
Munich Personal RePEc Archive

Frequency of Shocks, Resilience and

Shock Persistence: Evidence from

Natural Disasters

Bashar, Omar and Mallick, Debdulal

Deakin University

May 2021

Online at https://mpra.ub.uni-muenchen.de/107517/

MPRA Paper No. 107517, posted 03 May 2021 07:21 UTC



1 

 

Frequency of Shocks, Resilience and Shock Persistence: Evidence from 

Natural Disasters 

 

Omar HMN Bashar 

Debdulal Mallick* 

 

May 2021 

 

Abstract: Volatility persistence has important welfare consequences. In this paper, we 

investigate the effect on volatility persistence of the frequency of shocks for which we 

consider exogenous natural disasters. We find that, on average, volatility persistence is about 

5 percent lower in countries that have experienced one more natural disasters per year. 

However, there is a non-linearity in that volatility persistence initially decreases and then 

increases with the frequency of natural disasters. The results are explained in terms of 

disaster resilience—countries that experience natural disasters frequently develop resilience 

that shields the economy from the destruction of natural disasters and/or expedites economic 

recovery. Among the factors that potentially create resilience, we find significance of its 

structural component.  
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1. Introduction 

The welfare costs of shocks are of great importance to both researchers and policymakers. 

There is an emerging consensus that the welfare costs of shocks can be immense for large 

shocks. For example, Barro (2006; 2009) estimates that the costs associated with large 

shocks, such as World Wars and the Great Depression, are as large as 20% of GDP for a 

typical advanced economy, although those associated with smaller shocks, such as normal 

business cycles, are approximately 1.5% of GDP.1 The sizable negative impact of these 

shocks also suggests that the effects may persist for a long period of time. Large shocks are 

rare but smaller shocks are frequent so the cumulative effects of smaller shocks can be non-

negligible. However, the magnitude and persistence of the effects can vary across countries 

depending on their resilience to shocks developed over time through past exposures to 

shocks. The relationship between the frequency of shocks and growth volatility, especially its 

persistence, is unknown and this paper is intended to fill this gap. We argue and document 

that the effects of shocks will be less (more) persistent in countries that experience shocks 

more (less) frequently. More specifically, we document that the trend growth rate of real 

GDP is less volatile in countries that experience shocks more frequently because these 

countries, due to their shock resilience, incur lower damage from a given shock and/or the 

negative effects of the shock do not persist long compared to countries that experience shocks 

less frequently.  

To identify the causal effects of the frequency of shocks, we consider only natural disasters, 

which are exogenous. There is a large literature on the effects of natural disasters on many 

economic aspects that include GDP growth, fiscal dynamics, trade and capital flows, stock 

markets, school enrolment, life expectancy and fertility (see Cavallo and Noy (2011), Klomp 

and Valckx (2014), Kousky (2014) and Lazzaroni and van Bergeijk (2014), among others, for 

surveys). There is a consensus that in the short-run, large disasters have negative effects on 

growth, but there is no agreement on the effects of small disasters. The effect on long-run 

economic growth is not well established although most studies report a negative effect 

(Cavallo and Noy, 2011). However, there is no study that relates the frequency of natural 

disasters to growth volatility let alone volatility persistence. A handful of studies investigate 

                                                 
1 Pindyck and Wang (2013) estimate that a permanent tax on consumption of approximately 7% would be 

justified if the resulting revenues could be used to limit the impact of a catastrophic shock, such as nuclear 

attack or “a highly contagious megavirus that spreads uncontrollably” to a loss no greater than 15% of the 

capital stock.  
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the damage caused by the frequency of a specific type of natural disasters. For example, 

Hsiang and Narita (2012) and Hsiang and Jina (2014) find that the marginal losses from 

tropical cyclones are smaller in cyclone-prone countries and larger in countries with less 

historical cyclone experience. Anbarci, Escaleras and Register (2005) and Escaleras, Anbarci 

and Register (2007) find that on average countries that experience earthquakes more 

frequently experience lower marginal fatalities and damages. These authors interpret their 

results as evidence that frequently exposed populations learn from the experiences and adapt 

to climatological risks by undertaking investments that partially insulate their economies 

from natural disasters.  

We calculate volatility persistence as the standard deviation of the low-frequency component 

of the real GDP growth; this is also referred to as long-run (LR) volatility (Levy and 

Dezhbakhsh, 2003; Ascari and Sbordone, 2014; Müller and Watson, 2017; Mallick, 2014; 

2019).2 We consider the 1990-2017 period to retain the maximum number of countries in our 

sample.3 We use natural disaster data from the Emergency Events Database (EM-DAT), the 

most widely used and publicly available dataset on disasters. We count the number of natural 

disasters for the same period and define its frequency as the average number of natural 

disasters experienced by a country per year. We also count the frequency of natural disasters 

of different levels of severity (intensity). Given that the severity of different types of natural 

disasters is not comparable, we define it in terms of the number of deaths (see details in 

Section 2). Although the frequency of natural disasters is exogenous, we include a set of 

control variables in the regression that might potentially affect volatility and are also 

correlated with natural disasters. After accounting for the severity of natural disasters (see 

Section 3 for identification), our estimation approach captures the exogenous variations to 

estimate the causal effect of the frequency of natural disasters on the persistence of volatility.  

We find that, on average, persistence of volatility is 4.9% lower in a country that has 

experienced one more natural disaster per year. The results are robust in a variety of ways 

that include specific types of natural disasters that occur more frequently such as floods and 

storms, different sub-samples defined based on different percentiles in the distribution of the 

frequency of natural disasters, and alternative definitions of the long-run in growth and 

                                                 
2 Throughout the paper, we alternatively use persistence of volatility, LR volatility and volatility of the trend 

growth. 

 
3 Depending on the availability of the relevant variables used in the regression, we have a cross-section of 182 

countries for our benchmark analysis. 
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business-cycle literature. Importantly, we observe significant non-linearity in the effects of 

the frequency of natural disasters. As the frequency of natural disasters increases, LR 

volatility initially decreases but increases in countries that experience natural disasters too 

frequently. However, the marginal effect is significant when it is negative.  

We interpret our results in terms of disaster resilience. Disaster resilience minimizes the 

potential losses caused by a natural disaster and/or promotes quick economic recovery in the 

aftermath of a natural disaster. Disaster resilience develops at the individual, community and 

state level when a country experiences more frequent natural disasters. It is generated by 

several factors that include prioritized investments that limit the impact of disasters, 

developing early warning systems, creating fiscal buffers and pre-arranged financial 

instruments to manage funds for recovery in the aftermath of a disaster, and developing the 

capacity to respond by rapidly mobilizing physical and financial resources to limit disruption 

to public services. It also includes people’s adaptive capacity such as diversification of 

economic activities in response to natural disasters. In the absence of disaster resilience, 

destructions will be large and/or recovery slow, which result in volatility that persists for a 

long period of time. At the other extreme, when natural disasters are too frequent (say, hit by 

another disaster before recovering from the destructions caused by the previous one), disaster 

resilience may not be sufficient and LR volatility will be larger.  

It is hard to measure resilience at the national level, even more difficult when comparing 

across countries. Therefore, we take an indirect approach by considering the factors attributed 

to creating resilience such as government investments in critical areas such as prioritized 

infrastructure and early warning systems. However, given that data on such specific types of 

government investment are not available at the cross-country level, we instead use the share 

of government gross capital formation (GGFCF) in GDP as a proxy (measurement errors in 

GGFCF is addressed in Section 5). We find that GGFCF can explain the effect of the 

frequency of natural disasters on LR volatility—after including this variable in the regression, 

its coefficient is negative and statistically significant while the coefficient on the frequency of 

natural disasters becomes statistically insignificant. On the other hand, other likely candidates 

such as government expenditure for business-cycle stabilization, financial development or 

foreign aid cannot explain the disaster-volatility relationship. We also observe that GGFCF 

increases with the frequency of natural disasters.  
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Our paper is situated in several branches of literature—both macroeconomics and natural 

disasters. Aguiar and Gopinath (2007) posit that the volatility of the trend growth (LR 

volatility) is very large in the emerging market economies due mainly to sudden reversals in 

fiscal, monetary, and trade policies, while it is stable in developed countries. On the other 

hand, we find that the frequency of exogenous shocks explains the LR volatility and our 

measure of shocks—natural disasters—is unrelated to the country income groups. Our paper 

is also related to studies on economic disasters that attempt to explain several asset market 

puzzles. For example, Barro (2006; 2009) uses the observed probability distribution of 

economic disasters in the twentieth century to explain the equity-premium and risk-free rate 

puzzles. Gabaix (2012) extends Barro (2006) using variable severity of disasters to explain 

several other asset market puzzles as well as excess volatility puzzle, among others. We differ 

from this literature in that we explain LR volatility by the frequency of natural disasters. Our 

paper is also situated in the large literature on disaster resilience (see, Rose (2016) for a 

summary and more references). Building disaster resilience is also a high priority for many 

international organizations including the United Nations, World Bank and International 

Monetary Fund. Our results signify the role of resilience in mitigating the LR volatility.      

The rest of the paper proceeds as follows. Section 2 describes the data and some key 

descriptive statistics. The empirical specification and identification strategy are explained in 

Section 3. Section 4 presents the results including several robustness checks. The role of 

resilience is discussed in Section 5. Section 6 concludes.  

 

2. Data and Descriptive Statistics 

We use the Emergency Events Database (EM-DAT), the most commonly used and publicly 

available dataset on natural disasters. The EM-DAT database is compiled from several 

sources that include the United Nations, governmental and non-governmental agencies, 

insurance companies, research institutes and press agencies. The dataset compiles 

information about natural disasters since 1900. In this dataset, natural disasters are recorded 

if at least one of the following criteria are satisfied: i) 10 or more people dead, ii) 100 or more 

people affected, injured or homeless, iii) declaration by the country of a state of emergency, 

and iv) an appeal for international assistance. We consider the following four categories of 

natural disasters: geophysical (earthquake, volcanic activity and mass movement), 

meteorological (storm, extreme temperature and fog), hydrological (flood, landslide, 
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avalanche and wave action), and climatological (drought, glacial lake outburst and 

wildfire).4  

We choose the 1990-2017 period to retain as many sample countries as possible for which 

data for LR volatility and other variables used in the regression analyses are available for a 

longer period. We count the number of natural disasters for the above period and define its 

frequency as the average number of natural disasters a country experienced per year. We 

have a cross-section of 182 sample countries. Details of other data used in the analyses are 

provided in Appendix B.  

Descriptive statistics are presented in Table 1. On average a country has experienced 1.7 

natural disasters of any type and severity per year. However, there is a wide dispersion in 

the frequency across countries with a maximum of 25.6 (China) and 0 (Qatar, Equatorial 

Guinea, Bahrain, Malta, Singapore, and Sao Tome and Principe). More details on this are in 

Section 4.2.1 and the footnote therein.   

 

Insert Table 1 here 

 

The severity of different types of natural disasters, such as floods, cyclones and 

earthquakes, cannot be compared as they are measured in different scales. Economic 

damage and the number of deaths are two obvious candidates for comparing severity. 

However, the majority of disasters in the EM-DAT data have missing (direct) damage 

estimates (this data limitation is also emphasized by others including Kousky (2014)).5 

Therefore, we define the severity of natural disasters based on the number of deaths.6 The 

frequency of natural disasters decreases with the severity. For example, the mean values of 

the frequencies are 1.2, 0.76 and 0.66 per year in the case of natural disasters that caused at 

least 10, 50 and 100 deaths, respectively. Countries that experienced more frequent natural 

disasters also experienced more severe natural disasters. The correlations of the frequency 

                                                 
4 Note that in the dataset there is no entry for the following natural disasters: fog, wave action and glacial lake 

outburst.  

 
5  There is also underreporting of economic losses in the EM-DAT data as large as 50% in low and middle 

income countries (UNISDR, 2013). 

 
6 We recognize that number of deaths depends on many factors including level of economic development and 

institutional development that we control in our regression analysis (details in Section 3). 
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of all natural disasters with more severe ones causing at least 10, 50 and 100 deaths are 

very large exceeding 0.97 (not reported in the table). This observation is also corroborated 

by Cantelmo, Melina and Papageorgiou (2019) in the context of developing countries. The 

most frequent natural disasters are floods and storms with a mean value of 1.2 per year, while 

that for less frequent earthquakes and volcanic eruptions is 0.17 per year.  

Table 1 also shows that the frequency of (all types of) natural disasters has increased over 

time. For example, the mean frequency of natural disasters per year during 1900-1989 was 

0.22. Similar findings are also documented by, among others, Bloom and Khanna (2007) and 

Gaiha, Hill, Thapa and Kulkarni (2015). The increased frequency is generally attributed to 

climate change, growing population and structures in hazardous areas, and also improved 

recording. Importantly, the correlation between the frequency during 1990-2017 and 1900-

1989 is very large around 0.9, suggesting that countries with more historical disaster 

exposures also experience natural disasters more frequently.  

 

Insert Figures 1A and 1B here 

There are also geographic variations in the frequency of natural disasters. For example, the 

Asia Pacific and South Asia are the most disaster-prone regions in the world followed by 

Latin and North America, and while Scandinavia is the least disaster-prone as shown in 

Figure 1A. The above pattern of the regional distributions of the frequency of natural 

disasters also holds for different levels of severity (Appendix Figure A.1-A.3), and in the 

1900-1989 period (Figure 1B), When comparing floods and storms, the Caribbean region is 

also more disaster-prone (Appendix Figure A.4). Earthquakes and volcanic activities are 

more frequent in the Asia Pacific and in few Middle-Eastern and Latin American countries 

(Appendix Figure A.5).  

 

 3. Empirical Specification and Identification  

Our benchmark empirical specification is the following:  

ln LR

i i iSσ α β ε′= + + +
iδ X .      (1) 
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Here, 
LR

iσ is the LR volatility in country i.  For each country i, the growth rate of real GDP 

(Y) is calculated as 1ln( / )t t tg Y Y −= . The long-run (low-frequency) value of tg (
LR

tg ) is 

extracted by employing a low-pass filter (which is a special case of the Baxter and King 

(1999) band-pass filter)7 at the zero-frequency. The LR volatility (
LRσ ) or alternatively, the 

persistence of volatility is then calculated as the standard deviation of
LR

tg . iS is the average 

number of natural disasters per year in country i over the 1990-2017 period.  

Although the frequency of natural disasters is exogenous (also see Noy, 2009; Cantelmo, 

Melina and Papageorgiou, 2019), our regression specification may suffer from omitted 

variables that potentially affect 
LR

iσ and are also correlated with iS . We carefully choose a 

vector of control variables, Xi, to address the omitted variables.  

The first set of variables in Xi includes the size of the country proxied by (log) land area (in 

square kilometres) and (log) population in the initial period. Macroeconomic impacts of 

natural disasters are likely to be modest in larger countries since such impacts are usually 

localized, thus large land size provides a “natural shelter”. In contrast, many disaster-prone 

countries have a very small land size (e.g. small Pacific or Caribbean islands) with a small 

population and also their key sectors depend on weather conditions (Cantelmo, Melina and 

Papageorgiou, 2019; IMF, 2019). The number of deaths caused by a disaster (as we define 

the severity of natural disasters by the number of deaths) also depends on the population size, 

especially living in hazardous areas.  

Although poor countries do not experience more natural disasters than rich countries (Kahn, 

2005), the economic and human losses from natural disasters (and the speed of recovery) 

depend on economic development.8  We control for the initial level of per capita real GDP 

(log) to account for the level of economic development.   

Institutional development is influenced by natural disasters and is also a channel that 

mediates the effect of natural disasters on volatility. There is a large literature on 

                                                 
7 For details of the low-pass filter, please see Chirinko and Mallick (2017). 

 
8 The exact relationship is debated. Noy (2009) finds that countries experience less impact on the 

macroeconomy if they have higher per capita incomes. However, Kellenberg and Mobarak (2008) find that 

damages from floods, landslides, and windstorms increase with GDP per capita until a certain level and then 

decline. Raschky (2008), on the other hand, finds that initial level of development can reduce losses, and 

economic damages increase at higher wealth level.  
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retrospective voting behavior that argues that (in mature democracies) voters hold politicians 

responsible for the damage caused by a natural disaster, but reward them when they react 

promptly by taking actions that limit the negative consequences (See Klomp (2020) for a 

review). In nascent democracies, citizens who suffer damage from natural disasters tend 

toward lower evaluations of democratic institutions, lower support for democratic values and 

practices, and stronger dispositions toward action (Carlin, Love and Zechmeister, 2014). 

Yamamura (2014) finds that natural disasters that cause substantial damage increase public 

sector corruption in both developing and developed countries, and the impact is greater in 

developed than in developing countries. On the other hand, countries with a higher quality of 

institutions suffer fewer deaths from natural disasters (Kahn, 2005; Raschky, 2008; Noy, 

2009).9  

We control for Voice and Accountability as a proxy for institutions. This variable captures 

“perceptions of the extent to which a country's citizens are able to participate in selecting 

their government, as well as freedom of expression, freedom of association, and a free media 

(WGI, 2019).”10 Values range from approximately -2.5 (weak) to 2.5 (strong) performance. 

This is one of the indicators of governance in the Worldwide Governance Indicators (WGI) 

research dataset of the World Bank. Note that Polity2, Constraint on Executives or 

Governance are the most common proxies for institutions in the literature. However, using 

any of these variables reduces our sample size; in our data the correlation between our proxy 

and the above alternatives is the largest for Polity2 at 0.87.11 

In addition to their role in shaping the institutions, natural disasters also affect discretionary 

fiscal policy. In the aftermath of a disaster, fiscal support might not always only be provided 

to improve the economic condition of the affected population; rather, in many instances, this 

is motivated by securing political gains. Klomp (2020) estimates that approximately 10 

percent of the disaster-related public spending provided in an election year is attributed to 

rent-seeking rather than need. Fiscal behavior that is not related to the stabilization of 

                                                 
9 Kahn (2005) conjectures corruption as one possible mechanism as government corruption could raise death 

counts through the lack of enforcement of building codes, infrastructure quality, and zoning. Disbursement and 

efficient utilization of reconstruction resources for post-disaster recovery also depend on the institutional quality 

(del Valle, Janvry and Sadoulet, 2020). 

 
10 Besley and Burgess (2002) observe that in India impacts of flood are negatively correlated with newspaper 

circulation. They argue that when newspaper circulation is higher, politicians are more accountable and 

therefore the government is more active in both preventing and mitigating the impacts of natural disasters. 

 
11 All the results are strongly robust if Polity2 is used as the proxy for institution. However, the sample size 

decreases to 145 countries. 
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business cycles is referred to as “policy volatility” or “fiscal activism” by Fatás and Mihov 

(2013) and has negative effects on growth and volatility. Following these authors, we 

calculate policy volatility12 and include it as a control. This variable also captures domestic 

macroeconomic policy shocks.13  

Finally, we control for the share of agriculture in GDP as agricultural output is dependent on 

weather conditions, especially in developing countries, and therefore their economies are 

more susceptible to natural disasters. For example, many low-income countries in sub-

Saharan Africa that are dependent on rain-fed agriculture suffer considerable damage from 

repeated droughts and floods (IMF, 2019). Based on the estimates of the Food and 

Agricultural Organization of the United Nations (FAO), the impact of natural disasters on 

agriculture (broadly defined in terms of crops, livestock, fisheries and forestry) is also very 

large especially in developing countries constituting approximately 22 percent of total 

damage (FAO, 2015). Disasters not only destroy agricultural output, critical agricultural 

assets and infrastructure but also alter agricultural trade flows, and lead to losses in 

agricultural-dependent manufacturing subsectors such as the textile and food processing 

industries (FAO, 2015). 

One potential concern is that all natural disasters may not be strong enough to negatively 

affect economic growth and volatility. Since the majority of disasters in the EM-DAT data 

have missing damage estimates, we include the average number of deaths per disaster to 

control for the severity of natural disasters in the regressions. We also run separate 

regressions for severe natural disasters that caused at least 10, 50 and 100 deaths. However, 

these cut-off based on the number of deaths are ad-hoc and therefore may not be informative 

enough about natural disasters that caused fewer or no deaths but had damaging effects on the 

                                                 
12 For each country, i, in the sample, the following regression is run:  

, , 1 , , 1 ,ln( / ) ln( / )i t i t i i i t i t i tG G Y Yα β ν− −= + + , where G is the real government consumption spending and Y 

is the real GDP. The standard deviation of the predicted residual ,î tν is the measure of policy volatility. 

 
13 Given that the effect is usually localized, as opposed to economy wide, governments rely on fiscal rather than 

monetary policy. Moreover, there is no single monetary policy instrument implemented by all countries; the 

instrument also changes over time. For example, many developed countries having an independent central bank 

introduced interest rate as the monetary policy instrument in 1990s. On other hand, many developing countries 

use monetary aggregate as the instrument for monetary policy. Fatas and Mihov (2013) also highlight the 

difficulties in constructing a consistent measure of monetary policy volatility at the cross-country level.  

 



11 

 

economy. Failure to account for the true severity may lead to measurement errors, which in 

turn lead to endogeneity.   

Our IV is historical natural disasters prior to 1990—the average number of natural disasters 

per year a country experienced during the 1900-1989 period (
P

iS ). The argument for using 

P

iS as the IV is the following. Due to the difficulty of information gathering (poor record-

keeping), fewer natural disasters in the past were recorded and the reported ones are more 

severe in affecting lives and the economy. However, the distribution of countries in terms of 

disaster probability14 has not changed; countries and regions that experienced natural 

disasters more frequently than others in the pre-1990 period still experience the same more 

frequently. This pattern also holds for different types of natural disasters such as floods or 

earthquakes, and disasters of different levels of severity. In the data, the correlation between 

iS and 
P

iS is 0.89. This correlation is almost the same for severe disasters and also for floods 

and storms, and earthquakes and volcanic eruptions (see Table 1 and discussions in Section 

2).  It is conceivable that 
P

iS does not have any direct effect on current volatility,
LR

iσ , but 

affects 
LR

iσ  only through iS . More specifically, after controlling for Xi, 
P

iS extracts the 

exogenous variations in the severity of iS  to obtain its consistent estimate ( β ). The first-stage 

regression is given by equation (2):  

P

i i iS Sφ η µ′= + + +iθ X .      (2) 

Equation (2) regresses the average number of natural disasters a country experienced during 

the 1990-2017 period ( iS ) on the average number of natural disasters experienced during the 

1900-1989 period (
P

iS ) and the vector of control variables Xi. In the second stage, equation 

(1) is estimated substituting iS  with its predicted value obtained in the first stage.  

 

4 Results 

4.1 Benchmark results  

                                                 
14  We alternatively use disaster probability and the frequency of natural disasters throughout the paper.  
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The OLS results for equation (1) are presented in the first eight columns in Table 2 for 

different combinations of the control variables. The standard errors are clustered at the 

regional level (only heteroskedascity-corrected robust standard errors are also reported in 

brackets). In Columns (1)-(5), iS  includes all recorded natural disasters irrespective of their 

severity. Column (1) is estimated without any control variables. Column (2) controls for the 

initial level of per capita real (log) GDP and the level of institutional development. Column 

(3) additionally controls for policy volatility. In all cases, the coefficient on iS is negative and 

statistically significant at the 10% level.  In column (4), country size as measured by land 

area (log) and initial population (log), and the share of agriculture in GDP are additionally 

controlled. Cols. 5 additionally includes the average number of deaths per disaster to account 

for the severity of natural disasters and a dummy indicating whether a country experienced 

any natural disaster during the sample period (this dummy is included in all subsequent 

regressions). The coefficient on iS is negative but statistically insignificant. Importantly, 

adding the average number of deaths per disaster as a proxy for the severity of natural 

disasters does not change either the magnitude or standard error of iS  .   

Insert Table 2 here 

In Columns (6)-(8), different levels of severity of iS  in terms of numbers of deaths are 

included—at least 10, 50 and 100, respectively. The coefficient on iS is now statistically 

significant except for at least 100 or more deaths. These results suggest that, once the 

intensity of natural disasters is accounted for, countries that experience more natural disasters 

have less volatile long-run growth. In column (9), we report the results estimated by the IV 

method using the frequency of natural disasters in the 1900-1989 period (
P

iS ) as the IV for iS . 

The result shows that a negative and statistically significant coefficient on iS .15 

Quantitatively, the volatility of LR growth is, on average, 4.9% lower in a country that has 

experienced one more natural disaster per year.  

                                                 
15 The F-statistic in the first-stage regressions is also large exceeding a cut-off value of 10 as recommended by 

Stock, Wright and Yogo (2002) suggesting that the instrument is highly relevant. The coefficient on 
P

iS in the 

reduced form regression ( ln LR P

i i iS eσ τ λ ′= + + +
iπ X ) is negative and statistically significant at the 5% 

level. 
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In our subsequent analyses, we account for the severity of natural disasters by employing IV 

estimation for the frequency of all natural disasters, and by employing OLS estimation for the 

frequency of natural disasters causing at least 10, 50 and 100 deaths. In the following, we 

first check robustness of our benchmark results in several different ways. 

 

4.2.1 Alternative definitions of the long-run (alternative periodicities / frequencies)  

We have defined the long-run at the zero frequency. This is consistent with the concept of the 

long-run in growth theory. However, in the business-cycle literature, the business cycle is 

usually defined at the periodicity of 2-8 years (periodicity is inversely related to the 

frequency as p = 2π/ω, where p and ω are periodicity and frequency, respectively), and the 

long-run is defined by the periodicity of 8+ years. Outside these two conventional definitions, 

Comin and Gertler (2006) and Comin, Loayza, Pasha and Serven (2014) use a non-standard 

definition of the long-run in terms of the periodicity of 50+ years (200+ quarters).16 We re-

estimate our benchmark IV regressions using these alternative definitions of the long-run. 

The results for the periodicity of 50+ and 8+ years are presented in Appendix Tables A.1 and 

A.2, respectively. The results are robust to the baseline results in Table 2. The coefficients on 

iS  are almost identical in the case of 50+ years of periodicity, although in the case of 8+ years 

of periodicity, the coefficient is significant only in the IV regression.17  

    

4.2.2 Alternative filtering methods 

We extracted the long-run growth component using the Baxter-King (1999) filter modified 

for the low-pass filtering. To see if the results are driven by our filtering method, we use the 

most commonly employed filtering method to extract the long-run component—the Hodrick-

Prescott (HP) (1997) filter. Note that the HP filter is used to isolate the business cycle 

frequencies in quarterly data. There is a substantial divergence between the HP and band-pass 

filters, and the choice of smoothing parameter is not clear when applying to annual data 

                                                 
16 These authors refer to the periodicities up to 50 years as the medium-term business cycle—periodicities up to 

8 years as the high-frequency component of the medium-term, and periodicities between 8 and 50 years as the 

medium-frequency component of the medium-term. 

 
17 The results (not reported) are strongly robust to the results in the quadratic specification reported in Table 4.  
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(Baxter and King 1999, Section V.C).18 With these caveats, we nonetheless apply the HP 

filter to first extract the business cycle frequencies and then recover the long-run (trend) 

component as the residual. The results, presented in Appendix Table A.3 are robust in terms 

of both the sign and statistical significance of the coefficient on iS ; however, the magnitudes 

are now much larger than those in the benchmark results.19  

 

4.2 Different disaster probabilities  

Countries vary in terms of disaster probability. Some countries had been tormented by natural 

disasters several times a year. The maximum frequency of natural disasters of any level of 

severity in our sample is 25.6; in contrast, a few countries did not experience natural disasters 

at all during this period.20 One valid concern might be whether our results are driven by these 

countries. To address this concern, we re-estimate using different combinations of sample 

countries selected based on their disaster probability: i) dropping 10% of sample countries 

with largest disaster probability (N= 164; max. iS =3.21), ii) dropping 25% of sample 

countries with largest disaster probability (N= 137; max. iS =1.86), iii) further dropping top 

50% of sample countries with largest disaster probability (N= 95; max. iS =0.82), iv) 

dropping the countries that did not experience any natural disaster (N= 176), v) dropping 

bottom 10% of countries with lowest disaster probability (N= 166; min. iS =0.14), and finally, 

vi) dropping 10% of both largest and smallest disaster probability (N= 148; max. iS =3.21 and 

min. iS =0.14).  

                                                 
18 We use 6.25 as recommended by Ravn and Uhlig (2002) for annual data. 

 
19 Unobserved Component Model is another alternative candidate for trend-cycle decomposition but this method 

relies on specific assumption about the data generating process. On the other hand, the Christiano-Fitzgerald 

(2003) band-pass filter is based on the assumption that the raw data follow a random walk. We therefore do not 

pursue these methods. Cochrane (1988) variance ratio, in our case, will be defined as the ratio of the variance of 

the long-difference to the variance of the first-difference of log GDP. The long-difference is another way of 

low-pass filtering. Therefore, our LR variance is similar to the numerator of the Cochrane variance ratio.  

 
20 The sample countries in order that experienced more than 10 natural disasters per year in the 1990-2017 

period are China, United States, Philippines, India and Indonesia. Bangladesh follows next with 7.07 natural 

disasters per year. On the other hand, Singapore, Qatar, Bahrain, Equatorial Guinea, Sao Tome and Principe and 

Malta did not experience any natural disaster in the above period. The sample countries in order that 

experienced the highest number of floods and storms per year are United States, China, Philippines, India and 

Bangladesh. The sample countries in order that experienced the highest number of earthquakes and volcanic 

activities per year are China, Indonesia, Iran, Japan and Philippines (also see Figure 1A). 
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Since our variable of interest is the frequency of all recorded natural disasters having impacts 

on the economy, regressions are estimated by the IV method to account for the severity of 

natural disasters. These results can be compared with that in column (9) in Table 2. In all 

cases, the results, presented in Table 3, are robust both in terms of the sign and significance 

of the coefficient on iS . However, an important pattern emerges when comparing the 

magnitudes of the coefficient on iS . When countries with lower disaster probability are 

excluded, the magnitudes in columns (4) and (5) are very close to that in the full sample 

(column (9) in Table 2). On the other hand, the magnitude increases 10 times when 10% of 

the sample countries with the largest disaster probability are excluded (column (1)). The 

magnitude further increases several times when 25% and 50% of the sample countries with 

the largest disaster probability are excluded (columns (2) and (3)). This pattern suggests an 

important non-linearity in the effect of the frequency of natural disasters in that the effect on 

volatility persistence is less for countries with higher disaster probabilities.  

Insert Table 3 here 

 

4.3 Non-linear effects 

To test the non-linearity of the effects of natural disasters, we augment equation (2) by the 

square of the average number of natural disasters per year (
2

iS ). The specification is written 

as: 

2

1 2ln LR

i i i iS Sσ α β β ε′= + + + +
iδ X .     (3) 

 

The results are presented in Table 4. Column (1) reports the IV result for the frequency of all 

natural disasters. Given that both iS and 
2

iS are now endogenous, our additional IV is the 

square of
P

iS . Columns (2)-(4) report the OLS results for the frequency of natural disasters 

causing at least 10, 50 and 100 deaths, respectively.  

The coefficients on iS are negative and those on 
2

iS are positive and both are significant at 

least at the 5% level. This suggests a non-linear effect of natural disasters on LR volatility—

as the frequency of natural disasters increases, LR volatility first decreases and then 



16 

 

increases.21 The critical frequency of natural disasters per year for which the LR volatility 

reaches its minimum is calculated as ( 1 2/ 2β β− ). In the IV estimation, the critical frequency 

is 12.8 in the case of all natural disasters, which is close to the one for at least 10 deaths 

(11.6). This critical frequency declines as the severity of natural disasters increases—6.4 and 

5.2 for the frequency of natural disasters causing at least 50 and 100 deaths, respectively. 

However, the marginal effect of the frequency of natural disasters on the LR volatility is not 

statistically significant at all ranges of the frequency. Figures 2A-2D display the marginal 

effects with 95% confidence intervals for different severity of natural disasters. In the cases 

of natural disasters causing at least 10, 50 and 100 deaths, the marginal effect is significant 

when it is negative at lower frequency of natural disasters—up to 9, 4.5 and 3.5 per year 

causing at least 10, 50 and 100 deaths, respectively.22    

 

Insert Table 4 and Figures 2A-2D 

 

4.4 Frequent vs. infrequent natural disasters 

We have found that countries experiencing natural disasters more frequently have lower LR 

volatility, and also an important non-linearity in the effect. However, some types of natural 

disasters are more frequent than others and these also differ in terms of their predictability. 

To gain further support of our results, we classify all natural disasters into two groups—the 

ones that are more frequent and can also be forecasted in advance allowing precautions to be 

undertaken and have a relatively long onset, and the ones that are less frequent, unpredictable 

and have a relatively fast onset (Skidmore and Toya, 2002; Raddatz, 2007). We include 

floods and storms in the first category, and earthquakes and volcanic activities in the second 

                                                 
21 So far, all our results are based on cross-section regressions. To check if our results are robust in panel data, 

we divide the sample period into two equal intervals—1990-2003 and 2004-2017—and calculate LR volatility 

and average of the control variables for each interval. Both the linear and non-linear results estimated by the FE 

method, presented in Appendix Table A.4, are strongly robust to the results presented in Tables 2 and 4. We do 

not pursue this approach further since data for some control variables are not available for longer periods, so the 

averages for the first interval (1993-2003) are based on fewer number of years. It is important to note that the 

results (not reported) are also strongly robust for each interval separately. 

 
22 Note that there are relatively small number of countries in the sample that experienced natural disasters too 

frequently. This may be the reason for the insignificance of the marginal effects at the higher frequencies of 

natural disasters.  
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category. We expect that the first category of natural disasters will lower LR volatility, while 

the second category will have no effect.  

Insert Table 5 here 

 

Both the OLS and IV results are presented in Table 5. Columns (1) and (2) present the OLS 

results for the linear and quadratic specifications, respectively. The same results for the IV 

estimation are presented in columns (3) and (4), respectively. In the linear specification, the 

coefficient on the frequency of floods and storms is negative and insignificant in OLS 

estimation but significant in IV estimation, which are also similar to the results in the case of 

all natural disasters. In addition, a similar non-linear pattern in the effect on volatility 

persistence is also apparent for the frequency of floods and storms. The LR volatility initially 

decreases and then increases with the frequency of floods and storms with a critical frequency 

of 10.1 per year in the IV estimation. On the other hand, there is no effect of earthquakes and 

volcanic activities both in the linear and quadratic specifications.   

   

4.5 Do natural disasters change the long-run growth trajectory? 

LR volatility can be lower if either output losses from natural disasters are lower and/or post-

disaster economic recovery is quicker. There can be another possibility in which frequent 

natural disasters permanently lower the long-run growth trajectory around which the growth 

rate remains stable.23 In such a scenario, LR volatility will also be lower. However, this 

investigation requires constructing an appropriate counterfactual trajectory that output would 

have followed without natural disasters. This exercise is beyond the scope of the current 

paper, and we, therefore, draw on past research instead. One influential study is Cavallo, 

Galiani, Noy and Pantano (2013) that employed an innovative approach. These authors 

constructed a counterfactual for each affected country from a group of countries that had the 

same secular trends in GDP and would have the same secular behavior in the absence of 

                                                 
23 In endogenous growth models with aggregate capital externality that exploit increasing returns to capital, 

destruction of capital leads to permanent deviation from the previous balanced growth path to a new one 

characterized by a lower growth rate. Note that different variants of growth models, such as models based on 

exogenous technological change or creative destruction, have different predictions about the balanced growth 

path (see, Appendix Table 1 in Botzen, Wouter and Sanders, 2019). We do not stress on this issue since our 

objective is not to test predictions of different growth models. 
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natural disasters. They studied the impact of large natural disasters and documented that 

natural disasters do not change the long-run growth trajectory of a country (two exceptions 

are Iran and Nicaragua where radical political revolutions followed the disasters.).24 

 

5. Role of resilience  

The channels through which the impact of natural disasters on volatility is mediated is 

difficult to understand without an economic theory. We do not intend to develop a formal 

model here but in the following, we argue for disaster resilience as a dampening factor that 

minimizes the effect of natural disasters and/or helps quickly recover from destruction in the 

post-disaster period.  

To define disaster resilience, we follow the United Nations International Strategy for Disaster 

Risk Reduction (UNISDR): “The capacity of a system, community or society potentially 

exposed to hazards to adapt, by resisting or changing in order to reach and maintain an 

acceptable level of functioning and structure. This is determined by the degree to which the 

social system is capable of organizing itself to increase this capacity for learning from past 

disasters for better future protection and to improve risk reduction measures” (UNISDR, 

2005).25  

IMF (2019b) categorized resilience in three categories: structural, financial and post-disaster 

resilience.26 Structural resilience is created through appropriately chosen and prioritized 

investments that limit the impact of disasters that include upgrading infrastructure, 

developing irrigation systems, developing early warning systems, customizing building codes 

and zoning rules. A prime example is Bangladesh where far fewer people (3,000) were killed 

by a cyclone in 2008 than by a similar one in 1970 which killed almost half a million people 

(Ashdown, 2011). Financial resilience entails the use of fiscal buffers and pre-arranged 

financial instruments to manage funds for recovery in the aftermath of a disaster. In the 

absence of financial resilience, financing post-disaster recovery becomes more difficult 

                                                 
24 Hsiang and Jina (2014) find negative and persistent effects of tropical cyclones; however, losses are 

magnified in countries with less historical cyclone experience, which is consistent with our findings. 

 
25 Similar definitions are also given by Manyena (2006) and DFID (2011). For a nice review of the concept of 

resilience and its measurement, see Rose and Krausmann (2013) and Rose (2016).  

26 Resilience has also been categorized in different alternative ways such as inherent vs. adaptive, and static vs. 

dynamic (see Rose, 2016). 
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because credit-worthiness is also adversely affected in the post-disaster period. Mexico’s 

indexed disaster fund (Fonden) is a prime example of the creation of financial resilience that 

has been proven to be very effective to accelerate economic recovery after a disaster (del 

Valle, Janvry and Sadoulet, 2020). Post-disaster resilience entails the ability to respond by 

rapidly mobilizing physical and financial resources to limit disruptions to public services 

such as utilities, medical services, schools, law and order, and critical financial services. This 

also includes countercyclical fiscal spending to mitigate the indirect economic damages and 

facilitate recovery. Therefore, development of resilience reduces the need for, and cost of, 

financial protection and ex-post assistance (IMF, 2019b). 

The capacity for learning, termed as adaptive capacity by Manyena (2006), also develops 

intrinsically among the population. There is ample anecdotal evidence. For example, 

communities in the Zambezi Valley of Zimbabwe have adapted to drought spells experienced 

during the rainy season by switching from production of traditional maize to “nzembwe”, a 

drought-resistant type of millet (Manyena, 2006).  

Testing the relationship between the frequency of natural disasters and disaster resilience at 

the macroeconomic level is a daunting challenge as an aggregate measure of disaster 

resilience at the cross-country level is very difficult to conceptualize and construct.27 In the 

absence of counterfactuals, it is also not possible to measure the amount of 

damage/destruction avoided due to increased resilience, and also the speed of recovery.28 

Given this difficulty, we investigate the role of the factors that create resilience. We consider 

proxies for factors that create each of the structural, financial and post-disaster resilience, and 

alternatively include these variables in our regression. If inclusion of any of this variable 

makes the coefficient on the frequency of natural disaster insignificant and also its own 

coefficient becomes significant, we can infer this as a channel (mediator) through which 

natural disasters affect LR volatility. The proxy for structural resilience is government gross 

fixed capital formation (GGFCF) as a share of GDP (Ig/Y), the proxy for financial resilience 

is financial development measured as the ratio of private credit to GDP, and the proxies for 

                                                 
27 Rose and and Krausmann (2013) summarize different resilience indices employed in the literature. The 

macroeconomic indices (that can be compared across countries) comprise the variables that are mostly captured 

by economic development of a country, which we control in our regression.   

 
28 Few studies attempted to calculate the counterfactual but at the specific incident level; for example, 

counterfactual business interruptions in the context of 9/11 terrorist attack by Rose, Oladosu, Lee and Asay 

(2009), and the same from a nine-month closure of a major US seaport by Rose and Wei (2013). 
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post-disaster resilience are government consumption expenditure as a share of GDP, and the 

ratio of foreign aid (net official development assistance and official aid) to GDP.  

Insert Tables 6 and 7 here 

The results are presented in Table 6.29 Note that Ig/Y is also endogenous, and the source of 

endogeneity is measurement errors because Ig/Y is a proxy for government’s prioritized 

investment on areas such as critical infrastructure and early warning system that creates 

resilience. Assuming that in disaster-prone countries’ governments invested more in critical 

infrastructure (documented in Table 8),30 the frequency of natural disasters in the 1900-1989 

period (
P

iS ) is also a candidate for valid instrument for Ig/Y. We need a second instrument as 

both Ig/Y and iS are now treated as endogenous. Therefore, we use squared 
P

iS as the second 

instrument.31 This result is presented in column (1). The coefficient on iS is insignificant 

with a positive sign. If we re-estimate this specification without instrumenting Ig/Y, the 

previous result also holds (the coefficient on iS is insignificant but now it is negative); 

however, the coefficient on Ig/Y increases by more than six-folds from -33.1 to -4.97, which 

suggests considerable measurement errors in Ig/Y as measurement errors bias a coefficient 

towards zero.32  

In contrast, in the specifications that include government expenditure, financial development 

or foreign aid as a potential mediator variable, the sign, magnitude and statistical significance 

of the coefficient on iS remains robust (both in terms of magnitude and significance) and the 

                                                 
29 Note that sample size differs across specifications after including these mediator variables. In each of the 

specifications, the results are robust if regression is run excluding the mediator variables but restricting the 

sample to the same countries except in the case of foreign aid (columns 2a-5a). These results, including the one 

with foreign aid, also hold if the quadratic specification is estimated (not reported).  

 
30 There is anecdotal evidence that fraction of Ig/Y is quite large for countries experiencing frequent natural 

disasters. For example, in Dominica, about half of the public investment since Hurricane Maria in 2017 has 

been allocated for disaster-resilient projects (IMF, 2019). 

 
31 Some papers suggest to use a single instrument that jointly affects the treatment and the mediator but 

identification holds under particular structural restrictions (Frölich and Huber, 2017). We therefore do not 

follow this approach.  

 

32 Since the marginal effect of iS is significant only when it is negative, we do not estimate a quadratic 

speciation. In addition, endogeneity of Ig/Y cannot be addressed in such as a specification because of the lack of 

enough instruments. 
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coefficients on these mediator variables are insignificant which rules out their role as a 

mediating factor (columns 2-5).  

It may be likely that when countries experience natural disasters too frequently, resilience 

may not work and therefore Ig/Y may not mediate the effects of natural disasters. To 

investigate such a possibility, we divide the sample countries in two groups—below and 

above the median value of the frequency. The results are presented in Table 7. We find that 

for countries below the median value of the frequency, the coefficient on Ig/Y is negative and 

statistically significant; the coefficient on iS decreases in (absolute) magnitude although 

remains statistically significant (which suggests partial mediation). On the contrary, for 

countries above the median value of the frequency, the coefficient on Ig/Y is statistically 

insignificant (and positive), and also the coefficient on iS  remains unchanged both in terms 

of its magnitude and standard error.   

  

Insert Table 8 and Figures 3A-3D here 

To further explore the relationship between the frequency of natural disasters and Ig/Y, we 

regress Ig/Y on the frequency of natural disasters ( iS ) and the variables in Xi defined in 

Section-3. The results, presented in Table 8, show that the coefficients on iS are positive and 

significant, and robust for all levels of severity of natural disasters. The predicted values of 

Ig/Y are plotted in Figures 3A-3D from estimation of a quadratic specification augmented by 

the square of iS . For natural disasters of all levels of severity, the predicted values secularly 

increase with iS . These results further corroborate the role of the structural resilience.       

 

6. Concluding remarks 

In this paper, we investigate the relationship between the frequency of shocks and volatility 

persistence, which is also referred to as long-run (LR) volatility. In our empirical analyses, 

we consider natural disasters as exogenous shocks. We find that, on average, LR volatility is 

4.9% lower in a country that has experienced one more natural disasters per year of any level 

of severity. We also observe a non-linear effect—LR volatility initially decreases with the 

frequency of natural disasters but increases in countries that experience natural disasters very 
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frequently but the marginal effects are significant in the range of frequencies at which LR 

volatility is decreasing. 

We argue that countries that experience natural disasters frequently will develop resilience 

that shields the economy from the destruction of natural disasters and/or expedites economic 

recovery (we cannot disentangle these two effects). Therefore, the output level will rapidly 

revert to the trend, which in turn implies lower persistence of volatility. Given the difficulty 

in quantifying disaster resilience, we investigate the factors that create resilience as possible 

mediating factors. We find that only the structural component among the possible factors that 

create resilience is important. More specifically, this is government gross fixed capital 

formation invested in prioritized areas such as, among others, upgrading critical infrastructure 

and developing early warning systems. This type of investment acts like an insurance for the 

citizens and the economy especially in developing countries where the private insurance 

market is incomplete or absent. But when countries experience natural disasters too 

frequently, resilience may not be sufficient to reduce volatility persistence. 

We have considered only natural disasters and narrowly defined welfare in terms of volatility 

persistence. It is yet to be known if our results can be replicated for different types of shocks, 

such as epidemics, and terms-of-trade or other macroeconomic shocks, to have an impact on 

many other dimensions of development. Although there is a large literature relating 

macroeconomic and other exogenous shocks to volatility, there is no study exploring the 

effect of the frequency of shocks and how that creates resilience. Our results have also 

important implications for the global Covid-19 pandemic. Pindyck and Wang (2013) 

calculated very large welfare costs of a catastrophic event such as “a highly contagious 

megavirus that spreads uncontrollably.” Rates of infection and deaths from the Covid-19 

greatly vary across countries even after controlling for factors including measures undertaken 

to contain the spread of the virus (and reporting errors). It would be interesting to see how 

such variations across countries are related to the frequency of epidemic and prevalence of 

infectious diseases in the past that have created disease resilience among the population in 

different parts of the world. 

  



23 

 

References 

Aguiar, Mark and Gita Gopinath (2007), “Emerging Market Business Cycles: The Cycle is 

the Trend,” Journal of Political Economy, 115 (1), 69–102.  

 

Anbarci, Nejat, Monica Escaleras and Charles A. Register (2005), “Earthquake Fatalities: 

The Interaction of Nature and Political Economy,” Journal of Public Economics, 89 (9–10), 

1907-1933. 

 

Ascari, Guido and Argia M. Sbordone (2014), “The Macroeconomic of Trend Inflation,” 

Journal of Economic Literature, 52 (3), 679–739. 

 

Ashdown, Paddy (2011), “Humanitarian Emergency Response Review,” UK Government, 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/67579/HERR.

pdf (accessed on October 18, 2020). 

 

Barro, Robert J. (2006), “Rare Disasters and Asset Markets in the Twentieth Century,” 

Quarterly Journal of Economics, 121 (3), 823-866. 

 

Barro, Robert J. (2009), “Rare Disasters, Asset Prices, and Welfare Costs,” American 

Economic Review, 99 (1), 243–264. 

 

Baxter, Marianne and Robert G. King (1999), “Measuring Business Cycles: Approximate 

Band-Pass Filters for Economic Time Series,” Review of Economics and Statistics, 81 (4), 

575–93. 

 

Besley, Timothy and Robin Burgess (2002), “The Political Economy of Government 

Responsiveness: Theory and Evidence from India,” Quarterly Journal of Economics, 117 (4), 

1415–1451. 

 

Bloom, David E. and Tarun Khanna (2007), “The Urban Revolution,” Finance & 

Development: A Quarterly Magazine of the IMF, 44 (3), 9-14. 

 



24 

 

Botzen, W. J. Wouter, Olivier Deschenes and Mark Sanders (2019), “The Economic Impacts 

of Natural Disasters: A Review of Models and Empirical Studies,” Review of Environmental 

Economics and Policy, 13 (2, Summer), 167–188. 

 

Cantelmo, Alessandro, Giovanni Melina and Chris Papageorgiou (2019), “Macroeconomic 

Outcomes in Disaster-Prone Countries,” IMF Working Paper No. 217, International 

Monetary Fund, Washington D. C. 

 

Carlin, Ryan E., Gregory J. Love and Elizabeth J. Zechmeister (2014) “Natural Disaster and 

Democratic Legitimacy: The Public Opinion Consequences of Chile's 2010 Earthquake and 

Tsunami,” Political Research Quarterly, 67 (1), 3-15. 

 

Cavallo, Eduardo and Ilan Noy (2011), “Natural Disasters and the Economy: A Survey,” 

International Review of Environmental and Resource Economics, 5 (1), 63–102. 

 

Cavallo, Eduardo, Sebastian Galiani, Ilan Noy, and Juan Pantano (2013), “Catastrophic 

Natural Disasters and Economic Growth,” Review of Economics and Statistics, 95 (5), 1549–

1561. 

 

Chirinko, Robert S. and Debdulal Mallick (2017), “The Substitution Elasticity, Factor Shares, 

and the Low-Frequency Panel Model,” American Economic Journal: Macroeconomics, 9 (4), 

225–253. 

 

Christiano, Lawrence J. and Terry J. Fitzgerald (2003), “The Band Pass Filter,” International 

Economic Review, 44 (2), 435–65. 

 

Cochrane, John H. (1988), “How Big is the Random Walk in GNP?” Journal of Political 

Economy, 96 (5), 893–920. 

 

Comin, Diego A. and Mark Gertler (2006), “Medium-term Business Cycles,” American 

Economic Review, 96 (3), 523–551.  

 



25 

 

Comin, Diego A., Norman Loayza, Farooq Pasha and Luis Serven (2014), “Medium Term 

Business Cycles in Developing Countries,” American Economic Journal: Macroeconomics, 6 

(4), 209–245. 

 

del Valle, Alejandro, Alain de Janvry and Elisabeth Sadoulet (2020), “Rules for Recovery: 

Impact of Indexed Disaster Funds on Shock Coping in Mexico,” American Economic 

Journal: Applied Economics, 12 (4, October), 164–195. 

 

DFID (2011), “Defining Disaster Resilience: A DFID Approach Paper,” Department of 

International Development, UK Government. 

(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat

a/file/186874/defining-disaster-resilience-approach-paper.pdf; accessed on October 8, 2020). 

 

Escaleras, Monica, Nejat Anbarci and Charles A. Register (2007), “Public Sector Corruption 

and Major Earthquakes: A Potentially Deadly Interaction,” Public Choice, 132 (1-2), 209–

230. 

 

EM-DAT: https://public.emdat.be/about (access on April 23, 2020). 

 

FAO (2015), “The Impact of Natural Hazards and Disasters on Agriculture and Food Security 

and Nutrition: A Call for Action to Build Resilient Livelihoods,” Food and Agricultural 

Organization of the United Nations, http://www.fao.org/3/a-i4434e.pdf (accessed on 

November 9, 2020). 

 

Fatás, Antonio and Ilian Mihov (2013), “Policy Volatility, Institutions, and Economic 

Growth,” Review of Economics and Statistics, 95 (2), 362–376. 

 

Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), “The Next Generation of 

the Penn World Table,” American Economic Review, 105 (10), 3150-3182. 

 

Frölich, Markus and Martin Huber (2017), “Direct and indirect treatment effects–causal 

chains and mediation analysis with instrumental variables,” Journal of the Royal Statistical 

Society (Series B), 79 (Part 5), 1645–1666. 

 



26 

 

Gabaix, Xavier (2012), “Variable Rare Disasters: An Exactly Solved Framework for Ten 

Puzzles in Macro-Finance,” Quarterly Journal of Economics, 127 (2), 645–700. 

 

Gaiha, Raghav, Kenneth Hill, Ganesh Thapa and Varsha S. Kulkarni (2015), “Have Natural 

Disasters Become Deadlier?” in Sustainable Economic Development: Resources, 

Environment and Institutions, Edited by Arsenio M. Balisacan, Ujjayant Chakravorty and 

Majah-Leah V. Ravago, Chapter 23, Pages 415-444, Academic Press, USA.  

 

Hodrick, Robert J. and Edward C. Prescott (1997), “Postwar U.S. Business Cycles: An 

Empirical 

Investigation,” Journal of Money, Credit and Banking, 29 (1), 1–16. 

 

Hsiang, Solomon M. and Daiju Narita (2012), “Adaptation to Cyclone Risk: Evidence from 

the Global Cross-Section,” Climate Change Economics, 3 (2), 1-28. 

 

Hsiang, Solomon M. and Amir S. Jina (2014), “The Causal Effect of Environmental 

Catastrophe on Long-Run Economic Growth: Evidence from 6,700 Cyclones,” NBER 

Working Paper No. 20352, National Bureau of Economic Research, Cambridge, MA. 

 

IMF (2019a), “Investment and Capital Stock Dataset, 1960-2017 (Version: August 2019),” 

International Monetary Fund, Fiscal Affairs Division.  

http://www.imf.org/external/np/fad/publicinvestment/data/data080219.xlsx (accessed on July 

11 2020) 

 

IMF (2019b), “Building Resilience in Developing Countries Vulnerable to Large Natural 

Disasters,” IMF Policy Paper, International Monetary Fund, Washington D.C. 

 

Kahn, Matthew E. (2005), “The Death Toll from Natural Disasters: The Role of Income, 

Geography, and Institutions,” Review of Economics and Statistics, 87 (2), 271-284. 

 

Kellenberg, Derek K. and Ahmed M. Mobarak (2008), “Does Rising Income Increase or 

Decrease Damage Risk from Natural Disasters,” Journal of Urban Economics, 63 (3), 788–

802. 

 



27 

 

Klomp, Jeroen and Kay Valckx (2014), “Natural Disasters and Economic Growth: A Meta-

analysis,” Global Environmental Change, 26 (1), 183–95. 

 

Klomp, Jeroen (2020), “Election or Disaster Support?” Journal of Development Studies, 56 

(1), 205-220. 

 

Kousky, Carolyn (2014), “Informing Climate Adaptation: A Review of the Economic Costs 

of Natural Disasters,” Energy Economics, 46 (November), 576-592. 

 

Lazzaroni, Sara and Peter A.G. van Bergeijk (2014), “Natural Disasters’ Impact, Factors of 

Resilience and Development: A Meta-Analysis of the Macroeconomic Literature,” 

Ecological Economics, 107 (November), 333-346. 

 

Levy, Daniel and Hashem Dezhbakhsh (2003), “International Evidence on Output 

Fluctuation and Shock Persistence,” Journal of Monetary Economics, 50 (7), 1499–1530. 

 

Mallick, Debdulal (2014), “Financial Development, Shocks, and Growth Volatility,” 

Macroeconomic Dynamics, 18 (3), 651-688. 

 

Mallick, Debdulal (2019), “The Growth-Volatility Relationship Redux: What Does Volatility 

Decomposition Tell?” The B.E. Journal of Macroeconomics (Contributions), 19 (2), 1-20.  

 

Manyena, Siambabala Bernard (2006), “The Concept of Resilience Revisited,” Disasters, 30 

(4), 433−450. 

 

Müller, Ulrich K. and Mark W. Watson (2017), “Low-Frequency Econometrics,” In 

Advances in Economics and Econometrics: Eleventh World Congress of the Econometric 

Society, Volume II, edited by Bo Honoré, Ariel Pakes, Monika Piazzesi, and Larry 

Samuelson, Chapter 3, 53–94, Cambridge: Cambridge University Press. 

 

Noy, Ilan (2009), “The Macroeconomic Consequences of Disasters,” Journal of Development 

Economics, 88 (2), 221-231. 

 



28 

 

Penn World Table 9.1: https://www.rug.nl/ggdc/productivity/pwt/ (accessed on December 12, 

2019).  

 

Pindyck, Robert S. and Neng Wang (2013), “The Economic and Policy Consequences of 

Catastrophes,” American Economic Journal: Economic Policy, 5 (4), 306–339. 

 

Raddatz, Claudio (2007), “Are External Shocks Responsible for The Instability of Output in 

Low-Income Countries?” Journal of Development Economics, 84 (1), 155–187. 

 

Raschky, Paul A. (2008), “Institutions and the Losses from Natural Disasters,” Natural 

Hazards and Earth System Sciences, 8, 627–634. 

 

Ravn, Morten O. and Harald Uhlig (2002), “On Adjusting the Hodrick-Prescott Filter for the 

Frequency of Observations,” Review of Economics and Statistics, 84 (2), 371–376. 

 

Rose, Adam Z., Gbadebo Oladosu, Bumsoo Lee and Garrett B. Asay (2009), “The Economic 

Impacts of the 2001 Terrorist Attacks on the World Trade Center: A Computable General 

Equilibrium Analysis,” Peace Economics, Peace Science, and Public Policy, 15 (2), Article 

4.  

 

Rose, Adam Z. and Dan Wei (2013). “Estimating the Economic Consequences of a Port 

Shutdown: The Special Role of Resilience,” Economic Systems Research, 25 (2), 212-232. 

 

Rose, Adam Z. and Elisabeth Krausmann (2013), “An Economic Framework for the 

Development of a Resilience Index for Business Recovery,” International Journal of 

Disaster Risk Reduction, 5 (September) 73–83. 

 

Rose, Adam Z. (2016), “Measuring Economic Resilience to Disasters: An Overview,” IRGC 

Resource Guide on Resilience Risk Governance, International Risk Governance Center, 

Lausanne, Switzerland. 

 

Skidmore, Mark and Hideki Toya (2002), “Do Natural Disasters Promote Long-Run 

Growth?” Economic Inquiry, 40 (4), 664–687. 

 



29 

 

Stock, James. H., Jonathan H. Wright, and Motohiro Yogo (2002), “A Survey of Weak 

Instruments and Weak Identification in Generalized Method of Moments,” Journal of 

Business and Economic Statistics, 20 (4), 518–29. 

 

United Nations International Strategy for Disaster Risk Reduction (UNISDR) (2005), 

“Hyogo Framework for Action 2005-2015: Building the Resilience of Nations and 

Communities to Disasters,” World Conference on Disaster Reduction, 18-22 January 2005, 

Kobe, Hyogo, Japan. https://www.unisdr.org/2005/wcdr/intergover/official-doc/L-

docs/Hyogo-framework-for-action-english.pdf (accessed on October 8, 2020) 

 

UNISDR (2013), “From Shared Risk to Shared Value-The Business Case for Disaster Risk 

Reduction,” Global Assessment Report on Disaster Risk Reduction, United Nations Office 

for Disaster Risk Reduction, Geneva, Switzerland. 

 

Worldwide Governance Indicators (WGI) (2019): http://info.worldbank.org/governance/wgi/ 

(accessed on August 6, 2020)   

 

World Development Indicators: The World Bank, 

https://databank.worldbank.org/source/world- development-indicators (accessed on 

November 4, 2020).  

 

Yamamura, Eiji (2014), “Impact of natural disaster on public sector corruption,” Public 

Choice, 161 (3/4), 385–405. 

  



30 

 

 

Tables 

Table 1: Descriptive Statistics (N = 182)  

 
Number of Natural 

Disasters per year 

Mean (St. Dev.) Median  [Min,  Max] Skewness Corr. between (1900-

1989) and (1990-

2017) periods  

 1990-2017 Period    

Any Intensity  1.697 (3.193) 0.821 [0,  25.643] 5.177 0.894 

Causing at least 10 deaths  1.215 (2.417) 0.536 [0,  20.821] 5.258 0.881 

Causing at least 50 deaths 0.757 (1.321) 0.429 [0,  10.786] 5.029 0.895 

Causing at least 100 deaths 0.659 (1.078) 0.393 [0,  8.536] 5.043 0.870 

      

Flood and Strom (any 

intensity) 

1.201 (2.355) 0.571 [0,  19.857] 5.390 0.901 

Earthquake and Volcanic 

eruption (any intensity) 

0.165 (0.492) 0.036 [0,  4.393] 6.013 0.893 

Volatility of trend real GDP 

growth rate (log) at 0-freq. 

0.388 (0.692) 0.301 [-1.224,  2.371] 0.412  

      

 1900-1989 Period   

Any Intensity  0.224 (0.464) 0.078 [0,  3.378] 4.065  

Causing at least 10 deaths  0.198 (0.424) 0.067 [0,  3.067] 4.194  

Causing at least 50 deaths 0.145 (0.305) 0.044 [0,  2.056] 4.170  

Causing at least 100 deaths 0.122 (0.247) 0.044 [0,  1.678] 4.071  

      

Flood and Strom (any 

intensity) 

0.137 (0.334) 0.033   [0,  2.789] 5.132  

Earthquake and Volcanic 

eruption (any intensity) 

0.044 (0.129) 0 [0,  0.856] 4.358  

      

 

  



31 

 

Table 2: Effect of the frequency of natural disasters on the (log) LR volatility.   

 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 OLS IV 

 All Natural disasters causing at least All 

      10 deaths 50 deaths 100 deaths  

          

iS  
-0.047 -0.048 -0.031 -0.029 -0.029 -0.040 -0.063 -0.064 -0.049 

 (0.017)** (0.017)** (0.016)* (0.018) (0.017) (0.022)* (0.035)* (0.041) (0.027)* 

 [0.016]*** [0.015]*** [0.013]** [0.014]** [0.014]** [0.017]** [0.030]** [0.038]** [0.022] ** 

          

R2   0.048 0.156 0.253 0.264 0.267 0.266 0.262 0.259  

N 182 182 182 182 182 182 182 182 182 

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1. All regressions include a constant. iS  = 

Average number of natural disasters per year in the 1990-2017 period. 

Col. 1 does not include any control variable; Col. 2 includes (log) initial per capita GDP and institution. 

Col. 3 includes (log) initial per capita GDP, policy volatility and institution. Col. 4 includes for (log) initial GDP 

per capita, policy volatility, institution, (log) population, (log) land area in sq. km. and share of agricultural 

value-added in GDP. Cols. 5-9 additionally include a dummy (0=no natural disaster; 1 = otherwise). Cols. 5 

additionally includes average number of deaths per disaster.  

The instruments is 
P

iS (average number of natural disasters per year in the 1900-1989 period). First-stage 

regression for col. 9 (coefficient on
P

iS ): 5.749 (0.580) [0.786], F = 98.42 [53.57]. Reduced-form regression for 

col. 9 (coefficient on
P

iS ): -0.284 (0.141) [0.110].   
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Table 3 (IV Regressions): Effect of the frequency of natural disasters on the (log) LR 

volatility (for different sample distribution of the frequency). 

 
 (1) (2) (3) (4) (5) (6) 

 Dropping 

largest 10%  

Dropping 

largest 25%  

Dropping 

largest 50% 

Dropping 

without any 

natural 

disasters 

Dropping 

smallest 10% 

Dropping 

largest 10% 

and smallest 

10% 

       

 A: Second-stage regressions 

iS  -0.416 -0.995 -2.809 -0.052 -0.050 -0.450 

 (0.098)*** (0.475)** (1.496)* (0.026)** (0.026)* (0.098)*** 

 [0.125]*** [0.242]*** [1.285]** [0.023]** [0.023]** [0.135]*** 

       

N 164 137 95 176 166 148 

       

 B: First-stage regressions 
P

iS  2.078 1.227 1.715 5.750 5.733 1.976 

 (0.704)*** (0.557)** (0.554)*** (0.581)*** (0.587)*** (0.685)*** 

 [0.696]*** [0.690]* [0.543]*** [0.784]*** [0.785]*** [0.670]*** 

       

F-statistic 8.710 

[8.905] 

4.846 

[3.159] 

9.567 

[9.956] 

97.866 

[53.74] 

95.496 

[53.272] 

8.331 [8.694] 

       

 C: Reduced-form regressions 
P

iS  -0.865 -1.221 -4.817 -0.298 -0.285 -0.890 

 (0.377)** (0.917) (1.971)** (0.136)** (0.137)** (0.360)** 

 [0.373]** [0.709]* [1.582]*** [0.114]** [0.113]** [0.377]** 

       

R2   0.262 0.289 0.346 0.257 0.256 0.243 

       
Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1. All regressions include (log) initial GDP per 

capita, policy volatility, institution, (log) population, (log) land area in sq. km., share of agricultural value-added 

in GDP and a constant. Cols. 1-3 additionally include a dummy (0=no natural disaster; 1 = otherwise). iS  = 

Average number of natural disasters per year in the 1990-2017 period.
P

iS = Average number of natural disasters 

per year in the 1900-1989 period. The instruments is
P

iS . 

Col. 1: Maximum number of natural disasters per year experienced by a country is 3.214286. 

Col. 2: Maximum number of natural disasters per year experienced by a country is 1.857143. 

Col. 3: Maximum number of natural disasters per year experienced by a country is 0.8214286. 

Col. 4: Minimum number of natural disasters per year experienced by a country is 0.1428571.  

Col. 6: Number of natural disasters per year experienced by a country is between 3.214286 and 0.1428571. 

 
 

 

  



33 

 

 

Table 4: Non-linear effect of the frequency of natural disasters on the (log) LR volatility.  

 
 (1) (2) (3) (4) 

 IV OLS 

  Natural disasters causing at least 

 All 10 deaths 50 deaths 100 deaths 

     

iS  
-0.283 -0.154 -0.224 -0.238 

 (0.103)*** (0.063)** (0.100)** (0.107)** 

 [0.082]*** [0.062]** [0.125]* [0.150] 

Squared iS  
0.011 0.007 0.018 0.023 

 (0.004)*** (0.003)* (0.009)* (0.011)* 

 [0.003]*** [0.003]** [0.011] [0.016] 

Critical no. of iS  
12.797 11.578 6.387 5.234 

 (0.821)*** (1.509)*** (0.884)*** (0.649)*** 

 [0.969]*** [1.531]*** [0.953]*** [0.666]*** 

     

Kleibergen-Paap rk LM statistic (p-value) 0.036 [0.013]    

Kleibergen-Paap rk Wald F statisticϮ 22.854 [22.413]    

R2    0.282 0.272 0.267 

N 182 182 182 182 

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1.  All regressions include (log) initial GDP per 

capita, policy volatility, institution, (log) population, (log) land area in sq. km., share of agricultural value-added 

in GDP, a dummy (0=no natural disaster; 1 = otherwise) and a constant. Cols. 1 additionally includes average 

number of deaths per disaster. 

The estimating equation: 
2

1 2ln LR

i i i iS Sσ α β β ε′= + + + +
iδ X . Critical no. of iS is calculated as 

1 2/ 2β β− (where 1β is the coefficient on iS  and 2β  is the coefficient on squared iS ), and its standard error is 

calculated by the delta method. The instruments are 
P

iS (average number of natural disasters per year in the 

1900-1989 period) and its square. 
Ϯ Stock-Yogo weak ID test critical values: 10% maximal IV size = 7.03. 
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Table 5: Effect of the frequency of natural disasters on the (log) LR volatility: Comparing 

frequent and infrequent natural disasters.  

 
 (1) (2) (3) (4) 

 OLS IV 

     

Floods and Storms -0.058 (0.038) -0.276 (0.089)** -0.070 (0.041)* -0.398 (0.124)*** 

 [0.031]* [0.058]*** [0.036]** [0.086]*** 

Squared Floods and 

Storms 

 0.012 (0.004)**  0.020 (0.006)*** 

  (0.003)***  (0.005)*** 

Critical no. of Floods 

and Storms 

 11.200 (0.403)***   10.121 (0.868)*** 

  [0.568]***  [0.882]*** 

     

Earthq. and Volc. 0.107 (0.098) 0.197 (0.321) 0.083 (0.094) -0.105 (0.327)  

 [0.088) [0.216) [0.092) [0.321) 

Squared Earthq. and 

Volc. 

 -0.015 (0.074)  0.075 (0.086) 

  [0.056]  [0.101] 

Critical no. of Earthq. 

and Volc 

 6.714 [23.112]  0.707 [1.394] 

  (18.951)  (1.308) 

     

Kleibergen-Paap rk 

LM statistic (p-value) 

  0.101 [0.003] 0.067 [0.001] 

Kleibergen-Paap rk 

Wald F statisticϮ 

  12.462 [16.726] 2.584 [3.828] 

R2   0.275 0.317   

N 182 182 182 182 

 

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1.    

All regressions include (log) initial GDP per capita, policy volatility, institution, (log) population, (log) land area 

in sq. km., share of agricultural value-added in GDP, a dummy (0=no natural disaster; 1 = otherwise) and a 

constant. Cols. 1 and 2 (OLS regressions) additionally include average number of deaths per disaster. The 

instruments are 
P

iS (average number of floods and storms/earthquakes and volcanic activities per year in the 

1900-1989 period) and its square. 
Ϯ Stock-Yogo weak ID test critical values: 10% maximal IV size = 7.03. 
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Table 6: (IV Regressions): Possible channels through which natural disasters affect LR volatility.  

 
 (1) (2) (2a) (3) (3a) (4) (4a) (5) (5a) 

          

iS  
0.081 -0.027 -0.046 -0.054 -0.051 -0.049 -0.049 -0.075 -0.073 

 (0.057) (0.020) (0.026)* (0.028)* (0.028)* (0.026)* (0.027)* (0.056) (0.056) 

 [0.063] [0.019] [0.022]** [0.022]** [0.023]** [0.022]** [0.022]** [0.029]*** [0.028]*** 

          

Ig/Y -33.092 -4.971 No       

 (15.493)** (2.227)**        

 [15.378]** [1.887]***        

Private credit/Y    0.002 No     

    (0.002)      

    [0.001]      

G/Y      0.666 No   

      (0.585)    

      [0.565]    

Aid/Y        0.460 No 

        (0.538)  

        [0.634]  

          

N 158 158 158 172 172 182 182 157 157 

          

First-stage F-statistic  58.265 

[62.660] 

92.738 

[52.821] 

98.778 

[61.942] 

95.812 

[53.412] 

102.571 

[53.635] 

98.417 

[53.565] 

42.302 

[26.633] 

39.716 

[26.337] 

Kleibergen-Paap rk LM 

statistic (p-value) 

0.085 [0.059]         

Kleibergen-Paap rk 

Wald F statisticϮ 

3.469 [2.944]         

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-corrected robust standard errors. *** p<0.01, ** p<0.05, * 

p<0.1.All regressions include (log) initial GDP per capita, policy volatility, institution, (log) population, (log) land area in sq. km., share of agricultural value-added in GDP, 

a dummy (0=no natural disaster; 1 = otherwise) and a constant. iS  = Average number of natural disasters per year in the 1990-2017 period. The instrument for col (2) is 
P

iS

(average number of natural disasters per year in the 1900-1989 period).  Col. 1: Squared 
P

iS is the additional instrument.  
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Table 7: (IV Regressions): Possible channels through which natural disasters affect LR 

volatility—Low and high frequencies of natural disasters. 

 
 (1) (2) (3) (4) 

 Below median Above median 

     

iS  
-3.888 (1.459)*** -4.327 (1.655)*** -0.036 (0.022)* -0.036 (0.022)* 

 [1.849]** [2.025]** [0.026] [0.025] 

     

Ig/Y -6.916 (2.453)*** No 0.167 (2.262)  No 

 [3.294]**  [2.591]  

     

Kleibergen-Paap rk LM 

statistic (p-value) 

0.105 [0.027] 0.113 [0.024] 0.055 [0.027] 0.047 [0.012] 

Kleibergen-Paap rk Wald 

F statisticϮ 

5.630 [5.037] 6.103 [5.232] 28.138 [35.707] 50.712 [46.722] 

N 78 78 80 80 

 

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1. 

All regressions include (log) initial GDP per capita, policy volatility, institution, (log) population, (log) land area 

in sq. km., share of agricultural value-added in GDP, a dummy (0=no natural disaster; 1 = otherwise) and a 

constant. The instruments are 
P

iS (average number of floods and storms/earthquakes and volcanic activities per 

year in the 1900-1989 period. 
Ϯ Stock-Yogo weak ID test critical values: 10% maximal IV size = 7.03. 

 

 

 

Table 8: Relationship between the frequency of natural disasters Government GFCF/GDP 

ratio. 

  
 (1) (2) (3) (4) 

  Natural disasters causing at least 

 All 10 deaths 50 deaths 100 deaths 

     

iS  
0.004 0.006 0.010 0.012 

 (0.001)*** (0.001)*** (0.002)*** (0.004)** 

 [0.002]** [0.002]*** [0.004]*** [0.005]** 

     

     

R2 0.332 0.354 0.338 0.319 

N 158 158 158 158 

     
Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1. All regressions include (log) initial GDP per 

capita, policy volatility, institution, (log) population, (log) land area in sq. km., share of agricultural value-added 

in GDP, a dummy (0=no natural disaster; 1 = otherwise) and a constant. Col. 1 additionally includes average 

number of deaths per disaster. iS  = Average number of natural disasters per year in the 1990-2017 period.    

 

 

 

  



37 

 

Figures 

 

Figure 1A: Frequency of natural disasters (All) for the 1990-2017 period (25, 50, 75, 90, 95, 

95+ percentiles).  

 

 

 

Figure 1B: Frequency of natural disasters (All) for the 1900-1989 period (25, 50, 75, 90, 95, 

95+ percentiles).  
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Figure 2A: Marginal effects of natural disasters on LR volatility (All natural disasters) 

 

 

Figure 2B: Marginal effects of natural disasters on LR volatility (Natural disasters causing at 

least 10 deaths) 
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Figure 2C: Marginal effects of natural disasters on LR volatility (Natural disasters causing at 

least 50 deaths) 

 

 

Figure 2D: Marginal effects of natural disasters on LR volatility (Natural disasters causing at 

least 100 deaths) 
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Figure 3A: Predicted values of GGFCF/GDP for the frequency of natural disasters (All).  

 

 
 

 

 

Figure 3B: Predicted values of GGFCF/GDP for the frequency of natural disasters causing at 

least 10 deaths.  
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Figure 3C: Predicted values of GGFCF/GDP for the frequency of natural disasters causing at 

least 50 deaths.  

 

 
 

 

 

 

Figure 3D: Predicted values of GGFCF/GDP for the frequency of natural disasters causing at 

least 100 deaths.  
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Appendix 

 

Appendix Table A.1: Table 2: Effect of the frequency of natural disasters on the (log) LR 

volatility at the 50+ year periodicity.  

 

 
 (1) (2) (3) (4) (5) 

 All Natural disasters causing at least All 

  10 deaths 50 deaths 100 deaths  

 OLS IV 

iS  
-0.029 -0.040 -0.063 -0.064 -0.049 

 (0.017) (0.022)* (0.035)* (0.041) (0.027)* 

 [0.014]** [0.017]** [0.030]** [0.038]** [0.022]** 

      

R2   0.267 0.266 0.262 0.259  

N 182 182 182 182 182 

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1. Figures in brackets are robust standard errors 

clustered at the region level. All regressions include (log) initial GDP per capita, policy volatility, institution, 

(log) population, (log) land area in sq. km., share of agricultural value-added in GDP, a dummy (0=no natural 

disaster; 1 = otherwise) and a constant. Col. 1 additionally includes average number of deaths per disaster. iS  = 

Average number of natural disasters per year in the 1990-2017 period. 

The First-stage regression is the same as in Col. 9 in Table 2. 

 

 

 

 

Appendix Table A.2: Table 2: Effect of the frequency of natural disasters on the (log) LR 

volatility at the 8+ year periodicity.  

 
 (1) (2) (3) (4) (5) 

 All Natural disasters causing at least All 

  10 deaths 50 deaths 100 deaths  

 OLS IV 

iS  
-0.025 -0.035 -0.055 -0.055 -0.044 

 (0.017) (0.021) (0.034) (0.039) (0.025)* 

 [0.013]** [0.017]** [0.030]* [0.036] [0.021]** 

      

R2   0.269 0.268 0.266 0.263  

N 182 182 182 182 182 

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1. Figures in brackets are robust standard errors 

clustered at the region level. All regressions include (log) initial GDP per capita, policy volatility, institution, 

(log) population, (log) land area in sq. km., share of agricultural value-added in GDP, a dummy (0=no natural 

disaster; 1 = otherwise) and a constant. Col. 1 additionally includes average number of deaths per disaster. iS  = 

Average number of natural disasters per year in the 1990-2017 period. 

The First-stage regression is the same as in Col. 9 in Table 2. 
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Appendix Table A.3: Effect of the frequency of natural disasters on the (log) LR volatility 

(based on Hodrick–Prescott filter).  

 

 
 (1) (2) (3) (4) (5) 

 All Natural disasters causing at least All 

  10 deaths 50 deaths 100 deaths  

 OLS IV 

iS  
-0.105 -0.144 -0.228 -0.252 -0.169 

 (0.056)* (0.070)** (0.106)* (0.124)* (0.099)* 

 [0.035]*** [0.047]*** [0.080]*** [0.098]** [0.060]*** 

      

R2   0.281 0.275 0.272 0.270  

N 182 182 182 182 182 

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1. Figures in brackets are robust standard errors 

clustered at the region level. All regressions include (log) initial GDP per capita, policy volatility, institution, 

(log) population, (log) land area in sq. km., share of agricultural value-added in GDP, a dummy (0=no natural 

disaster; 1 = otherwise) and a constant. Col. 1 additionally includes average number of deaths per disaster. iS  = 

Average number of natural disasters per year in the 1990-2017 period. 

The First-stage regression is the same as in Col. 9 in Table 2. 

 

 

Appendix Table A.4: Fixed effect regressions.  

 
 (1) (2) (3) (4) (5) (6) (7) (8) 

 All 10 deaths 50 deaths 100 deaths 

         

iS  
-0.059 -0.150   -0.101 -0.263 -0.097 -0.337 -0.099 -0.343 

 (0.020)** (0.047)** (0.037)** (0.085)** (0.062) (0.134)** (0.062) (0.127)** 

 [0.047] [0.090]* [0.055]* [0.111]** [0.062] [0.161]** [0.063] [0.160]** 

Squared iS  
 0.003***  0.007  0.018  0.019 

  (0.001)  (0.002)***  (0.008)**  (0.009)* 

  [0.002]  [0.003]**  [0.009]**  [0.009]** 

Critical no. of iS  
 25.419  18.520  9.484  8.833 

  (2.539)***  (2.037)***  (0.895)***  (0.831)*** 

 [] [5.966]***  [2.451]***  [0.716]***  [0.633]*** 

         

         

         

R2  (within) 0.211 0.217 0.212 0.225 0.206 0.216 0.206 0.217 

No. of countries 175 175 175 175 175 175 175 175 

Notes: Figures in parentheses are clustered robust standard errors. Figures in brackets are heteroskedasticity-

corrected robust standard errors. *** p<0.01, ** p<0.05, * p<0.1.  All regressions include (log) initial GDP per 

capita, policy volatility, institution, (log) population, share of agricultural value-added in GDP, a dummy (0=no 

natural disaster; 1 = otherwise), interval dummy and a constant. Cols. 1-2 additionally includes average number 

of deaths per disaster. 

The estimating equation: 
2

1 2ln LR

i i i iS Sσ α β β ε′= + + + +
iδ X . Critical no. of iS is calculated as 

1 2/ 2β β− (where 1β is the coefficient on iS  and 2β  is the coefficient on squared iS ), and its standard error is 

calculated by the delta method. 
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Appendix Figure A.1: Frequency of natural disasters (At least 10 deaths) for the 1990-2017 

period (25, 50, 75, 90, 95, 95+ percentiles).  

 

 

 

Appendix Figure A.2: Frequency of natural disasters (At least 50 deaths) for the 1990-2017 

period (25, 50, 75, 90, 95, 95+ percentiles).  
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Appendix Figure A.3: Frequency of natural disasters (At least 100 deaths) for the 1990-2017 

period (25, 50, 75, 90, 95, 95+ percentiles).  

 

 

 

Appendix Figure A.4: Frequency of floods and storms (All) for the 1990-2017 period (25, 50, 75, 

90, 95, 95+ percentiles).  
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Appendix Figure A.5: Frequency of earthquakes and volcanic activities (All) for the 1990-2017 

period (25, 50, 75, 90, 95, 95+ percentiles). 
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Appendix B: Data definitions and sources  

Variable and definition  Source  

Natural Disasters Emergency Events Database (EM-DAT) 

GDP at constant national 2011 prices; 

Government consumption at constant national 

2011 prices;  

PWT9.1 (National Accounts Data)—see 

Feenstra, Inklaar and Timmer (2015) 

Population; Total Factor Productivity; Human 

Capital 

PWT9.1  

Government Gross Fixed Capital Formation 

as a share of GDP 

International Monetary Fund 

Voice and Accountability  Worldwide Governance Indicators (WGI), 

World Bank  

Ratio of private credit to GDP; Share of 

agricultural value-added in GDP; Net official 

development assistance and official aid 

World Development Indicators  

Polity2  Center for Systematic Peace (CSP) / Integrated 

Network for Societal Conflict Research 

(INSCR) 

http://www.systemicpeace.org/inscrdata.html  

  

 

 


