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Abstract

This paper examines the conditions for the existence of a maximal el-
ement of a relation on every nonempty compact subset of its ground set.
A preliminary analysis establishes some connections between the maxi-
mals of a relation and those of its right trace. Via this analysis, various
results of the literature are unified by identifying a common property of
their assumptions that concerns the right trace of the transitive closure of
the objective relation. Next, a generalization is provided so as to accom-
modate some relations of interest to economics. Finally, a necessary and
sufficient condition is presented for the existence of a maximal on every
nonempty compact subset of the ground set of a relation.

Keywords: Maximal element; Existence; Right trace; Transitive clo-
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1 Introduction

The maximal elements of a preference relation on a set of feasible alternatives
are often interpreted as the optimal choices of a rational agent. Given this
interpretation, any set of conditions that guarantees the existence of a maximal
of a relation supplies us with information about the circumstances that allow
for an optimal choice. Some authors, however, are inclined to evaluate the
importance of these sets of conditions according to their capability to be applied
to parametric optimization problems of economic interest. In this regard, Walker
(1977) observed:

We are generally interested not in a maximal element of just a single
set X, but rather in a whole family F of subsets of some underlying
set X, and in whether each member of F has a maximal element.

Walker’s observation was motivated by the structure of fundamental problems of
economic theory like, for instance, the nonemptiness of the consumer’s demand
correspondence. In the basic version of that problem, the consumer is endowed
with a nonnegative level of wealth w and with a preference relation B defined
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on a commodity space X identified with the nonnegative orthant of some n-
dimensional Euclidean space. As long as all components of the market price
vector p are positive and the consumption set Y is a nonempty closed subset
of the commodity space X, the image of the demand correspondence is the
set of maximals of B on a budget set {y ∈ Y : p · y ≤ w} that is nonempty
and compact. Without additional assumptions, the budget set could be any
nonempty compact subset of the ground set of B and the issue of the non-vacuity
of consumer’s choice for every admissible configuration of the triple (Y, p, w)
boils down, simply, to the abstract problem of the existence of a maximal of B
on every nonempty compact subset of the ground set of B. The present work
deals, precisely, with such abstract problem.

Alexander Doniphan Wallace proved, in a 1945 article on fixed points (see
Wallace (1945)), that any transitive and reflexive relation with closed upper
sections possesses a maximal on every nonempty compact subset of its ground
set. That result–which, in fact, is asserted under additional assumptions of
topological nature–is presented as one of many auxiliary lemmas of Wallace’s
article. Only some years later Lewis Edes Ward, Jr.–a student of Wallace–
reformulated it as a formal theorem on the existence of a maximal element in his
1954 article on partially ordered topological spaces (see Ward (1954)). In the
literature, the result obtained in the 1945 article by Wallace is sometimes reck-
oned “a folk theorem in optimization theory” (see, e.g., Evren and Ok (2011))
and, indeed, the very Wallace (see Wallace (1962)) seemed to share that opinion
when claiming that his result “was certainly to be obtained by any mathemati-
cian who was interested in these matters”. It is a fact, however, that it was first
asserted and proved in Wallace (1945).

About a quarter of a century later, a series of works–among them, the article
by Walker (1977) mentioned at the beginning of this Introduction–contributed
to the formulation of a result according to which any acyclic relation with open
lower sections has a maximal element on every nonempty compact subset of
its ground set. Subsequently, at the end of the nineties, that result has been
generalized in Subiza and Peris (1997) by relaxing the openness of lower sections.
The natural question is: What connection is there between the old existence
result that assumed the closedness of the upper sections of a preorder relation
and the relatively new results assuming the openness of the lower sections of an
acyclic relation (or its weakening introduced in Subiza and Peris (1997))? This
work answers to the previous question by proving that:

The existence of a maximal element of the right trace of the transitive
closure of a Suzumura-consistent relation B implies the existence of
a maximal element of B.

As right traces are transitive and reflexive by nature, the closedness of their
upper sections implies the existence of a maximal element of the right trace
by virtue of Wallace’s result: observing that a relation B that satisfies the
assumptions of any existence result mentioned sofar is Suzumura-consistent and
has a transitive closure whose right trace possesses closed upper sections, the
desired connection is readily established. In the light of this fact, the Suzumura-
consistent relations whose transitive closure possesses a right trace with closed
upper sections will be called relations with the W-property. It must be remarked
that the previous observation about the closedness of the upper sections of the
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right trace of the transitive closure of a relation is far from being obvious and
that–for the important case of a relation with open lower sections–it has been
first proved in Banks et al. (2006, Proposition A.4): the application of such
observation in Duggan (2011) testifies to its value to the economic literature
on the existence of maximal elements. Further, it must be noted that the idea
of using one-sided traces to prove the existence of undominated maximals–a
selection of unconstrained maximals due to Peris and Subiza (2002)–is pursued
in Alcantud et al. (2010); however, the use made in that article and the purposes
thereof differ substantially from those of the present paper.

This work considers also a weakening of the W-property that is satisfied
by some relations of interest to economics and vector optimization (like, e.g.,
transitive–but possibly not reflexive–relations with closed upper sections, lexi-
cographic order relations on product spaces endowed with their natural topology,
relations induced by strictly supported cones of real topological vector spaces
and a class of justifiable preference relations) and proves the sufficiency of that
condition for a relation to possess a maximal on every nonempty compact sub-
set of its ground set. The mentioned weakening of the W-property is, in fact, a
generalization of the notion of a quasi upper semicontinuous preorder recently
introduced in Bosi and Zuanon (2017): the generalization concerns both the
order-theoretic and the topological conditions imposed in the definition of a
quasi upper semicontinuous preorder. Interestingly, a relativized version of the
W-property–that further weakens the definition of the W-property–turns out
to be necessary and sufficient for a relation to possess a maximal on every non-
empty compact subset of its ground set.

The paper is structured as follows. Sect. 2 recalls some definitions and
notation. Sect. 3 investigates the connections between the set of maximals of
a relation and those of its right trace. Sect. 4 examines the conditions for the
closedness of the upper section of the right trace of a relation. Sect. 5 introduces
the W-property and shows an existence result that unifies those in Wallace
(1945) and Walker (1977), as well as others. Sect. 6 contains some mathematical
facts of topological nature. Sect. 7 introduces a weakening of the W-property
and proves a generalization of the aforementioned unifying existence result that
accommodates some relations of interest to economics and vector optimization;
notably, Sect. 7 proves that the reflexivity assumption in Wallace’s result on
the existence of a maximal element can be simply dropped. Sect. 8 provides
a necessary and sufficient condition for the existence of a maximal on every
nonempty compact subset of the ground set of a relation.

2 Preliminaries

A relation on a set X is a subset of X ×X, where the second factor of the
Cartesian product X ×X is here understood as the domain of the relation and
the first as its codomain. Let B be a relation on a set X. When (y, x) ∈ B, we
say that y is related through B to x. The set of all elements related through
B to x ∈ X is denoted by

B (x) = {y ∈ X : (y, x) ∈ B}

and is called the upper section of B at x.
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2.1 Operations

In this Sect. 2.1, the letter X denotes a set, the letter Y denotes a subset of
X while the letters B and R denote relations on X. The relation B is also
alternatively denoted by B1. The restriction of B to Y is the relation B|Y
on Y defined by

B|Y = B ∩ (Y × Y ) .

The composition of B with R is the relation R ◦B on X defined by

R ◦B = {(z, x) ∈ X ×X : (z, y) ∈ R and (y, x) ∈ B for some y ∈ X}.

The n-power of B is the relation Bn on X recursively defined by

Bn = B ◦Bn−1 for every integer n > 1.

The converse of B is the relation Bc on X defined by1

Bc = {(x, y) ∈ X ×X : (y, x) ∈ B}.

The transitive closure of B is the relation Bt on X defined by

Bt =
⋃+∞
n=1B

n.

The reflexive closure of B is the relation Br on X defined by

Br = B ∪ {(x, x) : x ∈ X}.

The irreflexive part of B is the relation Bi on X defined by

Bi = B\{(x, x) : x ∈ X}.

The asymmetric part of B is the relation Ba on X defined by

Ba = B\Bc.

The right trace of B is the relation TB on X defined by

TB = {(y, x) ∈ X ×X : B(y) ⊆ B (x)}.

So, y ∈ TB(x)⇔ B(y) ⊆ B (x). The notion of a trace is often ascribed to Luce
(1956) and Luce (1958). One-sided decompositions of a trace into the left and
right trace are formulated in Doignon et al. (1986): the definition of a right
trace adopted here is, exactly, that of the last mentioned article2 as well as the
one provided in Aleskerov et al. (2007, p. 69).

Notation 1 Given a relation B and (p, q) ∈ {a, c, i, r, t}× {a, c, i, r, t}, we hence-
forth write Bpq instead of (Bp)q.

1The upper section of Bc at x is called the lower section of B at x.
2Some authors (see, e.g., Bouyssou and Marchant (2011) or Bouyssou and Doignon (2020))

have used an inverted nomenclature for one-sided traces. Further, in the economic literature,
one-sided traces and traces appear also under alternative names, like umbra or transitive core.
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2.2 Topological definitions

Let (X, τ) be a topological space and B be a relation on X. Denote by σ the
product topology of X × X. We say that: B is open-valued for τ iff B(x)
is τ -open for every x ∈ X; B is closed-valued for τ iff B(x) is τ -closed for
every x ∈ X; B is graph-open for τ iff B is σ-open; B is graph-closed for τ
iff B is σ-closed. The graph-closedness (graph-openness) for τ of B implies the
closed-valuedness (open-valuedness) for τ of both B and Bc.

Notation 2 Let (X, τ) be a topological space. The collection of all non-
empty τ-compact subsets of X is denoted by K(X, τ).

2.3 Quasi-extensions

Let B be a relation on a set X. A relation R is a quasi-extension of B iff R
is a relation on X such that Ba ⊆ Ra. When R is a quasi-extension of B, we
also say that B admits the quasi-extension R and that R quasi-extends B. The
idempotence of the operation of asymmetrization implies the equivalence of the
inclusions Ba ⊆ Ra and Baa ⊆ Ra: we thus infer the conclusion in Remark 1.

Remark 1 Let B and R be relations. Then, R is a quasi-extension of B if and
only if R is a quasi-extension of Ba.

2.4 Relations

A relation B on a set X is: asymmetric iff B = Ba; irreflexive iff B = Bi;
reflexive iff B = Br (iff TB ⊆ B); transitive iff B = Bt (iff B ⊆ TB , iff
B ◦ B ⊆ B); acyclic iff Bt is asymmetric (iff Bt is irreflexive, iff Bt = Bta,
iff Bt = Bti); a strict partial order iff B is transitive and asymmetric (iff
B is transitive and irreflexive, iff B = Bta, iff B = Bti); a preorder iff B is
transitive and reflexive (iff B = TB); total iff X ×X = B ∪Bc; connex iff Br

is total; a strict total order iff B is a connex strict partial order.

2.5 Maximals

Let B be a relation on a set X and Y ⊆ X. The set of B-maximals on Y is
the setM(B, Y ) defined by

M(B, Y ) = {y ∈ Y : Ba(y) ∩ Y = ∅}.

A member of M(B, Y ) is called a B-maximal on Y : when the specification
of the constraint set Y is immaterial, it is called a B-maximal; when even the
specification of the relation is immaterial, it is called a maximal. The set of
unconstrained B-maximals is the setM(B) defined by

M(B) = {x ∈ X : Ba(x) = ∅}.

A member ofM(B) is called an unconstrained B-maximal: when the spec-
ification of the relation B is immaterial, it is called an unconstrained maximal.
Proposition 1 points out that unconstrained maximals are special types of max-
imals and that any maximal can be expressed as an unconstrained maximal.
Proposition 2 recalls that, when the constraint set Y is an upper section, the
set of maximals of a transitive relation is just the intersection of the set of its
unconstrained maximals with the constraint set.
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Proposition 1 Let B be a relation on a set X and Y ⊆ X.

1. M(B) =M(B,X).

2. M(B, Y ) =M(B|Y ).

Proof. Part 1 of Proposition 1 is obvious. The proof of part 2 of Proposition 1
is as follows. The operations of restriction and asymmetrization commute with
each other. So, Ba|Y = B|aY . As the equality B

a(y)∩Y = Ba|Y (y) holds true for
every y ∈ Y , we have that Ba(y) ∩ Y = B|aY (y) for every y ∈ Y . Consequently,
M(B, Y ) =M(B|Y ).

Proposition 2 Let B be a transitive relation on a set X and Y ⊆ X. If
Y = B(x) for some x ∈ X, thenM(B, Y ) =M(B) ∩ Y .

Proof. Assume the existence of x ∈ X such that Y = B(x). The inclusion
M(B) ∩ Y ⊆ M(B, Y ) is obvious. We prove only the inclusion M(B, Y ) ⊆
M(B) ∩ Y , as follows. Suppose y ∈ M(B, Y ). The membership y ∈ M(B, Y )
and the equality Y = B(x) entail that y ∈ B(x) and Ba(y) ∩ B(x) = ∅. As
y ∈ B(x), the transitivity of B implies B(y) ⊆ B(x): so Ba(y) ⊆ B(x) in
that Ba(y) ⊆ B(y). As Ba(y) ∩ B(x) = ∅, the inclusion Ba(y) ⊆ B(x) implies
Ba(y) = ∅. We are in a position to conclude that y ∈M(B) ∩ Y .

2.6 Cones

Let X be a real vector space. A cone of X is a subset C of X such that λc ∈ C
for every c ∈ C and every scalar λ > 0. So, a cone can be empty and need not
contain the zero vector. The union and intersection of an arbitrary–possibly
empty–family of cones of a real vector space are cones. Let C be a cone of X.
The asymmetric part of C is the cone C• defined by

C• = C\ − C.

The relation induced by C is the relation B on X defined by

B(x) = x+ C for all x ∈ X,

with x + C denoting the Minkowski sum of {x} and C. Henceforth in this
Sect. 2.6, let (X, τ) be a real topological vector space with a topology τ . The
topological closure of a subset S of X for the topology τ is denote by clτ S.
A homogeneous τ -open (τ -closed) half-space of X is a cone H of X satisfying
the equality H = {x ∈ X : f(x) > 0} (H = {x ∈ X : f(x) ≥ 0}) for some
non-zero continuous linear functional f : X → R, where R is endowed with the
natural topology. A cone C of a real topological vector space X is strictly
τ-supported iff C• is included in a homogeneous τ -open half-space of X.

3 Connections between B- and TB-maximality

In general, the existence of a B-maximal neither implies nor is implied by the
existence of a TB-maximal. Remark 2 clarifies the point. The rest of this Sect.
3 investigates the connections between B- and TB-maximality in the case of a
transitive relation B and derives a property of Suzumura-consistent relations.
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Remark 2 It is well possible that a relation B possesses an empty set of un-
constrained B-maximals and a nonempty set of unconstrained TB-maximals:
consider, for instance, the relation B on X = Z specified by

B(x) = {x+ 1} for all x ∈ X

and observe that
∅ =M(B) ⊂M(TB) = X.

Conversely, it is well possible that a relation B possesses a nonempty set of
unconstrained B-maximals and an empty set of unconstrained TB-maximals:
consider, for instance, the relation B on X = Z specified by

B(x) = {0} ∪ {y ∈ X : |y| > |x|} for all x ∈ X

and observe that
∅ =M(TB) ⊂M(B) = {0}.

Remark 3 The sets of B- and TB-maximals illustrated in Remark 2 are nested.
In general, however, they need not be so. Indeed, it is well possible that a relation
B possesses nonempty and disjoint sets of unconstrained B- and TB-maximals.
Consider, for instance, the relation B on X = {0, 1, 2} specified by

B(x) =

{
{2} if x = 0
{1, 2} if x 6= 0

and observe that the nonempty setM(B) = {1, 2} is disjoint from the nonempty
setM(TB) = {0}. Indeed, {M(B),M(TB)} is a partition of X.

3.1 Transitive relations and maximality

This Sect. 3.1 proves that the existence of a TB-maximal for a transitive relation
B implies the existence of a member of the constraint set that is both a TB-
maximal and a B-maximal.3 Remark 4 refutes the conjecture that the existence
of a B-maximal for a transitive relation B implies the existence of a TB-maximal.

Theorem 1 Let B be a transitive relation on a set X and Y ⊆ X. Assertions
I and II are equivalent.

I. M(TB , Y ) 6= ∅

II. M(TB , Y ) ∩M(B, Y ) 6= ∅.

Proof. The implication II ⇒ I is obvious and hence we prove only the impli-
cation I ⇒ II, as follows. SupposeM(TB , Y ) 6= ∅ and pick

y ∈M(TB , Y ). (1)

Then y ∈ Y and
B(v) ⊂ B(y) for no v ∈ Y . (2)

3Theorem 1 does not assert that every TB-maximal of a transitive relation B is a B-
maximal: Remark 5 of Sect. 3.2 tacitly shows that such an assertion is false.
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If y ∈M(B, Y ), then we are done. So, henceforth suppose y /∈M(B, Y ). Then
Ba(y) ∩ Y is nonempty and hence there exists an element

z ∈ Ba(y) (3)

such that
z ∈ Y . (4)

As Ba ⊆ B, the membership in (3) implies z ∈ B(y): thus B(z) ⊆ B(y) by the
transitivity of B. The last inclusion and the memberships in (1) and (4) imply
z ∈M(TB , Y ): to conclude the proof, it then suffices to show that z ∈M(B, Y ).
By way of contradiction, suppose z /∈ M(B, Y ). Then Ba(z) ∩ Y is nonempty
and hence there exists an element

x ∈ Ba(z) (5)

such that
x ∈ Y . (6)

The membership in (5) implies z /∈ B(x): thus B(x) 6= B(y) in that z ∈ B(y).
As Ba ⊆ B, the membership in (5) implies x ∈ B(z): thus B(x) ⊆ B(z) by the
transitivity of B. The inequality B(x) 6= B(y) and the inclusions B(x) ⊆ B(z)
and B(z) ⊆ B(y) imply B(x) ⊂ B(y): a contradiction with (2) and (6).

Corollary 1 Let B be a transitive relation on a set X and Y ⊆ X. Then,

M(TB , Y ) 6= ∅ ⇔M(TB , Y ) ∩M(B, Y ) 6= ∅ ⇒M(B, Y ) 6= ∅.

Proof. A consequence of Theorem 1 and of the obvious implicationM(TB , Y )∩
M(B, Y ) 6= ∅ ⇒M(B, Y ) 6= ∅.

Remark 4 The converse of the one-way implication in Corollary 1 is generally
false. Consider, for instance, the transitive relation B on X = R specified by

B(x) =

{
[1,+∞) if x = 1
[x+ 1,+∞) if x 6= 1

and observe that

M(TB , Y ) = ∅ 6= (0, 1] =M(B, Y ) when Y = [0, 1].

3.2 Transitive relations and unconstrained maximality

This Sect. 3.2 proves that, in the case of a transitive relation B, the existence
of an unconstrained TB-maximal is equivalent to the existence of an uncon-
strained B-maximal. Remark 5 refutes the conjecture that nonempty sets of
unconstrained B- and TB-maximals of a transitive relation B coincide.

Theorem 2 Let B be a transitive relation on a set X. The following assertions
are equivalent.

I. M(B) 6= ∅.

II. M(B) ∩M(TB) 6= ∅.
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Proof. The implication II ⇒ I is obvious and hence we prove only the impli-
cation I ⇒ II, as follows. SupposeM(B) 6= ∅ and pick

x ∈M(B). (7)

The last membership implies x ∈ X. If x ∈ M(TB), then we are done. So,
suppose x /∈M(TB). As x ∈ X\M(TB), there exists y ∈ X such that

B(y) ⊂ B(x). (8)

It is readily seen that the validity of the equality B(y) = ∅ implies the validity
of the membership y ∈ M(B) ∩M(TB) and hence the validity of the desired
inequalityM(B) ∩M(TB) 6= ∅. To conclude the proof it then suffices to show
that B(y) = ∅. By way of contradiction, suppose B(y) 6= ∅. Pick z ∈ B(y). The
membership z ∈ B(y) and the inclusion in (8) imply

z ∈ B(x). (9)

The membership z ∈ B(y) and the transitivity of B imply B(z) ⊆ B(y). As
B(z) ⊆ B(y), from the inclusion in (8) we infer that B(z) ⊂ B(x). The transi-
tivity of B and the last inclusion imply

x /∈ B(z). (10)

But (9) and (10) are in contradiction with (7).

Corollary 2 Let B be a transitive relation on a set X. Then

M(TB) 6= ∅ ⇔M(TB) ∩M(B) 6= ∅ ⇔M(B) 6= ∅.

Proof. A consequence of Corollary 1 and of Theorem 2.

Remark 5 It is well possible that a transitive relation possesses nonempty sets
of unconstrained B- and TB-maximals and that an unconstrained TB-maximal is
not an unconstrained B-maximal: for instance, consider the transitive relation
B on X = {0, 1} specified by

B(0) = {0} and B(1) = {0}

and observe that
{0} =M(B) ⊂M(TB) = {0, 1}.

Likewise, it is well possible that a transitive relation possesses nonempty sets
of unconstrained B- and TB-maximals and that an unconstrained B-maximal is
not an unconstrained TB-maximal: for instance, consider the transitive relation
B on X = {0, 1} specified by

B(0) = ∅ and B(1) = {1}

and observe that
{0} =M(TB) ⊂M(B) = {0, 1}.
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3.3 Basic properties of S-consistent relations

The notion of consistency considered in the sequel has been introduced in Suzu-
mura (1976, p. 387) and has been subject to a variety of applications: see also
Bossert (2008) and Bossert (2018).4 The definition adopted here is equivalent to
the original definition in Suzumura (1976): on this point, see also Duggan (1999,
p. 5), where Suzumura-consistency is called transitive-consistency. Proposition
3 recalls known sufficient conditions for a relation to be Suzumura-consistent
and is stated here for completeness and future reference. Proposition 4 recalls
that every Bt-maximal of an S-consistent relation is a B-maximal.

Definition 1 A relation B is Suzumura-consistent iff Ba ⊆ Bta. (So, a
relation is Suzumura-consistent iff it is quasi-extended by its transitive closure.)
Suzumura-consistent relations will be referred to as S-consistent relations.

Proposition 3 Let B be a relation. Each of the following conditions is suffi-
cient for B to be S-consistent.

1. B is transitive.

2. B is acyclic.

Proof. The transitivity of B is equivalent to B = Bt and implies Ba = Bta.
The acyclicity of B is equivalent to Bt = Bta and from the obvious inclusions
Ba ⊆ B ⊆ Bt we infer that Ba ⊆ Bta.

Proposition 4 Let B be an S-consistent relation on a set X and Y ⊆ X. Then

M(Bt, Y ) ⊆M(B, Y ).

Proof. Suppose y ∈ M(Bt, Y ). Then y ∈ Y and Bta(y) ∩ Y = ∅. So,
Ba(y) ∩ Y = ∅ by the S-consistency of B and hence y ∈M(B, Y ).

3.4 A further property of S-consistent relations

Theorem 3 asserts that the existence of a TBt -maximal of an S-consistent relation
B implies the existence of a B-maximal.

Theorem 3 Let B be an S-consistent relation on a set X and Y ⊆ X. Then

M(TBt , Y ) 6= ∅ ⇒M(B, Y ) 6= ∅.

Proof. Suppose M(TBt , Y ) 6= ∅. As Bt is transitive, the last inequality and
Theorem 1 implyM(Bt, Y ) 6= ∅. As B is S-consistent, the last inequality and
Proposition 4 implyM(B, Y ) 6= ∅.

Remark 6 As is clear from the relation presented in Remark 4, the converse
of the one-way implication of Theorem 3 is generally false. As is clear from
first (second) relation presented in Remark 5, the inclusion M(TBt ) ⊆ M(B)
(M(B) ⊆M(TBt )) need not hold true for an S-consistent relation B.

4 It is worth underlining that the cited contribution define as acyclic those relations whose
asymmetric part is acyclic according to the current nomenclature.
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4 Closed-valuedness of the right trace

This Sect. 4 illustrates sufficient conditions for the right trace of (the transitive
closure of) a relation to possess closed upper sections.

Definition 2 Let (X, τ) be a topological space and B be a relation on X:

• B is T -closed-valued for τ iff TB is closed-valued for τ ;

• B is Tt-closed-valued for τ iff TBt is closed-valued for τ .

Remark 7 The notions of T - and Tt-closed-valuedness are independent of each
other. The following examples illustrate the point. Put X = [0, 1] and endow
it with the subspace topology τ induced from the natural topology of R; the S-
consistent relation B on X defined by

B(x) = {1/2 + x/2} for all x ∈ X

is T -closed-valued for τ , but not Tt-closed-valued for τ . Put X = R and endow
it with the natural topology; the S-consistent relation B on X defined by

B(x) =

{
(x, 0] if x < 0
(x,+∞) if x ≥ 0

is Tt-closed-valued for τ , but not T -closed-valued for τ . The last example is
taken from Subiza and Peris (1997, Example 2).

4.1 Sufficient conditions for T -closed-valuedness

Proposition 5 provides sufficient conditions for the T -closed-valuedness of B.
Proposition 5 is actually well-known: its part 1 is a consequence of the definition
of a preorder while its part 2 is, exactly, the statement of Lemma 2 in Duggan
(2011).5 The proof of Lemma 2 in Duggan (2011) makes use of the theory of
nets; the proof of part 2 of Proposition 5 proposed here is more elementary.

Proposition 5 Let (X, τ) be a topological space and B be a relation on X.
Then B is T -closed-valued for τ if at least one of the following conditions holds.

1. B is closed-valued for τ , transitive and reflexive.

2. Bc is open-valued for τ .

Proof. 1. A consequence of the fact that B = TB when B is a preorder.
2. The case X = ∅ is obvious. Assume that X 6= ∅ and x ∈ X. It is shown

that X\TB(x) is τ -open. Suppose y ∈ X\TB(x). Then B(y) 6⊆ B(x) and there
exists z ∈ B(y) such that z /∈ B(x). As z ∈ B(y), the open-valuedness for τ of
Bc implies the existence of a τ -neighborhood Ny of y such that z ∈ B(t) for all
t ∈ Ny. As z /∈ B(x), B(t) 6⊆ B(x) for any t ∈ Ny. So, Ny ⊆ X\TB(x).

5An earlier version thereof is proved in Banks et al. (2006, Proposition A.4).
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4.2 Sufficient conditions for Tt-closed-valuedness

Proposition 6 provides sufficient conditions for the Tt-closed-valuedness of a
relation. Definition 3 recalls the notion of lower quasi-continuity adopted in
Subiza and Peris (1997) by enunciating an equivalent6 reformulation thereof.

Definition 3 Let (X, τ) be a topological space. A relation B on X is lower
quasi-continuous iff the membership (y, x) ∈ Bc implies the existence of a
τ -neighborhood Ny of y included in B

ct(x).

Proposition 6 Let (X, τ) be a topological space and B be a relation on X. Then
B is Tt-closed-valued for τ if at least one of the following conditions holds.

1. Bt is closed-valued for τ and reflexive.

2. B is closed-valued for τ , transitive and reflexive.

3. B is lower quasi-continuous.

4. Bct is open-valued for τ .

5. Bc is open-valued for τ .

Proof. 1. The transitive closure of any relation is transitive. So, part 1 of
Proposition 6 is an immediate consequence of part 1 of Proposition 5.

2. Suppose B is closed-valued for τ , transitive and reflexive. A transitive
relation is equal to its own transitive closure. So, Bt is closed-valued for τ and
reflexive. Said this, part 1 of Proposition 6 delivers the desired result.

3. Suppose B is lower quasi-continuous. The case X = ∅ is obvious. So,
assume that X 6= ∅ and x ∈ X. It is shown that X\TBt (x) is τ -open. Suppose

y ∈ X\TBt (x).

Then, Bt(y) 6⊆ Bt(x). By basic properties of the transitive closure operator, the
inclusion B(y) ⊆ Bt(x) implies the inclusion Bt(y) ⊆ Bt(x). Therefore, B(y) 6⊆
Bt(x) and there exists z ∈ B(y) such that z /∈ Bt(x). The last membership
and the lower quasi-continuity of B imply the existence of a τ -neighborhood
Ny of y included in Bct(z). The operations of transitive closure and conversion
commute with each other. So, Ny ⊆ Btc(z) and hence z ∈ Bt(t) for all t ∈ Ny.
Since z /∈ Bt(x), we infer that Bt(t) 6⊆ Bt(x) for any t ∈ Ny. Consequently,

Ny ⊆ X\TBt (x).

We are in position to conclude that X\TBt (x) is τ -open.
4. Suppose Bct is open-valued for τ . If (y, x) ∈ Bc, then (y, x) ∈ Bct and

there exists a τ -neighborhood Ny of y included in Bct(x) by virtue of the open-
valuedness of Bct for τ . So, B is lower quasi-continuous. Said this, part 3 of
Proposition 6 delivers the desired result.

5. Suppose Bc is open-valued for τ . Then, Bct is open-valued for τ in that
the transitive closure of any relation that is open-valued for τ is open-valued for
τ . Said this, part 4 of Proposition 6 delivers the desired result.

6The operations of transitive closure and conversion commute with each other. So, the
replacement of “Bct (x)” with “Btc (x)” leaves essentially unchanged Definition 3.

12



Remark 8 It is known–and it is clear from the proof of Proposition 6–that
the condition in part 2 (part 4, part 5) of Proposition 6 implies the condition in
part 1 (part 3, part 4) of Proposition 6; however, the converse implications do
not generally hold true.

5 Existence of maximals

A classic theorem on the existence of maximals was first asserted in Wallace
(1945, pp. 414-415), recast in Birkhoff (1948, Theorem 16 at p. 63) and taken
back to a formulation similar to the original one by Ward (1954, Theorem 1).
Ward’s version of Wallace’s result essentially reads as follows.

Theorem 4 (Ward (1954, Theorem 1)) Let (X, τ) be a nonempty compact
topological space and B be a relation on X. If B is closed-valued for τ , transitive
and reflexive, thenM(B) 6= ∅.

Ward’s version subsumes Birkhoff’s one but, in point of fact, it is not com-
parable to the original result by Wallace. For instance, Wallace (1945) assumes
that the ground set of the objective relation is a compact Hausdorff space but
proves the existence of a maximal on every closed–equivalently, compact–
subset thereof. For expositional convenience, we here provide a straightforward
generalization of Theorem 4 that subsumes the results by Wallace, Birkhoff and
Ward. In the main, however, Theorem 5 must be credited to Wallace.

Theorem 5 (Wallace, Birkhoff, Ward) Let (X, τ) be a topological space and
B be a relation on X. If B is closed-valued for τ , transitive and reflexive, then
M(B, Y ) 6= ∅ for every Y ∈ K(X, τ).

Proof. Suppose B is closed-valued for τ , transitive and reflexive and Y ∈
K(X, τ). Endow Y with the subspace topology τ̂ . Then, (Y, τ̂) is nonempty
compact topological space and B|Y is a preorder on Y that is closed-valued
for τ̂ . So, M(B|Y ) 6= ∅ by Theorem 4. Part 2 of Proposition 1 ensures that
M(B, Y ) =M(B|Y ). Consequently,M(B, Y ) 6= ∅.

Another theorem on the existence of maximals is proved in Walker (1977,
Theorem at p. 472) and antecedents thereof can be found in Bergstrom (1975,
Theorem at p. 403), Brown (1973, Theorem 7) and Sloss (1971). Indeed, there
are also some earlier versions that should be mentioned: Rader (1972, Theorem
4 of Ch. 5), Sonnenschein (1971, Theorem 3) and, in particular, Schmeidler
(1969, Lemma 2). Walker’s version reads as follows.

Theorem 6 (Walker (1977, Theorem)) Let (X, τ) be a topological space and
B be a relation on X. If Bc is open-valued for τ and B is acyclic, then
M(B, Y ) 6= ∅ for every Y ∈ K(X, τ).

Theorem 6 has been generalized in Subiza and Peris (1997, Theorem 3)
by replacing the open-valuedness of the converse of the objective relation with
its lower quasi-continuity (on the connection between these two conditions, see
Remark 8). Subiza and Peris’ result reads as follows.

Theorem 7 (Subiza and Peris (1997, Theorem 3)) Let (X, τ) be a topo-
logical space and B be a relation on X. If B is lower quasi-continuous and
acyclic, thenM(B, Y ) 6= ∅ for every Y ∈ K(X, τ).
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5.1 A unifying theorem

This Sect. 5.1 introduces the W-property. Theorem 8 shows a result on the
existence of maximals that, by consequence of Propositions 3 and 6, subsumes
and unifies Theorems 5 and 7. The unification is brought about by making use
of Theorem 5 and, as a matter of fact, the key-argument about the existence
of a maximal that upholds Theorem 8 is still that first employed in Wallace
(1945): in a sense, Theorem 7–and its special case, Theorem 6–can be viewed
as a consequence of Theorem 5 and, in particular, of Wallace’s 1945 result.

Definition 4 Let (X, τ) be a topological space. A relation B on X has the
W-property for τ iff B is Tt-closed-valued for τ and S-consistent.

Theorem 8 Let (X, τ) be a topological space and B be a relation on X. If B
has the W-property for τ , thenM(B, Y ) 6= ∅ for every Y ∈ K(X, τ).

Proof. Suppose B has the W-property for τ and Y ∈ K(X, τ). As B is Tt-
closed-valued for τ , the relation TBt is closed-valued for τ . The relation TBt is
a preorder in that so is any right-trace. So,M(TBt , Y ) 6= ∅ by Theorem 5. As
B is S-consistent, Theorem 3 and the last inequality implyM(B, Y ) 6= ∅.

5.2 On the intersection of B- and TB-maximals

This Sect. 5.2 introduces a strong version of the W-property to examine the
nonemptiness of the intersection of the sets of B- and TB-maximals.

Definition 5 Let (X, τ) be a topological space. A relation B on X has the
strong W-property for τ iff B is T -closed-valued for τ and transitive.

Proposition 7 Let (X, τ) be a topological space and B be a relation on X. If
B has the strong W-property for τ , then B has the W-property for τ .

Proof. A consequence of part 1 of Propositions 3 and of the fact that the
transitivity of B implies TB = TBt .

Theorem 9 Let (X, τ) be a topological space and B be a relation on X. If
B has the strong W-property for τ , then M(B, Y ) ∩M(TB , Y ) 6= ∅ for every
Y ∈ K(X, τ).

Proof. Suppose B has the strong W-property for τ and Y ∈ K(X, τ). The
relation TB is a preorder in that so is any right-trace. As TB is closed-valued
for τ ,M(TB , Y ) 6= ∅ by Theorem 5. As B is transitive, Theorem 1 and the last
inequality implyM(B, Y ) ∩M(TB , Y ) 6= ∅.

5.3 An example

Consider the topological space (X, τ), where X is a cone of Rn endowed with
the subspace topology τ induced on X by the natural topology of Rn. Pick a
real λ ≥ 1 and let B be the strict partial order relation on X specified by

B(x) =

{
{µx : µ > λ} if x 6= 0
X\{0} if x = 0

.
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Clearly, B is transitive as well as acyclic: a fortiori, B is S-consistent by Propo-
sition 3. The relation B possesses a right-trace TB specified by

TB(x) =

{
{µx : µ ≥ 1} if x 6= 0

X if x = 0

that is independent of the choice of λ and that is closed-valued for τ . Conse-
quently, B has the strong W-property for τ : a fortiori, B has the W-property
for τ by Proposition 7. So, B satisfies all assumptions of Theorems 8 and 9. Let
us now restrict to the particular case in which n > 1 and X is the nonnegative
orthant Rn+. Fix an arbitrary x ∈ X\{0}. It is readily observed that

Bct(x) = Bc(x) = {µx : 0 ≤ µ < 1/λ}.

With respect to the topology τ , the topological interior of Bct(x) is empty: as
Bc(x) 6= ∅, we are in a position to conclude that B is not lower quasi-continuous.
Clearly, B is not even closed-valued for τ . Therefore, B satisfies neither the
conditions of Theorem 5 nor those of Theorem 7. In particular, B is an instance
of a relation that is T - and Tt-closed-valued for τ but that does not satisfy any
of the seven conditions listed in Propositions 5 and 6. Note that, when λ > 1,
not even the reflexive closure Br of B is closed-valued for τ .

5.4 An observation and a corollary

Let B be an arbitrary relation on an arbitrary set X. If x ∈ M(B), then
Ba(x) = ∅ and hence x ∈M(TBa ). We conclude that

M(B) ⊆M(TBa ).

So, every unconstrained B-maximal is an unconstrained TBa -maximal.7 This
conclusion is contained in the second paragraph of Duggan (2013, Sect. 3),
where the author states that, “[i]nterestingly, the core is always a subset of
the maximal set of Fishburn shading” (in Duggan (2013), the sets M(B) and
M(TBa ) are called, respectively, the core and the maximal set of Fishburn
shading). However, a B-maximal need not be a TBa -maximal and Duggan’s
observation does not extend, in general, to constrained optimization problems.
Remark 9 clarifies the point employing the strong Pareto dominance relation
on R2. Next, Corollary 3 provides sufficient conditions for the existence of a
B-maximal that is also a TBa -maximal.

Remark 9 Let B be the strict partial order relation on X = R2 induced by the
positive orthant R2++. Endow X with the natural topology τ of R2. Observing
that B = Ba and that Ba has the strong W-property for τ , put

Y = {(0, 0), (1, 0)}.

Noting thatM(B, Y ) = Y andM(TB , Y ) =M(TBa , Y ) = {(1, 0)}, we are in a
position to conclude that

M(TBa , Y ) ⊂M(B, Y ).

So, in general, a B-maximal need not be a TBa -maximal.

7Considering the first (asymmetric) relation illustrated in Remark 2, it is readily checked
that an unconstrained TBa -maximal need not be an an unconstrained B-maximal.
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Corollary 3 Let (X, τ) be a topological space and B be a relation on X. If
Ba has the strong W-property for τ , thenM(B, Y ) ∩M(TBa , Y ) 6= ∅ for every
Y ∈ K(X, τ).

Proof. Suppose Ba has the strong W-property for τ and Y ∈ K(X, τ). Then
M(Ba, Y ) ∩M(TBa , Y ) 6= ∅ by Theorem 9. The idempotence of asymmetriza-
tion impliesM(B, Y ) =M(Ba, Y ) and thus we have desired result.

5.5 Final observations

Part of the literature has tackled the problem of the existence of an uncon-
strained maximal by making use of some notion of “transfer continuity”.8 One
of the strongest versions of “transfer continuity” is the following: given a topo-
logical space (X, τ), a relation B on X is transfer lower continuous iff the
membership (y, x) ∈ Bc implies the existence of a τ -neighborhood Ny of y in-
cluded in Bc(x̄) for some x̄ ∈ X. It is readily seen that transfer lower continuity
is a weakening of the condition that Bc is open-valued for τ . Example 4 in
Subiza and Peris (1997)–which is an adaptation of Example 1 in Tian and
Zhou (1995)–shows that a condition weaker than transfer lower continuity of a
relation is not sufficient to guarantee the existence of a maximal on every non-
empty compact subset of its ground set. Indeed, also transfer lower continuity
does not suffice9 to this end, even in the case of a strict total order relation.
Example 1–which is, again, an adaptation of Example 1 in Tian and Zhou
(1995)–illustrates the point.

Example 1 Endow X = [0, 1] with the topology τ induced by the natural topol-
ogy of R. Let f : X → R be the function defined by

f(x) =

{
x+ 1 if x is rational
x otherwise

and let B be the strict total order relation on X defined by

B(x) = {z ∈ X : f(z) > f(x)}.

Put Y = [0, e/3] and note that Y is a τ -compact subset of X and that

M(B) 6= ∅ andM(B, Y ) = ∅.

The relation B is an instance of a strict total order relation–defined on a
compact ground set–that is transfer lower continuous and that fails to possess
a B-maximal on some nonempty compact subset of its ground set.

Part of the literature has tackled the problem of the existence of an un-
constrained maximal by making use of the notion of “convex-valuedness” or of

8See, e.g., Border (1985, Theorem 7.2), Mehta (1989), Zhou and Tian (1992), Tian and
Zhou (1995), Subiza and Peris (1997), Alcantud (2002) as well as Rodríguez-Palmero and
Garcìa-Lapresta (2002), Andrikopoulos and Zacharias (2012).

9The second relation in Remark 7–which is taken from Subiza and Peris (1997, Example
2)–is not transfer lower continuous but satisfies all assumptions of Theorem 7. Therefore,
transfer lower continuity is not even a necessary condition for a relation to possess a maximal
on every nonempty compact subset of its ground set.
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some weakening thereof.10 For clarity, the definition of convex-valuedness is
the following: given a subset X of a real vector space V , a relation B on X is
convex-valued iff B(x) is convex for all x ∈ X. Example 2 shows that the
acyclicity assumption in Theorem 6 cannot be replaced by convex-valuedness
(or by some weakening thereof).

Example 2 Endow X = [0, 6] with the topology τ induced by the natural topol-
ogy of R. Let B be the asymmetric–not acyclic–relation B on X defined by

B(x) =






(2, 4) if x ∈ (0, 2)
(4, 6) if x ∈ (2, 4)
(0, 2) if x ∈ (4, 6)
∅ otherwise.

It is readily seen that the relation B is graph-open for τ . Put Y = {1, 3, 5} and
note that Y is a τ -compact subset of X and that

M(B) 6= ∅ andM(B, Y ) = ∅.

The relation B is an instance of an asymmetric and convex-valued relation–
defined on a compact ground set–that is graph-open for τ and that fails to
possess a B-maximal on some nonempty compact subset of its ground set. It is
worth to remark that, in particular, the relation B satisfies all assumptions of
Corollary 7.5 in Border (1985).

6 A digression on compactness

Let τ1 and τ2 be topologies on a set X. The topology τ2 is finer than the
topology τ1 iff τ1 ⊆ τ2. The “finer than” is a well-known relation that enables
comparison of topologies. Definition 6 introduces two others. Note that–as to
these two relations–it is immaterial whether the definition of K(X, τ) allows or
not for the empty set.

Definition 6 Let τ1 and τ2 be topologies on a set X.

• τ2 is compactly finer than τ1 iff K(X, τ1) ⊆ K(X, τ2).

• τ2 is compactly equivalent to τ1 iff K(X, τ1) = K(X, τ2).

6.1 On the cofinite topology

Theorem 10 asserts that any topology τ1 admits a T1 topology τ2 finer than
τ1 but compactly equivalent to τ1. Before presenting Theorem 10, it is recalled
that the cofinite topology on a set X is the topology on X whose members
are–exactly–the empty set and every subset of X with a finite complement.
For clarity, it is recalled that the topology on a set X generated by a
family F of subsets of X is the smallest topology on X that includes F .

10See, e.g., Sonnenschein (1971, Theorem 4), Aliprantis and Brown (1983, Theorem 3.5)
(as well as the works of Fan and of Borglin and Keiding mentioned therein), Yannelis and
Prabhakar (1983), Mehta (1984), Yannelis (1985) Border (1985, Theorem 7.2), Mehta (1987,
Sect. 3), Mehta (1989), Bergstrom (1992) (as well as his 1975 paper mentioned therein) and
the more recent Duggan (2011).

17



Theorem 10 Let X be a set and τ1 be a topology on X. Let τ0 be the cofinite
topology on X and τ2 be the topology on X generated by τ0 ∪ τ1.

1. The topology τ2 is a T1 topology finer than the topology τ1.

2. The topology τ2 is compactly equivalent to the topology τ1.

Proof. 1. An immediate consequence of the definition of the topology τ2 and
of the fact that any cofinite topology is T1 .

2. The topology τ1 is compactly finer than the topology τ2 in that τ2 is
finer than τ1. To prove part 2 of Theorem 10 it then suffices to show that the
topology τ2 is compactly finer than the topology τ1. So, suppose

Y ∈ K(X, τ1).

Let τ̂0, τ̂1 and τ̂2 be the subspace topologies on Y induced by τ0, τ1 and τ2,
respectively. As τ0 ∪ τ1 is a subbase of open sets for τ2, the union τ̂0 ∪ τ̂1 is a
subbase of open sets for τ̂2. Let γ be an arbitrary cover of Y by members of τ̂0∪
τ̂1. Assume for a moment that the cover γ contains a nonempty member S of the
topology τ̂0: since every element of the–then necessarily finite–complement
Y \S is contained in some member of γ and since S is a member of γ, there
exists a finite subcover of γ. Assume now that the cover γ contains no nonempty
member of τ̂0: then γ ⊆ τ̂1 and the compactness of the topological space (Y, τ̂1)
implies the existence of a finite subcover of γ. We thus infer the existence of
a finite subcover of γ. By virtue of Alexander’s subbase theorem, we conclude
that (Y, τ̂2) is a compact topological space and hence that

Y ∈ K(X, τ2).

We are now in a position to assert that K(X, τ1) ⊆ K(X, τ2) and hence that τ2
is compactly finer than τ1.

6.2 On the lexicographic lower topology

Theorem 11 asserts the existence of a topology on Rα that is compactly finer
than the natural topology and for which the lexicographic order is closed-
valued. Before enunciating Theorem 11–whose proof makes use of Lemma
2.1 in Schouten (2018)–it is worth recalling the definitions of the lexicographic
order relation and of the associated lower topology. Let α be a non-zero ordinal.
The product of α copies of R is denoted by Rα. The lexicographic order on
R
α is the preorder relation Λα on Rα defined by

Λα(x) =






y ∈ Rα : either y = x or there exists a non-zero
ordinal β ≤ α such that xβ < yβ and xγ = yγ

for every non-zero ordinal γ < β.





.

The lexicographic lower topology on Rα is the topology that arises by taking
the family {Λα(x) : x ∈ Rα} ∪ {Rα} as a subbase of closed sets (equivalently,
by taking the family {Λcaα (x) : x ∈ R

α} ∪ {∅} as a subbase of open sets). The
natural topology of Rα is the product topology that arises by endowing each
copy of R with its natural topology.
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Theorem 11 Let α be a non-zero ordinal. Let τ1 be the natural topology on
R
α and τ2 be the lexicographic lower topology on R

α.

1. The lexicographic order Λα is closed-valued for the topology τ2.

2. The topology τ2 is compactly finer than the topology τ1.

Proof. 1. An immediate consequence of the definition of the lexicographic
lower topology on Rα.

2. Note that Λcaα is transitive and connex. Noted this, suppose

Y ∈ K(X, τ1).

Lemma 2.1 in Schouten (2018) ensures the existence of y ∈ Y such that z ∈
Λcα(y) for all z ∈ Y . The connexity of Λ

ca
α then implies

z ∈ Λcaα (y) for all z ∈ Y \{y}. (11)

Put σ2 = {Λcaα (x) : x ∈ R
α} ∪ {∅}. The set σ2 is a subbase of open sets for τ2.

Let τ̂2 be the subspace topology on Y induced by τ2. Put σ̂2 = {S∩Y : S ∈ σ2}
and note that σ̂2 is a subbase of open sets for τ̂2. Assume that γ is an arbitrary
cover of Y by members of σ̂2. Then there exists S ∈ γ such that y ∈ S. By
virtue of the last two memberships, the inequality S 6= Y implies the existence of
x̄ ∈ Rα such that S = Λcaα (x̄)∩ Y , that y ∈ Λ

ca
α (x̄)∩ Y and that z /∈ Λ

ca
α (x̄)∩ Y

for some z ∈ Y \{y}: a contradiction with (11) and the transitivity of Λcaα .
Therefore S = Y and {S} is a finite subcover of γ. Said this, Alexander’s
subbase theorem implies the compactness of the topological space (Y, τ̂2) and
hence the validity of the membership

Y ∈ K(X, τ2).

We are now in a position to assert that K(X, τ1) ⊆ K(X, τ2) and hence that τ2
is compactly finer than τ1.

Corollary 4 Let α be a non-zero ordinal. There exists a T1 topology on R
α that

is compactly finer than the natural topology on Rα and for which the lexicographic
order on Rα is closed-valued.

Proof. Apply Theorem 11 and 10, in this order.

7 A generalization

Definition 7 introduces the weak W-property. Sect. 7.1 establishes a connection
with the W-property. Sect. 7.2 provides a generalization of Theorem 8 and an
extension of Theorem 9. Sect. 7.3 concludes showing sufficient conditions for a
relation to possess the weak W-property.

Definition 7 Let (X, τ) be a topological space. A relation B on X has the weak
W-property for τ iff B admits a quasi-extension R possessing the W-property
for at least one topology on X compactly finer than τ .

19



7.1 Connection with the W-property

Proposition 8 asserts that every relation with the W-property has the weak W-
property and Proposition 9 points out that–unlike the W-property–the weak
W-property is in fact a property of the asymmetric part of a relation.

Proposition 8 Let (X, τ) be a topological space and B be a relation on X. If
B has the W-property for τ , then B has the weak W-property for τ .

Proof. A consequence of the fact that every topology is compactly finer than
itself and that every relation is a quasi-extension of itself.

Proposition 9 Let (X, τ) be a topological space and B be a relation on X. The
relation B has the weak W-property for τ if and only if the relation Ba has the
weak W-property for τ .

Proof. A consequence of Remark 1.

7.2 The generalized theorem

Theorem 12 generalizes Theorem 8 and its Corollary 5 extends Theorem 9 re-
stricting attention to the unconstrained maximals of a transitive relation.

Theorem 12 Let (X, τ) be a topological space and B be a relation on X. If B
has the weak W-property for τ , thenM(B, Y ) 6= ∅ for every Y ∈ K(X, τ).

Proof. Suppose B has the weak W-property for τ and Y ∈ K(X, τ). Then
there exist a quasi-extension R of B and a topology τ̄ on X such that R has
the W-property for τ̄ and Y ∈ K(X, τ̄). So, M(R, Y ) 6= ∅ by Theorem 8. As
M(R, Y ) 6= ∅ and Ba ⊆ Ra, we conclude thatM(B, Y ) 6= ∅.

Corollary 5 Let B be a transitive relation on a nonempty compact topological
space (X, τ). If B has the weak W-property for τ , thenM(B) ∩M(TB) 6= ∅.

Proof. Suppose B has the weak W-property for τ . As X ∈ K(X, τ), Theorem
12 impliesM(B,X) 6= ∅. Consequently,M(B) 6= ∅ by part 1 of Proposition 1
andM(B) ∩M(TB) 6= ∅ by Theorem 2.

7.3 Sufficient conditions for the weak W-property

This Sect. 7.3 shows sufficient conditions for a relation to possess the weak
W-property and the connection with Bosi and Zuanon (2017)’s quasi upper
semicontinuity is clarified.

7.3.1 Quasi upper semicontinuous preorders

Recently, Bosi and Zuanon (2017) have introduced a notion of continuity that
allows for a unification of some results on the existence of a maximal element;
applications can be found also in Bosi and Zuanon (2019, Sect. 3). Definition
8 recalls the notion of quasi upper semicontinuity. Proposition 10 shows that
every quasi upper semicontinuous relation has the weak W-property.
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Definition 8 Let (X, τ) be a topological space. A relation B on X is quasi
upper semicontinuous iff B admits a quasi-extension R that is a preorder
and that is closed-valued for τ .

Proposition 10 Let (X, τ) be a topological space and B be a relation on X. If
B is quasi upper semicontinuous, then B has the weak W-property for τ .

Proof. Suppose B is quasi upper semicontinuous. Then B admits a quasi-
extension R that is a preorder and that is closed-valued for τ . Part 1 of Propo-
sition 3 ensures that R is S-consistent and part 2 of Proposition 6 ensures that
R is Tt-closed-valued for τ . So, R has the W-property for τ . As every topology
is compactly finer than itself, B has the weak W-property for τ .

Remark 10 Let (X, τ) be a topological space and B be a preorder on X. The
closed-valuedness of B for τ and the open-valuedness of Bca for τ are sufficient
conditions for B to be quasi upper semicontinuous: see Bosi and Zuanon (2017,
Remark 2.5). Other sufficient conditions are shown therein. In particular–and
related to a result in Nosratabadi (2014)–Theorem 2.11 in Bosi and Zuanon
(2017) asserts that, when τ is a second countable topology, the quasi upper
semicontinuity of B is equivalent to the representability of Ba by means of an
upper semicontinuous weak utility function (i.e., to the existence of an upper
semicontinuous function u : X → R such that (y, x) ∈ Ba ⇒ u(y) > u(x)).11

7.3.2 Lexicographic orders

Proposition 11 shows that the lexicographic order on Rα is an instance of a re-
lation with the weak W-property for the natural topology of Rα. Proposition 12
clarifies that, when Rα is endowed with the natural topology, the lexicographic
order on Rα is not, in general, a quasi upper semicontinuous preorder. Indeed,
Proposition 12 proves the usefulness of the generalization of notion of a quasi
upper semicontinuous preorder brought about by the weak W-property.

Proposition 11 Let α be a non-zero ordinal–possibly, a positive integer–and
endow Rα with the natural topology. The lexicographic order on Rα has the weak
W-property for the natural topology of Rα.

Proof. Let τ1 denote the natural topology of Rα and τ2 the lexicographic lower
topology on Rα. Part 1 of Theorem 11 ensures that Λα is closed-valued for τ2:
as Λα is a preorder, from part 1 of Proposition 3 and part 2 of Proposition 6
we infer that Λα has the W-property for τ2. Part 2 of Theorem 11 ensures that
τ2 is compactly finer than τ1: as every relation is a quasi-extension of itself, Λα
has the weak W-property for τ1.

Proposition 12 Endow R2 with the natural topology. The lexicographic order
on R2 is a preorder but not a quasi upper semicontinuous preorder.

11For instance, endowing X = [0, 2] with the subspace topology inherited from the natural
topology of R, the preorder relation B on X defined by B(x) = [x, 2] if x ≥ 1 and by
B(x) = [x, 1) if x < 1 is quasi upper semicontinuous (in that idX is a continuous weak utility
for Ba ). It is worth to point out that, when B is understood as a constant “variable preference
relation” in the sense of Luc and Soubeyran (2013), B is not “upper closed” in the sense of Luc
and Soubeyran (2013, Definition 10). In fact, Luc and Soubeyran (2013)’s upper closedness
does not subsume Bosi and Zuanon (2017)’s quasi upper semicontinuity.
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Proof. Let τ denote the natural topology of R2. It is known–and readily
verified–that Λ2 is a preorder and that Λ2 can be equivalently defined as the
relation induced by the lexicographic cone

C = (R++ × R) ∪ ({0} × R+).

Note that C• = C\{(0, 0)} and that Λa2(x) = x+ C
• for all x ∈ R2. By way of

contradiction, assume the existence of a preorder relation R that quasi-extends
Λ2 and that is closed-valued for τ . As R quasi-extends Λ2, Λa2(x) ⊆ R

a(x) for all
x ∈ R2; as Ra ⊆ R, we have that Ra(x) ⊆ R(x) for all x ∈ R2. So, x+C• ⊆ R(x)
for all x ∈ R2 and basic properties of the topological closure operation entail
that clτ (x+ C•) ⊆ clτ R(x) for all x ∈ R2. Since the topology τ is translation
invariant and since R is closed-valued for τ , we infer that x+clτ C• ⊆ R(x) for
all x ∈ R2. Noting that clτ C• = R+ × R, we conclude that

x+ (R+ × R) ⊆ R(x) for all x ∈ R
2. (12)

Put p = (0, 0) and q = (0, 1) and note that q ∈ Λa2(p). From (12) we conclude
that q ∈ R(p) and p ∈ R(q): a contradiction with the membership q ∈ Λa2(p)
and the assumption that R quasi-extends Λ2.

7.3.3 Transitivity and closed-valuedness

A transitive and closed-valued relation need not have the W-property: this claim
is readily verified by considering the relation illustrated in Remark 4. Propo-
sition 13 proves that any transitive and closed-valued relation has, however,
the weak W-property (even when the topology is not T1). Recalling that the
graph-closedness of a relation implies its closed-valuedness, it is thus clear that
Theorem 12 subsumes Theorem I in Wallace (1962). Also, in the light of Propo-
sition 2, it is thus clear that Theorem 12 subsumes Proposition A.1 in Banks
et al. (2006) (equivalently, Lemma 1 in Duggan (2011)).

Proposition 13 Let (X, τ) be a topological space and B be a relation on X. If
B is transitive and closed-valued for τ , then B has the weak W-property for τ .

Proof. Put R = Br and τ1 = τ . Let τ0 denote the cofinite topology on X
and let τ2 be the topology generated by τ0 ∪ τ1. Suppose B is transitive and
closed-valued for τ1: we show that B has the weak W-property for τ1. As R is
the reflexive closure of the transitive relation B, the relation R is a preorder that
quasi-extends B. By Theorem 10, τ2 is finer than τ1 and compactly equivalent
to τ1; a fortiori, τ2 is compactly finer than τ1. As B is closed-valued for τ1 and
τ2 is finer than τ1, the relation B is closed-valued also for τ2. By Theorem 10,
the topology τ2 is T1 . As τ2 is a T1 topology and B is closed-valued for τ2, its
reflexive closure R is closed-valued also for τ2. Said this, part 1 of Proposition
3 and part 2 of Proposition 6 ensure that R has the W-property for τ2. We are
now in a position to conclude that B has the weak W-property for τ1.

An obvious–yet interesting–consequence of Proposition 13 and Theorem
12 is that the assumption of reflexivity of B in statements of Theorems 4 and
5 can be simply dropped. Corollary 6 provides a restatement of Theorems 5
dispensing with the unnecessary reflexivity assumption imposed therein.

Corollary 6 Let (X, τ) be a topological space and B be a relation on X. If B
is closed-valued for τ and transitive, thenM(B, Y ) 6= ∅ for every Y ∈ K(X, τ).
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7.3.4 Cones

Parts 1 and 2 of Proposition 14 show that the strong W-property is possessed
by any relation induced by a convex cone of a real topological vector space that
is either closed or open: the weak and the strong Pareto dominance relations
on Rn are instances of economic interest.12 Part 3 of Proposition 14 shows
that the–possibly neither transitive nor acyclic–relation induced by a strictly
supported cone of a real topological vector space has the weak W-property. The
fact that the relation induced by a strictly supported cone possesses a maximal
element on every nonempty compact constraint set is a classic result of vector
optimization: see, e.g., Luc (1989, Corollary 3.6).

Proposition 14 Let (X, τ) be a real topological vector space.

1. The relation induced by a τ -closed convex cone of X has the strong W-
property for τ .

2. The relation induced by a τ -open convex cone of X has the strong W-
property for τ .

3. The relation induced by a strictly τ -supported cone of X has the weak
W-property for τ .

Proof. 1. Suppose C is a τ -closed convex cone of X and let B be the relation
induced by C. If C is empty, then B is the empty relation on X and the proof
is obvious. Suppose C is nonempty. In a real topological vector space, any
nonempty τ -closed cone contains the zero vector; also, the relation induced on a
real vector space by a convex cone that contains the zero vector is a preorder. So,
B is a preorder. As the topology of a real topological vector space is invariant
under translation, the preorder B is closed-valued for τ . Said this, part 1 of
Proposition 5 ensures that R has the strong W-property for τ .
2. Suppose C is a nonempty τ -open convex cone of X and let B be the

relation induced by C. Recalling that the relation induced on a real vector
space by a convex cone is transitive, we infer that B is transitive. As the
topology of a real topological vector space is invariant under translation and
scalar multiplication by a non-zero scalar, Bc is open-valued. Said this, part 2
of Proposition 5 ensures that R has the strong W-property for τ .
3. Suppose C is a cone of X and H is a τ -open half-space including C•. Let

B be the relation induced by C and R be the relation induced by H. As H is a
τ -open convex cone of X, R has the W-property for τ by part 2 of Proposition
14 and Proposition 7. Note that Ba and Ra are, respectively, the relations
induced by C• and H•. As C• ⊆ H = H•, we infer that R quasi-extends B. As
every topology is compactly finer than itself, we are in a position to conclude
that B has the weak W-property for τ .

Corollary 7 shows two consequences of Proposition 14. Remark 11 points
out that a certain class of Bewley (justifiable) preferences lies within the class
of relations with the strong (weak) W-property.

12Agreeing that Rn is the set of all conceivable utility levels of an economy with n agents,
the weak (strong) Pareto dominance relation is the relation on Rn induced by the nonnegative
(positive) orthant of Rn, which is a closed (open) cone of Rn.

23



Corollary 7 Let (X, τ) be a real topological vector space.

1. The relation induced by the intersection of a family of τ -closed half-spaces
of X has the strong W-property for τ .

2. The relation induced by the union of a family of τ -closed half-spaces of X
has the weak W-property for τ .

Proof. 1. Let {Hi}i∈I be a family of τ -closed half-spaces of X. Put

C =
⋂
i∈I Hi

and let B be the relation induced by C. Note that C is a τ -closed convex cone
of X. As C is a τ -closed convex cone of X, B has the strong W-property for τ
by part 1 of Proposition 14.

2. Let {Hi}i∈I be a family of τ -closed half-spaces of X. Put

C =
⋃
i∈I Hi

and let B be the relation induced by C. If I is the empty set, then B is the
empty relation and the proof is obvious. Suppose I is nonempty and pick an
arbitrary H ∈ {Hi}i∈I . Let R be the relation induced by H. From part 1 of
Proposition 14 and Proposition 7 we infer that R has the W-property for τ . A
moment’s reflection shows that C• ⊆ H•. Consequently, Ba ⊆ Ra and hence R
is a quasi-extension of B. Therefore, B has the weak W-property for τ .

Remark 11 We here adopt the definitions of a Bewley and of a justifiable
preference set forth and discussed at more length in Cerreia-Vioglio and Ok
(2018, Sect. 6). Let Rn be endowed with the natural topology and Π denote a
nonempty, closed and convex subset of the simplex ∆n−1 ⊆ R

n. A Bewley (a
justifiable) preference with a prior set Π is a relation B on Rn defined by

B(x) = {y ∈ Rn : π · y ≥ π · x for all (for some) π ∈ Π}.

Putting Hπ = {z ∈ Rn : π · z ≥ 0} for all π ∈ Π and C =
⋂
π∈ΠHπ (and

C =
⋃
π∈ΠHπ), it is readily checked that a relation B on Rn is a Bewley (a

justifiable) preference with a prior set Π if and only if

B(x) = x+ C for all x ∈ Rn.

Therefore, a relation B on Rn is a Bewley (a justifiable) preference with prior
set Π only if it coincides with the relation induced by the intersection (the union)
of a family of half-spaces of Rn that are closed for the natural topology of Rn.
Said this, part 1 (part 2) of Corollary 7 implies that a Bewley (a justifiable)
preference is a relation with the strong (the weak) W-property.13

13Bewley (justifiable) preferences can be defined in the more general setting specified in f.n.
27 of Cerreia-Vioglio and Ok (2018). Part 1 (part 2) of Corollary 7 implies that a Bewley (a
justifiable) preference is a relation with the strong (the weak) W-property also in that setting:
the argument that leads to such a conclusion is essentially the same as that just exposed.
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8 A necessary and sufficient condition

This Sect. 8 introduces another weakening of the W-property.

Definition 9 Let (X, τ) be a topological space. A relation B on X has the
relativized W-property for τ iff for every Y ∈ K(X, τ) there exists a compact
topology τY on Y such that the restriction B|Y admits a quasi-extension RY
possessing the W-property for τY .

Proposition 15 points out that–like the weak W-property–the relativized
W-property is in fact a property of the asymmetric part of a relation. By
making use of Theorem 4 in Alcantud (2002) and of Theorem 8 of this paper,
Theorem 13 proves that the relativized W-property is necessary and sufficient
for a relation to possess a maximal on every nonempty compact subset of its
ground set. Corollary 8 concludes asserting that every relation with the weak W-
property has the relativized W-property and hence that the latter is a (possibly
non-proper) generalization of the former.

Proposition 15 Let (X, τ) be a topological space and B be a relation on X.
The relation B has the relativized W-property for τ if and only if the relation
Ba has the relativized W-property for τ .

Proof. Let Y be an arbitrary subset of X and τY be a (possibly not com-
pact) topology on Y . By virtue of Remark 1, B|Y admits a quasi-extension RY
possessing the W-property for τY if and only if B|aY admits a quasi-extension
RY possessing the W-property for τY . The operations of restriction and asym-
metrization commute with each other and hence B|aY = Ba|Y . We are in a
position to conclude that B has the relativized W-property for τ if and only if
the relation Ba has the relativized W-property for τ .

Theorem 13 Let (X, τ) be a topological space and B be a relation on X. As-
sertions I and II are equivalent.

I. M(B, Y ) 6= ∅ for every Y ∈ K(X, τ).

II. B has the relativized W-property for τ .

Proof. I ⇒ II. Suppose M(B, Y ) 6= ∅ for every Y ∈ K(X, τ). By virtue of
Proposition 15, we are done if we show that Ba has the relativized W-property
for τ . SinceM(B, Y ) 6= ∅ for every Y ∈ K(X, τ) and since every nonempty finite
subset of X is an element of K(X, τ), the relation Ba is acyclic. Now, fix an ar-
bitrary Y ∈ K(X, τ). The idempotence of asymmetrization impliesM(B, Y ) =
M(Ba, Y ) and part 2 of Proposition 1 impliesM(Ba, Y ) =M(Ba|Y ): the in-
equality M(B, Y ) 6= ∅ then entails that M(Ba|Y ) 6= ∅. Any restriction of an
acyclic relation is acyclic. So, Ba|Y is acyclic and hence S-consistent by part
2 of Proposition 3. As Ba|Y is acyclic and M(Ba|Y ) 6= ∅, Theorem 4 in Al-
cantud (2002) ensures the existence of a compact topology τY on Y for which
the relation Ba|cY is open-valued. Consequently, B

a|Y is Tt-closed-valued for τY
by part 5 of Proposition 6 and we conclude that the S-consistent relation Ba|Y
has the W-property for τY . As Ba|Y is a quasi-extension of itself and Y is an
arbitrary element of K(X, τ), Ba has the relativized W-property for τ .
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II ⇒ I. Suppose B has the relativized W-property for τ and Y ∈ K(X, τ).
Then there exists a compact topology τY on Y such that B|Y admits a quasi-
extension RY possessing the W-property for τY . As Y ∈ K(Y, τY ), Theorem 8
implies M(RY , Y ) 6= ∅: so, M(RY ) 6= ∅ by part 1 of Proposition 1. As RY is
a quasi-extension of B|Y , we have that B|aY ⊆ RaY and hence that M(RY ) ⊆
M(B|Y ). The last inequality and the last inclusion imply M(B|Y ) 6= ∅: so,
M(B, Y ) 6= ∅ by part 2 of Proposition 1.

Corollary 8 Let (X, τ) be a topological space and B be a relation on X. If B
has the weak W-property for τ , then B has the relativized W-property for τ .

Proof. A consequence of Theorems 12 and 13.

It is natural to question whether every relation with the relativized W-
property has the weak W-property. An affirmative answer would imply–by
consequence of Theorem 13 and Corollary 8–that the weak W-property is a
necessary and sufficient condition for a relation to possess a maximal on every
nonempty compact subset of its ground set; a negative answer would imply–by
consequence of Corollary 8–that the relativized W-property is a proper gen-
eralization of the weak W-property. Presently, it is an open question. Part of
the literature on the existence of a maximal has restricted attention to a spe-
cial class of strict partial orders called interval orders. Within this literature,
Campbell and Walker (1990, Theorem 2) have provided sufficient conditions for
an interval order on a general topological space to possess a maximal on every
nonempty compact subset of its ground set14 and Kukushkin (2008, Theorem
3) has provided necessary and sufficient conditions for an interval order on a
metric space to possess a maximal on every nonempty compact subset of its
ground set (the last result subsumes, essentially, Theorem 4.1 in Smith (1974)).
Clearly, Theorem 13 implies that every interval order that satisfies the sufficient
condition in Campbell and Walker (1990, Theorem 2)–called, by the authors,
weak lower continuity–has the relativized W-property and that every interval
order on a metric space that satisfies the necessary and sufficient condition in
Kukushkin (2008, Theorem 3)–called, by the author, ω-acyclicity–has the rel-
ativized W-property. It is an open question, however, whether such conditions
imply the weak W-property. An example of a relation with the relativized W-
property that does have the weak W-property, if any exists, might be found
within the classes of relations considered in the two aforementioned articles.
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