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CHAPTER 2: ESTIMATION OF A SUPPLY FUNCTION 

In this chapter we provide a brief introduction of the production and supply function. The 
theoretical neoclassical model, has limited capacity to explain data. Recent structural 
econometric techniques provide better estimation results and are able to explain entry, 
exit and investment decisions of firms. 
 
1.- Introduction 

In a similar way as in demand estimation, where we maximized utility functions, in this 

chapter we estimate a production function, productivity measures and cost functions. 

Technological efficiency is represented in the production function while economic 

efficiency is represented in the cost function. In this chapter we will replicate the main 

studies on production and cost function using standard software packages such as Excel 

or R. 

Productivity estimates together with demand elasticity are key components of market 

structure studies. Traditionally productivity was estimated empirically using industry 

panels using a theoretical production function equation. These estimates were not 

consistent with data and did not explain market dynamics.  

 This chapter acknowledges how researchers have refined productivity estimation with 

the development of a broader dynamical structural approach in a similar way as in demand 

estimation. Firms decisions on investment strategies will depend on future expected 

profits than invest in research and development will have a higher probability of staying 

in the market while others with lower investment and lower productivity will have higher 

probability of exit. Firms will invest if they have expectations on future profits based on 

expectations and past achievements.  

The chapter covers the dual approach of cost functions. Costs are a key component of the 

benefits and as such knowledge of the costs of a company or industry and the study of 

increasing returns of scale are fundamental to the analysis of competition. While the 

theoretical cost functions are generally known from the introductory economics courses, 

this chapter will also explain further research on increasing returns of scale and scope in 

industries where competition problems are common such as telecommunication and 

energy markets. The main concept here is economies of scale or the proportional increase 

in cost resulting from a small proportional increase in the level of output.  

We begin with the traditional production function estimation, its endogeneity problems 

and further developments followed by cost function estimation developed by Viner 

(1932) and Sraffa  (1926). Next scale economies and multiproduct scope economies are 

studied. Finally, the chapter explains other alternative methods that measure efficiency 

as a mere proportion of outputs and inputs while giving up production function 

determination. These methods are called frontier analysis approach and are divided into 

Stochastic Frontier Analysis (SFA) and Data Envelope Analysis (DEA). 

 

2.-  Production function estimation  

A production function is a mathematical function that relates the maximum quantity of 

output that can be obtained with inputs for example capital and labor (2007). Productivity 

is a measure of efficiency, the contribution of a particular input to the production. 

Syverson (2011) documented massive differences in total factor productivity (TFP) 

between industries in the US and stated that productivity is a matter of survival for 

business in a market. Duration, entry and exit in a particular market will most likely be 

related to a measure of efficiency or productivity of a firm. This is relevant when 

discussing market structure.  

 



There are several economic properties of a production functions, namely nonnegativity, 

non-decreasing in inputs and concavity, that  are generally expected and tested  (for a 

complete description of assumptions of production functions  in Microeconomics see 

Mas-Colell et al. (1995)).  There are several mathematical functions that fit these 

assumptions, but Cobb-Douglas, Translog and Quadratic or Cubic production functions 

have been widely used in productivity analysis as we will see in this Chapter.   

Classical graphs of the production function and average and marginal productivity are 

shown below assuming that only one input remains variable (e.g. Labor), while the rest 

are fixed.  The graph represent a production function that only fulfills the general 

assumptions explained above in the segment of 50 and 100 of labor input. To the left of 

50 labor units, the function is convex and to the right of 100, it is decreasing in labor, so 

the economically feasible region is only between 50 and 100. In the figure below average 

productivity AP (or output per unit of input) and marginal productivity MP (increase in 

output when input increases in one unit) are represented: 

 

 
If we take into account two inputs the production function is generally represented by a 

family of isoquants which are combinations of two inputs (capital and labor) that are 

capable of producing an output level. There is one for each level of output and show 

higher level of output the farther they are from the origin. The expected shape of the 

production function implies convex isoquants with the below shape that can be easily 

minimized. The cost function will be the pairs of minimal cost for each unit of production. 

Unfortunately the theoretical model is too general and does not explain well specific 

production and cost data. Authors have dealt with different econometrical problems that 

surge when fitting easy functional forms to data. 



As we mentioned, several mathematical functions that comply with minimal demanded 

assumptions have been fitted to production data and tested to comply with the 

abovementioned minimal assumptions.  

A common function used in economics is Cobb-Douglas production function (see 

Ackerberg et al. (2007)): 

 𝑌 = 𝐴𝐿𝛽𝐿𝐾𝛽𝐾   

 

Where Y is output, K and L are capital and labor inputs, 𝛽 are parameters and A is total 

factor productivity1. It is usually expressed as a linear equation in natural logarithms: 

 𝑦 = 𝛽0 + 𝛽𝑘𝑘 + 𝛽𝑙𝑙 + 𝜖 

 𝛽0  is the mean efficiency level while 𝜖 are unobserved sources of differences such as 

managerial ability or technology differences between firms. Again, the problem if 

endogeneity appears when estimating this equation using simple OLS regression (see 

Econometric Appendix), as acknowledged by Marschak et al. (1944) . The problem is 

that inputs K and L are not independent variables but are correlated with the unobserved 

error term 𝜖. We face a problem of endogeneity if, for example, higher productivity 

companies, i.e. those with the highest unobserved productivity also demand a large 

number of inputs, see Davis and Garcés (2009), and a selected sample as only the most 

efficient firms would appear in the panel data, as the least efficient would have exited the 

market.  

 

 
1 TFP - is the variation in output not explained by inputs depending on the functional approach, in this 

particular case the residuals or TFP would equal  𝛽0 + 𝜖 



If we do not take into account the problem of endogeneity, our estimated coefficients on 

endogenous inputs would be overestimated. One possible solution is to use proxy 

instrumental variables, or variables correlated with the company's demand for input but 

not correlated with firm production.  

 

Olley and Pakes (OP) (1996) suggested using investment as a proxy for productivity to 

control for endogeneity. We will see that this approach takes into account the decision 

process of a firm that will also be covered in chapter three, Market Structure and 

Dynamics. Furthermore, Levinsohn and Petrin (2003) refined the OP work. 

 

OP designed an algorithm to simulate the decision process of an incumbent firm. Firms 

at the beginning of each period decide whether to exit or continue in the market. If they 

decide to exit they will receive a liquidation value of , if they continue in the market 

they will choose inputs (labor, materials and energy) and a level of investment Iit. The 

sequence of decisions of a firm maximizing the expected discounted value of net future 

profits is shown in the following Bellman equation2  : 
 𝑉(𝑘𝑗𝑡 , 𝑎𝑗𝑡 , 𝑤𝑗𝑡 , ∆𝑡 )=max{𝜙(𝑘𝑗𝑡 , 𝑎𝑗𝑡 , 𝑤𝑗𝑡 , ∆𝑡), 𝑚𝑎𝑥{𝜋(𝑘𝑗𝑡 , 𝑎𝑗𝑡 , 𝑤𝑗𝑡 , ∆𝑡) − 𝑐(𝑖𝑗𝑡 , ∆𝑡) +𝛿𝐸[𝑉(𝑘𝑗𝑡+1, 𝑎𝑗𝑡+1, 𝑤𝑗𝑡+1, ∆𝑡+1) ⋮ 𝑘𝑗𝑡 , 𝑎𝑗𝑡 , 𝑤𝑗𝑡 , ∆𝑡 , 𝑖𝑗𝑡] } 

 

This equation describes the dynamic decision process of a firm. First, the firm decides to 

exit a market if its liquidation value, 𝜙(  ), exceeds the expected discounted value of net 

future profits. Second, it decides on investing or not 𝑖𝑗𝑡, which is the solution to the second 

maximization bracket, where 𝜋 is the profit function and C is the cost of investment, 𝛿 is 

the discount function and E ( ) is the firm expectation conditional on information at t. 
Firms with positive productivity shocks in t will invest more in that period t. OP derive 

the unobserved productivity shock as: 𝛺𝑖𝑡 = ℎ(𝑖𝑖𝑡 , 𝑘𝑖𝑡 , 𝑎𝑖𝑡) 
 

Firms will invest in the future if there is an increase in current productivity. OP derive the 

following Cobb-Douglas production function: 

 𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑎𝑎𝑖𝑡 + 𝑢𝑖𝑡 

whereby, 

 𝑢𝑖𝑡 = Ω𝑖𝑡 + 𝜂𝑖𝑡 

 

Substituting Ω𝑖𝑡 and 𝑢𝑖𝑡 in the production function, we obtain: 

 𝑦𝑖𝑡 = 𝛽𝑙𝑙𝑖𝑡 + 𝛽𝑚𝑚𝑖𝑡 + 𝛽𝑎𝑒𝑖𝑡 + (𝛽0 + 𝛽𝑘𝑘𝑖𝑡 + 𝛽𝑎𝑎𝑖𝑡 + ℎ(𝑖𝑖𝑡 , 𝑘𝑖𝑡 , 𝑎𝑖𝑡)) + 𝜂𝑖𝑡 

 

Where y is output, k and l are capital and labor inputs, 𝛽 are parameters, a is age of the 

firm, all in logs, Ω𝑖𝑡 is a productivity shock observed by the firm and 𝜂𝑖𝑡 unobserved 

shocks. This specification takes into account the relation between inputs and Ω𝑖𝑡  and 

controls for unobserved productivity, while traditional models based on OLS estimates 

will be biased upwards, this specification can be estimated with OLS without bias. With 

this development estimation of parameters is more accurate and a structural explanation 

of entry and exit of firms in a market.  

 
2 See appendix for an explanation of the Bellman equation. 



 

The tables below show a dataset of 2544 Chilean firms consisting of value added, capital,  

labor, electricity, water, investment between 1986 and 1996 (2018). We will estimate 

parameters of the production function using the OP estimation technique on that dataset3: 

 
Chilean firm-level production data 1986-1996 

 
 

The resulting parameters as expected are biased upward when using OLS without 

controlling for simultaneity and selection bias as shown in the table below (columns OLS 

and OP). Levinsohn  and  Petrin  (2003) suggest an alternative approach to control for 

missing data (column LEVPET) Both Olley – Pakes and Levinson and Petrin show lower 

value of parameters. These parameter values show the marginal variation of output with 

an increase in one unit of input, e.g. an increase in one unit of capital increases output in 

0.485 units. Recall that the negative value of water parameter does not comply with 

theoretical assumptions described above. 

 

OLS, OP and LP methods: Chilean dataset   
 OLS OP LEVPET 

K  0.485*** 0.168 0.162*** 

 (0.050) (0.029) (3.95) 

    

Skilled 0.453*** 0.314 0.319*** 

 (0.014) (0.03) (8.78) 

    

Unskilled 0.362*** 0.256 0.258*** 

 (0.013) (0.027) (9.79) 

    

Water -0.159*** 0.311  

 (0.046) (0.208)  

    

_cons 7.625***   

 (0.109)   

N 2544 2544 2544 

SE in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

Residual standard error: 0.7773 on 2539 degrees of freedom 
Multiple R-squared:  0.7181, Adjusted R-squared:  0.7177  
F-statistic:  1617 on 4 and 2539 DF, p-value: < 2.2e-16 

 

 

In conclusion, the naïve traditional method to estimate production functions was  

incorrect, several authors designed new methodologies that provide consistent 

estimations of firm productivity. 

 
3See Rovigatti (2017). 



3.- Cost function estimation 

 

If we take factor prices as given and multiplying then by the quantities of production 

factors a cost equation is obtained. The cost function gives the minimal cost foreach level 

of production. The cost function has also general properties as the production function 

such as nonnegativity, nondecreasing in factor prices, non-decreasing in output, 

homogeneous and concave in input prices. Recall that through Shepard´s lemma (1953) 

deriving cost function with respect to price of factors one can obtain input demand 

functions and with them obtain the production function. 

The graphic representation of cost functions was developed by Viner (1932). A cost 

function that complies with the minimum properties is represented below (STC are short 

term total cost and SVC short term variable cost). In the second graph below average and 

marginal cost are represented. Short term average cost function (SAC) (and equivalently 

variable cost curve SAVC) are unitary costs or total cost divided by total output and has 

a U-shape following production function curvature and fixed factor prices. Average cost 

decreases as output increases until the average cost is at the minimum. After this the law 

of diminishing returns makes average and marginal cost to rise. Marginal cost (SMC) is 

the derivative of the production function with respect to output or the infinitesimal change 

in cost when production increases in one unit. When prices are given in perfect 

competition, the part of marginal cost curve that is positively sloped (above min SAC) 

represents the short term supply of the individual firm.  

Short term means a period of time when some inputs remain fixed. Economies of scale 

surge when all factors are variable and an equivalent increase in all factors generates a 

more than proportionate increase in production.  In the long term all factors are variable, 

technological change and entry and exit can affect cost functions.  The minimum average 

cost is known as Minimum Efficient Scale (MES) is the optimal level of output to produce 

(Greer, 2010). We will see below a classic example of economies of scale known as 

natural monopoly, where average costs are always declining so efficient production is 

better if it is concentrated in a single firm.   



 

Economies of scale 

The classic work on scale economies is Nerlove  (1961),  that studies power generation 

in the US using data of 145 firms in 1955.  The sample collected consisted of cost data, 

fuel prices, labor and capital prices and total production of electricity for each electricity 

generation plant. The summary statistics of Nerlove´s data is4 shown below: 

 
 

Nerlove fitted the data to a Cobb-Douglas cost function derived from the following  

production function with three inputs: capital (K), labor (L) and fuel (F): 

 𝑌 = 𝐴𝐿𝛽𝐿𝐾𝛽𝐾𝐹𝛽𝐹𝑢 

 

 
4Table built using Hlavac, Marek (2018).  stargazer:  Well-Formatted Regression and Summary Statistics 

Tables.  R  package version 5.2.2. https://CRAN.R-project.org/package=stargazer 



From this production function he obtained a cost function in logs in terms of units of fuel 

as follows: 

 𝐿𝑛 ( 𝐶𝑃𝐹) = 𝛽0 + 𝛽𝑦𝐿𝑛𝑌 + 𝛽𝐿𝐿𝑛 (𝑃𝐿𝑃𝐹) + 𝛽𝐾𝐿𝑛 (𝑃𝐾𝑃𝐹) + 𝜀 

Where Y measures billion Kwatt hour of electricity produced, 𝑃𝐾 price of capital, 𝑃𝐿   
price of labor (dollars per hour) and 𝑃𝐹 is the fuel price in cents of dollar per million 

BTUs. 

Nerlove estimated the model using traditional OLS regression using cost and input prices 

for 145 companies. Results are shown in the table below were Nerlove work is replicated 

using his original data: 

  

Table: Regression results Nerlove (1963) 

 
From the above theoretical curves it is expected that the parameter of output should be 

positive as well as input price parameters (an increase in output or input price parameters 

should always increase cost). Indeed, 𝛽𝑦 , 𝛽𝐿 parameters are positive and significant, the 

former means that an increase in 1% in output yields a 0.72% increase in total cost, 

considering all other variables to remain fixed (2010). 

Nerlove rejects the hypothesis of constant returns of scale as the inverse of the log Y 

parameter5 (0.72)−1 = 1.39  is greater than one. This proves that power generating plants 

have increasing returns of scale (positive economies of scale).  The scale parameter is 

also the ratio of marginal to average cost: 

 𝜕𝑙𝑛𝐶𝜕𝑙𝑛𝑄 = 𝑄𝐶 𝜕𝐶𝜕𝑄 = 𝑀𝐶𝐴𝐶  

 

 
5 Because 𝑟 = ∑ 𝛽𝑖𝑖  , see (2010) 



This ratio is positive/negative for increasing/decreasing returns to scale. Nerlove also 

divided the data in 5 groups according to the size of the firms. In the five regressions 

returns to scale were lower as the size of the firm increased. 

The following figure shows the Nerlove data (in log), the estimated costs based on the 

output level and below the estimated residuals as a difference between the estimated and 

the actual values. For the estimate to be consistent under OLS, the residuals need to have 

no dependence on explanatory variables. On the contrary, the graph shows that they 

depend on the output level which violates the requirement for consistent estimates. At 

low and high levels of production, residuals are positive so the true cost is higher than the 

estimated values. On the other hand, for output intermediate values, the true value of the 

costs is better than the estimate. The graph of the residuals reflects a U-shape, see (2009) 

and (2018). 

 

 
Figure: Nerlove graphs on fitted Log Cost and regression residuals  

 

This diagnosis suggests that the shape of the cost function is incorrect, high residuals at 

low and high levels of output reveal an incorrect specification of the production function 

which should have a U type of cost function. The plot and data prove that there are 

increasing scale economies that are exhausted at a certain output level from which 

declining scale economies begin. Nerlove suggests that the specification can be corrected 

by expanding the function with a quadratic term. This generates a more flexible cost 

function that will allow cost to vary with the output level in a way that can generate 



economies of scale followed by diseconomies of scale as the level of production 

increases.  

 

The table and figure below shows the Nerlove diagnostic test which consists of opposing 

the residues against the explanatory variable on the same chart. In this case using a 

Translog cost function, and unlike the previous specification, the graph shows that the 

expected value of the residuals in this regression is independent of the output level and 

remains around 0 as required by the MCO method.  The table shows significant 

coefficients for output and labor. 

 

Nerlove Translog Cost and regression residuals 

 
 



 

 
Christensen and Greene (1976) estimated the same cost function adjusted to the 1955 data 

by adding the 1970 data, using several models. Their model shows that the majority of 

firms were producing well beyond the efficient scale or with diseconomies of scale. These 

authors provided several models for data between 1955 and 1970 demonstrated the impact 

of technological progress over time moving the average cost function downwards and 

reducing de average cost of producing electricity.   

Nerlove used a limited panel data and computing power available at that time and was 

strongly based on factor price taker assumption. Furthermore, other elements including 

long term contracts on fuel and trade unions regarding labor should be included in the 

study. 

 



Multi-product firms and economies of scale 

(1984) conducted an empirical estimate of AT&T's cost function and economies of scale 

and scope in local and long-distance calls. this study was relevant for the decision of the 

U.S. government in 1982 to break AT&T into several local firms while leaving AT&T in 

the long-distance call market (2009). The allegation of AT&T against it was the 

efficiencies gained from managing all telecommunications services in a single company 

would be lost if it was divided by region and activities. Evans and Heckman proved 

empirically that they were wrong. They used a "subaditivity" test for the cost function, a 

property that implies that the cost is lower when performed by a firm that  by several 

firms. The failure of this test would mean that a single firm is more inefficient that several 

firms. 

To do this they defined a cost equation for two products: 

 𝐶 = 𝐶(𝑞𝐿 , 𝑞𝑇 , 𝑟, 𝑚, 𝑤, 𝑡), 

 

Where Lq the output level of local L calls is, and Tq is the output level of long distance T 

calls. Cost functions depend on the price of production factors: r is the return rate of 

capital, w is the wage rate, and m is the price of the materials, t is a variable that captures 

technical change.  

 

These authors used a translog function with two products and three production factors: 

 log 𝐶 = 𝛼0 + ∑ 𝛼𝑖𝑖 𝑙𝑜𝑔𝑝𝑖 + ∑ 𝛽𝑖𝑖 𝑙𝑜𝑔𝑞𝑖 + 12 ∑ ∑ 𝛾𝑖𝑗𝑙𝑜𝑔𝑝𝑖𝑙𝑜𝑔𝑝𝑗𝑗𝑖 +12 ∑ ∑ 𝛿𝑘𝑗𝑙𝑜𝑔 𝑞𝑘 log 𝑞𝑗 +𝑗𝑘 ∑ ∑ 𝜌𝑖𝑘𝑙𝑜𝑔 𝑞𝑘 log  𝑝 𝑖 + ∑ 𝜆𝑖 log 𝑡𝑖𝑘𝑖 log 𝑝𝑖 + ∑ 𝜃𝑘 log 𝑡𝑘 +𝜏 log(𝑡)2 + 𝜇 log 𝑡  

  

This cost function is much more general than that used at first by Nerlove based on a 

Cobb-Douglas function. It is more flexible and can approach any cost function. Let's 

define it for two inputs and two outputs.  

The Translog cost function is presented in an unrestricted way but in the estimate a 

number of restrictions on the cost functions suggested by the theory are imposed. Authors 

impose homogeneity in input prices and symmetry on input prices. Using Shepard´s 

Lemma6, one can obtain the three inputs (i=1,2,3) participation equations: 𝑠𝑖 = 𝛼𝑖 + ∑ 𝛾𝑖𝑗𝑙𝑜𝑔𝑝𝑗𝑗   + ∑  𝜌𝑖𝑘𝑙𝑜𝑔 𝑞𝑘   ∑ 𝜆𝑖 log 𝑡  𝑖𝑘  

 

 
6 The derivatives of the cost function with respect to input prices are the input demand 

functions. 
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By applying Shepard's lemma to the cost function we get the participation equations. 

 



The estimate parameters of these equations are shown in the table below. A SURE 

estimator (seemingly unrelated regressions) was used (2015).   

 
Selected estimated results Translog function with 31 observations 

  Estimate Std. Error t value Pr(>|t|)   

Constant 9.0542 0.0044524 20.335.750 < 2.2e-16 *** 

Capital 0.654 0.1555707 42.075 0.0018071 ** 

Labour 0.354 0.1414821 51.771 0.0004148 *** 
Local 

(output) 0.226 0.2221301 10.197 0.3319212   
Toll 

(Output) 0.504 0.5275837 -0.4318 0.6750634   

Technology -0.201 0.0780344 -0.1255 0.9025945   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-squared: 0.9999439     Adjusted R-squared: 0.9998318  

 

(Wales, 1987) proved that the function used was concave in input prices and monotonic 

but fails to comply non decreasing in output.  

 

Subaditivity Test  

 

Heckman and Evans provided a test to prove if Bell was a natural monopoly (1984). The 

traditional approach to natural monopoly was to evaluate if the company was at a level 

of output where average cost was decreasing. In case of multiproduct companies like a 

telephone firm (at that moment the two products were local and long call), Baumol  (1977)  

considered that the  necessary  and  sufficient condition in order to identify a industry as  

a natural monopoly was that the cost function must be subadditive. This test compares 

the cost of producing several products separately from the cost of producing them 

together. There is subbaditivity if  it is cheaper to concentrate production in a firm than 

dividing it in several firms, so the relevant question is whether it costs more to produce 

the total output with multiple firms compared to the case where a single firm produces 

everything. If it costs more to distribute production among several companies, then we 

have that the firm (in this case AT&T) is a natural monopoly even though it produces 

several products (1977).  The test is summarized by Baumol as: 

 𝐶 (∑ 𝑞𝑖𝑖 ) < ∑ 𝐶(𝑞𝑖)𝑖  

Graphically, scale economies in multiproduct firms are represented graphically, when 

outputs increase proportionately as the gradient of the the perpendicular ray from the 

origin. The degree of scale economies may be interpreted as a measure of the percentage 

rate of decline or increase in ray average cost with respect to output (Baumol et al., 1982).  

 

  

 



 
Evans and Heckman used a translog production function with limited dataset to test for 

local subadditivity. Other authors such as Roller (1990b) contradict this Evans and 

Heckman and consider that Bell was a natural monopoly before splitting, and argued that 

the production function did not comply with general properties such as positive marginal 

productivity of production factors and was not suitable to explain technological progress.  

 

 

 

  



Frontier Analysis 

 

Another approach to production function approach is frontier analysis, which estimates a 

measure of efficiency and productivity of outcomes and has been extensively used to 

assess outcomes in utilities, banks, hospitals, etc. (2012).  These methods consider the 

cost and production functions as "ideal" or "frontier" to be estimated.  

Instead of using a mathematical function, this analysis only requires input and output data 

and delivers efficiency ratios for each firm in the data, so that one can compare branches, 

production units or firms. The most efficient units will form a frontier line below which 

less efficient units will appear. Efficiency is measured as the ratio of the sum of outputs 

produced by each unit divided by  the  sum  of  inputs  spent  in  the  production  process.   

Charnes et. al.  (1978) estimated for the first time a production frontier technology 

analysis based on a previous paper of Farrel (1957). The data consists of 70 school sites with 

the following variables7: 

Firm  - school site number 

Inputs 

x1 - education level of the mother 

x2- highest occupation of a family member 

x3- parental visits to school 

x4- time spent with children in school-related topics 

x5 - the number of teachers at the site 

Outputs 

y1- reading score 

y2- math score 

y3- self–esteem score 

pft =1 if in program (program follow through) and =0 if not in program 

name- Site name 

 

The basic model of one input and one output is shown below and considers the maximum 

or border output that can be produced for each input level.     

 

 

 
7 See Benckmarking Package of Rstudio 



Each point represents a school and the border has been drawn to find a frontier that 

encompasses all the data. There are some technically efficient schools at the border, and 

others below the border that can improve their efficiency. Efficiency is measured through 

a ratio, OY/OX, so that a call center operating at the frontier had a technical efficiency of 

100% while those within the border operate at a level below the efficiency level.   A firm 

is defined as combinations of inputs and outputs weighted by their  i  weight. The 

optimization program then states that we must increase the output level of the firm k as 

much as possible subject to the requirement that we can find the smallest firm that could 

have currently produced that higher level of production given the current combinations 

of inputs and outputs observed in the data.   

 

The advantages of the DEA is that no functional form of the cost or production frontier 

should be assumed, while its critics consider that it relies too much on data and its 

sensitivity to outliers can be troubling. On the other hand, this method avoids imposing a 

specific parametric function on the production and cost function8.  

 

 

Conclusion 

 

This chapter has reviewed production function analysis and cost functions, efficiency and 

productivity. Authors searched for a functional form that explained production data and 

complied with the minimum economic assumptions such as monotonicity, homogeneity 

and positive marginal productivity of factors. Newer techniques namely frontier analysis,  

have opened up possibilities for use in cases which have been resistant to other 

approaches due to complex (often unknown) nature of the relations between the multiple 

metrics labeled as inputs and outputs. 

 

 

 

 

 

  

 
8 Stochastic Frontier Models: SFA are parametric models (1992) where econometric  theory  is  used  to 

estimate  pre-specified  functional  form and  inefficiency  is modeled as an additional stochastic term.(see 

Methodology and Applications of Stochastic Frontier Analysis, Andrea Furková) 
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