stuttgart during 1987–2000 to München during 2000–2011.

Thus, we have successfully arrived at a view of time evolution of agglomerating

places. Whereas central place theory is static, the present spectrum analysis procedure

presents a quasi-dynamic view based on time evolution of population.
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(a) Map of incremental population (b) Discretized incremental population

and Region 1 (red rhombus)

(c) Spectrum (d) Principal component q
∗
4

(e) Megalopolis pattern for q
(1,0) (f) Core–satellite pattern for q

(2,1)

(g) Spatial pattern for q
(2,0) (h) Spatial pattern for q

(1,1)

Fig. 12: Time evolution of spectra for Region 1 (1987–2000). In (c), the red bars

correspond to the spectra with the first to the fourth largest eigenvalues ξµ and the

brown bars to others. In (d)–(h), a blue hexagonal area denotes a positive component,

a yellow one indicates a negative one, and the magnitude of the component increases

as the color becomes darker.
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(a) Map of incremental population (b) Discretized incremental population

and Region 1 (red rhombus)

(c) Spectrum (d) Principal component q
∗
4

(e) Core–satellite pattern for q
(2,1) (f) Rhombic pattern for q

(2,0)

(g) Spatial pattern for q
(1,1) (h) Spatial pattern for q

(1,0)

Fig. 13: Time evolution of spectra for Region 1 (2000–2011). In (c), the red bars

correspond to the spectra with the first to the fourth largest eigenvalues ξµ and the

brown bars to others. In (d)–(h), a blue hexagonal area denotes a positive component,

a yellow one indicates a negative one, and the magnitude of the component increases

as the color becomes darker.
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3.4 Middle Germany (Region 2) in 2011

Figure 14(c) depicts the spectrum for Region 2 of Middle Germany in Fig. 14(b).

There is the largest peak for the spectrum for the megalopolis pattern q
(1,0) (Fig. 14(e)),

accompanied by other peaks for the rhombic pattern q
(2,0) (Fig. 14(f)) and the skewed

rhombic-like pattern q
(1,1) (Fig. 14(g)).

Such predominance of the three strongest spectra for (k, ℓ) = (1, 0), (2, 0), and

(1, 1) is also observed for the prototype rhombic pattern with a large city, a middle-

size city, and two small cities in Fig. 6(b). For Region 2, a large city corresponds

to the megalopolis pattern q
(1,0) around Köln (Fig. 14(e)) and a middle-size one to

Frankfurt. The rhombic pattern q
(2,0) with the second largest spectrum has four ag-

glomerated places (Fig. 14(f)): two of them are in good agreement with the locations

of Köln and Frankfurt but the other two are not necessarily in good agreement with

the real city distribution.

In search of a better correspondence with real city distribution, we resort to the

principal vector q
∗
4

in Fig. 14(d), which displays four blue zones of agglomeration

forming a distorted rhombic shape comprising four cities: Köln, Saarbrücken, Frank-

furt, and Hanover. (See Fig. 15 for q
∗
m for various values of m.)

By combining this rhombic pattern with the core–satellite-like pattern for Region

1 expressed also by the principal vector (Fig. 11(a)), we can construct the spatial net-

work of cities in Germany shown in Fig. 16, thereby demonstrating the usefulness of

the principal vector. The pattern is skewed towards southwest due to the geographical

borders of the Alps in the south and Rhine River, Schwarzwald, and Vosges in the

west.

3.5 Time evolution in Middle Germany (Region 2) during 1987 to 2011

In the period of 1987–2000, there is a spread increase of population (Fig. 17(b)). The

spectrum in Fig. 17(c) has a sharp peak for the megalopolis pattern q
(1,0) (Fig. 17(e)),

expressing a large agglomeration around Köln, similarly to the spectrum analysis for

2011 (Fig. 14).

A phase shift was observed in the period 2000–2011; there is a large decrease

of population (Fig. 18(b)), unlike an overall increase in 1987–2000. The spectrum

in Fig. 18(c) displays peaks with similar magnitudes for several principal compo-

nents (k, ℓ) = (1, 0), (1, 1), (2, 0), and (2, 1). Among these, we refer to q
2,1 with the

strongest spectrum (Fig. 18(e)), which expresses a reversed core–satellite pattern cen-

tered around Köln with a large decrease. This captures the pattern of the principal

vector q
∗
4

in Fig. 18(d) fairly well. Thus the agglomeration around Köln shifts from

an increase during 1986–2000 to a decrease during 2000–2011.
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(a) Population map and Region 2 (red rhombus) (b) Discretized population

(c) Spectrum (d) Principal component q
∗
4

(e) Megalopolis pattern for q
(1,0) (f) Rhombic pattern for q

(2,0)

(g) Skewed rhombic pattern for q
(1,1) (h) Spatial pattern for q

(2,1)

Fig. 14: Spectrum analysis of Region 2 for Middle Germany in 2011. In (b), a blue

circle denotes the size of population. In (c), the red bars correspond to the spectra

with the first to the fourth largest eigenvalues ξµ and the brown bars to others. In

(d)–(h), a blue hexagonal area denotes a positive component, a yellow one indicates

a negative one, and the magnitude of the component increases as the color becomes

darker.



Time evolution of city distributions in Germany 25

m = 1 m = 2 m = 3

m = 4 m = 5 m = 6

m = 7 m = 15 m = 35

Fig. 15: Vectors q
∗
m for principal components for Region 2. A blue hexagonal area

denotes a positive component, yellow one indicates a negative one, and the magnitude

of the component increases as the color becomes darker.
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Fig. 16: Spatial network of cities in Germany. At the left, circles indicate the size of

population and red circles expresses the location of major cities that appear in the

network at the right, a blue circle denotes a positive component, and the area of a

circle expresses the magnitude of the component.
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(a) Map of incremental population (b) Discretized incremental population

and Region 2 (red rhombus)

(c) Spectrum (d) Principal component q
∗
4

(e) Megalopolis pattern for q
(1,0) (f) Core–satellite pattern for q

(2,1)

(g) Spatial pattern for q
(1,1) (h) Spatial pattern for q

(2,0)

Fig. 17: Time evolution of spectra for Region 2 (1987–2000). In (c), the red bars cor-

respond to the spectra with the first to the fourth largest eigenvalues ξµ and the brown

bars to others. In (d)–(h), a blue hexagonal area denotes a positive component and a

yellow one indicates a negative one, and the magnitude of the component increases

as the color becomes darker.
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(a) Map of incremental population (b) Discretized incremental population

and Region 2 (red rhombus)

(c) Spectrum (d) Principal component q
∗
4

(e) Core–satellite pattern for q
(2,1) (f) Megalopolis pattern for q

(1,0)

(g) Spatial pattern for q
(2,0) (h) Spatial pattern for q

(1,1)

Fig. 18: Time evolution of spectra for Region 2 (2000–2011). In (c), the red bars cor-

respond to the spectra with the first to the fourth largest eigenvalues ξµ and the brown

bars to others. In (d)–(h), a blue hexagonal area denotes a positive component and a

yellow one indicates a negative one, and the magnitude of the component increases

as the color becomes darker.



28 Kiyohiro Ikeda et al.

4 Conclusions

We utilized a group-theoretic double Fourier spectrum analysis procedure (Ikeda et

al., 2018) as a systematic means to capture characteristic agglomeration patterns in

population data. We have newly introduced the principal vector as a means to grasp

agglomeration patterns. We set forth benchmark spectra for important spatial patterns

that are to be sought for in the spectrum in population data. Such benchmark spectra

and associated spatial patterns were actually found in the population data in Germany

in 2011 and spatial agglomerations were successfully grasped by the principal vector.

An incremental population during the pre- and post-reunification periods (from 1987

to 2011) was investigated using this vector to successfully detect a shift of predomi-

nant population increase/decrease patterns.

Despite its importance, the value of m for the principal vector was chosen empiri-

cally based on the analysis of the benchmark spectra in Section 2.3. In the experience

of this paper, the use of m = 4 terms is sufficient to capture characteristic agglom-

eration patterns in the real population data in Germany. Thus the number of terms

required is very small in comparison with the total number of 18 × 18 (= 324) terms

of the Fourier analysis. It would be a future topic to develop a concrete methodol-

ogy to determine the threshold value of m to capture characteristic agglomeration

patterns.
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