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Abstract
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1. Introduction

Agent-based models (ABMs1) are a way to model and simulate the be-

havior and interactions of heterogeneous individuals and organizations and

to infer regularities that govern their behavior as a whole. While first mod-

els were developed in the 70s, ABMs were only popularized in the 90s when

computational methods became more readily available. By today, agent-

based modeling has been applied to a large number of scientific fields and it

continues to be an exciting and popular approach for a number of reasons:

1. The availability of computational power to model large-scale social in-

teraction;

2. The possibility to use decision rules to model behavior (behavioral

heuristics) instead of mathematical optimization;

3. The evolution of highly applicable network theory to facilitate interac-

tion patterns between agents;

4. The importance of the stability of human-devised systems (such as

financial system);

5. The popularity of behavioral labs that provide blueprints for designing

agent-based models;

6. The current neglect within the agent-based community of the impor-

tance of estimation and calibration of agent-based models.

This survey highlights the above listed concepts and provides some appli-

cations of modeling economic and social behavior that have seen a significant

development in the last decade. Our goal is to provide an overview of the

state of the art and explore some of the potentials of the agent-based ap-

proach along these lines.

1In the following we use ABM as the abbreviation for agent-based model and agent-
based modeling.
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First, in section 2, we will see how advances in agent-based models have

led to much more detailed simulations of social behavior and social sys-

tems and how this has contributed to a better understanding of how agents’

behavior and interactions lead to structure on the aggregate level. A sig-

nificant part of this section is devoted to the granularity of data and data

types that can be used in agent-based models. In section 3 we discuss the

use of heuristics in defining adaptive behavior of boundedly rational agents

such as households, financial investors, banks, and/or firms by sourcing from

some of the most recent agent-based models within the fields of economics

and finance. In section 4 we present how economic networks can be used

to describe the interactions of agents, for example when these represent or-

ganizations, such as firms or banks. This section focuses on advances of

structure identification in economic networks and brings forth some recent

examples of explicit incorporation of networks into agent-based models. In

what follows, section 5 highlights one particular case where networks have

proven very useful, namely in the analysis of systemic stability of the finan-

cial sector. Here idiosyncratic actions can become coordinated and lead to

aggregate fluctuations and macro level instabilities. The section presents a

compilation of agent-based models that study connectivity within a banking

system, emerging systemic risk, and address the risk mitigation via macro-

prudential rules (such as leverage ratios, liquidity ratios, equity ratios) and

tax policies. Section 6 is motivated by the fact that behavioral economics

has only recently entered the literature about computational methods. This

section describes the contribution of experimental and behavioral economics

to agent-based modeling in dealing with the behavior and interaction of het-

erogeneous agents. It is focused on the need to combine computational eco-

nomics with the capacity of controlled laboratory experiments to study the

effects of psychological, cognitive, emotional, cultural, and social factors on

decision making in order to bring the agent-based models closer to experi-

mental data. Finally, section 7 elaborates on the development of estimation
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methodology for agent-based models. While many agent-based models aim

to reproduce certain stylized facts of economic systems their validation too

often stays on a rather rudimentary level. This section therefore surveys

methods for the empirical validation and estimation of agent-based models

and their parameters.

2. Agent-based Models and Computational Social Science

Computational Social Science (CSS) is receiving enormous momentum

in recent years thanks to the availability of large-scale datasets in various

forms and the accessibility of computational platforms to social scientists.

Broadly speaking, CSS aims to use computational methods and large-scale

data to examine existing social theories, develop new theories, and improve

our understanding of human behavior in scale. Despite its broad perspec-

tive, CSS in recent years focused heavily on data-driven methodologies (Lazer

et al., 2020), and the community of agent-based modelers has been largely

neglected. Indeed, agent-based modeling combined with data-driven method-

ologies can be extremely instrumental in deepening our understanding of so-

cial behavior and guide us towards their explanation (Conte and Paolucci,

2014). Models allow to examine the macro-level outcomes that arise from

social and psychological theories and empirical data can be used to validate

the models. This is important because there can be many social or psy-

chological theories for a social phenomena that result in different behavioral

outcomes (Lorenz et al., 2020). ABM in social science consists of multiple

components that can be characterized as follows:

1. Agents with their perceptions and decision-making capacity. Agents are

commonly comprised of individuals or social groups that have a set of

complex psychological traits and socio-demographic attributes. These

attributes can be fixed or dynamic. Epstein argues that we should

consider cognitively plausible agents in ABM (Epstein, 2014). An

example of such approach is the work by Sircova and colleagues that
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used cross-cultural survey analysis combined with discussions in focus

groups to assess the big five personality traits in different countries

and use that to calibrate the level of cooperation among agents when

resources are limited (Sircova et al., 2015).

2. Environment. Agents are often in an environment where they inter-

act with others and the interaction might impact their action. In his

seminal work, Watts showed that when a norm-adoption mechanism is

applied on a social network, the size of the adoption cascade is heav-

ily dependent on the structure of social network, since agents do not

interact homogeneously with each other (Watts, 2002).

3. Rules and actions. While interaction between agents can be adjusted

by a plausible network, the rules of interaction with other agents and

decision making process are deduced from social and psychological the-

ories or observations. For example, the Granovetter threshold theory –

people follow a norm as long as a certain threshold of people in their

neighborhood follow it – is often used to study the dynamics of norm

adoption in a society.

4. Macro structure. Macro-level structure emerges as a consequence of

the micro-level behavior of the agents over time and the macroscopic

outcomes may vary significantly from micro behavior (see Schelling,

1971, for an early segregation model). This transition from micro to

macro allows ABM to be a powerful explanatory tool. By tuning the

parameters on the micro-level, the macro-level effect can be examined.

Depending on the purpose of the model, different levels of granularity and

data are needed. Edmonds (2017) categorized the purpose of modeling into

seven categories, namely prediction, explanation, description, theoretical ex-

ploration, illustration, analogy, and social interaction. They offer a practical

approach to assess the validity and risks associated with any of these pur-

poses. Understanding the purposes associated with the ABM in CSS will

enable an interdisciplinary team to understand and appreciate the usefulness
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of the model and assess the validity and the scope of the results in a more

reliable manner.

ABMs have been developed in great detail in areas of sociology, in the

analysis of social influence, cooperation, social norms, the emergence of con-

ventions and cultural, and opinion dynamics, to name a few. While there

are good reviews on ABMs in sociology (Bianchi and Squazzoni, 2015; Conte

and Paolucci, 2014), an overview of data resources that could help modelers

to move towards data-driven directions is still lacking. In what follows, we

will discuss potential data sources that can be used in data-driven ABM.

Surveys. Publicly available surveys such as the European Social Survey (ESS)

are the most common approach for initialization of the models or validations.

For example, Åberg and Hedström (2011) used unemployment data com-

bined with socio-demographic information of urban neighborhood to explain

the impact of social influence on youth unemployment. In another exam-

ple Grow and Van Bavel (2015) use ESS to model the relationship between

assortative mating and gender inequality in higher education.

Digital media. Social media data sets are exceedingly being used by the CSS

community to extract information about the ideology and attitude of users

and how they shape and evolve over time. For example, sentiment analysis

on social media platforms can help infer the users’ political and ideological

leaning, which will inform the agent’s cognition and behavioral properties

(Waldherr and Wettstein, 2019). Analyzing the agents’ actions over time

could be harvested to infer behavioral aspects such as opinion dynamics and

polarization.

Network data. Information on who follows whom or friendship networks in

online social networks can be used to create more realistic interaction scenar-

ios. This information combined with recent advances in identifying gender

or ethnicity of the users from the names or images (Karimi et al., 2016) can

be used to identify how different groups of people interact based on their
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socio-demographic attributes. For example, by accounting for homophily in

social interactions based on empirical evidence, one can model the spread and

adoption of norms between majority and minority groups more realistically

(Kohne et al., 2020).

Timing of social interactions can also significantly influence diffusion pro-

cesses (Karimi and Holme, 2013), and thus, temporal networks are hugely

instrumental in building realistic models of social interactions over time for

studying dynamical processes such as the spread of information, norms, cul-

ture, cooperation, coordination, and innovation diffusion (Holme, 2015).

Crowd-sourced data. Conducting large-scale surveys and focused groups us-

ing online participation enables researchers to achieve large-scale data to cal-

ibrate ABM models or evaluate the outcomes in a viable manner (Behrend

et al., 2011). For example, by asking people about their local neighborhood

and their estimate about a prevalence of a certain minority group, one can

estimate the perception bias of people based on their social network (Lee

et al., 2019) and use this information to model disinformation spreading or

mitigation strategies to prevent formation of biases.

Call data and wearable sensors. Found data such as data on mobile phone

calls combined with socio-demographic information of the users or the regions

can be used to model the information network and explore various dynamical

aspects of human society such as the spread of disease (Gozzi et al., 2020).

In more controlled settings, wearable sensors such as sociopattern sensors

can be deployed or used to infer the communication structure in face-to-

face interactions and study how it could impact performance of students at

schools (Fournet and Barrat, 2014).

Scholarly databases. Large-scale scholarly publications such as Web of Sci-

ence or DBLP database can be used to model how scholars move and find

new collaborators, how ideas spread, and how a new field of research emerges.
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Urban mobility and census data. Publicly available data on urban mobility

can be used to model communication and movement of people in space and

time, e.g., to study how offenders communicate and move in a city (Rosés

et al., 2018). Combining census data, panel data and mobility data could

help to better model inequality and racial segregation in cities (Crooks,

2010).

3. Heuristics and Modeling

In this section we will walk through elementary heuristics in some recent

agent-based models in economics and finance. We use the notion of the

heuristic as a strategy that ignores part of the information to ease the process

of decision making (Gigerenzer and Gaissmaier, 2011). An extensive survey

of action rules (behavioral heuristics) in agent-based models can be found in

Dosi et al. (2020).

Heuristics in financial models have long been centered around learning

and adaptation in a multi-agent setting and how this interferes with the fi-

nancial market as a whole (see for instance LeBaron, 2002). Financial agents

perform trades in financial assets and interact with each other either di-

rectly via social learning processes, or indirectly, via the price mechanism.

Anufriev and Hommes (2012) develop heuristics to explain coordination of

individual behavior as observed in laboratory financial markets. Agents in

financial models range from passive automations without cognitive functions

(i.e. zero-intelligence agents) to active data-gathering decision makers with

learning capacity (i.e. agents with microfunded rules of behavior, such as

in Iori and Porter, 2018). Financial agents are still developed as optimiz-

ers of some objective (or criteria), such as debt/equity ratio (Fischer and

Riedler, 2014), utility, profit, or other criteria. Optimization algorithms rely

on well defined objective functions, usually of additive or exponential form,

of weighted combinations of the criteria under consideration (An, 2012).

Learning in financial models can be based on probabilistic learning (Lux,

8



2009b), where people choose between prospects based upon probabilistic al-

ternatives involving risk, such as in Polach and Kukacka (2019). In addition,

“probabilistic” agents with adaptive learning might be constructed, such that

they adopt strategies based on relative performance to some benchmark or,

alternatively, source from an evolving pool of strategies, formed by a mix

of chartist and fundamentalist features (Mandes and Winker, 2017) with

anchoring (Polach and Kukacka, 2019) and herding (Vidal-Tomás and Al-

farano, 2020). Probabilistic learning has traditionally been implemented in

the Bayesian way, while adaptive learning rests upon an evolutionary compu-

tation with components of genetic algorithms and artificial neural networks.

Heuristics in financial models and institutions are focused on simple rules

for modeling the flow of funding between cash providers, dealers, and hedge

funds as exemplified by Bookstaber et al. (2018).

A wide variety of behavioral heuristics have been developed for modeling

agents in economic settings. For instance, Vallino (2014) applies a simple

trial-and-error heuristic on procedural rationality of agents in a public choice

setting where agents utilize common pool resources (i.e. forests) by adopting

their utilization strategies upon changes they observe in the availability of

the resources. These agents are boundedly rational (i.e., they do not opti-

mize their objective functions) and operate as satisficers (Simon, 1959) within

endogenous institutional setting. Then, there is a trust game simulation ex-

periment (Gazda et al., 2012) of adaptive agent’s behavior, where agents are

placed in an exogenous and static institutional framework. Authors use a

set of behavioral components and ad-hoc heuristics to define agents’ actions.

Both examples are implemented in the highly applicable NetLogo environ-

ment.

Delli Gatti et al. (2011) argue in favor of agent-based models with many

types of agents with a small set of behaviors for each type. According to the

authors, heuristic rules, in principle, push the heterogeneity of ad-hoc rules

to infinity. The authors further stress that agents, in reality, adopt a small
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portion of behavioral rules and they do not behave in isolation, but via rules

for social interaction (i.e. direct or indirect, local or global) with other agents,

through learning and mimicking. As a result, agents regularly reformulate

expectations about their future states and decisions, and/or impact own or

others’ preferences and/or available choices.

Gurgone et al. (2018) build on the approach suggested by Delli Gatti et al.

(2011) by (i.) adding a model of the interbank market in which loans and

interest rates are determined endogenously and (ii.) specifying the sectoral

structure of the economy. Their model consists of households, firms, banks,

a government and a central bank. Relations in the model are implemented

by heuristic rules via some binding equations. For instance, households fol-

low a rule of thumb to determine consumption (linear in relation to available

resources); firms hire labor in a 4-step heuristic and set their liquidity needs

in advance (i.e. demand for loans becomes a Markov process); Firms charge

mark-up prices for their products defined by mark-up rule based on their

market share; wages are adopted rule-based, taking into account a linear

combination of moving average(s) of inflation and unemployment; relations

between government, central bank, banks and firms are determined on fi-

nancial markets and banking sector via heuristic rules for the provision of

liquidity, borrowing constraints, repayment rules, tax collection rules; banks

use probabilistic approach (i.e. logistic default probability based on bor-

rower’s leverage) to model risk of their borrowers and they use balance-sheet

heuristics to monitor liquidity needs and regulatory requirements (i.e. pru-

dential rules).

EURACE (Holcombe et al., 2013) is a large scale agent-based model of

European economy related to labor markets, industry evolution, and credit

markets. The model consists of nine types of agents (firms, households, in-

vestment goods producers, malls, banks, clearing houses, government, central

bank, and Eurostat) that operate in various interrelated markets with insti-

tutional agents who assess economic indicators and transmit this information
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back to economic agents. Behavioral heuristics in the model refer to move-

ment, communication, work, consumption decisions, learning, investment de-

cisions, and speculations on financial markets. Agents are boundedly rational

with limited capacity for information assimilation. They use simple rules and

can learn to adapt to a changing economic environment. For instance, firms

plan inventories based upon expectations of future sales obtained by regres-

sions on historical sales; labour is hired via a set of search-match heuristics

applied on firms and households; pricing of consumption goods is based on

simple mark-up rules; consumers purchasing decisions are random and prob-

abilistic in nature driven by purchasing probabilities they attach to different

products based on prices; central bank uses simple heuristics and Basel rules

(i.e. via a Deferred Settlement System) to provide liquidity that banks need

to finance loans to firms; etc.

Heuristics have a critical impact on the behavior of agents in the model.

They need to be carefully implemented such that they capture main be-

havioral attributes of agents under consideration to facilitate their decision

making within a particular institutional setting. Moreover, according to Dosi

et al. (2020) heuristics may provide a more accurate and robust tool for

modeling action also within in an uncertain environment than sophisticated

techniques

4. Economic Networks

The financial crisis of 2008 has led to a drastic rise in the awareness of

the importance of network properties of economic systems. The structure of

economic networks plays an important role for the robustness of the global

economy, for understanding structural change and shocks, and for identify-

ing conflicts between global efficiency and individual interests (Schweitzer

et al., 2009). For ABMs this means that besides modeling the behavior of

agents we have to model realistic networks of interactions where these are

relevant for the dynamics of the system. This is not an easy endeavor since
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this mostly necessitates the use of large-scale data sets, which are only grad-

ually becoming available, together with large-scale simulations. This section

therefore will to a large extend focus on advances of structure identification

in economic networks before pointing to a few agent-based approaches that

incorporate network structure explicitly.

Small to medium scale social networks have been studied in sociology for

a long time and have uncovered basic properties of social interactions (see

Freeman, 2004, for an overview). Larger scale systems have however only

been analyzed after the increase of computing capacity in the 90s, and in

fact notable studies from that time included the analysis of the structure

of the world wide web (Albert et al., 1999). One application of this new

approach were studies on cascades (Watts, 2002). In economics such cascade

models (which are very similar to models for epidemics, see, e.g. Eubank

et al. (2003)) have been augmented for the analysis of contagious effects

in financial markets. This part however will be discussed in more detail

in section 5. Here, we will discuss some recent developments that aim at

describing economic networks in general.

By today networks have become accepted as mainstream research topics

in economics, as they have been identified as decisive influences on economic

growth (Acemoglu et al., 2012; Jackson et al., 2017). Even some textbooks

have focused on networks in economics (Jackson, 2008; Easley and Klein-

berg, 2010). Nevertheless, it is necessary to understand that much of today’s

research is actually based on previous works in sociology, physics and com-

puter science. For example, networks of firms have been analyzed by Uzzi

(1996) and Gulati and Gargiulo (1999) from a sociologist’s perspective. Also,

the analysis of corporate boards and firm networks (Kogut and Walker, 2001)

overlaps with research in management science (Devos et al., 2009; Zona et al.,

2018), corporate finance (Duchin et al., 2010; Herskovic, 2018), and interdis-

ciplinary research in physics and computer science (Battiston and Catanzaro,
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2004; Vitali et al., 2011).2

There are several approaches where known agent-based models have been

extended to incorporate network structures between agents explicitly, for

example in herding models (Alfarano and Milaković, 2009), economic games

(Wilhite, 2014), or Schelling’s well known segregation model (Fagiolo et al.,

2007; Schelling, 1971). These approaches show under which circumstances

network structure influences macroscopic outcomes, yet they do not answer

which of the proposed structures we find in reality, how they formed, and

how they might develop in the future.

The agent-based approaches to economic networks are also a response

to the limitations of traditional macroeconomic models (DSGE) in explain-

ing interaction effects, especially with the financial sector, and crises, in

particular of course that of 2008 (LeBaron and Tesfatsion, 2008; Dosi and

Roventini, 2019). Hence, when it comes to modeling larger economic systems

there are currently two overlapping approaches. On the one side there are

classical ABMs that describe economic systems where the agents’ behavior

is mostly calibrated to empirical data, one noticeable example is the model

for the European economy by Deissenberg et al. (2008). While many mod-

els include a matching of agents in different markets the resulting network

structure of these matches is typically not of major importance (see Dawid

and Delli Gatti, 2018, for an overview).

On the other hand there are models for specific parts of economic systems

which are often completely data-driven, for example describing the produc-

tion network of a country like Japan (Krichene et al., 2019). Further exam-

ples are the analysis of world trade (Fagiolo et al., 2009) and sector-based

input-output networks (Cerina et al., 2015; Klimek et al., 2019). While for

many economic networks data of bilateral flows or exposures is available,

2Further important research outside the scope of this overview has been done by analyz-
ing supply chains and logistics as well as by applying Game Theory to models of network
formation.
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some markets have been modeled indirectly via the use of time series data

and the derivation of correlation-based networks. An example for the lat-

ter is the analysis of the dependencies in financial markets for which many

different approaches exist (Musmeci et al., 2015; Tumminello et al., 2005;

Raddant and Kenett, 2021; Diebold and Yilmaz, 2014; Billio et al., 2012)

Arguably, most of these contributions are not ABMs, they are empirical

studies on economic networks. This distinction is however sometimes super-

ficial. The reason is that when we want to estimate the effects that have led

to a particular network structure we typically revert back to simulation based

inference of these effects, for example in exponential random graph models

or the stochastic actor based approach (Strauss and Ikeda, 1990; Wasserman

and Pattinson, 1996; Snijders, 2001). Hence, we estimate which behavior

on the level of agents has likely led to an observed outcome with respect to

network structure.

Noticeably, there is one specific field of research where the agent-based

modeling of agents’ behavior and connectivity is mostly done jointly, namely

in describing the relationships of firms with financial institutions. While the

analysis for the case of Italy (De Masi and Gallegati, 2011) is still mostly an

empirical study, there are more elaborate models for the case of Spain (Lux,

2016) and an explicit agent-based model for the case of Japan (Bargigli et al.,

2020) where network structure becomes one of the key calibration targets.

5. Agent-based Models and Financial Stability

The financial system is a classic example of a complex system. Its dy-

namic is difficult to predict due to the interconnectedness and interdepen-

dences of its parts which give rise to nonlinearities, tipping points, adap-

tation and feedback loops, among other features. Many empirical financial

phenomena, such as fat tailed return distributions, booms and bursts cycles

in asset price, volatility clustering, runs on funding, asset fire sales, and fi-

nancial crisis are difficult to explain by traditional economic models based on
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the conjecture that the actions of fully rational agents are driven by market

fundamentals. ABMs instead are built on the assumption that agents are

boundedly rational, interacting and heterogenous. Agents idiosyncratic ac-

tions can become coordinated, either via direct reciprocal interactions or by

indirect reaction to common signals, and lead to large aggregate fluctuations

and macro level instabilities. By simulating how banks, investors regulators,

and other players interact with each other, and with the real economy, ABMs

have been instrumental in gaining a deeper understanding of how extreme

events in real-world financial markets can arise.

Earlier ABM work has focused predominantly on the role of the micro-

structure of exchanges (execution policies, order types, execution fees, etc),

market transparency, and the interaction among heterogeneous strategies, on

the volatility of stock prices and the dynamics of order flows. ABMs simu-

lations have shown that stock market models do not generally select the ra-

tional, fundamentalist strategy and that simple technical trading rules, such

as chartist strategies, as well as herding behavior, may survive. These direct

and indirect interactions, by acting as a coordination device of agents trad-

ing decisions, can lead to wild price fluctuations in asset prices and memory

effects in order flows.

ABMs have been helpful not only to identify the mechanisms that lead

to instabilities in financial markets, but also to evaluate policies designed to

mitigate them. Pellizzari and Westerhoff (2009) for example have studied the

effect of transaction taxes in an agent-based model in which central dealership

or continuous double auction are used as a clearing mechanism. Their work

show that in the former case, the volatility of the market can be significantly

reduced via the imposition of a transaction tax, however in the second setting

the tax would reduce market liquidity neutralizing any improvement in price

stability. Ladley et al. (2015) have shown that centralising markets can lead

to higher price volatility and less resilience to shocks because it increases

the equilibrium proportion of unskilled traders. Kovaleva and Iori (2015)
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have studied the effects of pre-trade quote transparency on market quality

in an artificial limit order market where traders react to the unbalance in

demand and supply posted in the limit order book. Their simulations show

that full quote transparency leads to high transaction costs that dampen

trading volume. While the exogenous restrictions of displayed depth does

not improve market quality, endogenous restrictions by means of iceberg

orders are effective in balancing the limit order book, reducing transaction

costs, maintaining higher liquidity, low volatility, and overall enhancing price

discovery.

In recent years a large part of the ABM financial literature has shifted to

the study of systemic risk and in particular to the analysis of the extent to

which default cascades are affected by the connectivity among banks. The

inter-bank credit market is an important means through which commercial

banks cover short-falls in liquidity. By borrowing from banks with surplus

liquidity, banks which face a temporary shortfall can survive as a result of

inter-bank credit. This represents risk-sharing and, in and of itself, should

help keep down the incidence of failures in the system. While there is an ex

ante sense in which inter-bank credit can play a stabilizing role several studies

have emphasized the ex post destabilizing implications of one banks failure

as the inter-bank credit system is susceptible to contagion. In an early pa-

per, Iori et al. (2006) have shown that when banks are more heterogeneous in

their characteristics (either in size or appetite for risk), increasing interbank

connectivity initially decreases the probability of an individual bank default

to occur. However, if defaults occur they are more likely to initiate large

default cascades. Thus, the relationship between the level of interconnected-

ness in the interbank markets and financial contagion is non-monotonic. Gai

and Kapadia (2010) have further shown that increasing the connectivity of

the banking network the system become more resilient to contagion trig-

gered by the default of a random bank, but more fragile following the failure

of highly connected nodes. A number of authors have explored the role of
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the interbank network structure on contagion (Nier et al. (2007), Karimi

and Raddant (2016), Georg (2013), Krause and Giansante (2012), Lenzu

and Tedeschi (2012)) and compared how defaults propagate on scale-free,

random, small world and core periphery networks under different modeling

assumptions. Battiston et al. (2012) have developed a novel methodology to

quantify the unrolling of distress between lenders and borrowers even before

a borrowers default, as creditors who are exposed to distressed debtors suffer

a deterioration of their credit quality. In addition to direct knock-on effects,

the market impact of liquidating overlapping portfolios, in non-perfectly liq-

uid markets, can amplify financial instabilities triggered by distressed banks.

The liquidation pressure, typically driven by binding leverage constraints,

can in fact lead to fire sales and create new contagion channels, as shown

by Caccioli et al. (2014) and Aymanns and Farmer (2015). A third source

of contagion has been identified in liquidity hoarding (Anand et al., 2013).

A number of authors have in fact shown, using multi-layered networks, that

the interaction of these different contagion channels can substantially amplify

the effect of each individual one (Klimek et al., 2015; Montagna and Kok,

2016).

An increasing number of agent-based models have considered the interre-

lation between the financial market and the real economy, and explored the

potential for ABMs to test the effectiveness of micro and macroprudential po-

lices, such as Basel II and Basel III. Ashraf et al. (2017) have studied the role

of loan-to-value ratios and static capital-adequacy regulation showing that

less strict micro-prudential bank regulations allow the economy to recover

faster from a crisis. Cincotti et al. (2012) have shown that lower capital-

adequacy ratios can spur growth in the short-run, but lead to more serious

economic downturns in the long-run as the number of bankruptcies of highly

leveraged banks and firms grow, leading to credit rationing. Their simu-

lations show that dynamic adjustment of capital requirements is generally

more successful than fixed tight capital requirements in stabilizing the econ-
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omy and improving the macroeconomic performance. Popoyan et al. (2017)

and Krug et al. (2015) have shown that the components of Basel III are

non-additive: the inclusion of an additional lever does not always improve

the performance of the macroprudential regulation and their joint impact

is more effective than the sum of their individual contributions. (Assenza

et al., 2018) have tested two macro-prudential policies, a modification of the

maximum leverage ratio and the required liquidity ratio and shown that the

former is more effective than the latter in terms of reducing the frequency of

crises. However, no difference emergence as far as the duration of the crises

is concerned. Gurgone et al. (2018) allow banks to set endogenously their

leverage and capital targets (within the bounds imposed by regulators) and

as a result, when financial downturns occur, banks tend to amplify them by

withholding liquidity from the interbank and credit markets and by seeking

higher interest rates on the funds which they make available. This financial

amplification mechanism (see also Delli Gatti et al., 2010) is exacerbated by

the pro-cyclical effects of the prudential regulations. Alternative resolution

mechanisms of banking crises have been investigated by Klimek et al. (2015)

who find that liquidation is the best policy during expansions, whereas bail

in achieve better financial and economic stability during recessions. Poledna

and Thurner (2016) have proposed the introduction of a tax on individual

transactions, proportional to their marginal contribution to overall systemic

risk. Their simulations demonstrates that such Systemic Risk Tax leads to

a self-organized restructuring of the financial network essentially eliminating

the risk of banks collapsing. Notably, the restructuring occurs without loss

of transaction volume and efficiency. On the contrary, when a Tobin tax

or Basel III capital surcharges are imposed on SIFIs, the ABM leads to an

increases the cost of credit to the real economy.

Overall these studies have shown that Agent Based Models are power-

ful tools to understand the mechanism that lead to observed stylized fact in

financial markets and to explain the unfolding of systemic risk in financial sys-
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tems. By running a large number of simulations, changing the behavioural

rules and the model parameters, ABM can generate a rich set of data to

evaluate the consequences of shocks, that can emerge endogenously or be

imposed exogenously, and explore the effect of stabilization policies under

counterfactual scenarios. Particularly for macro-finance applications, where

data are scarce and experiments are limited, ABM offer invaluable computa-

tional laboratories for evaluating what-if scenarios. ABMs have so far mostly

been used to generate insights and qualitative descriptions of scenario that

may occur rather than quantitative forecasts. However, there have been

some successful examples of forecasting with empirically calibrated financial

agent-based models such as the work of Braun-Munzinger et al. (2018) on

the corporate bonds markets. ABM Simulation results can vary dramatically

depending on which assumptions are used. As granular data sets of finan-

cial transactions are starting to be collected, it will become possible to test

the realism of the behavioral assumptions and of the rules of interactions

in the agent-based models. A careful calibration of these models to micro

level market data will enable the full potential of ABMs, as effective tools

for assisting policy makers and market participants in their decision-making

processes, to be exploited.

6. Controlled Laboratory Experiments

Behavioral economics brings psychological foundations to economics aim-

ing at better explaining economic phenomena. The emphasis of behavioural

economics is basically on the effects that psychological, cognitive, emotional,

cultural, and social factors have on individual as well as collective decision

making (see, e.g., Thaler, 2016). Traditionally, behavioural economics has

largely relied on evidence generated by controlled laboratory experiments

with human subjects, where all those behavioural aspects are naturally con-

sidered (see, e.g., Smith, 1989).

Contrary to the paradigm of rationality, experimental economics has
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shown that the heterogeneity of human subjects (e.g. different risk atti-

tude, preferences or cultural background), their different degrees of bounded

rationality and cognitive capabilities strongly influence their decisions. ABM

builds upon a similar background, namely the pre-analytical vision that the

assumption of heterogeneous interacting agents with different and given de-

grees of bounded rationality better captures micro-level properties of (macro)

economic phenomena. ABM and experimental economics share, therefore,

the departure from the representative rational optimizing agent as a fun-

damental building block for the analysis of economic phenomena. Whereas

ABM assumes the heterogeneity of economic agents, controlled human sub-

ject experiments unavoidably deal with it. It is, thus, natural combining

these two approaches, studying potential synergies and complementaries in

dealing with the behavior and interaction of heterogeneous agents. Despite

the long tradition of the experimental and ABM approaches to describe eco-

nomic phenomena, it is only recently that several contribution employed the

findings of controlled experiments on the determinants of human behavior in

the design of artificial agents in ABM. Fewer are, instead, the contributions

of ABM in complementing experimental economics.

We claim that an interesting new literature has recently emerged, at-

tempting to combine experimental and computational methodologies, thereby

taking advantage of the synergies between them. Based on this literature in

particular Duffy (2006) describes the common characteristics shared by ABM

and controlled human subjects experiments: (i.) a bottom-up modeling ap-

proach, contrary to top-down representative agent models, which naturally

cope with heterogeneous agents; (ii.) complex interactions among agents,

assuming that the aggregate behavior of interacting agents does not neces-

sarily coincide with the behavior of the individual; and (iii.) agents which

posses various degrees of bounded rationality.

In this vein, Contini et al. (2006) list several examples of the comple-

mentarities between ABM and human subjects experiments. ABM can help
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explaining the behavior observed in human subject experiments and, at the

same time, experimental data can be employed in calibrating and validating

ABM. Conducting controlled laboratory experiments with human subjects

imply the existence of budget and time constraints, that imposes limits to

the number of participants (agents) and periods, that do not apply to ABM

simulations. When designing a laboratory experiment, a calibrated simula-

tion can guide the experimentalist on the sensitivity of the subjects behavior

to changes in the key parameters of the experimental design (see, e.g., Ar-

ifovic and Petersen, 2017). Additionally, ABM simulations can be used for

replicating human-based experiments using the experimental initial condi-

tions, for increasing the number of periods and/or the number subjects, or

for giving the opportunity to conduct a robustness test of the experimental

findings.

Taking stock of that, however, we find that in most of the contributions,

the combination of experimental and ABM simulations focused on explain-

ing experimental data using ABM simulations, whereas we do not find many

examples where experimental data served to complement the ABM findings.

We think that one of the reason lies in the higher flexibility of computational

agent-based models as compared to experimental settings, given the strong

constrains in dealing with controlled human subjects experiments. Addi-

tionally, we should consider that nowadays ABMs have become much more

complex than experimental settings, embracing large macro-simulations of

the entire economy.

Despite their simplicity, controlled laboratory experiments allow for col-

lecting data that in the real world are not available, like expectations for-

mation or cognitive abilities or biases of human subjects that can be used

to endow artificial agents in ABMs with more realistic characteristics and

behavior following, for example, adapting learning rules.
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7. Estimation of Agent-Based Models

Agent-based models have been developed for different purposes. Histori-

cally, some of the first examples of disaggregated models of economic systems

have been microsimulations (pioneered, e.g., by Orcutt et al., 1961) that were

mainly developed as decision support system for economic policy. While

these models are usually carefully calibrated using empirical distributions of

agents’ characteristics (such as the age structure of a population to forecast

the development of pension expenditures), they have not been subject to

rigorous econometric validations. Indeed, the idea of estimation seems alien

to this class of models as they are dominated by both institutional detail

and a close mapping of certain empirical attributes of the population that

are deemed important for a certain type of policy question.3 There are typ-

ically few behavioral relationships and those that exist are well-represented

by statistical averages over the large underlying populations (e.g., retirement

age, divorce rates etc.). In contrast, the more recent branch of theoretically

motivated ABMs that emerged since the 1990s have a different relationship

with data: With few exceptions, the motivation of these ABMs has been the

desire to explain via behavioral assumptions certain stylized facts that more

aggregate, traditional models had left unexplained. The guiding idea of this

literature is that certain salient features of our economic reality can only

be explained as the outcome of a process of self-organization of the activity

of a large ensemble of interacting, heterogeneous agents (see, e.g., Gallegati

and Kirman, 2012). The first brand of such models has mainly addressed

the well-known but mysterious stylized facts of financial markets such as the

particular broad distribution of returns (fat tails) and the extremely large

correlation in all measures of their range of fluctuations (clustered volatil-

ity), see also Lux (2009b).

3The International Journal of Microsimulation might be consulted for an overview over
this rich universe of agent-based models for policy applications that almost constitutes a
parallel world to the more theoretical ABMs developed in academia.
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Slightly later, a related literature on macroeconomic ABMs has been de-

veloped (e.g. Dawid and Delli Gatti, 2018) which addresses macroeconomic

stylized facts such as the distribution of booms and recessions, and cross-

correlations between key macroeconomic variables. Other areas of intense

ABM research include industrial dynamics (e.g. Axtell, 2018), and the emer-

gence of stratified distributions of income and wealth (Chakraborti, 2011).

With the orientation at measurable stylized facts, empirical validation and

estimation of their parameters should be a top priority of the ABM commu-

nity. Indeed, the justification of the relatively heavy apparatus of models

with a multitude (or at least multiple groups) of agents rests on its capacity

to explain data better than traditional approaches using structural equations

without micro foundations, or the representative agent models that have been

particularly popular in macroeconomics. In some areas, it seems easy to score

as goal for ABMs as, for instance, important and well-documented regular-

ities such as the size distribution of firms and the Pareto-type distribution

of income and wealth defy any attempt of their explanation without dis-

aggregated agents. Other stylized facts like those of financial data had in

the pre-ABM literature only be explained in a tautological way: If returns

are fat tailed and come with clustered volatility, so must have been the dis-

tribution of news on which they are based. More demanding is the task

in macroeconomics where there exist well-established models at least for the

cross-sectional patterns characteristic of business cycles (although the perfor-

mance of the traditional DSGE models is not really considered satisfactory,

see also Stiglitz (2018)).

Estimation of ABMs is, for most models of the currently available liter-

ature, methodologically straight forward, but practically often difficult. In

terms of statistical methodology, the possibility of identification of parame-

ters is guaranteed because most ABMs as they exist are Markov processes

(a fact emphasized by Aoki, 1998). The nonlinearities inherent in an ABM

framework also typically guarantee that problems such as colinearity are not
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an issue, at least in principle. However, the proliferation of parameters in

many ABMs can easily lead to near-colinearity or parameters, that fail to

exert much influence on any statistic used in an estimation algorithm (see

the experiments in Lux and Zwinkels, 2018). Rigorous estimation should

therefore, be a most welcome device to impose discipline on ABM modeling,

and estimation results should be brought to good use in model development

(e.g., when irrelevant parameters are encountered in an estimation).

The focus on stylized facts as a motivation to develop ABMs in the first

place, suggests an empirical approach that uses the available knowledge on

interesting statistics of the data: This has often made the generalized Method

of Moments (GMM) or Simulated Method of Moments (SMM) the methodol-

ogy of choice.4 Examples include Jang (2015), Grazzini and Richiardi (2015),

Chen and Lux (2018) or Franke and Westerhoff (2012). Simulation-based es-

timation seems to suggest itself since the explanatory power of ABMs is

mostly explored via Monte Carlo simulations anyway. GMM and SMM also

dispense with the necessity of a closed-form solution or numerical approxi-

mation for the likelihood which is almost never available in ABMs (an ex-

ception is the model estimated in Lux 2009a, 2012). The major drawback of

GMM/SMM is a much lower efficiency of the resulting estimates than under

a maximum likelihood approach. If the likelihood can be formulated but not

solved explicitly, stochastic approximations of the likelihood via a sequential

Monte Carlo algorithm or particle filter would be a possibility (see also Lux,

2018). In this approach, a swarm of candidate parameter vectors is updated

through the iterated computation of their likelihood values via importance

sampling and the averaging over the active particles in each time step pro-

vides the approximation of the likelihood function. Again, this approach is

computation-intensive as it uses simulations of a large number of replications

of the model (with different parameter values), but it provides a higher effi-

4A more complete review of estimation techniques for ABMs can be found in Lux and
Zwinkels (2018).
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ciency of the so attained parameter estimates than GMM/SMM. Since in this

framework, the ABM is interpreted as a state-space model with both hidden

variables and measurable variables, another advantage is that the particle fil-

ter allows to identify the dynamic evolution of hidden variables. These could

be the distribution of expectations, strategies or attributes among agents,

and would often be of immediate economic interest. Sequential Monte Carlo

can be used in frequentist estimation as well as in a Bayesian context (see

also Berschinger and Mozzhorin, 2020; Lux, 2020).

8. Outlook and Future Directions

There are numerous promising avenues for research on agent-based mod-

els, some have already been touched upon in the previous sections. A particu-

lar strength of ABM has always been its flexibility towards the application to

new problems. While certain classes of models have been established in fields

like macroeconomics or financial markets, ABM has always been a transdis-

ciplinary methodology that can be adapted to problems with different rules,

interaction mechanisms and behavioral phenomena.

A current example are data-driven models that have been developed for

the COVID-19 pandemic. Here ABMs can be an effective tool to model

human interactions and disease dynamics over space and time and offer re-

alistic predictions in terms of the scale of an outbreak or the effectiveness of

different interventions (Goldstein et al., 2020; Squazzoni et al., 2020).

ABMs can also be used to study problems that result from the increased

use of AI, for example the societal impact of ranking algorithms, recom-

mender systems and its possible reinforcements of social inequalities and

biases. In situations in which the given data is noisy or biased, ABMs can be

used to generate priors to produce scenarios for machine learning algorithms

in a semi-supervised manner to reduce errors and prevent the amplification

of distortions. Also, once artificial agents have been designed based on the

behavior of human subjects, they can be implemented in large scale simula-
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tors (see Dosi et al., 2020). Such synergy between ABM and experimental

methodology is at its infancy and, in our opinion, constitutes an exciting

avenue of future research.

Further research is also needed on the estimation of ABMs, since not

too much is known about the pros and cons of different methods. Avail-

able models have mostly allowed for at least the formulation and stochastic

approximation of a likelihood function. When models become more com-

plex, such approximations will often not be feasible anymore. In such cases,

a promising tool - besides GMM/SMM - should be Approximate Bayesian

Computation (ABC). This framework uses measurements (moments) of the

data other than the likelihood (Sisson et al., 2005; Toni et al., 2008), and

allows to approximate the posterior distribution of the parameters via a re-

jection sampling or Markov Chain Monte Carlo algorithm (see also Csillry

et al., 2010).
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