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Segmentation for Path Models and Unobserved Heterogeneity:  

The Finite Mixture Partial Least Squares Approach 

 

 

Abstract 

Partial least squares-based path modeling with latent variables is a methodology that allows to 

estimate complex cause-effect relationships using empirical data. The assumption that the data is 

collected from a single homogeneous population is often unrealistic. Identification of different 

groups of consumers in connection with estimates in the inner path model constitutes a critical 

issue for applying the path modeling methodology to form effective marketing strategies. Se-

quential clustering strategies often fail to provide useful results for segment-specific partial least 

squares analyses. For that reason, the purpose of this paper is fourfold. First, it presents a finite 

mixture path modeling methodology for separating data based on the heterogeneity of estimates 

in the inner path model, as it is implemented in a software application for statistical computation. 

This new approach permits reliable identification of distinctive customer segments with their 

characteristic estimates for relationships of latent variables in the structural model. Second, it 

presents an application of the approach to two numerical examples, using experimental and 

empirical data, as a means of verifying the methodology's usefulness for multigroup path analy-

ses in marketing research. Third, it analyses the advantages of finite mixture partial least squares 

to a sequential clustering strategy. Fourth, the initial application and critical review of the new 

segmentation technique for partial least squares path modeling allows us to unveil and discuss 

some of the technique's problematic aspects and to address significant areas of future research.  

 

 

Key words: segmentation, latent variable models, mixture models measurement, customer 

satisfaction, brand preference 
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1. Introduction 

Structural equation modeling (SEM) and path modeling with latent variables (LVP) are used to 

measure complex cause-effect relationships (Fornell/Larcker 1981; Chin 1998a; Steenkamp/ 

Baumgartner 2000). Such models are often applied in marketing to perform research on brand 

equity (Yoo et al. 2000), consumer behavior (Sargeant et al. 2006) or customer satisfaction 

(Anderson/Sullivan 1993; Chun/Davies 2006). Covariance-based structural equation modeling 

(CBSEM, Jöreskog 1978) and partial least squares analysis (PLS, Lohmöller 1989) constitute the 

two corresponding, yet distinctive (Schneeweiß 1991), statistical techniques for assessing cause-

effect-relationship-models with latent variables. Compared to CBSEM, Wold's (1982) basic PLS 

design or basic method of soft modeling is rather a different than alternative methodology for 

estimating these models (Fornell/Bookstein 1982). Soft modeling refers to the ability of PLS to 

be more flexible in handling various modeling problems in situations where it is difficult or 

impossible to meet the hard assumptions of more traditional multivariate statistics. Within this 

context, "soft" is only attributed to distributional assumptions and not to the concepts, the models 

or the estimation techniques (Lohmöller 1989). However, CBSEM is customarily used in market-

ing to estimate relationships in cause-effect models via latent variables and empirical data. 

Apparently, there has been little concern about the frequent inability of marketing data to meet 

methodological requirements or about the common occurrence of improper solutions (Fornell/ 

Bookstein 1982; Baumgartner/Homburg 1996). Representing a well-substantiated alternative to 

CBSEM, PLS is relatively unknown and rarely used in marketing research, which fails to appre-

ciate its importance for estimating LVP in a variety of contexts, ranging from theoretical and 

applied research in marketing, management and other social sciences disciplines. Recognizable 

PLS-based LVP analyses in business research are presented by, for example, Fornell et al. 

(1985); Fornell et al. (1990); Fornell et al. (1996); Gray/Meister (2004); Venkatesh/Agarwal 

(2006). Nevertheless, the statistical instruments needed to complement the PLS method for 

business research are not well developed. 

 

This paper addresses a key extension of PLS for segmenting data on the heterogeneity in inner 

path model estimates. We focus on customer satisfaction to identify and treat heterogeneity 

among consumers by segmentation as a means of presenting the benefits of the method for PLS 

path modeling in marketing research. Customer satisfaction has become a fundamental and well 

documented construct in marketing that is critical to demand and to any business's success given 

its importance and established relation to customer retention and corporate profitability 

(Anderson et al. 1994; Mittal et al. 2005; Morgan et al. 2005). Although it is often acknowledged 

that truly homogeneous segments of consumers do not exist, recent studies report that unobserved 

customer heterogeneity does exists within a given product or service class (Wu/Desarbo 2005). 

This is critical for forming groups of consumers that are homogeneous in terms of the benefits 

they seek or their response to marketing programs (e.g. product offering, price discounts). Seg-

mentation is therefore a key element for marketers in developing and improving their targeted 

marketing strategies. 

 

Since its formal introduction in the 1950s, market segmentation remains one of the primary 

marketing ideas for product development, marketing strategy and understanding customers. 

However, the true distribution heterogeneity is never known a priori and, thus, there are cases 

where it is hard to find homogeneous customer segments. The development of analytic methods 

for segmenting markets has lagged behind their need in business applications (Cohen/Ramas-

wamy 1998). In SEM, for example, sequential clustering techniques, such as K-means or tree 
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clustering, usually do not provide outcomes that further distinguish segment-specific estimates 

because they cannot account for heterogeneity of latent variables and their relationships within 

the structural model. We believe that latent segmentation models will assume an imperative role 

in enhancing CBSEM and PLS in the next wave of analytic procedures. 

 

Latent class modeling (Kamakura/Russell 1989) is a useful classification tools for uncovering 

groups of persons with similar preferences and sensitivities. In CBSEM, Jedidi et al. (1997) 

pioneered this field of research and proposed the finite mixture SEM approach, i.e., a procedure 

that blends finite mixture models and the expectation-maximization (EM) algorithm (McLachlan/ 

Basford 1988; Wedel/Kamakura 2000; McLachlan/Krishnan 2004). Although the original tech-

nique extends CBSEM, and is implemented in software packages for statistical computations, e.g. 

Mplus (Muthén/Muthén 1998), it is inappropriate for PLS because of dissimilar methodological 

assumptions (Fornell/Bookstein 1982). For this reason, Hahn et al. (2002) introduced the finite 

mixture partial least squares (FIMIX-PLS) method that combines a finite mixture procedure with 

an EM-algorithm specifically coping with the ordinary least squares (OLS)-based predictions of 

PLS. 

 

 
Figure 1: Analytical steps of FIMIX-PLS 

 

Building on the guiding articles by Jedidi et al. (1997) and Hahn et al. (2002), this paper presents 

FIMIX-PLS as it is implemented for the first time in a statistical software application and, 

thereby, is made broadly applicable for research in social sciences as primary approach for 

segmenting data based on PLS path modeling results. This research is important to expand the 

methodological toolbox in PLS. We systematically apply FIMIX-PLS, as depicted in Figure 1, on 

the first numerical example presented in literature with experimental data and on the second 

application with empirical data. These kinds of segmentation results allow to further differentiate 

standard PLS path modeling estimates and, hence, to demonstrate the potentials of FIMIX-PLS 

for uncovering distinctive groups of customers for the relationships within the inner PLS path 
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model. Furthermore, these analyses reveal important methodological implications that have not 

been addressed yet. 

 

The following sections of this paper, which introduce the methodology, evaluate results and 

cover ex post analysis of FIMIX-PLS results, are dedicated to the different analytical steps 

presented in Figure 1. We particularly focus on step two to show that FIMIX-PLS accurately 

identifies a priori created segments for the simulated data presented in section 4. In section 5, we 

employ a marketing related LVP example and empirical data to apply all four steps of FIMIX-

PLS for identifying a key customer segment for shaping targeted marketing strategies. Finally, 

we address the issue of whether the new segmentation technique is advantageous for PLS path 

modeling compared with a sequential data analysis strategy (section 6). Before drawing our 

conclusions (section 8), we distinguish, in section 7, sets of problems and discuss the need for 

future research that emerges from our numerical examples and initial review of the FIMIX-PLS 

methodology. 

 

 

2. Methodology 

SmartPLS 2.0 (Ringle et al. 2005) was the first statistical software application for (graphical) 

path modeling with latent variables employing both the basic PLS algorithm (Wold 1982, 1985; 

Lohmöller 1989) as well as FIMIX-PLS capabilities for the kind of segmentation proposed by 

Hahn et al. (2002). This section concisely presents the new approach for segmentation as it is 

implemented into the statistical software application. In the first step of FIMIX-PLS (Figure 1), a 

path model is estimated by using the PLS algorithm for LVP and (empirical) data for manifest 

variables in the outer measurement models. The resulting scores for latent variables in the inner 

path model are then employed to run the FIMIX-PLS algorithm in a second methodological step 

(Figure 1). The equation below expresses a modified presentation of the relationships (Table 11 

in the appendix provides a description of all of the symbols used in the equations presented in this 

paper): 

 iii ζ=ξΓ+ηΒ  (1) 

Segment-specific heterogeneity of path models is concentrated in the estimated relationships 

between latent variables. FIMIX-PLS captures this heterogeneity and calculates the probability of 

each observation so that it fits into each of the predetermined K  numbers of classes. The seg-

ment-specific distributional function is defined as follows, assuming that iη  is distributed as a 

finite mixture of conditional multivariate normal densities )(f k|i ⋅ : 
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Equation (4) represents an EM-formulation of the log-likelihood ( lnL ) as the objective function 

for maximization: 
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An EM-formulation of the FIMIX-PLS algorithm (figure Figure 2) is used for statistical compu-

tations to maximize the likelihood and to ensure convergence in this model. The expectation of 

Equation (4) is calculated in the E-step, where ikz  is 1 if subject i  belongs to class k  (or 0  

otherwise). The segment size kρ , the parameters iξ , kB , kΓ  and kΨ  of the conditional probabil-

ity function are stated (as results of the M-step), and provisional estimates (expected values), 

ikik P=)z(E , for ikz  are computed according to Bayes' (1763/1958) theorem (E-step in Figure 2). 

 

------------------------------------------------------------------------------------- 

// initial E-step 

set random starting values for ikP ; set V=last lnL ; set 1<S<0  

repeat do 

begin 

// the M-step starts here 

k
I

P
=

ik

I

1=i
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determine kB , kΓ , kΨ , k∀  

calculate lnLcurrent  

lnLlnL lastcurrent= −∆  

// the E-step starts here 

if S≥∆  then 

begin 
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lnLlnL current=last  

end 

end 

until S<∆   

------------------------------------------------------------------------------------- 

Figure 2: The FIMIX-PLS algorithm 

 

Equation (4) is maximized in the M-step (Figure 2). This part of the FIMIX-PLS algorithm 

accounts for the most important changes to fit the finite mixture approach to PLS compared with 

the original finite mixture structural equation modeling technique (Jedidi et al. 1997). Initially, 

new mixing proportions kρ  are calculated by the average of adjusted expected values ikP  that 

result from the previous E-step. Thereafter, optimal parameters for kB , kΓ  and kΨ  are deter-

mined by independent OLS regressions (one for each relationship between latent variables in the 

structural model). ML estimators of coefficients and variances are assumed to be identical to OLS 

predictions. The following equations are applied to obtain the regression parameters for latent 

endogenous variables: 

 )N,E(=Xand=Y mimimimimi
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The closed form OLS analytic formula for mkτ  and mkω  is expressed as follows: 
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As a result, the M-step determines new mixing proportions kρ , and the independent OLS regres-

sions are used in the next E-step iteration to improve the outcomes for ikP . The EM-algorithm 

stops whenever lnL  hardly improves, and an a priori specified convergence criterion is reached. 

This and other problematical issues linked to FIMIX-PLS are pointed out in the following sec-

tions and summarized in section 7. 

 

 

3.  Identifying an appropriate number of segments and ex post analysis 

The most important FIMIX-PLS computational results are the probability ikP , the mixing propor-

tions kρ , class-specific estimates kB  and kΓ  for the inner relationships of the path model and kΨ  

for the regression variances. In particular, with regard to the finite mixture's probabilities ikP  of 

observations to fit into the predetermined number classes, it must be decided if FIMIX-PLS 

allows to detect and treat heterogeneity among consumers in the inner PLS path model estimates 

by (unobservable) discrete moderating factors. This is explored in the next analytical step with 

analyses for different numbers of K  classes (step 3 in Figure 1). 

 

The number of segments is usually unknown and the process of identifying an appropriate num-

ber of classes is not clear-cut when applying FIMIX-PLS. A statistically satisfactory solution for 

this analytical procedure does not exist for several reasons (Wedel/Kamakura 2000). One reason 

is that the mixture models are not asymptotically distributed as chi-squares and disallow the 

likelihood ratio statistic. Consequently, the FIMIX-PLS procedure must be repeatedly performed 

with consecutive numbers of latent classes K  (e.g. 2  to 10 ). Another reason is that the algorithm 

(Figure 2) converges for any given number of K  classes. This means that statistically non-

interpretable outcomes for the class-specific estimates kB  and kΓ  of the inner path model rela-

tionships and for kΨ  of the regression variances for latent endogenous variables are computed 

when the number of classes is increased. Segment size is a useful indicator for stopping the 

analysis of additional numbers of latent classes for the sake of avoiding unreasonable FIMIX-

PLS results is the segment size (section 5). At a certain point, an additional class has only a small 

segment size, which explains a marginal portion of heterogeneity in the overall set of data. 

 

The emerging statistically comprehensible FIMIX-PLS estimates for different K  numbers of 

classes are then compared for criteria such as the KlnL , the Akaike Information Criterion 

( KAIC ), the AIC Controlled ( KAICC ) or the Bayesian Information Criterion ( KBIC ). These 

heuristic measures permit an evaluation of FIMIX-PLS computations and the quality of their 
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segmentation. The main goal of this analysis is to capture the heterogeneity of the inner PLS path 

model grouping data in accordance with the FIMIX-PLS results. Within this context, the normed 

entropy statistic (Ramaswamy et al. 1993) is a critical criterion for analyzing class specific 

FIMIX-PLS results. This criterion indicates the degree of separation for all observations and their 

estimated membership probabilities ikP  on a case-by-case basis, and it subsequently reveals the 

most appropriate number of latent classes for segmentation: 

  
)K(Iln

)P(lnP

1=EN

ikik

ki

K

⎥
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⎤
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⎣

⎡
−

−
∑∑

 (10) 

 

The EN is limited between 0  and 1, and the quality of separation of derived classes commensu-

rate with the increase in KEN . Application of FIMIX-PLS furnishes evidence that values of EN 

above 0.5  result in estimates for ikP  that permit unambiguous segmentation. The example with 

empirical data in section 5 demonstrates this kind of segmentation. In this case, most observa-

tions are associated with high probabilities of membership in a certain class. Hence, the entropy 

criterion is especially relevant for assessing whether a FIMIX-PLS solution is interpretable or 

not. The segments are fuzzy in situations where a certain number of classes is identified as most 

appropriate, based on the heuristic evaluation, but the KEN  is considerably below 0.5 . This 

means that only parts of the subjects belong to a certain class. Fuzzy class memberships prevent 

meaningful a priori segmentation for specific PLS estimations, a comprehensible interpretation of 

results and sound establishment of managerial implications. Under such circumstances, and in 

cases where the differences between the evaluation criteria for FIMIX-PLS results of different 

numbers of classes only slightly differ, the highest probability per observation and its distribution 

regarding the entire set of data needs to be analyzed (section 5). The more that observations 

exhibit high membership probabilities, e.g. higher than 0.8 , the better they uniquely belong to a 

specific class and can be well separated. 

 

An explanatory variable must be uncovered in the ex post analysis (step 4 in Figure 1) in situa-

tions where FIMIX-PLS results indicate that heterogeneity in the overall set of data can be 

reduced by segmentation using the best fitting number of K  classes. Correspondingly, data is 

segmented and used as new input for segment-specific LVP computations with PLS. This process 

produces differentiated PLS modeling results and facilitates multigroup PLS analyses (Chin/ 

Dibbern 2006). An explanatory variable must include both similar grouping of data, as indicated 

by the FIMIX-PLS results, and interpretability of the distinctive clusters. This kind of analysis is 

essential for exploiting FIMIX-PLS findings for PLS path modeling, and it is the most challeng-

ing analytical step to accomplish. For this reason, an ex post analysis of the estimated FIMIX-

PLS probabilities of membership employs an approach proposed by Ramaswamy et al. (1993). 

While this systematical search uncovers explanatory variables that fit well with the FIMIX-PLS 

results in terms of data grouping, a logical search alternatively focuses for the most part on the 

interpretation of results. In this case, certain variables with high relevance for explaining the 

expected differences in segment-specific PLS path model computations are examined for their 

ability to form groups of observations that match FIMIX-PLS results. Both approaches may lead 

to different nonetheless reasonable results as demonstrated by a full FIMIX-PLS analysis in the 

example using empirical data (section 5). 
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4.  Numerical example using experimental data 

Suppose that a market researcher has formulated a LVP on theoretically well developed cause-

effect relationships. The researcher suspects, however, that an unobserved moderating factor 

accounts for heterogeneity or that the data belongs to a finite number of segments. In this in-

stance, the theoretical assumptions can be used to identify a priori moderating factors that ac-

count for consumer heterogeneity in PLS path models. But this strategy is not feasible in many 

marketing applications (Jedidi et al. 1997) and gives rise to analytical techniques like FIMIX-

PLS. To demonstrate the potentials of FIMIX-PLS to detect and treat unobserved heterogeneity 

in the inner path model relationships, this methodology is applied on a numerical example using 

experimental data for the manifest indicator variables in the outer measurement model. Although 

the process of naming variables in this test set is not relevant, we use a marketing related example 

to demonstrate that FIMIX-PLS reliably identifies and separates distinctive groups of customers 

in the overall set of simulated data. In terms of heterogeneity in the structural model, it might be 

desirable to identify and describe price sensitive consumers (Kim et al. 1999) and consumers who 

have the strongest preference for another particular product attribute (Allenby et al. 1998), e.g. 

quality. Thus, the path model for our example with experimental data consists of one endogenous 

latent variable Satisfaction, two exogenous latent variables Price and Quality in the inner model 

(Dillon et al. 1997; Desarbo et al. 2001). The used experimental set of data consist of the follow-

ing equally sized segments: 

 

• Price-oriented customers (segment 1): This segment is characterized by a strong relationship 

between Price and Satisfaction and a weak relationship between Quality and Satisfaction. 

• Quality-oriented customers (segment 2): This segment is characterized by a strong relation-

ship between Quality and Satisfaction and a weak relationship between Price and Satisfac-

tion.  

 

Each latent exogenous variable (Price and Quality) is operationalized with seven reflective 

indicator variables. The latent endogenous variable (Satisfaction) is measured by two manifest 

variables in a reflective measurement model. According to format presented in Table 1, the 

underlying case values of the manifest variables are generated on a scale ranging from 1 to 7 . 

For instance, the case values 1 to 20  of the manifest indicators Price1 to Price7, Satisfaction1 

and Satisfaction2 are normally distributed random numbers, with 6=µ  and 0.1=σ . The case 

values 1 to 20  of the manifest indicators Quality1 to Quality7 are normally distributed random 

numbers, with 4=µ  and 1=σ . 

 

Case Price Quality Satisfaction 

201−  6.0=µ / 0.1=σ  4.0=µ / 1.0=σ  6.0=µ / 0.1=σ  

4021−  4.0=µ / 1.0=σ  6.0=µ / 0.1=σ  6.0=µ / 0.1=σ  

6041−  2.0=µ / 0.1=σ  4.0=µ / 1.0=σ  2.0=µ / 0.1=σ  

8061−  4.0=µ / 1.0=σ  2.0=µ / 0.1=σ  2.0=µ / 0.1=σ  

Table 1: Data generation scheme 

 

We use the SmartPLS 2.0 (Ringle et al. 2005) software application for the PLS path model 

estimation and the FIMIX-PLS analysis. The standard PLS procedure is executed with the overall 

set of simulated data for manifest variables as input to measure the LVP (step 1 in Figure 1). All 



- 8 - 

estimates for path coefficients are at high levels. We follow the suggestion for a PLS model 

evaluation by Chin (1998b), and all minimum requirements for the outer and inner measurement 

model are met (Table 12, appendix). For example, the outer loadings are all above 0.7  while the 

inner model weights of Price and Quality on Satisfaction both have a value of 0.7  and therefore 

attain highly significant levels. This causes a substantial 2R  of 0.932  for the latent endogenous 

variable Satisfaction. 

 

This kind of analysis determines the quality of PLS path model estimations by assessing outer 

and inner measurement models and, thus, partial model structures for certain non-parametric 

evaluation criteria that must satisfy minimum requirements (Wold 1980; Chin 1998b). Methodo-

logical implications of PLS path modeling (Wold 1982, 1985; Lohmöller 1989), especially its 

distribution-free character, do not permit the application of parametric global goodness of fit 

measures that are used for CBSEM (Jöreskog 1993). As a substitute, Tenenhaus et al. (2005) 

propose the geometric mean of the average communality (outer model) and the average 2R  

(inner model) that is limited between values of 0  and 1 as overall goodness of fit (GoF) measure 

for PLS: 

 0.898=0.9320.865=Rycommunalit=GoF 2 ⋅⋅  (11) 

 

An interpretation of these PLS path modeling results - without testing for different segments in 

relation to heterogeneity in the estimates for the inner model - causes insufficient and misleading 

conclusions. In our example, Satisfaction could be comprehended as being explained by the Price 

and by the Quality construct for all customers, accompanied by recommendations that are ad-

justed accordingly for the marketing strategy (Dillon et al. 1997). By contrast, application of 

FIMIX-PLS uncovers heterogeneity and permits further differentiated conclusions. The conse-

quences are demonstrated by applying FIMIX-PLS to 2=K  classes and the latent variable 

scores that emerge from the standard PLS procedure (step 2 in Figure 1). Since the customer 

segments for the underlying simulated data is known, testing different numbers of classes and 

comparing the results for FIMIX-PLS evaluation criteria is not required for this example. An 

analysis for an unknown number of K  classes is presented in section 5. 

 

The FIMIX-PLS results in Table 2 show that both groups of consumers in the experimental set of 

data are identified. Segment 1 has a strong effect of Price on Satisfaction and indicates a week 

relationship between Quality and Satisfaction. Segment 2 has a strong effect of Quality on Satis-

faction and indicates a week relationship between Price and Satisfaction. Cases 201−  and cases 

6041−  are perfectly assigned to segment 1, and cases 4021−  and cases 8061−  are perfectly 

assigned to segment 2 ( ikP  has either a value of 0 or 1 for the final segmentation). Consequently, 

EN has a value of 1.0  indicating perfect separation of the two groups of observations. 

 

 Price→Satisfaction Quality→Satisfaction 

Standard PLS 0.7  0.7  

FIMIX-PLS segment 1 0.7  0.0  

FIMIX-PLS segment 2 0.0  0.7  

Table 2: Inner model weights 

 

In the above numerical example with simulated data, we do not perform step 3 of the full FIMIX-

PLS analysis. Rather we test the FIMIX-PLS results for segment-specific PLS analyses according 
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to step 4 in Figure 1. Therefore, the full set of experimental data is divided into two sets of data 

regarding the probability of membership ikP  of case i  to class k . This data is separately used as 

input matrices for manifest variables to estimate the path model for each group of consumers with 

PLS. This final analytical step essentially achieves the FIMIX-PLS results for segment-specific 

relationships in the structural model. While the lower relationship in the inner path model for 

each group of price or quality oriented consumers remains at a value of 0.0 , the stronger rela-

tionship rises above 0.7  causing excellent levels in the values for 2R  of Satisfaction. As illus-

trated by this numerical example with simulated data, FIMIX-PLS is capable to identify and treat 

heterogeneity of inner path model estimates by segmentation. Subsequent group-specific PLS 

analyses are important for further differentiated path model estimates for heterogeneous groups 

of consumers in the overall set of observations to guide additional interpretations and specific 

recommendations for the targeted use of the marketing-mix instruments. 

 

 

5.  Marketing example using empirical data 

When researchers work with empirical data and do not have a priori segmentation assumptions to 

capture unobserved heterogeneity in the inner PLS path model relationships, FIMIX-PLS is often 

not as clear-cut as demonstrated in the foregoing example that is based on simulated data. Until 

now, research efforts to apply FIMIX-PLS and to assess its usefulness for expanding the meth-

odological toolbox in marketing was restricted by the unavailability of a statistical software 

application for this kind of analysis. Since such functionalities are provided as presented in 

section 2, extensive use of FIMIX-PLS with empirical data in future research ought to furnish 

additional findings about the methodology and its applicability. For this reason, we make use of 

that technique for a marketing related path model and empirical data from Gruner+Jahr's 'Brigitte 

Communication Analysis 2002'. 

 

Gruner+Jahr is one of the leading publishers of printed magazines in Germany. They have been 

conducting their Communication Analysis Survey every other year since 1984. In the survey, 

over 5,000  women answer numerous questions on brands in different product categories and 

questions regarding their personality. The women represent a cross section of the German female 

population. We choose answers to questions on the Benetton fashion brand name (on a four-point 

scale from 'low' to 'high') in order to use the survey as a marketing-related example of FIMIX-

PLS-based customer segmentation. We assume that Benetton's aggressive and provocative 

advertising in the 1990s resulted in a lingering customer heterogeneity that is more distinctive 

and easier to identify compared with other fashion brands in the Communication Analysis Survey 

(e.g. Esprit or S.Oliver). 

 

The scope of this paper does not include a presentation of a theoretically hypothesized LVP in the 

field of marketing and its PLS-based estimation by empirical means (Bagozzi 1994). Conse-

quently, we do not provide an extensive presentation of the survey data or a discussion if one 

ought use CBSEM or PLS to estimate model parameters (Bagozzi/Yi 1994) or if the measure-

ment models of the latent variables should be operationalized as formative or reflective 

(Diamantopoulos/Winklhofer 2001; Rossiter 2002; Jarvis et al. 2003; MacKenzie et al. 2005). 

Our goal is to demonstrate the applicability of FIMIX-PLS to empirical data and to illustrate a 

reduced cause-effect-relationship-model on branding (Yoo et al. 2000) that principally guides all 

kinds of marketing-based LVP analyses that employ the new segmentation technique. The PLS 
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path model for Benetton's brand preference consists of one latent endogenous Brand Preference 

variable, and two latent exogenous variables, i.e., Image and Person, in the inner model. All 

latent variables are operationalized via a reflective measurement model and the manifest vari-

ables from Gruner+Jahr's 'Brigitte Communication Analysis 2002'. Figure 3 illustrates the path 

model that employs the latent and the particular manifest variables. The basic PLS algorithm 

Loh89 is applied to estimate LVP using the SmartPLS 2.0 software application (step 1 in  

Figure 1). 

 

Brand 

preference

0.239

Image

Person

I have a clear impression 

of this brand

The brand can be trusted

Is modern and up to date

Represents a great 

style of living

Fashion is a way to 

express who I am

I often talk about fashion

A brand name is very 

important to me

I am interested in the latest 

fashion brands

Sympathy

Brand usage

0.899

0.860

0.795

0.832

0.894

0.801

0.850

0.831

0.423

0.177

0.930

0.944

 
Figure 3: The brand preference model 

 

As in section 4, we follow the suggestions of Chin (1998b) for evaluating PLS estimates. An 

overview of the evaluation criteria for the results of PLS path modeling is provided in table Table 

13 in the appendix. All relationships in the reflective measurement models have factor loadings at 

sufficiently high levels (the smallest loading has a value of 0.795 ). Moreover, the average vari-

ance extracted (AVE) and cρ  exhibit satisfactory results. Both relationships in the inner path 

model are at statistically significant levels for explaining the latent endogenous variable (Table 

13 in the appendix provides results of the bootstrapping procedure). The latent exogenous Image 

variable (weight of 0.423) exhibits a strong relationship to the latent endogenous Brand Prefer-

ence variable while the influence of the latent exogenous Person variable is considerably weaker 

(weight of 0.174 ). Thus, the 2R  of Brand Preference has a value of 0.239 , which is a moderate 

level for PLS path models. The average communality of the three reflective measurement models 

is relatively high, so that 2R  of the latent endogenous Brand Preference variable mainly causes a 

GoF outcome that only is at a moderate level: 

  0.423=0.2390.748=Rycommunalit=GoF 2 ⋅⋅  (12) 

 

In the next analytical step, the FIMIX-PLS module of SmartPLS 2.0 is applied to customer seg-

mentation based on the estimated scores for latent variables (step 2 in Figure 1). In this example, 
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FIMIX-PLS results are computed for two classes. Thereafter, the number of K  classes is succes-

sively increased. A comparison of the class-specific FIMIX-PLS computations for heuristic 

evaluation criteria (section 3), as presented in Table 3, reveals that the choice of two groups is 

appropriate for customer segmentation purposes. All relevant evaluation criteria considerably 

decrease in the ensuing numbers of classes. 

 

Number of segments lnL AIC BIC AICC EN 

2=K  713.233−  1448.466  1493.520  1493.545  0.501  

3=K  942.215−  1954.431 2097.784  2097.863  0.216  

4=K  1053.389−  2192.793  2450.830  2450.972  0.230  

5=K  1117.976−  2441.388  2846.874  2847.097  0.214  

6=K  1140.018−  2326.037  2420.241  2420.293  0.270  

Table 3: Model selection 

 

The choice of two groups for a priori segmentation of the data is primarily supported by the EN 

of 0.501  for 2=K  classes. It is at a relatively high level compared to the EN of 0.43  arrived at 

in the only other proficient FIMIX-PLS segmentation presented thus far in literature by Hahn et 

al. (2002). As illustrated in Table 4, two thirds of all our observations are well assigned to one of 

the two classes with a probability ikP  of more than 0.7 . These probabilities considerably decline 

for higher numbers of K  classes, which indicates an increased fuzziness of segmentation that is 

also depicted by the lower EN. Consequently, a result of EN of 0.5  or higher for a certain num-

ber of FIMIX-PLS classes permits unambiguous segmentation of data. 

 

ikP  2=K  3=K  4=K  5=K  6=K  

1.0000.900 −  0.491      

0.9000.800 −  0.063    0.002   

0.8000.700−  0.083    0.011   

0.7000.600 −  0.128  0.250  0.002  0.306   

0.6000.500−  0.234  0.320  0.011  0.221  0.339  

0.5000.400 −   0.387  0.761  0.227  0.232  

0.4000.300 −   0.043  0.225  0.232  0.369  

0.3000.200 −       

0.2000.100 −       

0.1000.000−       

Sum 1.000  1.000  1.000  1.000  1.000  

Table 4: Overview of observations' highest probability of assignment to a certain class 

 

Table 5 indicates additional kinds of assumptions regarding the number of classes and the kind of 

data heterogeneity in the inner PLS path model. (a) As the number of classes increases, the large 

sized class is mainly reduced to create additional segments, while the size of the smaller class 

remains relatively stable (about 0.19  for 2=K  to 4=K  classes and about 0.145  for 5=K  and 

6=K  classes). (b) Considering the decline of the outcomes for additional numbers of classes 

based on the EN criterion, it can be concluded that the overall set of observations for this particu-

lar analysis of the Benetton brand preference consists of a large, fuzzy group of female consum-

ers and a small homogeneous group of female consumers. (c) The fuzziness of the larger segment 

cannot be further reduced by FIMIX-PLS. In the process of selecting additional classes, FIMIX-
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PLS can still identify the smaller group of consumers with comparable probabilities of member-

ship, but is somehow ambivalent when processing the large group with heterogeneous observa-

tions. The additional classes are mainly created by splitting the larger segment. As a consequence 

the probability of membership ikP  declines resulting in the drop of EN. This indicates methodo-

logical complexity in the process of assigning the observations in this set of data to additional 

classes. FIMIX-PLS computation forces observations to fit into a given number of K  classes. As 

a result, FIMIX-PLS generates outcomes that are statistically problematical for the segment-

specific estimates kB  and for kΓ , i.e., for the inner relationships of the path model, and for kΨ , 

i.e., for the regression variances of latent endogenous variables. In this example, such results 

exhibiting inner path model relationships and/or regression variances above one are obtained for 

7=K  classes. Consequently, the analysis of additional numbers of classes can stop at this 

juncture in accordance with development of segment sizes in Table 5. 

 

Number of K classes Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Sum 

2  0.809  0.191      1.000  

3  0.525  0.288  0.188     1.000  

4  0.390  0.191  0.222  0.197    1.000  

5  0.487  0.256  0.149  0.092  0.017   1.000  

6  0.441  0.233  0.143  0.115  0.038  0.031  1.000  

Table 5: Segment sizes for different numbers of classes 

 

Table 6 presents the FIMIX-PLS results for two latent classes. In a large segment (size of 0.809 ), 

the explained variance of the latent endogenous Brand Preference variable is at a relatively weak 

level for PLS path models ( 0.108=R 2 ). The variance is explained by the latent exogenous 

Image variable, with its weight of 0.343 , and the latent exogenous Person variable, with its 

weight of 0.177 . A smaller segment (size of 0.191 ) has a relatively high 2R  for Brand Prefer-

ence (value of 0.930 ). The influence of the Person variable does not change much for this 

segment. However, the weight of the Image variable is more than twice as high and has a value of 

0.759 . This result reveals that the preference for Benetton is explained to a high degree when-

ever the image of this brand is far more important than the individuals' personality. 

 

 1=K  2=K  
Segment size 0.809  0.191  

2R  (of Brand Preference) 0.108  0.930  

Image→Brand Preference 0.343  0.759  

Person→Brand Preference 0.177  0.170  

Table 6: Disaggregate results (solution for two latent classes) 

 

The next step of FIMIX-PLS involves identification of a certain variable to characterize the two 

uncovered customer segments. For this reason, we conducted an ex post analysis for finite mix-

ture models according to the approach proposed by Ramaswamy et al. (1993). We reviewed 

several potential explanatory variables. Our review analysis identifies: I am very interested in the 

latest fashion trends, I get information about current fashion from magazines for women Brand 

names are very important for sports wear and I like to buy fashion designers' perfumes as signifi-

cant descriptors for segmentation (t-statistics ranging from 1.462  to 2.177 ). These variables may 

be appropriate for Benetton's brand preference PLS path model as a means of explaining the 
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separation of female consumers in the underlying survey into two groups to account for hetero-

geneity in the inner model relationships. Table 7 shows PLS results using the I like to buy fashion 

designers' perfumes variable for an a priori customer segmentation into two classes. Both out-

comes for segment-specific LVP estimations (Table 13 in the appendix) satisfy the relevant 

criteria for model evaluation (Chin 1998b). Segment 1 represents customers that are not inter-

ested in fashion designers' perfumes (size of 0.223). By contrast, segment 2  (size of 0.777 ) is 

characterized by female consumers that are attracted to Benetton and who would enjoy using 

Benetton products in other product categories, such as perfumes. From a marketing viewpoint, 

these customers are very important to fashion designers who want to plan brand extensions. 

 

 Segment 1 Segment 2  

GoF 0.387  0.470  
2R  (of Brand Preference) 0.204  0.323  

Image→Brand Preference 0.394  0.562  

Person→Brand Preference 0.164  0.104  

Table 7: A priori segmentation based on "I like to buy fashion designers' perfumes" 

 

Besides their applicability to explaining the FIMIX-PLS segmentation for the structural model, 

the variables identified in the ex post analysis do not offer much potential for meaningful a priori 

segmentation, except for the I like to buy fashion designers' perfumes variable. The other three 

variables with high t-statistics do not result in different measurements for segment-specific path 

models when segmented a priori into two classes. We therefore consider reasonable alternatives 

and test the Customers' age variable for an a priori segmentation of Benetton's brand preference 

LVP. The ex post analysis of FIMIX-PLS results using the method of Ramaswamy et al. (1993) 

fails to furnish evidence for the relevance of this variable (t-statistic = 0.690 ). This fact reveals 

potential problems of this technique for PLS path modeling. Yet, when creating a customer 

segment for females over age 28  years (segment 1; segment size: 0.793 ) and for younger 

women (segment 2 ; segment size: 0.207 ), we do achieve a result (Table 8) that is nearly identi-

cal to the a priori segmentation using I like to buy fashion designers' perfumes. Evaluation of the 

PLS path modeling estimates (Chin 1998b) for these two a priori segmented sets of data related 

to Customers' age confirms satisfactory results (Table 13 in the appendix). In this case, another 

important marketing result is achieved by separating out Benetton's target segment of customers. 

 

 Segment 1 Segment 2  

GoF 0.355  0.521  
2R  (for Brand Preference) 0.172  0.356  

Image→Brand Preference 0.364  0.559  

Person →  Brand Preference 0.158  0.110  

Table 8: A priori segmentation based on "Customers' age" 

 

Overall PLS path model estimates must provide satisfactory results Jedidi et al. (1997) whenever 

FIMIX-PLS is applied for additional analytic purposes. This rule applies to our numerical exam-

ple with empirical data. FIMIX-PLS can be employed for guiding essential differentiations of 

overall PLS path model estimations by detecting and treating unobserved heterogeneity in the 

inner path model. According to the results of analyzing 2=K  classes, a smaller and a larger 

group of distinctive female consumers is identified for Benetton's brand preference. Two kinds of 

analytical results can be obtained from this FIMIX-PLS analysis: 
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• Identification of two homogeneous segments that both have improved results compared to the 

overall PLS path model estimates. This is the more common kind of result that one would ex-

pect from the example with simulated data in section 4. Distinction of one segment with im-

proved results and another segment with estimates at comparable levels in terms of overall 

PLS model estimates. This is the more unusual kind of outcome that fits the example with 

empirical data presented in this section.  

• The larger segment tends to have a lower 2R  for the latent endogenous variable Brand 

Preference compared to overall model estimates. Most important, the larger segment is fuzzy 

and cannot be segmented into further numbers of classes. This group of customers is not the 

subject of supplementary findings. Thus, this group of customers is not the subject of sup-

plementary findings and the analysis must focus on the smaller segment. According to the 

small changes of its segment size when additional numbers of K  classes are analyzed as well 

as the results for EN, 2R  and probabilities ikP , this group of consumers is relative homoge-

neous and well separable. 

 

The small segment exhibits a substantial relationship between Image and Brand Preference, and 

it is highly relevant from a marketing perspective. Regarding this group of female consumers, 

Brand Preference of Benetton is primarily explained by aspects that marketing activities can 

potentially control to create a specific Image. Characteristics of the individual Person that are 

more difficult to influence are not an issue for Benetton's brand preference in this segment of 

costumers. Furthermore, two kinds of explanatory variables are uncovered. The smaller group of 

consumers is accordingly characterized by females who would also like to buy Benetton's per-

fume or by younger female consumers. The process of forming these segments a priori and 

subsequently performing a specific PLS path analysis on them produces further differentiated 

results. In the example of Benetton's brand preference model, the PLS outcomes for the smaller 

group of customers are particularly significant for originating marketing strategies in terms of 

potential brand extensions or this brand's target group of customers. 

 

 

6. Comparison of FIMIX-PLS to sequential data analysis 

The subject arises, when applying FIMIX-PLS, of whether similar results could be achieved with 

traditional clustering methods for manifest variable scores. K-means Wedel/Kamakura (2000) is 

one of the best clustering techniques for market segmentation. Parallel to reviewing analyses by 

Jedidi et al. (1997) or Hofstede et al. (1999), we compare the effectiveness of FIMIX-PLS to a 

sequential data analysis strategy by performing a K-means cluster analysis of the observed 

variables followed by multigroup PLS path modeling. We ensure comparability with prior 

FIMIX-PLS findings by using K-means to split both manifest experimental data and empirical 

data into two clusters. We likewise cluster the latent variables scores of both previous LVP 

examples into two segments with K-means since FIMIX-PLS uses inner path model estimates. 

The clustering results are then used for an a priori segmentation of data and for computing their 

specific PLS path model (Table 9 and Table 10). 
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 PLS path model estimations 

for segment 1 

PLS path model estimations 

for segment 2 

A priori K-means 

segmentation  

(for two classes) 

manifest variables 

Segment size: 0.5  
2R : 0.931  

GoF: 0.860  

Price→Satisfaction: 0.522  

Quality →  Satisfaction: 0.474  

Segment size: 0.5  
2R : 0.933  

GoF: 0.861  

Price→Satisfaction: 0.468  

Quality→Satisfaction: 0.529

A priori K-means 

segmentation 

(for two classes) 

latent variables 

Segment size: 0.5  
2R : 0.151  

GoF: 0.320  

Price→Satisfaction: 0.447  

Quality →  Satisfaction: 0.464  

Segment size: 0.5  
2R : 0.158  

GoF: 0.323  

Price→Satisfaction: 0.439  

Quality→Satisfaction: 0.413

Table 9: K-means segmentation of experimental data 

 

The above analysis of manifest variables for the example with experimental and empirical data 

produces estimated weights in the structural model where one relationship is higher than the 

other. Values for 2R  and GoF remain at levels comparable to PLS results for the full set of data. 

In contrast, K-means clustering of latent variable scores and segment-specific LVP computation 

with PLS provides very similar estimates for the two relationships in the inner path model. 

Although these weights only slightly differ for segment one and two of the experimental set of 

data, they are considerably lower for segment two compared to segment one in the example with 

empirical data. Employing K-means clustering results of latent variable scores might cause 

segment-specific inner path model weights at considerable levels. Nevertheless, 2R  and GoF are 

extremely low in the examples. These PLS estimates are subsequently not useful for additional 

segment-specific LVP interpretations and conclusions. 

 

 PLS path model estimations 

for segment 1 

PLS path model estimations 

for segment 2 

A priori K-means 

segmentation  

(for two classes) 

manifest variables 

Segment size: 0.476  
2R : 0.241  

GoF: 0.407  

Price→Satisfaction: 0.480  

Quality →  Satisfaction: 0.131  

Segment size: 0.523  
2R : 0.172  

GoF: 0.385  

Price→Satisfaction: 0.371  

Quality→Satisfaction: 0.195  

A priori K-means 

segmentation 

(for two classes) 

latent variables 

Segment size: 0.329  
2R : 0.005  

GoF: 0.165  

Price→Satisfaction: 0.193  

Quality →  Satisfaction: 0.156

Segment size: 0.671  
2R : 0.016  

GoF: 0.102  

Price→Satisfaction: 0.090  

Quality→Satisfaction: 0.078  

Table 10: K-means segmentation of empirical data 

 

Using traditional segmentation techniques such as K-means should be based on data for manifest 

variables. This will provide two equally sized groups for the empirical example, with each group 

having similar relationships in the inner path model compared to the original LVP estimation 

(section 5). In this instance, the weight is slightly higher for one path and somewhat lower for the 

other path in the structural model of segment one, while the opposite finding hold for segment 

two. This process will identify a group of customers with higher differences (segment one) and a 
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group with lower (segment two) differences between the two weights in the structural model. 

However, these groups of customers are not as distinctive as they are in FIMIX-PLS segmenta-

tion. It is also important to note, regarding the numerical example with experimental data (section 

4), that K-means clustering does not identify the two groups of price- and quality-oriented cus-

tomers and their distinctive segment-specific path coefficients within the structural model. 

 

The results of these kinds of comparisons show that FIMIX-PLS supplements traditional segmen-

tation techniques as a useful methodology for further differentiating PLS-based LVP. Both 

techniques have much in common, i.e., the extraction of several homogeneous groups for achiev-

ing a more diverse and heterogeneous data set (Cohen/Ramaswamy 1998). FIMIX-PLS neverthe-

less consistently outperforms the sequential data analysis strategy (Jedidi et al. 1997) for two 

main reasons: 

 

• In contrast to deterministic classification with K-means, FIMIX-PLS uses a probabilistic 

classification method that accounts for different segment sizes (Hofstede et al. 1999).  

• FIMIX-PLS differs from the data-driven traditional approach in terms of its simultaneous 

model-based segmentation and prediction. One regression equation for each segment captures 

the predictor-outcome relationship at the same time that the uncovered segments are captured, 

and this process accounts for heterogeneity in the inner path model. Cluster analysis, by con-

trast, is a descriptive methodology with no independent-dependent, predictor-outcome rela-

tionship (Cohen/Ramaswamy 1998).  

 

K-means performs well in classifying observations but is poor in parameter recovery if data is 

separated well into a finite number of classes. K-Means performs poor in both classification and 

parameter recovery, if data is not well separated. In contrast, finite mixture performs well in all 

cases and provides useful diagnostic information (Jedidi et al. 1997). Distinctive groups of 

observations in the overall set of data cause heterogeneity in the estimates for the structural 

model. FIMIX-PLS, in comparison, provides superior results compared to sequential data analy-

sis techniques whenever the researcher is interested in improved inner path model estimates for 

more homogeneous groups of observations. 

 

 

7.  Methodological problems and fields of future research 

The FIMIX-PLS approach is theoretically linked to finite mixture models. It shares methodologi-

cal implications and problems. Incorporating this approach into statistical software and applying 

it, also reveals new problems that were not addressed prior to its initial introduction to social 

science research. Most important problems and fields of future research are connected to local 

optimum solutions, inappropriate FIMIX-PLS estimates and the identification of an explanatory 

variable in the ex post analysis. 

 

Finite mixture models are subject to local optimum problems (Jedidi et al. 1997). The EM-

algorithm always converges and monotonically increases lnL  towards an optimum. The stop is 

more a measure of lack of progress than a measure of convergence, and there is evidence that the 

algorithm is often stopped too early (Wedel/Kamakura 2000). Experience shows that FIMIX-PLS 

frequently stops in local optimum solutions. This is caused by multimodality of the likelihood 

causing the algorithm's sensitivity to starting values. Moreover, the problem of convergence in 
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local optima seems to increase in relevance whenever component densities are not well separated, 

the number of parameters estimated is large and the information embedded in each observation is 

limited. This results in relatively weak updates of membership probabilities in the E-step. Some 

examples of simple strategies for escaping local optima include beginning the EM-algorithm 

from a wide range of (random) starting values or using clustering procedures, such as K-means, 

to obtain an initial partition of data (Wedel/Kamakura 2000). If alternative initializations (starting 

values) of the algorithm result in different local optima, then the solution with the maximum 

value of likelihood is recommended as the best solution. Concerns still remain whether this kind 

of unsystematically selected solution reaches the global optimum. Future research is required to 

determine appropriate strategies for identifying convergence towards local optimum FIMIX-PLS 

solutions. 

 

Another implication addresses the FIMIX-PLS segment-specific estimates for relationships in the 

structural model and the 2R  of latent endogenous variables. FIMIX-PLS is successively run with 

increasing numbers of classes to determine an appropriate number of segments. Ideally, the 

evaluation criteria should improve and then worsen while successively running the FIMIX-PLS 

procedure with increased numbers of classes. The outcome for the evaluation criteria indicates if 

an appropriate number of segments is identified. However, running this procedure often produces 

segment-specific FIMIX-PLS results that are improper for reasonable analyses. In most cases, the 

standardized weights in the structural model report values that are higher than one and/or the 

residual variance of latent endogenous variables exceeds the value of one (or becomes negative). 

Such outcomes might indicate that the heterogeneity in the structural model cannot be segmented 

by FIMIX-PLS for the chosen number of classes. These findings indicate the need for further 

improvement of this methodology. Hahn et al. (2002) suggest to limit segment-specific FIMIX-

PLS estimates between reasonable bounds. Future research will need to determine if any such 

bounds for FIMIX-PLS computation impart useful methodological improvements in terms of 

identifying an appropriate number of segments. 

 

The ex post analysis is essential for this kind of methodology. It confronts the researcher with the 

task that is most difficult to accomplish. This task involves identifying of an explanatory variable 

that permits a priori grouping of data for segment-specific PLS path modeling, which fits the 

FIMIX-PLS results and that also offers a characteristic interpretation of the formed groups. A 

technique for uncovering such variables proposed by Ramaswamy et al. (1993) does not imply 

coherent results for PLS path modeling, as demonstrated in the example with empirical data 

(section 5). Consequently, significant FIMIX-PLS analysis must be conducted, by means of 

complicated trial and error testing routines, until future research presents reliable procedures for 

identifying appropriate explanatory variables. 

 

 

8.  Summary and Conclusion 

Unobserved heterogeneity and measurement errors are epidemic problems in social sciences. 

Jedidi et al. (1997) have addressed these problems for SEM. Hahn et al. (2002) have further 

developed their finite-mixture SEM methodology for PLS path modeling, which represents an 

important alternative to CBSEM for researchers and practitioners. This paper introduces the 

FIMIX-PLS approach implemented for the first time into a statistical software application. We 

show that FIMIX-PLS is applicable for LVP with PLS in marketing, management and other 
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social science fields. For example, marketing-related PLS path modeling can exploit this ap-

proach for response-based market segmentation by identifying certain groups of customers 

provided that unobserved moderating factors account for consumer heterogeneity within inner 

path model relationships. We demonstrate the potentials of FIMIX-PLS by presenting the first 

published numerical example ever that uses experimental data and the second published numeri-

cal example ever that uses empirical data. Our pioneering work in this field also involves com-

paring the results from our applications with a sequential data analysis strategy. 

 

Our fist example application, which uses experimental data, shows how FIMIX-PLS identifies 

and separates two a priori created segments of price- and quality-oriented customers and our 

second example application, which is based on empirical data, involves a marketing-related path 

model for Benetton's brand preference. It also demonstrates that FIMIX-PLS reliably identifies 

an appropriate number of customer segments provided that distinctive groups of customers exist 

that result in heterogeneity within the inner model. In this case, FIMIX-PLS enables us to iden-

tify: (1) a large segment of female consumers that shows similar results when compared to the 

original model estimation and (2) a smaller segment of female customers that reveals a strong 

relationship between Image and Brand Preference. Furthermore, two kinds of explanatory vari-

ables for a priori segmentation are uncovered. The smaller group of consumers is characterized 

by females who would also like to buy Benetton's perfume or by younger female consumers. We 

accordingly conclude that FIMIX-PLS reliably identifies distinctive customer segments, if 

heterogeneity exists within the structural model. These kinds of findings result in segment-

specific LVP estimations and provide a platform for arriving at further conclusions for differenti-

ated, segment-specific PLS path modeling. The additional analytic potentials are particularly 

relevant for LVP-based customer segmentation and multigroup path analyses in terms of forming 

effective marketing strategies. 

 

FIMIX-PLS performs well in both numerical examples and provides useful diagnostic informa-

tion. By contrast, a sequential data analysis technique does not offer results that are exploitable 

for segment-specific analyses. K-means clustering will classify observations whenever data is 

heterogeneous and belongs to well separated numbers of finite groups. However, recovery of 

distinctive estimates for inner path model relationships is not satisfactory (example using experi-

mental data). In situations when heterogeneity is caused by groups that are not well separated 

groups, K-means performs poorly both in classification and segment-specific PLS path model 

estimation (example using empirical data). Given that researchers cannot determine segments a 

priori and are primarily interested in accurately identifying different segments regarding the 

model structure, the prudent strategy is therefore to use the finite mixture approach. However, 

this methodology does not identify outliers (Jedidi et al. 1997). Researchers can exploit the 

potentials of FIMIX-PLS when theory essentially supports the LVP and data is heterogeneous 

and belongs to a finite number of groups. We expect that these conditions will hold true in many 

marketing related PLS path modeling applications. For this reason, we presume reasonable 

segmentation and multigroup analyses (e.g. regarding different groups of customers) based on the 

FIMIX-PLS results. 

 

Future research will require extensive use of FIMIX-PLS on marketing examples, with typically 

heterogeneous data, to illustrate the applicability and the problematic aspects of FIMIX-PLS from 

a practical point of view. Researchers will also need to test FIMIX-PLS methodology based on 

simulated data, with a wide range of statistic distributions and a large variety of LVP, to gain 

additional implications. Finally, theoretical research should provide satisfactory improvements 
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for problematic areas such as convergence to logical optimum solutions, computation of improper 

segment-specific FIMIX-PLS results and identification of suitable explanatory variables for a 

priori segmentation. 
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Appendix 

mA  number of exogenous variables as regressors in regression m  

ma  exogenous variable ma  with mm A1,...,=a  

mB  number of endogenous variables as regressors in regression m  

mb  endogenous variable mb  with mm B1,...,=b  

mk
m

a
γ  regression coefficient of ma  in regression m  for class k  

mk
m

b
β  regression coefficient of mb  in regression m  for class k  

mkτ  ))
mk

(),
mk

((
m

b
m

a
′βγ  vector of the regression coefficients 

mkω  kof)mm(cell Ψ×  

c  constant factor 

)(f k|i ⋅  probability for case i  given a class k  and parameters )(⋅  

I  number of cases or observations 

i  case or observation i  with I1,...,=i  

J  number of exogenous variables 

j  exogenous variable j  with J1,...,=j  

K  number of classes 

k  class or segment k  with K1,...,=k  

M  number of endogenous variables 

m  endogenous variable m  with M1,...,=m  

kN  number of free parameters defined as KMKR1)K( ++−  

ikP  probability of membership of case i  to class k  

R  number of predictor variables of all regressions in the inner model 

S  stop or convergence criterion 

V  large negative number 

miX  case values of the regressors for regression m  of individual i  

miY  case values of the regressant for regression m  of individual i  

ikz  1=z ik , if the case i  belongs to class k ; 0=z ik  otherwise 

iζ  random vector of residuals in the inner model for case i  

iη  vector of endogenous variables in the inner model for case i  

iξ  vector of exogenous variables in the inner model for case i  

B  MM×  path coefficient matrix of the inner model 

Γ  JM×  path coefficient matrix of the inner model 

∆  difference of lnLcurrent  and lnLlast  

kB  MM×  path coefficient matrix of the inner model for latent class k  

kΓ  JM×  path coefficient matrix of the inner model for latent class k  

kΨ  MM×  matrix for latent class k  containing the regression variances 

ρ  ),...,( K1 ρρ , vector of the K  mixing proportions of the finite mixture 

kρ  mixing proportion of latent class k  

Table 11: Explanation of symbols 
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Table 12: PLS path modeling results for the example with experimental data 
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Table 13: PLS path modeling results for the example with empirical data 
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