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Abstract

We provide a class of algorithms, called men-women proposing deferred acceptance (MWPDA)

algorithms, that can produce all stable matchings at every preference profile for the marriage problem.

Next, we provide an algorithm that produces a minimum regret stable matching at every preference

profile. We also show that its outcome is always women-optimal in the set of all minimum regret stable

matchings. Finally, we provide an algorithm that produces a stable matching with given sets of forced

and forbidden pairs at every preference profile, whenever such a matching exists. As before, here too

we show that the outcome of the said algorithm is women-optimal in the set of all stable matchings

with given sets of forced and forbidden pairs.
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1 Introduction

This paper explores the possibilities of designing mechanisms satisfying properties such as (pairwise) sta-

bility, minimum regret, and forced and forbidden pairs in case of two-sided one-to-one matching problem

(marriage problem).

(Pairwise) stability is a well-known property of a matching. Gale and Shapley (1962) provide an algo-

rithm called men-proposing/women-proposing deferred acceptance (MPDA/WPDA) algorithm that produces a

stable matching at every preference profile. It is well-known that the outcome of the MPDA (WPDA) algo-

rithm is (i) men-maximal (women-maximal), that is, such an outcome maximizes the match of each man

(woman) over all stable matchings, and (ii) women-pessimal (men-pessimal), that is, such an outcome

minimizes the match of each woman (man) over all stable matchings.1

The main motivation of this paper is to provide an algorithmic characterization of all stable matchings

at every preference profile. The other motivation is to provide algorithms to construct stable matchings

with additional desirable properties such as minimum regret and forced/forbidden pairs. The importance

of a characterization of all stable matchings is well-established in the literature. McVitie and Wilson (1971)

provide an iterative procedure to compute all stable matchings for the marriage problem and Martınez

et al. (2004) extend that algorithm to two-sided many-to-many matching problem with substitutable pref-

erences.2 Irving and Leather (1986) provide an alternative method of computing all stable matchings for

the marriage problem by using the lattice structure of the set of stable matchings. To the best of our knowl-

edge, apart from Gale-Shapley algorithm, no direct algorithm that produces stable matching is introduced

to the literature.3 However, as discussed earlier, stable matchings produced by Gale-Shapley algorithm

(Gale and Shapley, 1962) suffer from the problem that they are either extremely biased against men (in

case of WPDA algorithm) or that towards women (in case of MPDA algorithm).

We present a class of algorithms that we call men-women proposing deferred acceptance (MWPDA) algo-

rithms which can produce all stable matchings at every preference profile. Such an algorithm is based on

a given collection of cut-off parameters one for each man. A cut-off parameter κm for a man m is an arbi-

trary integer between 1 and the number of women plus one. For a given collection of cut-off parameters

the algorithm works in a sequence of stages as follows. At the beginning of Stage 1, each man m proposes

each acceptable woman who appears in top κm positions according to his preference, and then WPDA

algorithm is performed with respect to the proposals that the women receive. From a given stage we go

to the subsequent stage if there is a man who (i) has not yet proposed all acceptable women according to

1See Gale and Shapley (1962), McVitie and Wilson (1971), Knuth (1976), and Abdulkadiroglu and Sönmez (2013) for details.
2Kelso Jr and Crawford (1982) are the first to use the substitutability property to show the existence of stable matchings in a

many-to-one model with money.
3McVitie and Wilson (1971) provide a method to compute all stable matchings at a preference profile. However, their method

is lengthy in the sense that every time one needs to produce some particular stable matching, he/she has to start from the
men-maximal (or women-maximal) stable matching and keep on producing all stable matchings that come in the process before
he/she arrives at the intended stable matching. Another problem with this method is that it is not structured enough to produce
stable matching with additional desirable properties.
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his preference, and (ii) is unmatched at that given stage. Moreover, in any stage, if a man m was matched

in the previous stage, then he proposes the same set of women as he did in the previous stage, otherwise

he proposes the remaining set of acceptable women (that is, the acceptable women who do not appear in

top κm positions according to his preference).

Theorem 3.1 of our paper shows that the outcome of an MWPDA algorithm is stable at every preference

profile for any cut-off vector. Theorem 3.2 shows that for any stable matching at a preference profile, there

is a cut-off vector such that the MWPDA algorithm with respect to it will produce that stable matching.

Theorem 3.3 provides a necessary and sufficient condition on the cut-off vectors so that the MWPDA

algorithms with those cut-off vectors will converge at the first stage. We also discuss that these algorithms

can be extended to produce all stable matchings in a two-sided many-to-one matching problem (college

admissions problem) in a way mentioned in Roth and Sotomayor (1989).

The notion of minimum regret under stability is introduced in Knuth (1976). It captures the idea of a

Rawlsian welfare function. The regret of an agent in a matching is defined as the rank of his/her match

according to his/her preference, and the regret of a matching is defined as the highest regret (over all

agents) at that matching. A stable matching satisfies minimum regret stable property at a preference profile

if it has the minimum regret among all the stable matchings at that preference profile.4 Both MPDA and

WPDA algorithms are far from satisfying the minimum regret under stability as their outcomes are either

women-pessimal or men-pessimal. We provide a direct algorithm called the sequential MWPDA algorithm

that produces a minimum regret stable matching at every preference profile.5 We further show that the

outcome of the sequential MWPDA algorithm is women-optimal in the set of all minimum regret stable

matchings.

For practical reasons, sometimes one needs to construct stable matching with additional constraints.

The notion of stable matching with forced pairs is introduced in Knuth (1976), and that with forbidden pairs

is introduced in Dias et al. (2003). To the best of our knowledge, there is no direct algorithm that produces

stable matching with these properties.6 We provide an algorithm called the conditional MWPDA algorithm

that produces stable matching with given sets of forced and forbidden pairs, whenever such a matching

exists. We further show that whenever the conditional MWPDA algorithm produces such a matching,

the outcome is women-optimal in the set of all stable matchings with given sets of forced and forbidden

pairs.

4Note that the regret of an unstable matching can be strictly less than the minimum regret under stability.
5Knuth (1976) provides an algorithm with runtime of the order O(n4) to find a minimum regret stable matching where n is

the number of men, as well as the number of women. The algorithm given in Knuth (1976) is attributed to Alan Selkow. Later,
Gusfield (1987) provide an algorithm that terminates in O(n2) time.

6Knuth (1976) provides an algorithm that produces a stable matching with a given set of forced pairs or reports that none
exists, in O(n2) time, where n is the number of men, as well as the number of women. Later, Gusfield and Irving (1989) provide
an algorithm that terminates in O(|Q1|

2) time, after pre-processing the preference lists in O(n4) time, where Q1 is the set of given
forced pairs. Dias et al. (2003) provide a computer algorithm that produces a stable matching with a given set of forced pairs Q1

and a given set of forbidden pairs Q2 in O((|Q1|+ |Q2|)
2) time, after pre-processing the preference lists in O(n4) time.
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1.1 Organization of the paper

The paper is organized as follows. The marriage problem framework is presented in Section 2. In Section

3, we present MWPDA algorithms and show that they produce all stable matchings at every preference

profile for the marriage problem. We also provide a necessary and sufficient condition for the convergence

of these algorithms at the first stage, and discuss how these algorithms can be used to construct all stable

matchings for the college admissions problem. In Section 4, we present an algorithm that produces a

minimum regret stable matching at every preference profile, and in Section 5, we present an algorithm

that produces a stable matching with given sets of forced and forbidden pairs. All the proofs are collected

in the Appendix.

2 Model

For a finite set A, let L(A) denote the set of all strict linear orders over A.7 An element P of L(A) is called

a preference over A. For a preference P ∈ L(A), let R denote the weak part of P, that is, for all a, b ∈ A,

aRb if and only if
[

aPb or a = b
]

.

For P ∈ L(A) and 1 ≤ k ≤ |A|, we define Tk(P) := {b ∈ A : |{a : aRb}| ≤ k}. So, Tk(P) is the set

of top k elements of A according to P. Moreover, for P ∈ L(A) and a ∈ A, we define rank(P, a) = k if
∣

∣{b ∈ A : bPa}
∣

∣ = k − 1.

We introduce a specialized model of the two-sided matching problem, which will turn out to be suf-

ficiently general to explore the general problem. The simplest two-sided matching problem to model is

the “marriage problem”, which consists of two (finite) sets of agents M = {m1, . . . , mp} and W = {w1,

. . . , wq} (“men” and “women”). Throughout this paper, we assume p, q ≥ 2. We denote by N = M ∪ W.

Each m ∈ M has a preference Pm ∈ L(W ∪ {∅}) and each w ∈ W has a preference Pw ∈ L(M ∪ {∅}). A

man m (woman w) is called acceptable for a woman w (man m) at a preference Pw (Pm) if mPw∅ (wPm∅).

For m ∈ M (w ∈ W), we denote by A(Pm) (A(Pw)) the set of acceptable women (men) for m (w) at a

preference Pm (Pw). By PN = (Pm1
, . . . , Pmp , Pw1

, . . . Pwq), we denote a vector of all the agents’ preferences,

which will be referred to as a preference profile.

Definition 2.1. A matching between M and W is a function µ : N → N ∪ {∅} such that

(i) µ(m) ∈ W ∪ {∅} for all m ∈ M,

(ii) µ(w) ∈ M ∪ {∅} for all w ∈ W, and

(iii) µ(m) = w if and only if µ(w) = m.

Definition 2.2. A matching µ : N → N ∪{∅} is individually rational at a preference profile PN if µ(a)Ra∅

for all a ∈ N.

7A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
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Definition 2.3. A pair (m, w) ∈ M × W is called a blocking pair of a matching µ : N → N ∪ {∅} at a

preference profile PN if wPmµ(m) and mPwµ(w).

A matching µ : N → N ∪ {∅} is called pairwise stable at a preference profile PN if it is individually

rational and has no blocking pairs at PN .

Definition 2.4. A coalition N′ ⊆ N is called a blocking coalition of a matching µ : N → N ∪ {∅} at a

preference profile PN if there exists another matching µ′ : N → N ∪ {∅} such that

(i) µ′(a) ∈ N′ ∪ {∅} for all a ∈ N′, and

(ii) µ′(a)Paµ(a) for all a ∈ N′.

If a matching µ : N → N ∪ {∅} has no blocking coalition at a preference profile PN , then it is called

stable at PN .

Remark 2.1. It is well-known that pairwise stability and stability are equivalent.8 For this reason, we will

say a matching is stable at a preference profile if and only if it is pairwise stable at that preference profile.

We denote by C(PN) the set of all stable matchings at a preference profile PN . It is well-known that

C(PN) 6= ∅ for every preference profile PN (see Gale and Shapley (1962) for details).

Definition 2.5. For a preference profile PN and a set of matchings M, a matching µ ∈ M is women-

optimal in M at PN if µ(w)Rwµ′(w) for all w ∈ W and all µ′ ∈ M. Similarly, one can define the notion a

men-optimal matching in a set of matchings.9

A matching µ ∈ C(PN) is men-optimal (women-optimal) stable matching at PN if µ is men-optimal

(women-optimal) in C(PN) at PN .

It is well-known that a men-optimal (women-optimal) stable matching exists at every preference pro-

file (see Gale and Shapley (1962) for details).

3 Algorithms for producing all stable matchings at a preference profile

An algorithm is a procedure that produces a matching at any preference profile. In this section, we

provide a class of algorithms, called men-women proposing deferred acceptance (MWPDA) algorithms,

which can produce every stable matching at a preference profile. These algorithms are built on well-

known deferred acceptance (DA) algorithms. For the sake of completeness, we begin with a description

(that is suitable for our purpose) of DA algorithms.

8See Roth and Sotomayor (1992) for details.
9Women-optimal (men-optimal) matching in an arbitrary set of matchings may not exist.
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3.1 Deferred Acceptance algorithm

There are two types of deferred acceptance algorithms: women-proposing deferred acceptance (WPDA)

and men-proposing deferred acceptance (MPDA). In the following, we provide a description of the WPDA

algorithm at a preference profile PN . The same of the MPDA algorithm can be obtained by interchanging

the roles of women and men in the WPDA algorithm.

Step 1. Every woman w proposes her top-ranked acceptable man according to Pw
10. Then, every man m

who has at least one proposal keeps (tentatively) the top acceptable woman according to Pm among these

proposals and rejects the rest. Denote the tentative matching thus obtained by µ1.

Step 2. Every woman w who was rejected in the previous step, proposes the top acceptable man among

those men who have not rejected her in earlier steps. Then, every man m who has at least one proposal,

including any proposal tentatively kept from earlier steps, keeps (tentatively) the top acceptable woman

among these proposals and rejects the rest. Denote the tentative matching thus obtained by µ2.

...

The process is then repeated from Step 2 till a step such that for each woman one of the following two

happens: (i) she has proposed all acceptable men, (ii) she is accepted by some man who is acceptable to

her. At this point, the tentative proposal accepted by a man becomes permanent. Call this the outcome of

the WPDA algorithm at PN .

Remark 3.1. Gale and Shapley (1962) show that at every preference profile PN , there exists a unique men-

optimal stable matching that is produced by the MPDA algorithm and a unique women-optimal stable

matching that is produced by the WPDA algorithm.

Throughout this paper, we denote the men-optimal and the women-optimal stable matching at a pref-

erence profile PN by µM(PN) and µW(PN), respectively. Moreover, whenever the preference profile PN is

clear from the context, we drop it from these notations, that is, we write µM for µM(PN), etc.

Remark 3.2. For all µ ∈ C(PN), µM(m)Rmµ(m)RmµW(m) for all m ∈ M, and µW(w)Rwµ(w)RwµM(w) for

all w ∈ W.11

3.2 MWPDA algorithms

We begin with introducing a piece of notation that will simplify the presentation of our algorithm. For a

preference Pw ∈ L(M ∪ {∅}) and M′ ⊆ M, define PM′

w as the preference that is obtained by moving the

elements of M′ ∪ {∅} to the top of Pw maintaining their relative ordering. More formally, PM′

w is such that

10That is, if the top-ranked man of a woman is acceptable, then she proposes him, otherwise she does not propose anybody.
11See Gale and Shapley (1962), McVitie and Wilson (1971), Knuth (1976), and Abdulkadiroglu and Sönmez (2013) for details.
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(i) for all x, y ∈ M′ ∪ {∅}, xPM′

w y if and only if xPwy, and (ii) for all x ∈ M′ ∪ {∅} and y ∈ M \ M′, we

have xPM′

w y.12

An MWPDA algorithm is parameterized by a cut-off vector. A cut-off vector is defined as κ = (κm1
, . . . ,

κmp), where for all m ∈ M, κm ∈ {1, . . . , q + 1} is the cut-off parameter of man m. An MWPDA algorithm

involves a sequence of stages. At the beginning of a stage, say Stage s, each man m proposes a set of

women (which is determined by the parameters). We denote this set by Ws(m). The set of proposals that

each w ∈ W receives in that stage is denoted by Ms(w), that is, Ms(w) = {m : w ∈ Ws(m)}.

Below, we present a detailed description (using the notations introduced above) of the MWPDA algo-

rithm with cut-off vector κ at a preference profile PN .

Stage 1. Take W1(m) = Tκm(Pm) ∩A(Pm) for all m ∈ M. Perform the WPDA algorithm at the preference

profile (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). Let µ1 be the outcome. If W1(m) = A(Pm) for all m ∈ M with

µ1(m) = ∅, then conclude that the algorithm converges and define µ1 as the outcome of the algorithm.

Otherwise, go to Stage 2.

Stage 2. For all m ∈ M, take W2(m) such that

W2(m) =



























W1(m) if µ1(m) 6= ∅;

A(Pm) \ W1(m) if µ1(m) = ∅ and W1(m) ( A(Pm);

∅ if µ1(m) = ∅ and W1(m) = A(Pm).13

Perform the WPDA algorithm at the preference profile (Pm1
, . . . , Pmp , P

M2(w1)
w1

, . . . , P
M2(wq)
wq

). Let µ2 be the

outcome. If W1(m) ∪ W2(m) = A(Pm) for all m ∈ M with µ2(m) = ∅, then conclude that the algorithm

converges and define µ2 as the outcome of the algorithm. Otherwise, go to Stage 3.

Stage 3. For all m ∈ M, take W3(m) such that

W3(m) =































W2(m) if µ2(m) 6= ∅;

A(Pm) \
(

∪
s≤2

Ws(m)
)

if µ2(m) = ∅ and ∪
s≤2

Ws(m) ( A(Pm);

∅ if µ2(m) = ∅ and ∪
s≤2

Ws(m) = A(Pm).

Perform the WPDA algorithm at the preference profile (Pm1
, . . . , Pmp , P

M3(w1)
w1

, . . . , P
M3(wq)
wq

). Let µ3 be the

outcome. If ∪
s≤3

Ws(m) = A(Pm) for all m ∈ M with µ3(m) = ∅, then conclude that the algorithm

converges and define µ3 as the outcome of the algorithm. Otherwise, go to Stage 4.

12Note that such a preference PM′

w may not be unique since it does not specify the relative ranking of the elements of M \ M′.
13It follows from the definition of W1(m) that W1(m) ⊆ A(Pm) for all m ∈ M. Therefore, the cases considered in this definition

are exhaustive.
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...

We continue this till a stage t∗ such that ∪
s≤t∗

Ws(m) = A(Pm) for all m ∈ M with µt∗(m) = ∅. Since

both the number of men and the number of women are finite, such a stage t∗ must exist. At this stage,

define the matching µt∗ as the outcome the algorithm.

Remark 3.3. If κm = q + 1 for all m ∈ M, then the MWPDA algorithm with κ boils down to the WPDA

algorithm.

We illustrate MWPDA algorithm by means of the following example.

Example 3.1. Let M = {m1, m2, m3, m4, m5} and W = {w1, w2, w3, w4, w5}. Consider the preference profile

PN as given below:

Pm1
Pm2 Pm3 Pm4

Pm5 Pw1
Pw2 Pw3 Pw4

Pw5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4

Table 3.1: Preference profile for Example 3.1

Let the cut-off vector κ be such that κm1
= 2, κm2 = 4, κm3 = 3, κm4

= 1 and κm5 = 2. The MWPDA

algorithm with κ at the preference profile PN given in Table 3.1 works as follows.

Stage 1. Perform the WPDA algorithm at the preference profile (Pm1
, . . . , Pm5 , P

M1(w1)
w1

, . . . , P
M1(w5)
w5

) given

in Table 3.2. The dots in Table 3.2 indicate that all preferences for the corresponding parts are irrelevant

and can be chosen arbitrarily. To emphasize the process at Stage 1, for each man m we have highlighted

the women in Pm in blue that m proposes, and for each woman w we have highlighted the men in Pw in

blue who propose her.
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Pm1
Pm2 Pm3 Pm4

Pm5 Pw1
Pw2 Pw3 Pw4

Pw5 P
M1(w1)
w1

P
M1(w2)
w2

P
M1(w3)
w3

P
M1(w4)
w4

P
M1(w5)
w5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3 m2 m5 m2 m2 ∅

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1 m5 m2 m3 ∅
...

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5 m1 m1 ∅
...

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅ ∅ m3
...

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2 m3 ∅

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4 m4
...

Table 3.2: Updated preference profile at Stage 1

The outcome of the WPDA algorithm at Stage 1 is [(m1, ∅), (m2, w1), (m3, w3), (m4, ∅), (m5, w2)]. Since

µ1(m1) = ∅ with W1(m1) ( A(Pm1
), we go to Stage 2.

Stage 2. Perform the WPDA algorithm at the preference profile (Pm1
, . . . , Pm5 , P

M2(w1)
w1

, . . . , P
M2(w5)
w5

) given

in Table 3.3.

Pm1
Pm2 Pm3 Pm4

Pm5 Pw1
Pw2 Pw3 Pw4

Pw5 P
M2(w1)
w1

P
M2(w2)
w2

P
M2(w3)
w3

P
M2(w4)
w4

P
M2(w5)
w5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3 m2 m4 m2 m2 m1

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1 m5 m5 m4 m1 ∅

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5 ∅ m2 m3 m4 m4

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅ m3 m3 ∅ ∅
...

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2
... ∅ m1

...

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4
...

...

Table 3.3: Updated preference profile at Stage 2

The outcome of the WPDA algorithm at Stage 2 is [(m1, w4), (m2, w1), (m3, w3), (m4, w2), (m5, ∅)]. Since

µ2(m5) = ∅ with W1(m5) ∪ W2(m5) ( A(Pm5), we go to Stage 3.

Stage 3. Perform the WPDA algorithm at the preference profile (Pm1
, . . . , Pm5 , P

M3(w1)
w1

, . . . , P
M3(w5)
w5

) given

in Table 3.4.
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Pm1
Pm2 Pm3 Pm4

Pm5 Pw1
Pw2 Pw3 Pw4

Pw5 P
M3(w1)
w1

P
M3(w2)
w2

P
M3(w3)
w3

P
M3(w4)
w4

P
M3(w5)
w5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3 m2 m4 m5 m2 m1

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1 ∅ m2 m2 m1 m5

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5 m3 m3 m4 m5 ∅

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅
... ∅ m3 m4 m4

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2
... ∅ ∅

...

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4 m1
...

Table 3.4: Updated preference profile at Stage 3

The outcome of the WPDA algorithm at Stage 3 is [(m1, w4), (m2, w1), (m3, ∅), (m4, w2), (m5, w3)]. Since

µ3(m3) = ∅ with W1(m3) ∪ W2(m3) ∪ W3(m3) ( A(Pm3), we go to Stage 4.

Stage 4. Perform the WPDA algorithm at the preference profile (Pm1
, . . . , Pm5 , P

M4(w1)
w1

, . . . , P
M4(w5)
w5

) given

in Table 3.5.

Pm1
Pm2 Pm3 Pm4

Pm5 Pw1
Pw2 Pw3 Pw4

Pw5 P
M3(w1)
w1

P
M3(w2)
w2

P
M3(w3)
w3

P
M3(w4)
w4

P
M3(w5)
w5

w1 w1 w2 w1 w1 m2 m4 m5 m2 m3 m2 m4 m5 m2 m3

w2 w3 w1 w2 w2 m5 m5 m2 m3 m1 ∅ m2 m2 m3 m1

w3 w2 w3 w5 w3 m1 m2 m4 m1 m5
... ∅ m4 m1 m5

w4 w4 w4 w4 w4 ∅ m1 m3 m5 ∅
... ∅ m5 ∅

w5 w5 w5 w3 w5 m3 m3 ∅ m4 m2 m1 m4 m4

∅ ∅ ∅ ∅ ∅ m4 ∅ m1 ∅ m4
... ∅

...

Table 3.5: Updated preference profile at Stage 4

The outcome of the WPDA algorithm at Stage 4 is [(m1, w5), (m2, w1), (m3, w4), (m4, w2), (m5, w3)]. Since

µ4(m) 6= ∅ for all m ∈ M, the outcome of MWPDA algorithm with the cut-off vector κ is [(m1, w5), (m2,

w1), (m3, w4), (m4, w2), (m5, w3)].

3.3 MWPDA algorithms produce all stable matchings

In this subsection, we explore the stability of the outcome of an MWPDA algorithm. We also provide a

sufficient condition on an MWPDA algorithm to produce a specific stable matching at the first step of

the WPDA algorithm at Stage 1 of the mentioned MWPDA algorithm. Our next theorem shows that the

outcome of an MWPDA algorithm at any preference profile and with any cut-off vector is stable.

Theorem 3.1. For every preference profile PN and every cut-off vector κ, the MWPDA algorithm with κ produces

a stable matching at PN .
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The proof of this theorem is relegated to Appendix A; here we provide the idea of it. By Observation

A.1, the match of each man (weakly) improves (according to his preference) over the steps of the WPDA

algorithm at any given stage. Next, we show the match of each woman (weakly) improves over the stages

(Lemma A.1). Finally, we combine these two facts to prove Theorem 3.1.

Now, we present the main result of this section. It says that every stable matching at any preference

profile can be produced by an MWPDA algorithm with some cut-off vector. However, we prove a stronger

version of this, which says that every stable matching at a preference profile can be produced at the first

step of the WPDA algorithm at Stage 1 of an MWPDA algorithm by using a suitable cut-off vector.

Theorem 3.2. Let PN be a preference profile and let µ ∈ C(PN). Suppose the cut-off vector κ is such that κm =

rank(Pm, µ(m)) for all m ∈ M. Then, the MWPDA algorithm with cut-off vector κ produces µ at PN . Furthermore,

µ is produced at the first step of the WPDA algorithm at Stage 1 (of the mentioned MWPDA algorithm).

The proof of this theorem is relegated to Appendix B.2. It is worth mentioning that the cut-off vector

κ defined in Theorem 3.2 is not the unique cut-off vector that produces µ at the first step of the WPDA

algorithm at Stage 1.

In view of Theorem 3.2, one may think that if every stable matching can be produced at the first step

of the WPDA algorithm at Stage 1 of an MWPDA algorithm, then why do we need a sequence of stages

and a sequence of steps of the WPDA algorithm at each stage? The answer to this question is as follows.

As it is evident from Theorem 3.2, the ‘suitable‘ cut-off vector for a given stable matching that produces

it at the first step of the WPDA algorithm at the first stage cannot be identified without using complete

knowledge of that stable matching. Thus, in order to find all stable matchings at a preference profile, one

needs to use MWPDA algorithm with arbitrary cut-off vectors (and consequently needs to go through

several stages).

3.4 Convergence of MWPDA algorithms at the first stage

In this subsection, we discuss the convergence of an MWPDA algorithm. As we have mentioned in

Subsection 3.3, for every stable matching there exists a cut-off vector so that the MWPDA algorithm with

that converges at the first step of the WPDA algorithm at Stage 1 producing the stable matching. However,

identifying such a cut-off vector requires complete knowledge of the stable matching. In view of this, we

provide a necessary and sufficient condition on the cut-off vectors so that the MWPDA algorithms with

those cut-off vectors converge at the first stage.

Recall that, we denote the men-optimal stable matching at a preference profile PN by µM(PN). More-

over, whenever the preference profile PN is clear from the context, we drop it from this notation, that is,

we write µM for µM(PN).

Theorem 3.3. Let PN be a preference profile. The MWPDA algorithm with a cut-off vector κ at PN converges at

Stage 1 if and only if κm ≥ min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M.
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The proof of this theorem is relegated to Appendix B.1.

Remark 3.4. A cut-off vector κ with κm ≥ min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M does

not guarantee the convergence of the MWPDA algorithm at the first step of the WPDA algorithm at the

first stage, it might take several steps to converge.

3.5 Application to the college admissions problem

The “college admissions problem” is a many-to-one generalization of the marriage problem.14 Every

(many-to-one) stable matching in the college admissions problem where colleges’ preferences satisfy re-

sponsiveness can be obtained from Theorem 3.2 in the following way.15

(i) Construct a marriage problem for the given college admissions problem (see Roth (1985) and Roth

and Sotomayor (1989) for details on how to construct a related marriage problem).

(ii) Apply MWPDA algorithms to obtain all (one-to-one) stable matchings of the marriage problem.

(iii) Transform all (one-to-one) stable matchings of the marriage problem to their many-to-one versions

by using a transformation as defined in Roth and Sotomayor (1989).

It follows from Lemma 1 in Roth and Sotomayor (1989) that the many-to-one matchings of the college

admissions problem constructed in this manner will be the only pairwise stable matchings, and from

Proposition 1 in Roth and Sotomayor (1989), that they will also be the only stable matchings.

4 A minimum regret stable algorithm

In this section, we present an algorithm which produces a stable matching at every preference profile

with an additional desirable property, namely minimum regret. As we have mentioned in Remark 3.1,

the outcome of the WPDA algorithm is women-optimal stable matching and that of the MPDA algorithm

is men-optimal stable matching. In other words, both these algorithms are extremely biased.16 However,

as the following example demonstrates, MWPDA algorithms with suitable cut-off vectors can produce

stable matchings that are not so biased.

Example 4.1. Let M = {m1, m2, m3} and W = {w1, w2, w3}. Consider the preference profile PN given in

Table 4.1.

14See Abdulkadiroglu and Sönmez (2013) for a formal description of the college admissions problem.
15The notion of responsiveness is due to Roth (1985), see Abdulkadiroglu and Sönmez (2013) for a formal definition of the

same.
16See Remark 3.2 for details.
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Pm1
Pm2 Pm3 Pw1

Pw2 Pw3

w1 w2 w3 m2 m3 m1

w2 w3 w1 m3 m1 m2

w3 w1 w2 m1 m2 m3

∅ ∅ ∅ ∅ ∅ ∅

Table 4.1: Preference profile for Example 4.1

The outcome of the MPDA algorithm at PN is

µM = [(m1, w1), (m2, w2), (m3, w3)],

and that of the WPDA algorithm is

µW = [(m1, w3), (m2, w1), (m3, w2)].

However, the outcome of the MWPDA algorithm with κ = (2, 2, 2) is

µ = [(m1, w2), (m2, w3), (m3, w1)].

Note that in µM, each man gets his best choice whereas each woman gets her worst, and conversely,

in µW , each woman gets her best choice whereas each man gets his worst. However, in µ, all men and

women get their second-best choices.

In view of this example, we define the notion of minimum regret under stability. This notion is introduced

in Knuth (1976) as a desirable property of a matching.

Definition 4.1. Let PN be a preference profile and let µ be a matching at PN . Then, the regret of µ at PN is

defined as α(µ, PN) = max
a∈N

rank(Pa, µ(a)).

The minimum regret under stability at PN is defined as α(PN) = min
µ∈C(PN)

α(µ, PN).

It is worth mentioning that the regret of an unstable matching can be strictly less than the minimum

regret under stability.

Definition 4.2. (Knuth, 1976) A matching µ∗ is minimum regret stable at a preference profile PN if it is

stable at PN and its regret is same as minimum regret under stability at PN , that is, α(µ∗, PN) = α(PN).

An algorithm is called minimum regret stable if it produces a minimum regret stable matching at every

preference profile.

It is worth noting that the minimum regret property has a close resemblance with a Rawlsian welfare

function. Roughly speaking, this property tries to improve the outcome of the ‘poorest of the poor’ agent.

13



Clearly, both WPDA and MPDA algorithms do not satisfy this property in general since these algorithms

always maximize the matches of one side of the market (women or men), and consequently maximizes

the regret of the other side. For instance, consider Example 4.1. The regret of the both outcomes of the

WPDA and MPDA algorithms is 3. However, the same of the outcome of the MWPDA algorithm with

κ = (2, 2, 2) is 2.

4.1 Sequential MWPDA algorithm

In this subsection, we present an algorithm that is minimum regret stable. We call this the sequential

MWPDA algorithm. It involves a sequence of rounds. At every round, it performs an MWPDA algorithm

with a cut-off vector. Below, we present a formal description of this algorithm at a preference profile PN .

Let κ∗ = max
m∈M

rank(Pm, µM(m)).

Round 1. Perform the MWPDA algorithm with κ such that κm = κ∗ for all m ∈ M. Let µ∗
1 be the outcome

of the MWPDA algorithm at Round 1. If rank(Pm, ∅) ≤ κ∗ for all m ∈ M or rank(Pw, µ∗
1(w)) ≤ κ∗ for

all w ∈ W, then conclude that the algorithm converges and define µ∗
1 as the outcome of the sequential

MWPDA algorithm. Else, go to Round 2.

Round 2. Perform the MWPDA algorithm with κ such that κm = κ∗ + 1 for all m ∈ M. Let µ∗
2 be the

outcome of the MWPDA algorithm at Round 2. If rank(Pm, ∅) ≤ κ∗ + 1 for all m ∈ M or rank(Pw,

µ∗
2(w)) ≤ κ∗ + 1 for all w ∈ W, then conclude that the algorithm converges and define µ∗

2 as the outcome

of the sequential MWPDA algorithm. Else, go to Round 3.

...

Continue this till a round k such that either we have rank(Pm, ∅) ≤ κ∗ + k − 1 for all m ∈ M or rank(Pw,

µ∗
k (w)) ≤ κ∗ + k− 1 for all w ∈ W for the first time at Round k.17 In other words, k is such that for all round

l < k, there exists m ∈ M with rank(Pm, ∅) > κ∗ + l − 1 and w ∈ W with rank(Pw, µ∗
l (w)) > κ∗ + l − 1.

Define µ∗
k as the outcome of the sequential MWPDA algorithm.

Remark 4.1. It is worth noting that in order to execute the sequential MWPDA algorithm at a preference

profile PN , first one needs to compute the men-optimal stable matching at PN .

Remark 4.2. By Theorem 3.3, the MWPDA algorithm used at every round of the sequential MWPDA

algorithm converges at Stage 1. This ensures quick convergence of the sequential MWPDA algorithm.

Our next result says that the sequential MWPDA algorithm produces the women-optimal matching in

the set of all minimum regret stable matchings.

17Since κm cannot be bigger than q + 1, such a round must exist.
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Theorem 4.1. The sequential MWPDA algorithm is minimum regret stable. Furthermore, the outcome of the

sequential MWPDA algorithm is women-optimal in the set of all minimum regret stable matchings.

The proof of this theorem is relegated to Appendix C.

5 Stable matching with forced and forbidden pairs

The notion of stable matching with forced pairs is introduced in Knuth (1976), and that with forbidden pairs

is introduced in Dias et al. (2003). In this section, we provide an algorithm that produces stable matching

with forced and forbidden pairs, whenever such a matching exists.

Definition 5.1. Given a set of pairs Q1 ⊆ M × W, we say a matching µ is with forced pairs Q1 if every

pair in Q1 is matched in µ, that is, µ(m) = w for all (m, w) ∈ Q1.

Definition 5.2. Given a set of pairs Q2 ⊆ M × W, we say a matching µ is with forbidden pairs Q2 if no

pair in Q2 is matched in µ, that is, µ(m) 6= w for all (m, w) ∈ Q2.

5.1 Conditional MWPDA algorithm

Consider a preference profile PN and let Q1 be a set of forced pairs and Q2 be a set of forbidden pairs.

Note that for all (m, w), (m′, w′) ∈ Q1 with (m, w) 6= (m′, w′), we have m 6= m′ and w 6= w′.18 For m ∈ M,

with slight abuse of notation, we say m ∈ Q1, if there exists w ∈ W such that (m, w) ∈ Q1.

In what follows, we present an algorithm, called conditional MWPDA algorithm given (Q1, Q2), that

produces a stable matching with forced pairs Q1 and forbidden pairs Q2, whenever such a matching

exists. The algorithm involves a sequence of rounds. At every round, an MWPDA algorithm is performed

with a cut-vector κ such that κm = rank(Pm, w) for all m ∈ Q1 with (m, w) ∈ Q1. The cut-off parameters

for other men may change over rounds; they are defined at the beginning of each round of the conditional

MWPDA algorithm.

Round 1. Define κ1 such that for all m /∈ Q1, κ1
m = rank(Pm, ∅). Perform the MWPDA algorithm with κ1.

Let µ∗
1 be the outcome of the MWPDA algorithm at Round 1.

(i) If µ∗
1 is with forced pairs Q1 and forbidden pairs Q2, then conclude that the algorithm converges

and define µ∗
1 as the outcome of the algorithm.

(ii) Else, if there exists a pair (m, w) ∈ Q1 such that µ∗
1(m) 6= w, then conclude that the algorithm STOPS.

(iii) Else, go to Round 2.

18Otherwise there will be no stable matching with forced pairs Q1.
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Round 2. Define κ2 such that for all m /∈ Q1,

κ
2
m =











rank(Pm, µ∗
1(m)) if (m, µ∗

1(m)) /∈ Q2;

rank(Pm, µ∗
1(m))− 1 if (m, µ∗

1(m)) ∈ Q2.

Perform the MWPDA algorithm with κ2. Let µ∗
2 be the outcome of the MWPDA algorithm at Round 2.

(i) If µ∗
2 is with forced pairs Q1 and forbidden pairs Q2, then conclude that the algorithm converges

and define µ∗
2 as the outcome of the algorithm.

(ii) Else, if there exists a pair (m, w) ∈ Q1 such that µ∗
2(m) 6= w or if there exists m ∈ M such that

rank(Pm, µ∗
2(m)) > κ2

m, then conclude that the algorithm STOPS.

(iii) Else, go to Round 3.

...

Note that for any two consecutive rounds r and r + 1, for each m /∈ Q1, we have κr
m ≤ κr+1

m , and for

at least one m /∈ Q1, we have κr
m < κr+1

m . Therefore, if the algorithm does not converge or STOP at any

round, then there will come a round r where some m /∈ Q1 will have κr
m = 0. In that case too, conclude

that the algorithm STOPS.

5.2 Conditional MWPDA algorithm produces stable matching with forced and forbidden

pairs

The following result says that a stable matching with given forced and forbidden pairs exists at a prefer-

ence profile only if the conditional MWPDA algorithm converges at that preference profile. It further says

that whenever the conditional MWPDA algorithm converges, it produces a stable matching with given

forced and forbidden pairs, which is also women-optimal in the set of all stable matchings with the given

forced and forbidden pairs. Thus, if at a preference profile, the conditional MWPDA algorithm STOPS at

any round, then it must be that there is no stable matching with the corresponding forced and forbidden

pairs at that preference profile.

Theorem 5.1. A stable matching with forced pairs Q1 and forbidden pairs Q2 exists at a preference profile PN if

and only if the conditional MWPDA algorithm given (Q1, Q2) converges at PN . Further, whenever this algorithm

converges, the outcome is women-optimal in the set of all stable matchings with forced pairs Q1 and forbidden pairs

Q2.

The proof of this theorem is relegated to Appendix D.
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By the construction of the conditional MWPDA algorithm, we obtain the following corollary from

Theorem 5.1. It says that whenever there is no forbidden pair, the conditional MWPDA algorithm will

come to a conclusion at the first round itself: either it will converge or it will STOP. If it converges at this

round, then a stable matching with given forced pairs is produced as the outcome which is also women-

optimal in the set of all such stable matchings. If it STOPS, then that means there is no such a stable

matching.

Corollary 5.1. Let PN be a preference profile and let Q1 be a set of forced pairs.

(i) If there exists a stable matching with forced pairs Q1 at PN , then the conditional MWPDA algorithm given

(Q1, ∅) at PN converges at Round 1. Furthermore, the outcome is women-optimal in the set of all stable

matchings with forced pairs Q1.

(ii) If there is no stable matching with forced pairs Q1 at PN , then the conditional MWPDA algorithm given

(Q1, ∅) at PN STOPS at Round 1.

Appendix A Proof of Theorem 3.1

In all our proofs, for a given MWPDA algorithm at a preference profile PN , we use the notation µs
k to

denote the outcome obtained at Step k of the WPDA algorithm at Stage s of the given MWPDA algorithm,

and the notation t∗ to denote the last stage of the MWPDA algorithm. We make two observations which

we will use in our proofs.

Observation A.1. Consider a stage, say s, and two steps l and k with l ≤ k of the WPDA algorithm at Stage s of

an MWPDA algorithm at a preference profile PN . Then, it follows from the property of the WPDA algorithm that

for all m ∈ M, we have µs
k(m)Rmµs

l (m).

Observation A.2. Consider a stage, say s, of an MWPDA algorithm at a preference profile PN . It follows from the

property of the WPDA algorithm that µs is stable at the preference profile (Pm1
, . . . , Pmp , P

Ms(w1)
w1

, . . . , P
Ms(wq)
wq

).19

Fix a preference profile PN . Take an arbitrary cut-off vector κ and consider the MWPDA algorithm

with κ at PN . First, we prove a lemma that says that the match of a woman gets better over stages.

Lemma A.1. For all r ≤ s ≤ t∗ and all w ∈ W, µs(w)Rwµr(w).

Proof of Lemma A.1. By the definition of the MWPDA algorithm, we have µs(w)R
Ms(w)
w ∅ for all w ∈ W.

This, together with the construction of Ms(w), implies that µs(w)Rw∅ for all w ∈ W. So, if µr(w) = ∅ for

some w ∈ W, then there is nothing to show for that w. Take w ∈ W such that µr(w) = m ∈ M and take

r < t∗. It is enough to show that µr+1(w)Rwµr(w). Assume for contradiction that mPwµr+1(w).

19See Subsection 3.2 for the definition of the notation P
Ms(w)
w .
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Because µr(m) = w, by the definition of the MWPDA algorithm, we have Wr(m) = Wr+1(m) and

w ∈ Wr(m). Combining all these, we have w ∈ Wr+1(m), which implies m ∈ Mr+1(w). Since mPwµr+1(w)

and m ∈ Mr+1(w), we have mP
Mr+1(w)
w µr+1(w). By the definition of the MWPDA algorithm, there must

be some step l of the WPDA algorithm at Stage r + 1 where m rejects w to be tentatively matched with

some w′ ∈ Wr+1(m) whom he prefers to w. This means

w′Pmw, and (A.1a)

mP
Mr+1(w′)
w′ ∅. (A.1b)

Moreover, since w′ ∈ Wr+1(m) and Wr(m) = Wr+1(m), we have w′ ∈ Wr(m).

Assume that Step l of the WPDA algorithm at Stage r + 1 has the property that there is no ŵ ∈ W with

µr(ŵ) 6= ∅ and µr(ŵ)Pŵµr+1(ŵ) such that man µr(ŵ) rejects woman ŵ at some step l′ < l of the WPDA

algorithm at Stage r + 1. This is without loss of generality because, if there is such woman ŵ, then we can

take w = ŵ.

Suppose mPw′µr(w′). Because w′ ∈ Wr(m), we have m ∈ Mr(w′). Since mPw′µr(w′) and m ∈ Mr(w′),

it follows from the construction of P
Mr(w′)
w′ that mP

Mr(w′)
w′ µr(w′). This, together with (A.1a) and the fact

µr(m) = w, implies that (m, w′) blocks µr at (Pm1
, . . . , Pmp , P

Mr(w1)
w1

, . . . , P
Mr(wq)
wq

), which is a contradiction

to Observation A.2. So, it must be that µr(w′)Rw′m. Because µr(w) = m, w 6= w′, and µr(w′)Rw′m, we have

µr(w′)Pw′m. Moreover, it follows from (A.1b) and the construction of P
Mr+1(w′)
w′ that mPw′∅. Combining

the facts that µr(w′)Pw′m and mPw′∅, we have

µ
r(w′)Pw′mPw′∅. (A.2)

Now, we complete the proof of the lemma. Because w′ ∈ Wr+1(m), we have m ∈ Mr+1(w′). Fur-

thermore, (A.2) implies µr(w′) ∈ M. This, together with the definition of the MWPDA algorithm, yields

µr(w′) ∈ Mr+1(w′). Since m, µr(w′) ∈ Mr+1(w′), it follows from (A.2) that µr(w′)P
Mr+1(w′)
w′ mP

Mr+1(w′)
w′ ∅.

This, together with the fact that woman w′ is tentatively matched with man m at Step l of the WPDA

algorithm at Stage r + 1, implies that µr(w′) rejects w′ at some step l′ < l of the WPDA algorithm at Stage

r + 1. However, this contradicts our assumption on Step l of the WPDA algorithm at Stage r + 1, which

completes the proof of Lemma A.1. �

Completion of the proof of Theorem 3.1. In view of Remark 2.1, we show that the outcome of the MWPDA

algorithm is pairwise stable. Note that by the definition of the MWPDA algorithm, its outcome is always

individually rational. We show that no pair can block its outcome. Let µ be the outcome of the MWPDA

algorithm. Assume for contradiction that a pair (m, w) ∈ M × W blocks µ at PN .

Since µ is individually rational at PN and (m, w) is a blocking pair of µ at PN , we have wPmµ(m)Rm∅

and mPwµ(w)Rw∅. Because wPmµ(m), there must be some stage, say r∗, at which m proposes w for the
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first time. If µr∗(w)Rwm, then by Lemma A.1, we have µ(w)Rwm, which contradicts the fact mPwµ(w)Rw∅.

So, assume mPwµr∗(w). Since w ∈ Wr∗(m) and mPwµr∗(w), w proposes m and gets rejected at some step,

say l, of the WPDA algorithm at Stage r∗. Since wPm∅, by Observation A.1, this means

µ
r∗(m)PmwPm∅. (A.3)

If r∗ = t∗, then (A.3) implies µ(m)Pmw, which contradicts the fact wPmµ(m)Rm∅. So, assume r∗ < t∗.

By (A.3), we have µr∗(m) 6= ∅. Since r∗ < t∗ and µr∗(m) 6= ∅, m proposes the women in Wr∗(m) at

the beginning of Stage r∗ + 1. Then, using a similar argument as for the derivation of (A.3), we have

µr∗+1(m)PmwPm∅. Continuing in this manner, it follows that µ(m)PmwPm∅, which contradicts the fact

wPmµ(m)Rm∅. This completes the proof of Theorem 3.1. �

Appendix B Proofs of Theorem 3.2 and Theorem 3.3

In this section, we prove Theorem 3.2 and Theorem 3.3. We prove Theorem 3.3 first since we use that in

the proof of Theorem 3.2.

B.1 Proof of Theorem 3.3

We prove Theorem 3.3 using the following lemmas. Our first lemma is taken from McVitie and Wilson

(1970). It says that the set of unmatched men or women stays the same in all stable matchings.

Lemma B.1. (McVitie and Wilson, 1970) Let PN be a preference profile and let µ, µ′ ∈ C(PN). Then, for all a ∈ N,

µ(a) = ∅ implies µ′(a) = ∅.

Our next lemma provides a sufficient condition on κ such that a given stable matching at a preference

profile PN remains stable at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

).

Lemma B.2. Let PN be a preference profile and let µ ∈ C(PN). Then, µ is stable at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . ,

P
M1(wq)
wq

) if κm ≥ min
{

rank(Pm, µ(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M.

Proof of Lemma B.2. Suppose κm ≥ min
{

rank(Pm, µ(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M. In view

of Remark 2.1, we show that µ is pairwise stable at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). First note that

since κm ≥ min
{

rank(Pm, µ(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M, we have µ(w) ∈ M1(w) ∪ {∅} for

all w ∈ W. Moreover, since µ(w) ∈ M1(w) ∪ {∅} for all w ∈ W, we have for all w ∈ W and all m ∈ M,

mR
M1(w)
w µ(w) implies mRwµ(w). Further note that the preferences of the men are unchanged from PN

to (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). Therefore, if (m, w) blocks µ at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

),

then they also block µ at PN contradicting the fact that µ is stable at PN . Hence, µ cannot have a blocking

pair at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). Using a similar logic, it follows that µ is individually rational

at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

).
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Completion of the proof of Theorem 3.3. (If part) Take a cut-off vector κ such that κm ≥ min
{

rank(Pm,

µM(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M. We show the MWPDA algorithm with κ at PN converges at

Stage 1. By the definition of the algorithm, it converges at Stage 1 if W1(m) = A(Pm) for all m ∈ M with

µ1(m) = ∅. Take m ∈ M. If µM(m) = ∅, then by the definition of κ, m proposes all acceptable women

at the beginning of Stage 1, and hence W1(m) = A(Pm). Suppose µM(m) 6= ∅. It is enough to show

that µ1(m) 6= ∅. Because κm ≥ min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M, by Lemma

B.2, µM is stable at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). Furthermore, by Observation A.2, µ1 is stable at

(Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). Since µ1 and µM both are stable at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

),

by Lemma B.1, we have µ1(m) 6= ∅.

(Only-if part) Take a cut-off vector κ such that κm < min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

for some

m ∈ M. Assume for contradiction that the MWPDA algorithm with κ at PN converges at Stage 1. Since

κm < min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

, this means µ1(m) 6= ∅ and rank(Pm, µ1(m)) ≤ κm.

Combining the facts rank(Pm, µ1(m)) ≤ κm and κm < min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

, we

have rank(Pm, µ1(m)) < rank(Pm, µM(m)). This, along with Remark 3.2, implies µ1 is not stable at PN ,

which contradicts Theorem 3.1. This completes the proof of Theorem 3.3. �

B.2 Proof of Theorem 3.2

Proof of Theorem 3.2. Let µM be the men-optimal stable matching at PN . Because µ ∈ C(PN), by Remark

3.2, we have rank(Pm, µ(m)) ≥ rank(Pm, µM(m)) for all m ∈ M. This, together with the fact that κm =

rank(Pm, µ(m)) for all m ∈ M, means κm ≥ min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M.

Therefore, by Theorem 3.3, the MWPDA algorithm with κ converges at Stage 1.

Now, we show µ1 = µ. Since κm = rank(Pm, µ(m)) for all m ∈ M, we have κm ≥ min
{

rank(Pm, µ(m)),

max
{

|A(Pm)|, 1
}

}

for all m ∈ M. This, together with Lemma B.2, implies that µ is stable at (Pm1
, . . . , Pmp ,

P
M1(w1)
w1

, . . . , P
M1(wq)
wq

). Moreover, by the definition of the MWPDA algorithm, µ1 is women-optimal stable

matching at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). Since µ ∈ C(Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

) and µ1 is

women-optimal stable matching at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

), by Remark 3.2, it follows that

µ(m)Rmµ
1(m) for all m ∈ M. (B.1)

Since µ, µ1 ∈ C(Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

), by Lemma B.1, we have

µ
1(m) = µ(m) for all m ∈ M with µ

1(m) = ∅. (B.2)

By the definition of the MWPDA algorithm, rank(Pm, µ1(m)) ≤ κm for all m ∈ M with µ1(m) 6= ∅. This,
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together with definition of κ and (B.1), implies that

µ
1(m) = µ(m) for all m ∈ M with µ

1(m) 6= ∅. (B.3)

(B.2) and (B.3) together imply µ1 = µ.

It remains to show that the MWPDA algorithm with κ converges at the first step of the WPDA algo-

rithm at Stage 1. Suppose not. Then, there exists a pair (m, w) such that at the first step of the WPDA

algorithm at Stage 1, w proposes m and gets rejected. By the definition of the MWPDA algorithm, this

means w ∈ W1(m) and mP
M1(w)
w µ1(w). Moreover, since µ1 = µ and mP

M1(w)
w µ1(w), we have µ(m) 6= w.

The facts κm = rank(Pm, µ(m)), w ∈ W1(m), and w 6= µ(m) together imply wPmµ(m). Because µ1 = µ,

this, together with the fact mP
M1(w)
w µ1(w), implies (m, w) blocks µ1 at (Pm1

, . . . , Pmp , P
M1(w1)
w1

, . . . , P
M1(wq)
wq

),

a contradiction to Observation A.2. This completes the proof of Theorem 3.2. �

Appendix C Proof of Theorem 4.1

We prove a sequence of lemmas that we use in the proof of Theorem 4.1.

Lemma C.1. Let PN be a preference profile and let κ be such that κm ≥ rank(Pm, µM(m)) for all m ∈ M. Suppose

µ is the outcome of the MWPDA algorithm with κ at PN . Then, rank(Pm, µ(m)) ≤ κm for all m ∈ M.

Proof of Lemma C.1. By Theorem 3.1, µ ∈ C(PN). Since µ, µM ∈ C(PN), by Lemma B.1, we have µ(m) =

µM(m) for all m ∈ M with µ(m) = ∅. This, together with the definition of κ, implies

rank(Pm, µ(m)) ≤ κm for all m ∈ M with µ(m) = ∅. (C.1)

By the definition of κ, we have κm ≥ min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M. Therefore,

by Theorem 3.3, the MWPDA algorithm with κ at PN converges at Stage 1 producing µ. This, together

with the definition of the MWPDA algorithm, implies

rank(Pm, µ(m)) ≤ κm for all m ∈ M with µ(m) 6= ∅. (C.2)

The proof of Lemma C.1 follows from (C.1) and (C.2). �

The implication of our next lemma is as follows. Let µ be the outcome of the MWPDA algorithm with

cut-off vector κ where κ is such that every man gets to propose the woman (together with other women)

who he would be matched with in the men-optimal stable matching (if a man is unmatched in the men-

optimal stable matching, then he proposes all acceptable women). Let µ′ be another stable matching

where the rank of the match of every man m (the match might be some woman or ∅) according to Pm is

less than or equal to κm. Then, for every woman, the match in µ must be at least as good as that in µ′.
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Lemma C.2. Let PN be a preference profile and let κ be such that κm ≥ rank(Pm, µM(m)) for all m ∈ M. Let µ be

the outcome of the MWPDA algorithm with κ at PN . Suppose µ′ ∈ C(PN) is such that rank(Pm, µ′(m)) ≤ κm for

all m ∈ M. Then, µ(w)Rwµ′(w) for all w ∈ W.

Proof of Lemma C.2. Suppose µ and µ′ are as defined in Lemma C.2. Since κm ≥ rank(Pm, µM(m))

for all m ∈ M, we have κm ≥ min
{

rank(Pm, µM(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M. This, along

with Theorem 3.3, implies that the MWPDA algorithm with κ at PN converges at Stage 1 producing µ.

By Observation A.2, this means µ is stable at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). Also, since rank(Pm,

µ′(m)) ≤ κm for all m ∈ M, we have κm ≥ min
{

rank(Pm, µ′(m)), max
{

|A(Pm)|, 1
}

}

for all m ∈ M.

This, along with Lemma B.2, implies that µ′ is stable at (Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

). Because µ,

µ′ ∈ C(Pm1
, . . . , Pmp , P

M1(w1)
w1

, . . . , P
M1(wq)
wq

) and µ is the outcome of the WPDA algorithm at Stage 1 of

the MWPDA algorithm, by Remark 3.2, we have µ(w)R
M1(w)
w µ′(w) for all w ∈ W. By the definition

of the MWPDA algorithm, µ(w) ∈ M1(w) ∪ {∅}. As rank(Pm, µ′(m)) ≤ κm for all m ∈ M, we have

µ′(w) ∈ M1(w) ∪ {∅} for all w ∈ W. Since for all w ∈ W, we have µ(w), µ′(w) ∈ M1(w) ∪ {∅} and

µ(w)R
M1(w)
w µ′(w), by the construction of P

M1(w)
w , we have µ(w)Rwµ′(w) for all w ∈ W. This completes the

proof of Lemma C.2. �

Completion of the proof of Theorem 4.1. By Theorem 3.1, it is straightforward that the sequential MWPDA

algorithm is stable. We proceed to show that the sequential MWPDA algorithm produces a minimum

regret stable matching at every preference profile. Take a preference profile PN . Let κ be the cut-off vector

that is used at the terminal round of the sequential MWPDA algorithm at PN and µ be the outcome of the

sequential MWPDA algorithm at PN . It follows from the definition of the sequential MWPDA algorithm

that κm ≥ rank(Pm, µM(m)) for all m ∈ M. Therefore, by Lemma C.1 along with the definition of the

sequential MWPDA algorithm, we have

rank(Pm, µ(m)) ≤ κm for all m ∈ M. (C.3)

Claim C.1. κm ≤ α(PN) for all m ∈ M.

Proof of Claim C.1. Assume for contradiction that κm > α(PN) for some (and hence, all) m ∈ M. Consider

the round of the sequential MWPDA algorithm where the MWPDA algorithm is performed with κ̂ where

κ̂m = α(PN) for all m ∈ M. Let µ̂ be the outcome of that round. By the definition of α(PN), there must exist

µ′ ∈ C(PN) such that α(µ′, PN) = α(PN). Because α(µ′, PN) = α(PN), we have rank(Pm, µ′(m)) ≤ α(PN)

for all m ∈ M. By Lemma C.2, this means µ̂(w)Rwµ′(w) for all w ∈ W. Therefore, max
w∈W

rank(Pw, µ̂(w)) ≤

max
w∈W

rank(Pw, µ′(w)) ≤ α(PN). By the definition of the sequential MWPDA algorithm, this means that

the algorithm cannot go for another round, which contradicts the fact that κm > α(PN) for all m ∈ M.

This completes the proof of Claim C.1. �
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Since κ is the cut-off vector that is used at the terminal round of the sequential MWPDA algorithm at

PN and µ is the outcome of the sequential MWPDA algorithm at PN , one of the following two statements

must hold.

(1) rank(Pm, ∅) ≤ κm for all m ∈ M.

(2) rank(Pw, µ(w)) ≤ κm for all w ∈ W and for some (and hence, all) m ∈ M.

We distinguish the following two cases.

CASE 1: Suppose rank(Pm, ∅) ≤ κm for all m ∈ M.

Since rank(Pm, ∅) ≤ κm for all m ∈ M and µ is the outcome of the sequential MWPDA, it is easy to

verify that µ is the women-optimal stable matching at PN . By the definition of α(PN), there must exist

µ′ ∈ C(PN) such that α(µ′, PN) = α(PN). Since µ is the women-optimal stable matching, we have rank(Pw,

µ(w)) ≤ rank(Pw, µ′(w)) ≤ α(PN) for all w ∈ W. Moreover, by Claim C.1 along with (C.3), we have

rank(Pm, µ(m)) ≤ α(PN) for all m ∈ M. Combining the facts that rank(Pm, µ(m)) ≤ α(PN) for all m ∈ M

and rank(Pw, µ(w)) ≤ α(PN) for all w ∈ W, we have α(µ, PN) ≤ α(PN). By the definition of α(PN), this

means α(µ, PN) = α(PN). So, µ is a minimum regret stable matching at PN . Because µ is the women-

optimal stable matching at PN , this implies that µ is women-optimal in the set of all minimum regret

stable matchings at PN .

CASE 2: Suppose rank(Pw, µ(w)) ≤ κm for all w ∈ W and for some (and hence, all) m ∈ M.

Since rank(Pw, µ(w)) ≤ κm for all w ∈ W and for some m ∈ M, it follows from (C.3) and the definition

of the sequential MWPDA algorithm that α(µ, PN) ≤ κm for all m ∈ M. This, together with Claim C.1,

implies that α(µ, PN) ≤ κm ≤ α(PN) for all m ∈ M. By the definition of α(PN), this means

α(µ, PN) = κm = α(PN) for all m ∈ M. (C.4)

By (C.4), we have α(µ, PN) = α(PN). So, µ is a minimum regret stable matching at PN .

Let µ′ be a minimum regret stable matching at PN . Clearly, rank(Pm, µ′(m)) ≤ α(PN) for all m ∈ M.

This, together with (C.4), implies that rank(Pm, µ′(m)) ≤ κm for all m ∈ M. Furthermore, it follows from

the definition of the sequential MWPDA algorithm that µ is the outcome of the MWPDA algorithm with κ

at PN . Since κm ≥ rank(Pm, µM(m)) for all m ∈ M, µ is the outcome of the MWPDA algorithm with κ, and

µ′ is a stable matching with rank(Pm, µ′(m)) ≤ κm for all m ∈ M, by Lemma C.2, we have µ(w)Rwµ′(w)

for all w ∈ W. Since µ is a minimum regret stable matching at PN , this implies that µ is women-optimal

in the set of all minimum regret stable matchings at PN .

Since Case 1 and Case 2 are exhaustive, it follows that the outcome of the sequential MWPDA algo-

rithm is women-optimal in the set of all minimum regret stable matchings. This completes the proof of

Theorem 4.1. �
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Appendix D Proof of Theorem 5.1

The following lemma follows from Lemma 1 in Gale and Sotomayor (1985), which establishes a relation-

ship between two stable matchings at a preference profile.

Lemma D.1. Let PN be a preference profile and let µ, µ′ ∈ C(PN). Then, µ(m)Rmµ′(m) for all m ∈ M if and only

if µ′(w)Rwµ(w) for all w ∈ W.

Let us first recall some of the notations used in the context of the conditional MWPDA algorithm. For

a preference profile PN , a set of forced pairs Q1, and a set of forbidden pairs Q2, κr is the cut-off vector

associated with the MWPDA algorithm at Round r of the conditional MWPDA algorithm given (Q1, Q2)

and µ∗
r is the outcome of the MWPDA algorithm at Round r.

Completion of the proof of Theorem 5.1. It is obvious that if the conditional MWPDA algorithm given

(Q1, Q2) converges at PN , then there exists a stable matching with forced pairs Q1 and forbidden pairs Q2.

We proceed to prove the rest of the theorem. Suppose there exists a stable matching with forced pairs Q1

and forbidden pairs Q2 at PN . Let C̄(PN) be the set of all stable matchings at PN with forced pairs Q1 and

forbidden pairs Q2. Clearly, C̄(PN) 6= ∅. Define the mapping µ∗ : N → N ∪ {∅} such that

(i) for all m ∈ M, µ∗(m) = x if and only if there exists a µ ∈ C̄(PN) such that µ(m) = x and µ′(m)Rmx

for all µ′ ∈ C̄(PN), and

(ii) for all w ∈ W, µ∗(w) = y if and only if there exists a µ ∈ C̄(PN) such that µ(w) = y and yRwµ′(w)

for all µ′ ∈ C̄(PN).

It follows from the construction of µ∗ that it is women-optimal in C̄(PN) (see Knuth (1976) for details).

We show that the conditional MWPDA algorithm given (Q1, Q2) converges at PN producing µ∗ as the

outcome.

If µ∗
1 = µ∗, then we are done. Suppose µ∗

1 6= µ∗.

Claim D.1. For all m ∈ M, we have

(i) rank(Pm, µ∗
1(m)) ≤ κ1

m, and

(ii) µ∗(m)Rmµ∗
1(m).

Proof of Claim D.1. By the definition of κ1, we have κ1
m ≥ rank(Pm, µ∗(m)) for all m ∈ M. Since µ∗ ∈

C(PN), by Remark 3.2, we have rank(Pm, µ∗(m)) ≥ rank(Pm, µM(m)) for all m ∈ M. Combining the facts

that κ1
m ≥ rank(Pm, µ∗(m)) for all m ∈ M and rank(Pm, µ∗(m)) ≥ rank(Pm, µM(m)) for all m ∈ M, we have

κ1
m ≥ rank(Pm, µM(m)) for all m ∈ M. Therefore, by Lemma C.1, rank(Pm, µ∗

1(m)) ≤ κ1
m for all m ∈ M.

This proves (i) in Claim D.1.

By Lemma C.2, κ1
m ≥ rank(Pm, µ∗(m)) for all m ∈ M implies µ∗

1(w)Rwµ∗(w) for all w ∈ W. By Lemma

D.1, this implies µ∗(m)Rmµ∗
1(m) for all m ∈ M. This proves (ii) in Claim D.1.

24



�

Claim D.2. µ∗
1(m) = µ∗(m) = w for all (m, w) ∈ Q1.

Proof of Claim D.2. Since κ1
m = rank(Pm, w) for all (m, w) ∈ Q1, µ∗(m) = w for all (m, w) ∈ Q1, by Claim

D.1, we have µ∗
1(m) = w for all (m, w) ∈ Q1, which completes the proof of Claim D.2. �

By Claim D.2, it follows that the conditional MWPDA algorithm given (Q1, Q2) will not stop at Round

1, and because it does not converge either at Round 1, it will go to Round 2.

Claim D.3. κ2
m ≥ rank(Pm, µ∗(m)) for all m ∈ M.

Proof of Claim D.3. By the definition of κ2, we have κ2
m = rank(Pm, µ∗(m)) for all m ∈ Q1. Take m /∈ Q1.

If (m, µ∗
1(m)) /∈ Q2, then by the definition of κ2 and (ii) in Claim D.1, we have κ2

m ≥ rank(Pm, µ∗(m)).

On the other hand, if (m, µ∗
1(m)) ∈ Q2, which in particular means µ∗(m) 6= µ∗

1(m), then by (ii) in Claim

D.1, it must be that µ∗(m)Pmµ∗
1(m). Therefore, by the definition of κ2 and (ii) in Claim D.1, we have

κ2
m ≥ rank(Pm, µ∗(m)). This completes the proof of Claim D.3. �

Using similar logic as for Claims D.1 and D.2, it follows that

rank(Pm, µ
∗
2(m)) ≤ κ

2
m for all m ∈ M, (D.1a)

µ
∗(m)Rmµ

∗
2(m) for all m ∈ M, and (D.1b)

µ
∗
2(m) = µ

∗(m) = w for all (m, w) ∈ Q1. (D.1c)

Claim D.4. µ∗
2(m)Rmµ∗

1(m) for all m ∈ M and there exists m′ /∈ Q1 such that µ∗
2(m

′)Pm′µ∗
1(m

′).

Proof of Claim D.4. By the definition of κ2, (D.1a) implies µ∗
2(m)Rmµ∗

1(m) for all m /∈ M. Moreover, as

µ∗
1 6= µ∗, there must exist m′ /∈ Q1 such that (m′, µ∗

1(m
′)) ∈ Q2. This, together with the definition of κ2

and (D.1a), yields µ∗
2(m

′)Pm′µ∗
1(m

′). �

By Claim D.4, (D.1a), and (D.1c), it follows that the conditional MWPDA algorithm given (Q1, Q2)

either converges at Round 2 or goes to Round 3. If it goes to Round 3, then using similar logic as for Claim

D.2, we have µ∗
3(m) = µ∗(m) = w for all (m, w) ∈ Q1, and that for Claim D.4, we have µ∗

3(m)Rmµ∗
2(m) for

all m ∈ M and there exists m̄ /∈ Q1 such that µ∗
3(m̄)Pm̄µ∗

2(m̄).

We argue that the conditional MWPDA algorithm given (Q1, Q2) must converge at some round.20 Sup-

pose not. Then, we will get a sequence of stable matchings µ∗
1 , µ∗

2 , . . . such that µ∗(m)Rm . . . Rmµ∗
2(m)Rmµ∗

1(m)

for all m ∈ M. Because µ∗
1 , µ∗

2 , . . . are all distinct and the number of stable matchings is finite, it follows

that there must be a round where µ∗ will be produced, and hence the conditional MWPDA algorithm will

converge.

20Recall that the conditional MWPDA algorithm always terminates, that is, either converges or STOPS at every preference
profile (see Subsection 5.1 for details).
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Now, we show that the outcome of the conditional MWPDA algorithm given (Q1, Q2) is always µ∗. Let

r̃ be the terminal round of the conditional MWPDA algorithm given (Q1, Q2). Using similar logic as for

Claim D.1, we have µ∗(m)Rmµ∗
r̃ (m) for all m ∈ M. Since µ∗, µ∗

r̃ ∈ C(PN), by Lemma D.1, µ∗
r̃ (w)Rwµ∗(w)

for all w ∈ W. Moreover, since the conditional MWPDA algorithm converges, it must be that µ∗
r̃ ∈ C̄(PN).

Since µ∗
r̃ ∈ C̄(PN) and µ∗

r̃ (w)Rwµ∗(w) for all w ∈ W, by the definition of µ∗, we have µ∗ = µ∗
r̃ . This

completes the proof of Theorem 5.1. �
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[2] Vânia MF Dias, Guilherme D Da Fonseca, Celina MH De Figueiredo, and Jayme L Szwarcfiter. The

stable marriage problem with restricted pairs. Theoretical Computer Science, 306(1-3):391–405, 2003.

[3] David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The American

Mathematical Monthly, 69(1):9–15, 1962.

[4] David Gale and Marilda Sotomayor. Some remarks on the stable matching problem. Discrete Applied

Mathematics, 11(3):223–232, 1985.

[5] Dan Gusfield. Three fast algorithms for four problems in stable marriage. SIAM Journal on Computing,

16(1):111–128, 1987.

[6] Dan Gusfield and Robert W Irving. The stable marriage problem: structure and algorithms. MIT press,

1989.

[7] Robert W Irving and Paul Leather. The complexity of counting stable marriages. SIAM Journal on

Computing, 15(3):655–667, 1986.

[8] Alexander S Kelso Jr and Vincent P Crawford. Job matching, coalition formation, and gross substi-

tutes. Econometrica: Journal of the Econometric Society, pages 1483–1504, 1982.

[9] Donald E Knuth. Mariages stables et leurs relations avec d’autres problèmes combinatoires. English
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Montréal, 1976.
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