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Abstract

This paper aims to address semiparametric forecasting problem when studying high dimensional data in

multivariate dynamic panel model with correlated random effects. A hierarchical empirical Bayesian per-

spective is developed to jointly deal with incidental parameters, structural framework, unobserved hetero-

geneity, and model misspecification problems. Methodologically, an ad-hoc model selection on a mixture

of normal distributions is addressed to obtain the best combination of outcomes to construct empirical

Bayes estimator and then investigate ratio-optimality and posterior consistency for better individual–

specific forecasts. Simulated and empirical examples are conducted to highlight the performance of the

estimating procedure.
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1 Introduction

This paper aims to construct and develop a methodology to improve the recent literature on Dynamic

Panel Data (DPD) models when dealing with (i) individual–specific forecasts, (ii) Bayesian analyses with

parametric priors on heterogeneous parameters, (iii) ratio-optimality and posterior consistency in dynamic

panel setups, (iv) empirical Bayes estimator and alternative Tweedie corrections, and (v) the curse of

dimensionality when estimating time-varying data.

DPD models are widely used in empirical economics for forecasting individuals’ future outcomes (see,

e.g., Hirano (2002), Gu and Koenker (2017b), Liu (2018), and Liu et al. (2020)) and allowing the possibility

of controlling for unobserved time-invariant individual heterogeneity (see, e.g., Chamberlain (1984) and

Arellano and Bond (1991) (linear case); and Chamberlain (2010) and Arellano and Bonhomme (2011) (non-

linear case)). Such heterogeneity is an important issue and failure to control for it results in misleading

inferences. That problem is even more severe when the unobserved heterogeneity may be correlated with

covariates.

Consider a simple DPD model:

yit = wi,t−1µi + βyi,t−1 + uit (1)

where i = 1, . . . , N , t = 1, . . . , T , yit and yi,t−1 denote the outcomes and their first lags, µi refers to

individual-specific intercept with wi,t−1 = 1, and uit ∼ N(0, σ2) is an independent and identically dis-

tributed (i.i.d.) shock.

In the dynamic panel literature, the focus is to find a consistent estimate of β in the presence of the

incidental parameters µi to avoid the incidental parameters problem and then perform better forecasts of

the outcomes in period T + 1 (yT +1). In the context of panel data, the incidental parameters problem

typically arises from the presence of individual–specific factors. The challenges because of incidental pa-

rameters are highly severe in dynamic panels where behavioural effects over time are jointly measured with

individual–specific effects. Whereas the incidental parameters to be estimated are consistent in least squares

methods, maximum likelihood estimation leads to inconsistent estimates of them affecting the dynamics of

data (see, for instance, Nickell (1981)). Both fixed and random effects have been used to evaluate these

individual–specific factors. The former treats them as parameters to be estimated, leaving the distribution

of unobserved heterogeneity relatively unrestricted at the cost of introducing a large number of nuisance

parameters; random effects typically assume that their distributions belong to a known parametric family

indexed by a finite dimensional parameter.

However, in these traditional methods, with large cross-sectional dimension (N) and short (fixed) time-

series (T ), the estimators of the common parameters (β, σ2) would result biased and inconsistent due to

the incidental parameter problems. Indeed, leaving the individual heterogeneity unrestricted, the number



of individual–specific effects would grow with the sample size. Moreover, with short T , the estimates of

the heterogeneous parameters (µi) would be highly contaminated from the shock uit obtaining inaccurate

forecasts. Last but not least, when dealing with time-varying and high dimensional data, problems con-

cerning (i) overshrinkage/undershrinkage, (ii) functional forms of misspecification, (iii) endogeneity issues,

and (iv) variable selection problem also matter in DPD models involving inconsistent estimates.

The methodology proposed in this paper focuses on the aforementioned issues and takes the name of

Dynamic Panel Bayesian model with Correlated Random Effects (DPB-CRE). It develops a hierarchical

structural empirical Bayes approach for inference in multivariate dynamic panel setup with cross-sectional

heterogeneity; where ’structural’ stands for designing a more conventional empirical procedure to pro-

vide reduced-form causal relationships. Methodologically, a Finite Mixture approximation of Multivariate

(FMM) distributions is used to construct the Empirical Bayes (EB) estimator for alternative Tweedie correc-

tions to avoid the impossibility of the oracle forecast of computing the correlated random effect distribution

(or prior). The multivariate panel considered in this paper is unbalanced and includes large cross-sectional

dimension N and sufficiently large time-series T . Let the framework be hierarchical, Conjugate Informative

Proper Mixture (CIPM) priors are used to select promising model fitting the data, acting as a strong model

selection in high dimensional model classes1. The CIPM priors are an implementation of the conjugate

informative proper priors in Pacifico (2020c) when studying DPD with correlated random effects. Markov

Chain Monte Carlo (MCMC) algorithms and implementations are used to design posterior distributions and

then perform cross-country forecasts and policy issues. Theoretically, ratio-optimality and posterior consis-

tency are also investigated modelling heterogeneous parameters for better individual–specific forecasts.

The contributions of this paper are fourfold. First, I develop a hierarchical structural Bayes approach

to deal with potential features in real-world data such as non-linearity, incidental parameters (because of

individual–specific heterogeneity), endogeneity issues (because of omitted factors and unobserved hetero-

geneity), and structural model uncertainty2 (because of one or more parameters are posited as the source of

model misspecification problems). CIPM priors and MCMC-based Posterior Model Probabilities (PMPs)

are used in oder to: (i) include all of the information from the whole panel, acting as a strong model selection

in high dimensional model classes; (ii) impose choice and specification strategy of the informative priors

concerning the outcomes of interest and the distribution of unobserved heterogeneous effects; and (iii) deal

with overfitting3 and model uncertainty when addressing variable selection problems.

Second, I build on and implement the Pacifico (2020c)’s analysis, who develops a Robust Open Bayesian

(ROB) procedure in two stages for implementing Bayesian Model Averaging (BMA) and Bayesian Model

Selection (BMS) in multiple linear regression models when accounting for dynamics of the economy in ei-

ther time-invariant moderate data or time-varying high dimensional multivariate data. More precisely, I

1In Bayesian statistics, variable and model selection procedures are performed to deal with the complexity of the model,
where the ‘complexity’ stands (for example) for the number of unknown parameters.

2See, for instance, Gelfand and Dey (1994) for related works.
3It refers to the overestimation of effect sizes since more complex models always provide a somewhat better fit to the data

than simpler models, where the ‘complexity’ stands – for example – for the number of unknown parameters.



implement the prior specification strategy in multivariate dynamic panel data in order to make inference on

multivariate high dimensional panel setups and then obtain a reduced subset containing the best4 combina-

tion of predictors (or the best model solution) that mainly explain and thus fit the data. In the second stage,

further shrinkage is performed in order to obtain a smallest final subset of top best submodels containing the

only significant solutions5. Finally, the submodel with the highest Bayes Factor in logarithm (lBF) would

correspond to the final solution containing a potential subset of candidate predictors with higher significant

overall F value and sufficiently strong adjusted-R2 (R̄2) measure, where strong refers to R̄2 value equal to

or bigger than 30%. However, interdependencies and inter-linkages – across units and time periods – matter

and would strongly affect all (potential) covariates contained in the reduced parameter space. Thus, the

main nolvelty of that implementation– taking the name of Multivariate Panel ROB (MPROB) procedure –

consists of adding an additional stage to select a smaller pool of top best candidate predictors specifying the

final solution model. More precisely, I perform a further shrinkage based on the Granger (Non-)Causality

test in multivariate dynamic panel data (see, for instance, Dumitrescu and Hurlin (2012)). The idea is to

exclude the predictors when no causal link holds across units within the panel (homogeneity under the null

hypothesis); conversely, whether highly strong causal links matter for a subgroup of units (heterogeneity un-

der the alternative), the same parameters should be taken into account in order to deal with overestimation

of effect sizes (or individual contributions). In this study, the optimal lag length testing Granger-causality

is set using the Arellano’s test (see, for instance, Arellano (2003) and Arellano and Honore (2001)).

Third, MCMC algorithms and implementations are addressed to account for relative regrets dealing with

semiparametric forecasting problem. Better evidence-based forecasting is involved in DPB-CRE because

of two main features: the use of a Bayesian hierarchical approach with informative mixture priors and

correlated random coefficients.

Fourth, I also build on and implement the Arellano and Bond (1991)’s strategy, where lagged-based values

of the instrumented variables of interest are included within the system as internal necessary instruments6,

but with a novelty. More precisely, the DPB-CRE allows the inclusion of external instruments. Here, the

instruments refer to univariate processes and correspond to all available lags of the top best candidate

predictors obtained in the second stage; external, because of all lagged parameters are included before the

estimation method, but after the MPROB procedure. Finally, a CRE approach is used in which the un-

observed individual heterogeneities are treated as random variables that are possibly correlated with some

of the predictors within the system. In this way, possible biases in the estimated coefficients of lagged

outcomes will be avoided as well.

An empirical application on a pool of advanced and emerging economies is assessed describing the

functioning and the performance of the methodology. It aims to identify and analyze a set of potential

4In BMA and BMS, best stands for the model providing the most accurate predictive performance over all candidate models.
5Here, top best stands for the model providing the most accurate predictive performance over all candidate submodels

obtained in the first stage, and significant stands for models having statistically significant predictive capability.
6See, for instance, Arellano (2003), Arellano and Bonhomme (2011), and Arellano and Hahn (2016) for some other relevant

applications.



socioeconomic–demographic factors, policy tools, and economic–financial issues during the pandemic crisis.

The estimation sample refers to the period 1990 − 2020, covering a sufficiently large sample to address

possible causal links and interdependency between variables of interest (e.g., outcomes of economic growth),

predetermined variables7 (e.g., lagged values of the outcomes and control variables), strictly exogenous

factors (e.g., dummy variables capturing structural effects), directly observed (endogenous) variables (e.g.,

socioeconomic–demographic and economic–financial factors), and time-invariant effects (e.g., heterogeneous

individual-specific parameters possibly correlated with potential predictors within the system). Further-

more, the empirical strategy is also able to investigate and thus design better forecasts and strategic policy

measures to contain the socioeconomic challenges of COVID-19 pandemic and ensure more resilient and

robust health systems safeguarding against future epidemic diseases.

A simulated experiment – compared to related works – is also addressed to highlight the performance of

the estimating procedure developed in this study using some Monte Carlo simulations.

The remainder of this paper is organized as follows. Section 2 discusses related works. Section 3 intro-

duces the econometric model and the estimating procedure. Section 4 displays prior specification strategy

and posterior distributions accounting for FMM-based Empirical Bayes estimator (Tweedie Correction),

ratio-optimality, and theoretical properties. Section 5 describes the data and the empirical analysis. Sec-

tion 6 presents the simulated experiment dealing with relative regrets for Tweedie Correction through Monte

Carlo algorithms. The final section contains some concluding remarks.

2 Related Literature

This paper is related to several strands of the literature in dynamic panel setups. As regards the frequentist

literature, closely related studies addressing similar deconvolution problem and estimates of µi’s distribution

are Anderson and Hsiao (1981), Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond

(1998), and Alvarez and Arellano (2003) (Instrumental Variables (IV) and Generalized Method of Moments

(GMM) estimators); Hahn and Newey (2004), Carro (2007), Arellano and Hahn (2007, 2016), Bester and

Hansen (2009), Fernandez-Val (2009), and Hahn and Kuersteiner (2011) (fixed effects approach in non-linear

panel data); and Compiani and Kitamura (2016) (mixture models-based approach). However, the frequen-

tist approach is not able to deal with model uncertainty and overfitting in performing individual–specific

forecasts in high dimensional data.

Earlier works regarding empirical Bayes methods with parametric priors on heterogeneous parameters

refer to Robbins (1964), Robert (1994), Brown and Greenshtein (2009), and Jiang and Zhang (2009),

and – more recently – Liu et al. (2019, 2020) (henceforth LMS) and Gu and Koenker (2017a,b) (hence-

forth GK). LMS aim to forecast a collection of short time-series using cross-sectional information. Then,

7In econometrics, predetermined variables denote covariates uncorrelated with contemporaneous errors, but not for their
past and future values.



they construct point forecasts predictors using Tweedie’s formula8 for the posterior mean of heterogeneous

individual–specific factors under a correlated random effects distribution. They show that the ratio opti-

mality of point forecasts asymptotically converge to the one based on a nonparametric kernel estimate of the

Tweedie correction. However, they replace the µi’s distribution with a kernel density estimator performing

less accurate forecasts than alternative estimates of the Tweedie correction (e.g., nonparametric maximum

likelihood estimation and finite mixture of normal distributions). Then, they estimate relative regrets for

these two alternative Tweedie corrections via Markov chains simulations, but specifying bounds for the do-

main of µi and partitioning it into default setting bins. It would compromise the estimates because of weak

empirical forecast optimality limited to restrictive and constrained classes of models. GK use Tweedie’s

formula to construct an approximation to the posterior mean of the heterogeneous parameters. They build

on Kiefer and Wolfowitz (1956) and implement the empirical Bayes predictor based on a nonparametric

maximum likelihood estimator of the cross-sectional distribution of the sufficient statistics. However, no

theoretical optimality results are provided.

The methodology proposed in this paper makes three contributions: (i) correlated random effects are allowed

for cross-sectional heterogeneity interacting with the initial conditions; (ii) a MPROB procedure is used in

a dynamic panel setup to deal with some open issues related to BMA for multiple competing models classes

in high dimension (such as overfitting, model uncertainty, endogeneity issues, and model misspecification

problems); and (iii) a FMM distribution – in accordance with the MPROB procedure – is used to minimize

relative regrets for a Tweedie Correction performing better forecasts and policy strategies.

Finally, this paper is also related to several frequentist statistical, dynamic, and multicountry approaches

concerning the current COVID-19 pandemic crisis, investigated in details in Section 5.1.

3 Empirical Model and Estimation Procedure

3.1 Multivariate Dynamic Panel Data

The baseline Dynamic Panel Data (DPD) model is:

yit = βlyi,t−l + αxit + γlzi,t−l + µi + uit (2)

where the subscripts i = 1, 2, . . . , N are country indices, t = 1, 2, . . . , T denotes time, yit is a N · 1 vector of

outcomes, yi,t−l and zi,t−l are N · 1 vectors of predetermined and directly observed (endogenous) variables

for each i, respectively, with l = 0, 1, 2, . . . , λ, βl̃ and γl̃ are the autoregressive coefficients to be estimated

for each i, with l̃ = 1, . . . , λ, xi,t is a N · 1 vector of strictly exogenous factors for each i, with α denoting

the regression coefficients to be estimated, µi is a N · 1 heterogeneous intercept containing – for example

8The formula is attributed to the astronomer Arthur Eddington and the statistician Maurice Tweedie.



– time-constant differences (such as territorial competitiveness, infrastructural system, competitiveness de-

velopments, macroeconomic imbalances), and uit ∼ i.i.d.N(0, σ2
u) is a N · 1 vector of unpredictable shock

(or idiosyncratic error term), with E(uit) = 0 and E(uit · ujs) = σ2
u if i = j and t = s, and E(uit · ujs) = 0

otherwise. In this study, I consider the same lag order (or optimal lag length) for both predetermined (yi,t−l)

and observed variables (zi,t−l).

Here, some considerations are in order: (i) the predetermined variables contain the lagged values of the

outcomes yit, capturing – for example – the persistence, and control variables; (ii) the µi’s denote cross-

sectional heterogeneity affecting the outcomes yit; (iii) correlated random effects matter and then µi’s are

treated as random variables and possibly correlated with some of the covariates within the system; (iv) the

roots of l̃(L) = 0 lie outside the unit circle so that the AR processes involved in the model (2) are stationar-

ies, with L denoting the lag operator; (v) the strictly exogenous factors xit contain dummy variables to test

– for example – the presence of structural breaks or policy shifts, and (vi) the instruments are fitted values

from AutoRegressive (AR) parameters based on all of the available lags of the time-varying variables. In

this study, the optimal lag length and the order of integration have been set using the Arellano’s test and

the Augmented Dickey-Fuller (ADF) test for each i, respectively.

Let the stationarity hold in (2), the time-series regressions are valid and the estimates feasible. Thus,

moment restrictions9 need to hold in order to address exact identification in a context of correlated random

effects and estimate βl̃ and γl̃ for T ≥ 3. More precisely, I assume that µi and ui,t are independently

distributed across i and have the familiar error components structure:

E(µi) = 0, E(uit) = 0, E(uit · µi) = 0 for i = 1, . . . , N and t = 2, . . . T (3)

and

E(uit · uis) = 0 for i = 1, . . . , N and t 6= s (4)

Then, I also assume the standard assumption concerning the initial conditions yi,t=1:

E(yi,t=1 · uit) = 0 for i = 1, . . . , N and t = 2, . . . T (5)

3.2 Bayesian Analysis

The main thrust of MPROB procedure in multivariate DPB-CRE in (2) is threefold. First, it provides for

the best model solution (or combination of predictors) better explaining and thus fitting the data among high

dimensional panel setups. It is very useful when studying causality and interdependency between different

9See, e.g., Anderson and Hsiao (1981), Arellano and Honore (2001), and Blundell and Bond (1998).



events affecting outcomes. Second, the use of CIPM priors allows for shrinking the dataset via an ad-hoc

model selection since the common and heterogeneous coefficients (βl, α, γl) and their distribution change

in a corresponding fashion in accordance with different model solutions. Third, better individual–specific

forecast can be performed assigning more weight according to model size so as to deal with overfitting and

model uncertainty.

In this study, forecasts account for good and consistent estimates of both common and heterogeneous

coefficients (βl, α, γl) in the presence of the incidental parameters (µi) with N → ∞ and large fixed T .

More precisely, forecasts are based on the knowledge of the common parameters (θ, σ2
u) and the distribution

π(µi|·) of the heterogeneous factors µi, but not the values µi themselves. It takes the name of oracle

forecast and replaces µi by its posterior mean under the prior distribution π(µi|·). Thus, neither the

common parameters nor the distribution of the individual–specific coefficients are known. Here, I follow

two steps: firstly, I replace the unknown common parameters by a consistent estimator and then I use the

Tweedie’s formula10 that involves in evaluating the posterior mean of µi through a function of the cross-

sectional density of certain sufficient statistics rather than through the likelihood function and an estimate

of π(µi|·). This density is estimated from the whole cross-sectional information by using an EB estimate of

µi and an EB predictor of the optimal forecast of yit at time T (yi,T +k), with k denoting the k-step-ahead

forecast. The main difference between an empirical and fully Bayesian approach is that the former picks

the µi distribution by maximizing the Maximum Likelihood (ML) of the data11, whereas a fully Bayesian

method constructs a prior for the correlated random effects and then evaluates it in view of the observed

panel data12. Even if the fully Bayesian approach tends to be more suitable for density forecasting and

more easily extended to non-linear case, it would be a lot more computationally intensive. In this study,

I implement the EB predictor by maximizing the log likelihood function and Tweedie correction using an

Expectation-Maximization (EM) algorithm. The information is uploaded from the whole cross-section via

a strong model selection implicit in the MPROB procedure, where the forecast evaluation criterion is the

Mean Squared Error (MSE) computed across countries.

Given the DPB-CRE in (2), I decompose the vectors of the observed endogenous variables: yi,t−l =
[

yo′

i,t−l, yc′

i,t−l

]
′

, with yo′

i,t−l denoting lagged outcomes to capture the persistence and yc′

i,t−l including lagged

control variables such as general economic conditions; and zi,t−l =
[

zs′

i,t−l, zp′

i,t−l

]
′

, referring to other lagged

factors such as socioeconomic conditions (zs′

i,t−l) and policy implications (zp′

i,t−l). Then, I combine the (non-

)homogeneous parameters into the vector θ =
(

βo′

l , βc′

l , α
′

, γs′

l , γp′

l

)
′

.

In order to model the key latent heterogeneities (µi) and observed determinants (yi,t−l, xit, zi,t−l) when

dealing with high dimensional analysis, I define the conditioning set at period t (cit) and the structural

density (D(yit|·)) as:

10See, e.g., Brown and Greenshtein (2009), Efron (2011), and Gu and Koenker (2017b) for some applications in big data
analytics.

11See, e.g., Chamberlain and Hirano (1999), Hirano (2002), Lancaster (2002), Jiang and Zhang (2009), and Gu and Koenker
(2017a,b) concerning some studies on the empirical Bayes methods in dynamic panel data models.

12See, for instance, Liu (2018) and Liu et al. (2020) (linear case); and Liu et al. (2019) (non-linear case).



cit =
(

yo
i,0:t−l, yc

i,0:t−l, zs
i,0:t−l, zp

i,0:t−l, xi,0:t

)

(6)

and

D
(

yit|yi,t−l, xit, zi,t−l, µi

)

= D
(

yit|yi,t−l, xit, zi,t−l, yi0, µi

)

(7)

The error terms (uit) are individual-time-specific shocks characterized by zero mean and homoskedastic

Gaussian innovations. In a unified and hierarchical framework, I combine the individual heterogeneity into

the vector φi =
(

µi, σ2
u

)

under cross-sectional heterogeneity and homoskedasticity. Assuming correlated

random coefficients model, φi and ci0 could be correlated with each other, with:

ci0 =
(

yo
i,0, yc

i,0, zs
i,0, zp

i,0, xi,0:T

)

(8)

Given these primary specifications, the DPB-CRE model in (2) would be less parsimonious and harder

to implement. Thus, I adopt an EB approach using cross-sectional information to estimate the prior

distribution of the correlated random effects and then the conditions on these estimates. Moreover, it is not

necessary to include all initial values of the outcomes (yo
i,0), the control (yc

i,0), the socioeconomic (zs
i,0), and

the policy (zp
i,0) factors. Indeed, according to the MPROB procedure, only a subset of ci0 – relevant for the

analysis – will be accounted for obtaining an advantage of highly larger feasibility.

Let F be the full panel set containing all (potential) model solutions, the variable selection problem is

addressed by imposing an auxiliary indicator variable χh, with h = 1, 2, . . . , m, containing every possible

2m subset choices, where χh = 0 if θh is small (absence of h-th covariate in the model) and χh = 1 if θh is

sufficiently large (presence of h-th covariate in the model). According to the Pacifico (2020c)’s framework,

I run the MPROB procedure by matching all potential candidate models to shrink both the model space

and the parameter space. The shrinking jointly deals with overestimation of effect sizes (or individual

contributions) and model uncertainty (implicit in the procedure) by using Posterior Model Probabilities

(PMPs) for every candidate models13. It can be defined as:

π
(

y|θh

)

=

∫

B
π
(

y, µi|θh, Mh

)

· dµ (9)

where B denotes the multidimensional (natural) parameter space for θh, Mh = (M1, . . . , Mm) denotes a

countable collection of all (potential) model solutions given the data. The integrand in (9) is defined

as:

13The PMP denotes the probability of each candidate model performing the data.



∫

B
π
(

y, µi|θh, Mh

)

= π
(

θh, µi, Mh|y
)

· π
(

y|Mh

)

(10)

where π(θh, µi, Mh|y) denotes the joint likelihood and π(y|Mh) =
∫

π
(

y|Mh, θh, µi

)

· π
(

θh, µi|Mh

)

dθh is the

marginal likelihood, with π(θh, µi|Mh) referring to the conditional prior distribution of θh and µi. In this

first stage, with N high dimensional and T sufficiently large, the calculation of the integral π(y|Mh) in

unfeasible and then a fully enumerated Markov Chain Monte Carlo (MCF ) implementation is conducted14.

The subset containing the best model solutions will correspond to:

S =

{

Mj : Mj ⊂ S, S ∈ F , Θj ⊂ Θh,
∑̟

j=1

π
(

Mj |yi = yi, χ
)

≥ τ

}

(11)

where Mj denotes the submodel solutions of the DPB-CRE in (2), with Mj < Mh, j ≪ h, {1 ≤ j < h},

and τ is a threshold chosen arbitrarily for an enough posterior consistency15. In this study, I use τ = 0.5%

with N high dimensional (predictors ≥ 15). In this study, I am able to jointly manage all equations within

the system (through the conditioning set cit), their (potential) interactions (through AR coefficients), and

their possible causal links (through Granger (Non-)Causality test).

The second stage consists of reducing the model space S to obtain a smaller subset of top best submodel

solutions:

E =

{

Mξ : Mξ ⊂ E , E ∈ S,
∑̟

j=1

π
(

Mj |yi = yi, χ̇
)

≥ τ̇

}

(12)

where Mξ ≪ Mj , π(Mj |yi = yi, χ̇) denotes the PMPs, with χ̇ denoting a new auxiliary variable containing

the only best model solutions in the subset S and τ̇ referring to a new arbitrary threshold to evaluate the

probability of the model solutions in S performing the data (PMPs). In this study, I still use τ = 0.5% –

independently of N – for a sufficient prediction accuracy in explaining the data.

The MPROB procedure comes to a conclusion once a further shrinkage – based on the panel Granger

(Non-)Causality test16 – is conducted to obtain the smallest final subset of top best submodel solutions

(Mξ∗ ⊂ E). More precisely, that stage consists of including the only candidate predictors displaying highly

strong causal links for at least a subgroup of units (heterogeneity under the alternative) with p-value ≤ τ̇ .

To deal with endogeneity issues and misspecified dynamics, all available lags of the top best candidate

predictors – obtained in the second stage – are included as external instruments. In this study, the optimal

lag length testing Granger-causality is set using the Arellano’s test17.

The final model solution to be considered performing forecasting and policy-making will correspond to

14MCF integration is used to move through the model space and the parameter space at the same time in order to obtain a
reduced set containing the best combination of predictors. See, for instance, Pacifico (2020c) in linear static case.

15In Bayesian analysis, posterior concistency ensures that the posterior probability (PMP) concentrates on the true model.
16See, for instance, Dumitrescu and Hurlin (2012).
17See, for instance, Arellano (2003) and Arellano and Honore (2001).



one of the submodels Mξ∗ with higher log natural Bayes Factor (lBF):

lBFξ∗,ξ = log

{

π(Mξ∗ |yi = yi)

π(Mξ|yi = yi)

}

(13)

In this analysis, the lBF is interpreted according to the scale evidence in Pacifico (2020c), but with more

stringent conditions:



















































0 < lBξ∗,ξ ≤ 5 no evidence for submodel Mξ∗

6 < lBξ∗,ξ ≤ 10 moderate evidence for submodel Mξ∗

11 < lBξ∗,ξ ≤ 15 strong evidence for submodel Mξ∗

lBξ∗,ξ > 15 very strong evidence for submodel Mξ∗

(14)

4 Hierarchical Framework and Empirical Bayes Approach

4.1 Prior Specification Strategy and Tweedie’s Formula

According to the EB approach, the variable selection procedure entails estimating χh and θh as poste-

rior means (the probability that a variable is in the model). All observal variables in cit and individual

heterogeneity in φi are hierarchically modelled via proper conjugate informative mixture priors:

π(θ, φ, χ) = π(θ|χ) · π(µi|χ, yi0) · π(σ2
u|χ) · π(χ) (15)

where

π
(

θ|F−1

)

= N
(

θ̄, ρ̄
)

(16)

π(µi|θ) = N
(

δµi
, Ψµi

)

with δµi
∼ N

(

0, ζ
)

and Ψµi
∼ IG

(

ϕ

2
,

ε

2

)

(17)

π(yi0|µi) = N(0, κ) (18)

π(χ) = w|χ| ·
(

h

|χ|

)−1

(19)

π(σ2
u) = IG

(

ω̄

2
,
ν

2

)

(20)



where N(·) and IG(·) stand for Normal and Inverse-Gamma distribution, respectively, F−1 refers to the

cross-sectional information available at time −1, and w|χ| in (19) denotes the model prior choice related to

the sum of the PMPs (or Prior Inclusion Probabilities) with respect to the model size |χ|, through which the

θ’s will require a non-0 estimate or the χ’s should be included in the model. In this way, one would weight

more according to model size and – setting w|χ| large for smaller |χ| – assign more weight to parsimonious

models.

All hyperparameters are known. More precisely, collecting them in a vector ω̃, where ω̃ =
(

θ̄, ρ̄, ζ, ϕ, ε, κ,

w|χ|, ω̄, ν
)

, they are treated as fixed and are either obtained from the data to tune the prior to the specific

applications (such as θ̄, ϕ, κ, w|χ|, ω̄) or selected a priori to produce relatively loose priors (such as ρ̄, ζ, ε, ν).

Here, w|χ| is restricted to a benchmark prior max
(

NT, |χ|
)

according to the non-0 components of χ.

Nevertheless, to accomodate the correlated random coefficients model where the individual–specific hetero-

geneity (µi) can be correlated with the conditioning variables ci0 and yi0, I use an empirical Bayes procedure

where the posterior mean of µi is expressed in terms of the marginal distribution of a sufficient statistic

(µ̂i(θ)) estimated from the cross-sectional whole information (Tweedie’s formula). Given the CIPM priors in

(16) - (20), I define the compound risk and loss functions – under which the forecasts are evaluated – account-

ing for expectations over the observed trajectories Yi =
(

y0:T
1 , . . . , y0:T

N

)

, with y0:T
i =

(

yi0, yi1, . . . , yiT

)

, the

unobserved heterogeneity (µi = µ1, . . . , µN ), and the future shocks ui,T +k =
(

u1,T +k, . . . , uN,T +k

)

:

R
(

ŷi,T +k

)

= E
(YN ,µi,ui,T +k)

θ,φ,π(·)

[

LN

(

ŷi,T +k, yi,T +k

)

]

(21)

where LN

(

ŷi,T +k, yi,T +k

)

=
∑N

i=1

(

ŷi,T +k − yi,T +k

)2
denotes the compound loss obtained by summing over

the units i the forecast error losses (ŷi,T +k − yi,T +k), with ŷi,T +k = (ŷ1,T +k, . . . , ŷN,T +k)
′

is a vector of

k-period-ahead forecasts.

In the compound decision theory, the infeasible oracle forecast (or benchmark forecast) implies that φi and

the distribution of the unobserved heterogeneity (π(µi, yi0)) are known, the trajectories (Yi) are observed,

and the values of µi are unknown across units i. Moreover, the integrated risk in (21) is minimized performing

individual–specific forecasting that minimizes the posterior risk for each Yi. Thus, according to the Liu et al.

(2020)’s framework, the posterior risk can be defined as:

E
(YN ,µi,ui,T +k)

θ,φ,π(·)

[

LN

(

ŷi,T +k, yi,T +k

)

]

=
N
∑

i=1

{

(

ŷi,T +k − E
(Yi,µi,ui,T +k)

θ,φ,π(·) [yi,T +k]

)2

+ V
(Yi,µi,ui,T +k)

θ,φ,π(·) [yi,T +k]

}

(22)

where V
(Yi,µi,ui,T +k)

θ,φ,π(·) [yi,T +k] is the posterior predictive variance of yi,T +k. The optimal predictor would be

the mean of the posterior predictive distribution:



ŷop
i,T +k = E

(Yi,µi,ui,T +k)

θ,φ,π(·) [yi,T +k] = E
(Yi,µi)
θ,φ,π(·)[µi] + (θ · cit) (23)

where the acronym OP stands for ’Optimal’. Then, the compound risk in (21) associated with the infeasible

oracle forecast can be rewritten as:

Rop = E
(Yi,µi,ui,T +k)

θ,φ,π(·)

{

N
∑

i=1

(

V
(Yi,µi)
θ,φ,π(·)[µi] + σ2

u

)

}

(24)

The optimal compound risk in (24) consists of two components: uncertainty concerning the individual–

specific heterogeneity on the observations i and uncertainty with respect to the error terms. Because of

infeasible benchmark forecast, the parameter vectors (θ, φ) and the CRE distribution (π(·)) are unknown.

Thus, the posterior mean E
(Yi,µi)
θ,φ,π(·)[µi] in (23) is assessed through the Tweedie’s formula by evaluating the

marginal distribution of a sufficient statistic of the heterogeneous effects. The likelihood function associated

with the multivariate DPB-CRE in (2) is:

π
(

y1:T
i |yi0, µi, θ

)

∝ exp

{

− 1

2σ2
u

T
∑

t=1

(

yit − (cit−l|χ)θt − µi(θ)

)2
}

∝
{

− T

2σ2
u

(

µ̂i(θ) − µi

)2
}

(25)

where µ̂i(θ) denotes the sufficient statistic and equals to:

µ̂i(θ) =
1

T

T
∑

t=1

(

yit − (θ · cit−l)

)

(26)

According to Bayes’s theorem, the posterior distribution of µi can be obtained as:

π
(

µi|y0:T
i , θ

)

= π
(

µi|µ̂i, yi0, θ
)

=
π
(

µ̂i|µi, yi0, θ
)

· π
(

µi|yi0

)

exp

{

ln
(

π(µ̂i|yi0)
)

} (27)

The last step to obtain the Tweedie’s formula is to differentiate the equation π
(

µi|µ̂i, yi0, θ
)

in (27) with

respect to µ̂i and solve the equation for the posterior mean E
(Yi,µi)
θ,φ,π(·)[µi] in (23). Thus, the Tweedie’s formula

equals to:

E
(Yi,µi)
θ,φ,π(·)[µi] = µ̂i(θ) +

σ2
u

T
· ∂

∂µ̂i(θ)
ln
(

µ̂i(θ), yi0

)

(28)

where the second term in (28) denotes the correction term capturing heterogeneous effects of π(·) – the

prior of µi – on the posterior. It is expressed as a function of the marginal density of µ̂i(θ) conditional on

yi0 and θ; contrarily to the full Bayesian approach, where one needs to avoid the deconvolution problem

that disentangle the prior density π(µi|yi0) from the distribution of the error terms (uit).



4.2 Tweedie Correction and Markov Chain Algorithms

The infeasible oracle forecast described in Section (4.1) is approximated through an EB method in order

to substitute the unknows parameters θ and the joint distribution between the µi’s sufficient statistic and

individual outcome values π
(

µ̂i(θ), yi0

)

in (28) by estimates, uploading the cross-sectional information set

into E (Tweedie correction).

In dynamic panel data, consistent estimates of the unkown parameters θ can be obtaining through Genelar-

ized Method of Moments (GMM) estimators. In this study, they correspond to the AR(λ) coefficients related

to predetermined and endogenous variables18. Let the stationarity and moment conditions in (3)-(5) hold

in the system, the time-series regressions are valid (or computational) and GMM estimators are feasible.

Concerning the density π
(

µ̂i(θ), yi0

)

, I estimate it by using FMM distributions:

πmix

(

µ̂i, yi0 | |χ|, ci0

)

= |χ| · πξ

(

µ̂i, yi0 | ci0

)

with |χ| > 0 (29)

where πξ(·) is the conditional density distribution of heterogeneous effects with sample size |χ|. In this way,

I would able to account for the whole cross-sectional information so as to get estimates of (non-)homogenous

parameters θ (first stage) and density πξ(·) (second stage). Here, I focus on the only best submodels

achieved in the second stage of the MPROB procedure in order to work with sufficiently high posterior

consistency.

The FMM distributions and their moments themselves (means and covariance matrices) are evaluated

by maximizing the log likelihood function via an EM algorithm. More precisely, I suppose m̄ regimes in

which heterogeneous effects (φ) can vary in each submodel solution, where m̄ = 0, 1, . . . , ι is close to |χ|,

with 0 indicating the uninformative model where heterogeneous effects do not affect outcomes (e.g., DPD

with fixed effects), and m̄ ⊂ E . Then, I use Metropolis-Hastings algorithm19 to draw posteriors for µ̂i from

the (proposal) joint density distribution πm̄ = |χ| · π∗
ξ

(

µ̂m̄
i , ym̄

i0 | cm̄
i0

)

, with probability pm̄ equals to:

pm̄ =

π

(

µ̂m̄
i , ym̄

i0 | µ̂m̄−l
i , Yi,

{

θt

}T

t=1
, cm̄

i0

)

· πm̄−l

π

(

µ̂m̄−l
i , ym̄

i0 | µ̂m̄−l
i , Yi,

{

θt

}T

t=1
, cm̄

i0

)

· πm̄

(30)

where π∗
ξ stands for the conditional density distribution of heterogeneous effects involved in the final model

solution (third stage).

Let |χ|∗ be the sample size according to the uninformative model in which neither (non-)homogeneous

parameters nor unobserved effects achieve sufficient posterior consistency and θ∗
t = 1i be a vector of ones,

the probability function takes the form:

18See, e.g., Arellano (2003), Arellano and Honore (2001), Arellano and Bover (1995), and Blundell and Bond (1998).
19See, for instance, Levine and Casella (2014) for implementations of Monte Carlo algorithm.



π
(

θt | Yi

)

· π∗(θ∗
t | θt) · p(θ∗

t , θt) = π
(

θ∗
t | Yi

)

· π∗(θt | θ∗
t ) (31)

where

p(θ∗
t , θt) = min

[

π(θ∗
t | Yi) · π∗(θt | θ∗

t )

π(θt | Yi) · π∗(θ∗
t | θt)

, 1

]

∼= pm̄ (32)

with p(θ∗
t , θt) displaying the probability to accept or reject a draw20 and π∗(·) denoting the density distri-

bution according to sample size |χ|∗. In this way, I am able to get the same probability that each submodel

Mξ would be true. In addition, since posterior distributions corresponds – by construction – to a FMM

distribution, I define three possible intervals – displayed in (33) – in which the posterior predictive variance

of µi

(

V
(Yi,µi)
θ,φ,π(m̄)[µi]

)

can vary according to the model size (|χ|). In this way, I am able to obtain exact

posteriors on the predictive variance of µi taking into account both the model space and the parameter

space. Thus, running an ad-hoc model selection through a mixture of normal distributions, it ensures that

lower variability would be associated to less relative regrets during the estimating procedure, achieving more

accurate forecasts.



































































0.5 < V
(Yi,µi)
θ,φ,π(m̄)[µi] ≤ 1.0

(high dimension)

with ξ∗ > 10 ( heterogeneity )

0.1 ≤ V
(Yi,µi)
θ,φ,π(m̄)[µi] ≤ 0.5

(moderate dimension)

with 5 < ξ∗ ≤ 10 ( sufficient-homogeneity )

0.0 ≤ V
(Yi,µi)
θ,φ,π(m̄)[µi] < 0.1

(small dimension)

with ξ∗ ≤ 5 ( near-homogeneity )

(33)

4.3 Ratio-Optimality and Posterior Distributions

To obtain the EB predictor to generate forecasts on (28) given (29), I define the ratio optimality (or optimal

point forecasts). Usual claims of empirical forecast optimality are limited to restrictive classes of models

and thus it would be very weak. Nevertheless, through the BMS implicit in (2), I am able to work on a

restricted set of submodels well specified in order to investigate – given the data – better available forecast

models. In this context, the optimal point forecasts’ objective is to predict the outcomes (yit) given the

data by minimizing the expected loss in (24). Methodologically, it means proving that the predictor ŷi,T +k

achieves ϑ0-ratio-optimality uniformly for priors πm̄ ⊂ E , with ϑ0 ≥ 0. Thus,

20See, for instance, Jacquier et al. (1994) and Pacifico (2021) for some applications to multicountry and multidimensional
time-varying panel setups with stochastic and time-varying volatility, respectively.



lim sup
N→∞ πm̄⊂E

R
(

ŷi,T +k, πm̄
)

− Rop
(

πm̄
)

{

Nξ∗ · EYi,µi

θ,φ,πm̄

(

V
(Yi,µi)
θ,φ,πm̄ [µi]

)

}

+ N(ξ∗)ϑ0

≤ 0 (34)

In (34), some considerations are in order. (i) First, the predictor ŷi,T +k – defined in (21) – is constructed

by replacing θ with a consistent estimator θ̂ (estimated AR(λ) coefficients) and individual outcome values

π
(

µ̂i(θ), yi0

)

in (28) with estimates using FMM distributions in (29). (ii) Second, taking expectations

over y0:T in (24), it follows that optimal point forecasts aim to work well on average – through the BMA

implicit in the MPROB procedure – rather than for a particular value (or single draw) of the outcomes.

More precisely, the individual–specific forecasts consist of estimating not the realization of the outcomes

themselves, but rather a function of their predictive conditional distributions. Thus, the optimal forecasts

themselves will be a function of θ and then anything more than parameters of the conditional distribution,

π
(

θt|Yi

)

, in (31). (iii) Third, the prediction accuracy of optimal forecasts can be assessed through the

Mean Squared Errors
(

MSE(θ̂) = E
θ̂

[

∑N
i=1(ŷi,T +k − yi,T +k)2

])

, calculated as the average of the squared

forecast errors for all observations assigned to the model class Mξ∗ . For high V
(Yi,µi)
θ,φ,π(m̄) (e.g., with ξ∗ > 10),

the further µ̂i’s will be in the tails of their distribution, the larger the MSEs. Conversely, the MSEs will be

smaller for less V
(Yi,µi)
θ,φ,π(m̄) (e.g., with ξ∗ ≤ 5) and moderate for quite high V

(Yi,µi)
θ,φ,π(m̄) (e.g., with 5 ≤ ξ∗ ≤ 10).

(iv) Four, in a semiparametric context, whether model classes in E are high dimensional (e.g., highly large

heterogeneity among subgroups), the expected loss in (24) is minimized as N → ∞ and πm̄ will converge

to a limit that is optimal. More precisely, the final model solution will correspond to the oracle forecast of

the prior (or correlated random effect distribution) that most favours the true model (Tweedie correction).

Thus, for a sufficiently large sample size, the EB approach in Section (4.2) would give a solution that is

close to the Bayesian oracle and thus would exploit information more efficiently than a fixed choice of µi

(e.g., full Bayesian solutions)21. (v) Five, the ratio-optimality in (34) allows for the presence of estimated

parameters in the sufficient statistic µ̂i and uniformity with respect to the correlated random effect density

πm̄, which is allowed to have unbounded support.

For m̄ > 0, the resulting predictor is:

ŷi,T +k =

[

µ̂m̄
i (θ) +

σ̂2
u

T
· ∂

∂µ̂m̄
i (θ)

ln
(

µ̂m̄
i (θ), ym̄

i0

)

]m̄

+ θ̂yit (35)

where m̄ < ∞ according to all possible model solutions Mξ∗ ⊂ E .

The posterior distributions for ¨̃ω =
(

¨̄θ, ¨̄ρ, δ̃µi
, Ψ̃µi

, κ̄, w̃|χ|, ¨̄ω, ν̃
)

are calculated by combining the prior with

the (conditional) likelihood for the initial conditions of the data. The resulting function is then proportional

to

21See, for instance, George and Foster (2000) and Scott and Berger (2010).



L
(

y0:T
i | ¨̃ω

)

∝ exp

{

− 1

2

[

T
∑

t=1

(

yit − (cm̄
it |χ̇)θ̂t − µ̂m̄

i (θ̂)
)

′

]

· (σ̂2
u)−1 ·

[

T
∑

t=1

(

yit − (cm̄
it |χ̇)θ̂t − µ̂m̄

i (θ̂)
)

]}

(36)

where y0:T
i = (yi0, yi1, . . . , yiT ) denotes the data and ¨̃ω =

(

¨̄θ, ¨̄ρ, δ̃µi
, Ψ̃µi

, κ̄, w̃|χ|, ¨̄ω, ν̃
)

refers to the unknowns

whose joint distributions need to be found.

Despite the dramatic parameter reduction implicit in the MPROB procedure, the analytical computation

of posterior distributions (¨̃ω|ŷi,T +k) is unfeasible, where ŷi,T +k denotes the expectations of outcomes associ-

ated with the infeasible oracle forecast to be estimated (equation (23)). Thus, I use MCMC implemetations

to draw conditional posterior distributions of (θ1, θ2, . . . , θT |ŷi,T +k, ¨̃ω−θt
), with ¨̃ω−θt

standing the vector ¨̃ω,

but excluding the parameter θt. More precisely, I include a variant of the Gibbs sampler approach – the

Kalman-Filter technique – to analytically obtain forward recursions for posterior means and covariance

matrix. Starting from θ̄T |T and ρ̄T |T , the marginal distributions of θt can be computed by averaging over

draws in the nuisance dimensions, and the Kalman filter backwards can be run to characterise posterior

distributions for ¨̃ω:

θt|θt−l, ŷi,T +k, ¨̃ω−θt
∼ N

(

¨̄θt|T +k, ¨̄ρt|T +k

)

(37)

where

¨̄θt|T +k =

[

(

¨̄ρ−1
t|T +k

· θ̄
)

+
T
∑

t=1

(

(cm̄
it |χ̇)

′ · (σ̂2
u)−1 · (cm̄

it |χ̇)

)

θ̂t

]

(38)

¨̄ρt|T +k =
[

Ih −
(

ρ̄ · ¨̄ρ−1
T +k|t

)]

· ρ̄ (39)

with

θ̂t =
[

(cm̄
it |χ̇)

′ · (σ̂2
u)−1 · (cm̄

it |χ̇)
]−1

·
[

(cm̄
it |χ̇)

′ · (σ̂2
u)−1 · yit

]

(40)

The equations (39) and (40) refer to the variance-covariance matrix of the conditional distribution of

¨̄θt|T +k and the GMM estimator, respectively. By rearranging the terms, equation (38) can be rewritten

as

¨̄θt|T +k =

[

(

¨̄ρ−1
t|T +k

· θ̄
)

+

(

T
∑

t=1

(cm̄
it |χ̇)

′ · (σ̂2
u)−1 · yit

)]

(41)

where ¨̄θt|T +k and ¨̄ρt|T +k denote the smoothed k-period-ahead forecasts of θt and of the variance–covariance



matrix of the forecast error, respectively.

The above output of the Kalman filter is used to generate a random trajectory for
{

θt

}T

t=1
by using the

backward recursion starting with a draw of {θt} from N
(

¨̄θT |T , ¨̄ρT |T

)

22. Given (37), the other posterior

distributions can be defined as:

π(µ̂i|ŷi,T +k, θ̂t) ∼ N
(

δ̃µi
, Ψ̃µi

)

(42)

π(ŷi0|µ̂m̄
i ) = N(0, κ̄) (43)

π(χ̇) = w̃|χ| ·
(

ξ∗

|χ|

)−1

(44)

π(σ̂2
u|ŷi,T +k) = IG

( ¨̄ω

2
,
ν̃

2

)

(45)

Here, some considerations are in order.

In equation (42), δ̃µi
∼ N

(

0, ζ̄
)

and Ψ̃µi
∼ IG

(

ϕ̄/2, ε̄/2
)

, where ζ̄ = ζ + (u
′

ituit), ϕ̄ = ϕ · χ̇, and ε̄ = ε · χ̇,

with (ζ, ε) denoting the arbitrary scale parameters (sufficiently small) and ϕ referring to the arbitrary de-

gree of freedom (chosen to be close to zero). In this analysis, Ψ̃µi
is obtained by using the (proposal) joint

posterior density (πm̄) sampled via EM algorithm, (ζ, ε) ∼= 0.001, and ϕ ∼= 0.1.

In equation (43), κ̄ = κ +V
(Yi,µi)
θ,φ,π(m̄)[µi], with κ and V

(Yi,µi)
θ,φ,π(m̄)[·] denoting the arbitrary scale parameter and

the posterior predictive variance of µi, respectively. In this analysis, κ ∼= 1.0 and V
(Yi,µi)
θ,φ,π(m̄)[µi] is obtained

according to the sample size |χ| as described in (33).

In equation (44), w̃|χ| refers to the model posterior choice according to the sum of the PMPs obtained

in the second stage with respect to model size |χ|, with w̃|χ| = max∗(NT, |χ|) accounting for the non-0

components of χ̇.

In equation (45), ¨̄ω = ω̄ + ˆ̄ω and ν̃ = ν + ν̂, with ω̄ and ν denoting the arbitrary degrees of freedom (suf-

ficiently small) and the arbitrary scale parameter, respectively, ˆ̄ω =
(

∑T
t=1 log(τt)/t

)

+ log
(

∑T
t=1(1/τt)

)

−

log(t) and ν̂ = (t · ˆ̄ω)/
(

∑T
t=1(1/τt)

)

referring to the Maximum Likelihood Estimates (MLEs). In this anal-

ysis, τt = {τ1, . . . , τT } is the random sample from the data {0, T}, ω̄ ∼= 0.1 · χ̇, ν ∼= 0.001, and ν̂ is obtained

by numerically computing ˆ̄ω.

Finally, the last two hyperparameters to be defined in the vector ̟ are θ̄ = θ̂0, with θ̂0 denoting the

GMM estimators of equation (2) related to the posteriors ŷi0 in (43), and ρ̄ = Iξ∗ .

Let the stationarity and moment conditions in (3)-(5) hold, all posterior estimates ensure exact identifi-

cation and unbiasedness of the time-varying coefficient vectors βl and γl in a context of correlated random

effects.

22See, for instance, Carro (2007).



4.4 Theoretical Properties

The proof of the ratio-optimality result and posterior consistency are as follow.

Assumption 4.1 (Identification: General Model). Consider the DPD model in (2):

1. Model Setup

a. (ci0, µi, σ2
u) are i.i.d. across i.

b. For all t, conditional on (yit, cit−l), yc
i,t is independent of φ = (µi, σ2

u).

c. xi,0:T is independent of φ = (µi, σ2
u).

d. Conditioning on (ci0, µi) and σ2
u, they are independent of each other.

e. Let uit ∼ N(0, σ2
u) is i.i.d. across i and independent of (cit−l, µi).

2. Indentification

a. The characteristic functions for µi|ci0 and σ2
u|ci0 do not steadily disappearing altogether into

high-shrinkage processing method.

b. Let vit = µi + uit be the composite error at time t, the sequence {vit : t = 1, 2, . . . , T} is almost

certainly serially correlated, and definitely is if {uit} is serially uncorrelated.

c. With the panel setup in (2) – with large N and sufficiently large T – xit includes interactions

of variables with time periods dummies and general non-linear functions and interactions, so the

model is quite flexible.

d. For the CRE approach, each kind of covariates in cit is separated out and the heterogeneous fac-

tors in µi are correlated with them.

Assumption 4.2 (Identification: Unbalanced Panel). For all i:

1. Indentification

a. ci0 is observed.

b. (yiT , ziT , xiT ) are observed.

c. With the panel setup in (2) – with large N and sufficiently large T – xit includes interactions

of variables with time periods dummies and general non-linear functions and interactions, so the

model is quite flexible.

d. For the CRE approach, each kind of covariates in cit−l is separated out and the heterogeneous

factors in µi are correlated with them.



2. Sequential Exogeneity (Conditional on the Unobserved Effects)

a. E(yit|cit, cit−1, . . . , ci1, µi) = E(yit|cit, µi) = θcit + µi for i = 1, 2, . . . , N .

b. Sequential exogeneity is a middle ground between contemporaneous and strict exogeneity. It allows

lagged dependent variables and other variables that change in reaction to past shocks.

c. Because including contemporaneous exogeneity, standard kinds of endogeneity – where some ele-

ments of cit are correlated with uit – are ruled out such as measurement error, simultaneity, and

time-varying omitted variables.

d. Sequential exogeneity is less restrictive than strict exogeneity imposing restrictions on economic

conditions.

3. Model Setup

a. The term "correlated random effects" is used to denote situations where one models the relation-

ship between {µi} and {cit}.

b. The CRE approach allows to unify fixed and random effects estimation approaches.

c. With the CRE approach, time-constant variables can be included within the system.

d. GMM estimators can be used to consistently estimate all time-varying parameters in θ.

e. θ̂GMM
d→ N

(

θ, 1
N

Vθ

)

where Vθ denotes the covariance matrix estimated via posteriors on {θ̄, ρ̄}.

Assumption 4.3 (Identification: Conjugate Proper Informative Priors). Let E
Yi,µi

θ,φ,π(·) be the expectations

over the observed trajectories (Yi) and the unobserved heterogeneity (µi), the CIPM priors in (16) - (20)

can be rewritten as:

i.

θt|θt−l,E
Yi,µi

θ,φ,π(·)[yi,T +k] ∼ N
(

θ̄, ρ̄
)

ii.

µi|EYi,µi

θ,φ,π(·)[yi,T +k] ∼ N
(

δµi
, Ψµi

)

with δµi
∼ N

(

0, ζ
)

and Ψµi
∼ IG

(

ϕ

2
,

ε

2

)

iii.

yi0|EYi,µi

θ,φ,π(·)[yi,T +k] = N(0, κ)

iv.

π(χ) = w|χ| ·
(

h

|χ|

)−1

v.

σ2
u|EYi,µi

θ,φ,π(·)[yi,T +k] ∼ IG

(

ω̄

2
,
ν

2

)



Statement 4.3.1 (Posterior Distributions). Under Assumption (4.3), all posterior distributions in (41)-

(45) hold and are estimable through MCMC algorithms and implementations.

Statement 4.3.2 (Moment Conditions and GMM Estimator). Let all moment conditions in (3)-(5) hold

for all i. Then, under Assumption (4.3) and Statement (4.3.1), the GMM estimator is consistent and equals

to:

θ̂t =

[

(

cm̄
it |χ̇

)
′

· σ̂2
u ·
(

cm̄
it |χ̇

)

]−1

·
[

(

cm̄
it |χ̇

)
′

· σ̂2
u · yit

]

Theorem 4.4 (Correlated Random Coefficients: Cross-sectional Homoskedasticity). Let the Tweedie’s

formula in (28) hold.

1. The proof of the Tweedie correction for (28) – when dealing with correlated random coefficients – builds

on a finite mixture approximation of multivariate distributions as defined in (29).

2. With correlated random coefficients homoskedastic case, one would work with the following space:

Qm̄ =

{

m̄ ⊂ E :

∫∫

‖ µi ‖2
2 · πm̄ · q∗

i0(ci0) dµi dci0 ≤ Mξ∗

}

for Mξ∗ > 0

where πm̄ denotes the (proposal) joint density distribution to draw posteriors for µ̂i through Metropolis-

Hastings algorithm, and q∗
i0 denotes the true marginal density of ci0.

3. The space for common parameters υ = (θ, σ2
u) is Υ = R|χ| · σ2

u.

4. The conditional individual–specific likelihood function is described as:

L(yit|υ, m̄) = π
(

cit|cit−l, ci,0:T

)

∫∫

∏

t

π
(

yit; θ
′

cit−l + µi, σ2
u

)

· πm̄ · q∗
i0(ci0) dµi dci0

Theorem 4.5 (Posterior Consistency: Correlated Random Coefficients). Given the DPB-CRE in (2):

1. Model → Assumptions (4.1) and (4.2).

2. Covariates →
(

yo
i,0, yc

i,0, zs
i,0, zp

i,0, xi,0:T

)

satisfy Assumptions (4.1) and (4.2).

3. Common Parameters

a. υ is unknown and estimable.

b. The domain of σ2
u is finite and estimable (homoskedastic case).



Thus, the posterior would be highly consistent at υ given πm̄ with regimes m̄.

Theorem 4.6 (Ratio-Optimality: Tweedie Correction). Suppose that Assumptions (4.1) - (4.3) hold: then,

in the DPB-CRE in (2), the EB predictor (ŷi,T +k) defined in (35) achieves ϑ0-ratio-optimality uniformly

for priors πm̄ ⊂ E, with ϑ0 ≥ 0.

Statement 4.6.1 (Properties of the Common Parameters Estimation). The estimators of the common

parameters (υ) have the following properties:

i

E
Yi,µi

θ,φ,πm̄ [σ̂u]4 = ou.πm̄(N+)

ii

E
Yi,µi

θ,φ,πm̄

[

|
√

N(θ̂ − θ)|4
]

= ou.πm̄(N+)

iii

E
Yi,µi

θ,φ,πm̄

[

|
√

N(σ̂2
u − σ2

u)|2
]

= ou.πm̄(N+)

iv

N

∫∫

[

|χ| · π∗
ξ

(

µ̂m̄
i , ym̄

i0 | cm̄
i0

)]2
·
[

|χ| · πξ

(

µ̂i, yi0 | ci0

)]

dµ̂ dyi0 = ou.πm̄(N+) with m̄ < ∞

where πm̄ = |χ|·π∗
ξ

(

µ̂m̄
i , ym̄

i0 | cm̄
i0

)

stands for the (designed) joint density distribution – under probability

(pm̄) – to get draw samples from posteriors of the empirical distribution of µ̂i.

v

pm̄ =

π

(

µ̂m̄
i , ym̄

i0 | µ̂m̄−l
i , Yi,

{

θt

}T

t=1
, cm̄

i0

)

· πm̄−l

π

(

µ̂m̄−l
i , ym̄

i0 | µ̂m̄−l
i , Yi,

{

θt

}T

t=1
, cm̄

i0

)

· πm̄

≤ 1

where the further pm̄ will be close to zero, the lower the PMP and then the lower the possibility that

individual outcome values would perform well the data in the cross-sectional information subset E.

Whether pm̄ = 1, the associated model solution (Mξ∗) would contain best estimates for the µi’s suffi-

cient statistic and individual outcome values in (28). Thus, one would expect to find the final model

solution with higher lBF.

Statement 4.6.2 (Posterior Mean Functions in DPB-CRE with Empirical Bayes Approach). The Theorem

(4.6) can be proved by showing that the below inequality holds:



lim sup
N→∞ πm̄⊂E

NE
Yi,µi

θ,φ,πm̄

[

(

ŷi,T +k − (µi + θyit)
)2
]

NE
Yi,µi

θ,φ,πm̄

[

(

µi − E
Yi,µi

θ,φ,πm̄ [µi]
)2
]

+ Nϑ0

≤ 1

Thus, according to a generalization of the Brown and Greenshtein (2009)’s insight23, the sufficient condition

(4.6.2) is proved by decomposing the discrepancy between the predictor ŷi,T +k and the unknown parameters

(µi + θyit) into three terms:

i

NE
Yi,µi

θ,φ,πm̄ [ŷi,T +k]2 = ou.πm̄(Nϑ0)

It displays the difference between the posterior mean of µi according to the Tweedie correction defined

in (29) and the (proposal) joint density distribution πm̄ with probability pm̄ in (30).

ii

lim sup
N→∞ πm̄⊂E

NE
Yi,µi

θ,φ,πm̄

[

µi + θyit)
]2

NE
Yi,µi

θ,φ,πm̄

[

(

µi − E
Yi,µi

θ,φ,πm̄ [µi]
)2
]

+ Nϑ0

≤ 1

It displays the difference between the posterior density estimated in (29) and the (proposal) joint density

distribution πm̄ with probability pm̄ in (30).

iii

NE
Yi,µi

θ,φ,πm̄ [πm̄] = ou.πm̄(N+)

It displays the structural model uncertainty dealt with replacing the common parameters (θ) by esti-

mates.

The results (i), (ii), and (iii) are relatively straightforward under Statement (4.6.1) and can be handled

according to Statements (4.3.1) and (4.3.2).

Theorem 4.7 (Finite Mixtures of Multivariate Distributions). Suppose that Assumptions (4.1)-(4.3) hold:

then, the density π
(

µ̂i(θ), yi0

)

can be estiamted using FMM distributions as defined in (29).

Statement 4.7.1 (Mixture Components and Model Classes). The finite mixture of multivariate distri-

butions in (29) is able to approximate a large set of distributions as the number of mixture (potential)

combination of predictors (|χ|) – set into E – increases. In this study, I use finite mixtures of multivariate

normal-inverse-gamma distributions dealing with the common parameters υ (Theorem (4.4)). According to

posterior distributions (41)-(45) – under Assumption (4.3) – the finite mixtures of multivariate distributions

will be:

23See, for instance, Liu et al. (2020) using the insight of Brown and Greenshtein (2009) to prove ratio-optimality by replacing
the µi’s distribution with a kernel density estimator.



π∗
mix

(

µ̂m̄
i , ym̄

i0 | |χ|, cm̄
i0

)

= |χ| · π∗
ξ

(

µ̂m̄
i , ym̄

i0 | cm̄
i0

)

with |χ| > 0 and pm̄ ≤ 1

Theorem 4.8 (Normal-Inverse-Gamma-Distribution). It is the conjugate prior of a normal distribution

with unknown mean and variance. For instance, suppose that the distribution of the (non-)homogeneous

parameters θ would be affected by heterogeneous effects φi. According to CIPM in (15):

θ|σ2
u ∼ N

(

θ̄, ρ̄ ⊗ σ2
u

)

and σ2
u|ω̄, ν ∼ IG

(

ω̄

2
,
ν

2

)

Then,

(

θ, σ2
u

)

∼ NIG
(

θ̄, ρ̄, ˙̄ω, ˙̄ν
)

with ˙̄ω = ω̄
2 and ν̇ = ν

2 .

Concerning
(

θ, µi

)

:

θ|µi ∼ N

(

θ̄, ρ̄ ⊗ Ψµi

)

and µi|δµi
, Ψµi

∼ IG
(

δµi
, Ψµi

)

Then,

(

θ, µi

)

∼ NIG
(

θ̄, ρ̄, δµi
, Ψµi

)

Theorem 4.9 (Time-varying Parameters and GMM Estimators). Let the stationarity and moment condi-

tions in (3)-(5) hold in the system, then the time-series regressions are valid (or computational) and GMM

estimators are feasible.



5 Empirical Evidence: Socio–demographic Factors and Policy Tools

during the Coronavirus Outbreak

5.1 Literature Review and Discussion

The COVID-19 pandemic crisis, started in Wuhan (China) in December 2019, is a major global crisis with

far-reaching implications in terms of health and economics (see, e.g., Zaki et al. (2020), Sorokowski et al.

(2020), and She et al. (2020)). Due to the lunar year celebration in China, the huge movement of people

from and between the Asian region and other parts of the world have increased the geographical spreading

of the COVID-19 virus, diffusing to more than 215 countries and regions (see, e.g., Boulos et al. (2020),

Zheng (2020), and Gössling et al. (2020)). Then, the pandemic situation has been aggravated by urbaniza-

tion because of countries with higher population density tend to have higher risk of contamination (see, for

instance, Lindahl and Grace (2015)). On March 11, 2020, the World Health Organization (WHO) has offi-

cially declared the COVID-19 outbreak a global pandemic, where the main distressing social consequences

of the pandemic have been prejudice and anxiety, increasing psychological distancing from the nations most

affected (see, e.g., Karwowski et al. (2020) and Sorokowski et al. (2020)). Moreover, the spread of coro-

navirus has highlighted the importance of dealing with heterogeneity, commonality, and interdependency

among countries and sectors. More precisely, even if the virus has rapidly moved across borders because

of business links and other existing relationships, perceptions about the crisis and social behaviours have

been addressed with lags according to the observed experiences abroad. Indeed, most countries have had

the opportunity of learning from others about social adjustments that have been more or less effective in

containing the disease. At the present time, after initial outbreaks have been supressed for now in China

and South Korea, the virus continues to spread at an alarming rate throughout Europe.

All governments have been overflowed by the widespread pandemic and then forced to take hard measures

to reduce the impact of the disease spread and avoid a complete health system collapse which conversely

would have resulted in a more negative valuation of the government’s policy response. Globally, there have

been implemented social distancing restrictions – such as closure of schools, airports, borders, restaurants

and shopping malls – and, in the most severe cases, lockdowns prohibiting all citizens from leaving their

homes. Such measures have subsequently led to a consistent economic downturn with stock markets plum-

meted, international trade slowed down, bankrupt businesses, and people unemployed (see, e.g., Temsah

et al. (2020), Mikolai et al. (2020), and Nicola et al. (2020)). Although the implemented restrictions have

significantly challenged the expected shock from the pandemic, the extent of the disease spread among

countries has highly varied from one economy to another.

Several frequentist statistical, dynamic and multicountry approaches have been proposed to identify and

analyze socioeconomic effects and policy measures during the outbreak of the COVID-19 (see, e.g., Tuite

and Fisman (2020), Wu et al. (2020), Hassan et al. (2020), Laskowski et al. (2011), and Bernanke (2020)



for some relevant discussions). More precisely, standard statistical inference and multivariate regression

analysis have been performed to evaluate the effects of a pool of variables – such as economic status, popu-

lation density, the median age of the population, and urbanization pattern – on the spread of the COVID-19

among countries. These studies achieve four main results: (i) countries’ population density does not have

any positive significant relations with COVID-19 outcomes; (ii) high-income countries have featured larger

fiscal policies and unconventional monetary policy tools than lower-income countries; (iii) lower-middle-

income and upper-middle-income countries are less likely to have an increased recovery rate compared to

high-income countries; and (iv) countries with higher economic–financial statistics have implemented better

workplaces for more income, better quality of life, and better facilities to reduce the chance of contam-

ination. However, frequentist approaches suffer from well-known downward bias and related asymmetric

distribution. Moreover, they do not deal with unobserved heterogeneity and misspecified dynamics among

countries, and thus cannot capture significant interactions between potential determinants.

In Bayesian statistics, these disadvantages can be accounted for. However, there are limited research

results on the global risk factors of COVID-19 transmission and patterns of spread. In a recent study, Sto-

jkoski et al. (2020) have performed Bayesian Model Averaging (BMA) techniques and country level data to

investigate potential determinants and policy tools in explaining the COVID-19 pandemic outcomes. Their

analysis suggests three main findings: (i) two determinants strongly related to the coronavirus cases are

the population size and the government health expenditure; (ii) more populated economies show greater

resistance to being infected by the virus, while countries with larger government expenditure display greater

susceptibility to the virus infection; and (iii) there is no determinant strongly related to the coronavirus

deaths per million population. Nevertheless, in BMA and BMS, some open related features need to be

accounted for such as endogeneity issues (because of unobserved heterogeneity and omitted factors), over-

fitting, and structural model uncertainty (when one or more forms of misspecification matter).

5.2 Data Description and Results

The DPB-CRE in (2) contains 22 country-specific models, including 9 advanced economies24, 7 emerging

economies25, and 6 non European countries26. Moreover, all advanced countries – except for SVN – refer to

Western Europe (WE) economies and all emerging countries – except for GRC – refer to Central-Eastern

Europe (CEE) economies, respectively. All European countries are Eurozone members, with the exception

of CZE and POL, and thus interdependencies and inter-country linkages can be investigated in depth. The

estimation sample is expressed in years and covers the period from 1990 − 2020, and all data comes from

World Bank database. Given the hierarchical structural conformation of the model and a sufficiently large

number of years describing economic–financial and policy issues, it is able to capture: (i) endogeneity issues;

24Austria (AUT), Finland (FIN ), France (FRA), Germany (DEU ), Ireland (IRL), Italy (ITA), Netherlands (NLD), Slovenia
(SVN ), and Spain (ESP).

25Czech Republic (CZE), Poland (POL), Slovak Republic (SVK), Estonia (EST), Latvia (LVA), Lithuania (LTU ), and
Greece (GRC ).

26United States (USA), China (CHN ), Korea (KOR), Japan (JPN ), United Kingdom (GBR), and Chile (CHL).



(ii) interdependency, commonality, and homogeneity; (iii) relevant monetary and fiscal policy interactions,

and contagion measures; and (iv) misspecified dynamics.

Given the DPB-CRE in (2), I use the conditioning set cit in (6) to identify potential determinants

during the current COVID-19 pandemic crisis and then perform future policy strategies to prevent the

emergence of epidemics on the global economy. The decomposed vectors of the observed time-varying

endogenous variables (yi,t−l, zi,t−l) are: (i) yo′

i,t−l denoting lagged outcomes to capture the persistence; (ii)

yc′

i,t−l indicating general economic conditions; (iii) zs′

i,t−l indicating socio–demographic statistics (including

socioeconomic factors); and (iv) zp′

i,t−l denoting economic–financial variables (including fiscal and monetary

tools). Finally, the strictly exogenous factors xit contain dummy variables to test the presence of structural

breaks27. Even if yi,t−l and zi,t−l are described by common coefficients (β and γ), they could have non-

homogeneous effects on the outcomes (yit). For example, high-income countries could have better recovery

rate than the lower-income ones or countries with better economic–financial status would be more likely to

implement better workplaces and health services.

The dataset contains 92 observable variables dealing with all potential determinants and policy tools

described through the vectors yi,t−l and zi,t−l. In this study, I split them in four groups.

(i.) Economic Status:

The group refers to 41 determinants combining information on education (total enrolment rates at

the primary, secondary, and tertiary level), income (through Gini index28 measures as annual % and

current US$), economic development (GDP per capita as current US$), labour market (labour force

participation rate at national and education level), wage (national level), salaried workers (national

level), employment/unemployment rate (national and working level), trade (exports and imports of

goods and services as % of GDP and annual % growth), and foreign direct investments.

(ii.) Healthcare Statistics:

The group accounts for 11 determinants combining information on health coverage (capital invest-

ments29 and current expenditures30 as % of GDP), public expenditures on health from domestic

sources (transfers, internal grants and transfers, subsidies to voluntary health insurance beneficiaries,

and non-profit institutions serving households), domestic health coverage (as % of GDP and general

government expenditures), and death race (per 1,000 people occurred during each year).

(iii.) Demographic and Environment Statistics:

The group accounts for 28 determinants combining information on fertility rate (per 1,000 women

during each year), age dependency ratio (per 100 working-age population), population (as % of total

population and annual % growth), rural and urban population (as % of total population and annual

27In this study, (potential) structural breaks are assessed using the Chow test.
28The Gini index is a measure of statistical dispersion representing the income or wealth inequality.
29Capital health investments also include health infrastructure (e.g., buildings, machinery, and Information Technology) and

stocks of vaccines for outbreaks.
30Current health expenditures also include healthcare goods and services consumed per year.



% growth), tobacco use and alcohol consumption per capita (as % of adults), net energy imports (as

% of energy use), sources of electricity31, and CO2 emissions from electricity production and use of

natural gas.

(iv.) Economic–financial Issues:

The group refers to 12 determinants dealing with real–financial economy (describing fiscal policy

measures) and financial markets (describing monetary policy tools)32. The former includes – for

example – GDP growth per capita, general government final consumption expenditure (as % of GDP),

and gross fixed capital formation (as % of GDP) for the real dimension; and current account balance

(as % of GDP), public debt (as % of GDP), and long term interest rate for the financial dimension.

Lending markets account for inflation (consumer price index as annual %), bank leverage (as loan to

deposit ratio), domestic credit (provided by financial sector as % of GDP), and net transactions in

financial assets and liabilities (as lending and borrowing ratio). The outcomes of interest corresponds

to GDP per capita in PPP33 (hereafter, ’productivity’).

By looking into which (potential) candidate predictors are included with higher frequency in the final

subset better fitting the data, I run the MPROB procedure described in Section 3.2. In the first stage, I

find that 53 best covariates34 better fit the data with PIPs35 ≥ τ in (11) and χ = 1. Thus, I obtain 253 best

model solutions (Mj ⊂ S). Because of the curse of dimensionality, I further shrink the data performing the

second stage implicit in the MPROB procedure. Overall, 31 top best covariates are found, obtaining 231

top best model solutions (Mξ ⊂ E in (12)) with χ̇ = 1 (Table 1). Here, some preliminary results can be

addressed. (i) Most of model uncertainty and overfitting are avoided: indeed, the CPS36 tends to be close to

0 – such as for predictors (7, 25) – and 1 – such as for predictors (2, 9, 11, 26, 31). (ii) Uncertain effects tend

to persist in predictors (3, 5, 10, 16, 20, 22): thus, they should be interpreted with care. (iii) Socioeconomic

factors (including healthcare, demographic, and environment statistics) matter more than economic status

because of the sudden outbreak of the epidemiology (16/39 factors for socioeconomic–demographic statistics

compared to 8/41 factors for economic status). (iv) The main policy tools correspond to some of the core

variables of real and financial business cycles affecting the spreading and transmission of spillover effects

(such as current account balance, gross fixed capital formation, credit, and inflation rate). And (v) All

predictors with PIPs ≥ τ̇ (in bold) will correspond to the ones to be accounted for the final solution.

Nevertheless, although the intense shrinkage in the parameter space, the final solution would still require

31Electricity production is expressed in % including coal, hydroelectric, natural gas, nuclear, and oil sources.
32The analysis focuses on recent studies concerning implications and interactions between fiscal and monetary policy in

advanced and emerging economies (see, for instance, Pacifico (2019) and Pacifico (2020a,b)).
33The acronym PPP stands for Purchasing Power Parity and is used to measure prices at different locations controlling for

cost differences.
34More precisely, 19 predictors refer to Economic Status, 8 predictors account for Healthcare Statistics, 16 predictors

account for Demographic and Environment Statistics, and 10 predictors refer to Economic–financial Issues.
35The Posterior Inclusion Probabilities (PIPs) correspond to the sum of the PMPs in (9) for all (potential) model solutions

(or combination of predictors) wherein a covariate – in the conditioning set (cit) – has been included.
36The Conditional Posterior Sign (CPS) is defined to deal with the sign certainty, taking values close to 1 or 0 if a covariate

in cit has a positive or negative effect on the outcomes of interest, respectively.



Table 1: Top Best Candidate Predictors – MPROB (second stage)

Idx. Predictor Label Unit PIP (%) CPS

Economic Status

1 Current Education Expenditure, Secondary edusec total exp. (%) 0.43 0.63
2 Employers, Total emto total emp. (%) 46.75 1.00
3 Employment to Population Ratio, 15+ empo total pop. (%) 0.17 0.33
4 Foreign Direct Investment, Net Inflows fdinet % GDP 16.41 0.96
5 Labor Force Partecipation Rate, 15+ labpar total pop. (%) 0.22 0.27
6 Labor Force, Total labtot logarithm (thousands) 33.65 0.68
7 Unemployment Change unem total labor force (%) 65.51 0.00
8 Wage and Salaried Workers wage total emp. (%) 27.40 0.91

Healthcare Statistics

9 Capital Health Expenditure cahe % GDP 31.56 1.00
10 Current Health Expenditure cuhe % GDP 44.02 0.37
11 Dom. Gen. Gov. Health Expenditure gghe % GDP 41.04 0.95
12 Dom. Gen. Gov. Health Expenditure hegg % gen. gov. exp. 28.13 1.00
13 Current Tobacco Use tobuse % adults (15+) 17.37 0.61
14 Alcohol Consumption per Capita alcuse logarithm (adults, 15+) 0.36 0.33

Demographic and Environment Statistics

15 CO2 Emissions, Total co2tot total (%) 23.06 0.16
16 Age Dependency Ratio arat working-age pop. (%) 48.12 0.44
17 Fertility Rate, Total frat births per woman 35.43 0.10
18 Death Race, Crude death per 1,000 people 0.15 0.06
19 Energy Imports, Net eneim energy use (%) 28.31 0.71
20 Population, Total pop logarithm (thousands) 0.23 0.47
21 Rural Population rural total pop. (%) 0.18 0.35
22 Urban Population urban total pop. (%) 21.33 0.51
23 School Enrollment, Secondary school total pop. (% net) 0.36 0.68
24 Human Capital Index hci working-age pop. [0-1] 0.32 0.81

Economic–financial Issues

25 Central Government Debt, Total debt % GDP 37.87 0.00
26 Current Account Balance cab % GDP 67.31 1.00
27 Domestic Credit, Financial Sector crefin % GDP 0.41 0.83
28 Gen. Gov. Final Consumption Exp. ggfce % GDP 0.24 0.75
29 Gross Fixed Capital Formation gfcf % GDP 61.50 0.92
30 Inflation, Consumer Prices inf % GDP 63.24 0.04
31 GDP Growth per Capita gdpg annual % 74.45 1.00

- GDP per capita gdp PPP - -

The Table is so split: the first column denotes the predictor number; the second and the third column describe
the predictors and the corresponding labels; the fourth column refers to the measurement unit; and the last two
columns displays the PIPs (in %) and the CPS, respectively. The last row refers to the outcomes of interest. All
contractions stand for: exp., ’expenditure’; emp., ’employment’; pop., ’population’; dom., ’domestic’; gen. gov.,
’general government’; and int., international. All data refer to World Bank database.

more effort: indeed, there are 20 (potential) top best predictors better fitting the data. Thus, I run the

third and last stage implicit in the MPROB procedure testing for panel Granger (Non-)Causality among

all selected predictors. In Table 2, I display the only covariates with p-value < τ̇ and then included in the

final submodels Mξ∗ ⊂ E . All socioeconomic factors, including demographic and environment statistics,

matter as much as economic–financial variables affecting outcomes (yit) and then the need to be accounted

for facing different triggering events (e.g., global financial and pandemic crises), but with some common

features (see Section 5.3).

Finally, the final model solution better performing the data – with lBF = 13.49 according to (13) –



consists of 10 final top best covariates so split: predictors (2, 7) for yc′

i,t−l; predictors (10, 11, 16, 17) for zs′

i,t−l;

and predictors (26, 29, 30, 31) for zp′

i,t−l). All their available lags – including lagged outcomes (yo′

i,t−l) and

all predictors in Mξ ⊂ E with PIPs ≥ τ̇ (Table 1, in bold) – are then included as external instruments in

the estimating procedure. In the estimation method, I also include two time-invariant effects (x1t and x2t)

denoting the presence of structural breaks in 2018 (due to the global financial crisis) and in 2020 (due to

the COVID-19 pandemic).

Table 2: Granger (Non-)Causality Test – MPROB (third stage)

From c∗
it to yit emto unem cuhe gghe arat frat cab gfcf inf gdpg

Z-tilde 5.40
(0.00)

4.56
(0.00)

5.85
(0.00)

4.08
(0.00)

5.17
(0.00)

3.66
(0.00)

5.39
(0.00)

4.04
(0.00)

3.42
(0.00)

5.98
(0.00)

From yit to c∗
it emto unem cuhe gghe arat frat cab gfcf inf gdpg

Z-tilde 7.59
(0.00)

3.45
(0.00)

3.10
(0.00)

2.50
(0.01)

4.21
(0.00)

3.23
(0.00)

5.03
(0.00)

2.48
(0.01)

6.05
(0.00)

3.44
(0.00)

The Table displays all Z-tilde test statistics and p-values (in parenthesis) on the panel Granger
(Non-)Causality test. Here, c∗

it stands for the top best final candidate predictors in Mξ∗ ⊂ E
with higher lBF (equation (13)).

In Table 3, I display the main estimation outputs – including diagnostic tests – highlighting the per-

formance of the DPB-CRE model. Here, some considerations are in order. (i) The best optimal lag

chosen according to Arellano (2003)’s test is 3. (ii) All estimates are consistent and valid, showing no

autocorrelation among residuals and highly strong linear dependencies; thus, endogeneity issues and model

misspecification problems need to be accounted for. (iii) The posterior predictive variance of µi reenters in

the range displayed in (33), dealing with high dimensional data carefully (VYi,µi

θ,φ,π(m̄)[µi] = 0.74 with ξ∗ > 10).

(iv) In Table 2, highly strong causal links confirms the presence of heterogeneity among a restricted sub-

group of units (alternative hypothesis in the Granger (Non-)Causality test). (v) The Posterior Model Size

Distribution (PMSD) is close to 10 and then to the top best candidate predictors better explaining the data

(χ̇). As emphasized in this analysis, let χ̇ be 20 (Table 1), there would be some covariates not fitting the

data well (absence of the covariate in Mξ∗ ⊂ E), and thus they should be not considered in the final solution

(Table 2). And (iv) the latter is robust dealing with most of the explained variability of the outcomes of

interest (R2
adj. = 0.78). To prove it, I run two different DPD models accounting for the only time- and

country-specific effects, obtaining a robustness equals to 0.98 and 0.97, respectively. The higly large R2
adj.

would highlight the presence of heterogenous effects strongly affecting the data and then the need to be

dealt with.

5.3 Individual–specific Forecasting and Future Policy-relevant Strategies

Dynamic analyses have been conducted via accurate MCMC algorithms and implementations. I use 1, 000

until 5, 000 draws and find that convergence is obtained at about 1, 000 draws37. The total number of draws

has been 2, 000 + 3, 000 = 5, 000, which corresponds to the sum of the final number of draws to discard

37The convergence has been found by amounting to about 1.2 draws per regression parameter.



Table 3: Estimation Outputs and Diagnostic Tests

Main Statistics Results

AR(l∗) 3
ξ∗ 10

LGBs 0.00

LGBr 0.91

V
Yi,µi

θ,φ,π(m̄)[µi] 0.74

PMSD 9.92

lBF 13.49

R2
adj. 0.78

The Table shows the main estimation outputs and diagnos-
tic tests of the DPB-CRE model in (2). Here, l∗ denotes the
optimal lag; LGBs and LGBr stand for Ljung-Box test statis-
tics of the series and residuals in terms of p-values, respec-
tively; V

Yi,µi

θ,φ,π(m̄)[µi] accounts for the estimated posterior pre-
dictive variance for µi; PMSD refers to the Posterior Model
Size Distribution; lBF refers to the log Bayes Factor in (13);
and R2

adj. denotes the adjusted R2 measuring the robustness.

and save, respectively. A total of 1, 000 retained replications has been used to conduct posterior inference

at each t. The outcomes absorb the conditional forecasts computed for a time frame of 2 years in order

to also investigate interesting findings concerning the impact of an ongoing pandemic crisis on the global

economy, or the evolution of the productivity in the next years. The natural conjugate prior refers to three

subsamples: (i) 2007–2009 to evaluate the impact of the Great Recession; (ii) 2010–2018 to adress how

fiscal consolidation periods affected the dynamics of the productivity among countries; and (iii) 2019–2020

to assess the impact of the current pandemic crisis on the global economy.

Without restrictions, the estimation sample amounts to 682 regression parameters: every estimates of the

DPB-CRE in (2) account for 22 country indices and 31 time periods. Let the Assumptions (4.1)-(4.3) hold

and the hyperparameters in ω̃ be all known and estimable, posterior distributions are computed according

to equations (37)-(39) for θt|θt−l, ŷi,T +k, (42)-(43) for moment distributions in µi|ŷi,T +k given initial values

(ŷi0|µ̂m̄
i ), (44) for the final top best parameter space, and (45) for ut|ŷi,T +k. All data are expressed in

standard deviations.

In Figure 1, (empirical) forecasts for outcomes ŷi,T +k – with individial-specific (µi) and time-fixed (α)

effects – are drawn for advanced (top plot) and emerging (bottom plot) economies. They aim to investigate

potential determinants performing suitable policy strategies because of ’dramatic’ structural breaks (e.g.,

recessions, epidemics) on the global economy. By construction, incidental parameters, endogeneity issues,

and structural model uncertainty are dealt with. In addition, cross-unit interdependencies and commonality,

dynamic feedback, and causal interactions are also addressed. The yellow and red curves denote the 95%



confidence bands, and the blue and purple curves denote the conditional38 and unconditional39 projections

of outcomes ŷi,T +k for each N country indices and T time periods.

Figure 1: The plot draws (empirical) forecasts for outcomes ŷi,T +k given individual–specific (µi) and time-
fixed (α) effects given a pool of socioeconomic–demographic, real–financial, and policy determinants. All
time-varying parameters are posterior means by semiparametric estimating procedure. They correspond to
conditional (blue line) and unconditional (purple line) projections of each supposed variable assessed in (2).

From a modelling perspective, four main findings are addressed. (i) Even if there has been evidence of

significant co-movements and interdependencies among countries, consistent heterogeneities matter in both

the spreading and the intensity of countries’ dynamics. Thus, the need for forecasters and policymakers to

account for heterogeneous effects (correlated random coefficients) when formulating policy strategies and

forecasting in multivariate dynamic panel data. (ii) Conditional projections lie in the confidence interval;

conversely, unconditional projections tend to diverge over T . Thus, when studying macroeconomic–financial

and socioeconomic–demographic issues, cross-unit lagged interdependencies – along with dynamic feedback

and interactions – have to be dealt with. (iii) Outward countries’ responses in advanced economies (net

senders) emphasize consistent economic–institutional implications, while emerging economies show inward

responses (net receivers) due to stringent interlinkages (e.g., capital flows and trade exposures) with West-

ern European countries. Thus, although recent dynamics would suggest significant improvements in fiscal

sustainability (e.g., during post-crisis periods), the risk of a cascade of policy errors, adverse political econ-

omy incentives, and divergence in financial integration are relevant issues for an early and coordinated fiscal

consolidation. The results highlight a great caution in efforts to fine-tune the economy via fiscal structures

38Generally, the conditional projection in forecasting models is the one that the model would have obtained over the same
period conditionally on the actual path of unexpected dynamics for that period (µi dependent on yi0).

39Generally, the unconditional projection in forecasting models is the one that the model would obtain for output growth
for that period only on the basis of historical information, and it is consistent with a model-based forecast path for the other
variables (µi independent of yi0).



and boost productivity to potential growth via accurate structural reforms and policy adjustments. In that

context, the USA, JPN, and CHN variables would act like persistent net senders in driving the transmission

of international financial shocks and net receiver in allowing shocks to spill over into real economy among Eu-

ropean and non-European countries. And (iv) the highly strong significance in socioeconomic–demographic

factors show that healthcare system capacity and cost-related indices would affect government’s strategy

and measures (Table 1). For instance, they could delay well-timed measures because of generating an

overconfidence in the government’s capacity to fight an unexpected outbreak. However, a hint of boosting

productivity to potential growth can be observed among countries in the next years, mainly among advanced

economies. Thus, in the current pandemic crisis – a game against nature with incomplete information, in-

creased knowledge, and reduced uncertainty on other countries’ policy responses and epidemic development

– health services and expected economic costs from hard measures managing the recession have increased

the agility of the country’s policy actions.

From a policy perspective, the estimation sample considered in this study deals with two ’severe’ global

economic crisis causing a recession/depression in most countries: global financial crisis and COVID-19

pandemic. Even if they are distinct between them, potential common linkages matter such as sovereign

debt accumulation and possible cuts in public health spending, the slowing of economic growth and labour

mobility, ’bank zombie’40, and difficulties for designing and implementing economic support policies. Ac-

cording to Figure 1, four main results can be highlighted. (i) Empirical forecasts show that most European

emerging economies are strongly exposed to financial interlinkages and then highly dependent on other Eu-

ropean countries (e.g., Western European countries). Nevertheless, the presence of persistent heterogeneities

among countries’ responses emphasize the need for accelerating financial development in developing coun-

tries, stimulating domestic resource mobilization, and supporting consistent reforms of the international

financial system in order to boost investment and growth. (ii) Even if several measures have already been

taken at the international and EU levels, most countries have been limited to use monetary and fiscal

tools effectively due to stringent economic–institutional interdependencies, and then they have not been

able to deploy conventional consolidation measures during triggering events. Moreover, most countries have

failed to control the extent of COVID-19 due to people’s attitudes of denial and misunderstanding of social

distancing for the control of the outbreak. Thus, in a context of radical uncertainty and heterogeneous

territorial effects, appropriate policy measures need to be addressed at the local level rather than globally.

(iii) Heterogeneity among countries’ responses would cover different reasons. It could reflect the fact that

larger government health spending (socioeconomic factors) implies a more developed economy, which in

turn suggests an older population and better social welfare (demographic and environment statistics). In

addition, larger government health expenditure could matter due to inflated costs (economic–financial is-

sues) and then not necessarily reflecting the quality of the public health-care system. Also, countries with

lower health-care expenditure and/or weaker public health-care system could be aware of their deficiencies

40Generally speaking, a ’zombie bank’ is an insolvent financial institution able to continue operating because of the govern-
ment’s support.



and then act more aggressively and early in the outbreaks (such as most of the Central and Eastern Eu-

ropean countries). And (iv) most policy adjustments – applied by governments during a recession – have

followed distinct national rather than consensual international standards (such as in the current outbreak

and previous pandemic crises). Overall, all policy tools should be implemented by closely monitoring the

evolution of the economic status for each country and coordinating country-specific European and interna-

tional measures. Then, a participatory government is needed for ensuring more resilient and robust health

systems and improving public health outcomes so as to safeguard against an ongoing pandemic crisis on the

global economy.

6 Relative Regrets for Tweedie Correction via MCMC-based Experi-

ments

In this example, the performance of the estimation method is investigated by summarizing the regrets for

Tweedie correction in (29) – relative to the posterior predictive variance of µi for optimal point forecasts as

specified in Theorems (4.6) and (4.7) through MCMC-based simulations. More precisely, according to (33),

I consider three sequences of
(

N, ξ∗,VYi,µi

θ,φ,π(m̄)[µi]
)

with correlated random coefficients homoskedastic case to

evaluate different improvements in the forecasting performance: (i) (10000, 15, 1.0), heterogeneity with high

dimension; (ii) (10000, 10, 0.5), sufficient-homogeneity with moderate dimension; (iii) (10000, 5, 0.0), near-

homogeneity with small dimension (Table 4). I suppose a basic DPD model with α = γ = 0, homoskedastic

variance σ2 = 1, and regimes m̄ = 1 (just one common individual–specific effect across units).

Table 4: MCMC-based Designs

Law of Motion yit = µi + βyi,t−1 + uit where β = 0.5 , uit ∼ i.i.d.N(0, 1)

Initial Observations yi0 ∼ N(0, 1)

Correlated Random Effects µi|yi0 ∼ N(0, Ψµi
) where Ψµi

∼ IG
(

0.1
2 , 0.01

2

)

The Table shows the three sequences of
(

N, ξ∗,VYi,µi

θ,φ,π(m̄)[µi]
)

with correlated random coefficients

homoskedastic case conducted in the simulated example through MCMC-based simulations accord-
ing to (33).

In this analysis, I include two additional empirical Bayes estimators dealing with alternative Tweedie

corrections: Kernel Density (KD) estimator and NonParametric Maximum Likelihood (NPML) estimation.

Here, some considerations are in order. The Liu et al. (2020)’s analysis develops a KD estimator dealing with

the problem of forecasting a collection of short time-series processes through the cross-sectional information

in a dynamic panel data. The authors construct a nonparametric kernel estimate of the Tweedie correction,

showing its asymptotic equivalence to the risk of an empirical predictor treating the CREs’ distribution

as known. Concerning the NPML estimation, the EB estimator is constructed by specifying appropriate

bounds for the domain of CREs and then partitioning them into a predetermined set of bins (see, for

instance, Gu and Koenker (2017b).).



Table 5 provides the relative regrets for FMM distributions and alternative Tweedie corrections for all of

the three supposed MCMC-based designs. The best choice of ϑ0 improving the forecasting performance in

terms of ratio-optimality was set 0.5 (middle point in an arbitrary range [0.1 - 0.9]). The findings highlight

the usefulness of the MPROB procedure for dramatically shrinking the model size with high dimensional

data, and the performance of the FMM-based Empirical Bayes estimator (Tweedie correction) for performing

better forecasts. For instance, lower posterior predictive variances of µi are associated to less relative regrets.

Compared to KD and NPLM estimates, FMM with MPROB procedure shows lower regrets. Thus, the DPB-

CRE model would be able to perform better accurate forecasts dealing with (potential) semiparametric

problems when addressing heterogeneous effects in dynamic panel setups (through CR coefficients) and

investigating dynamic feedback and interactions in high dimensional time-varying data (through MPROB

procedure). Furthermore, the experiment was replicated accounting for highly larger sample size (e.g.,

N = 100, 000) and lower ratio-optimality (e.g., ϑ0
∼= 0.1). The results show that the relative regrets are

negatively correlated with the number of cross-sectional units N , and less ratio-optimality – even if reduces

computational costs – would suffer to higher associated regrets.

Table 5: Relative Regrets for Tweedie Corrections for MCMC-based Designs

Design I Design II Design III

N 10000 10000 10000

V
Yi,µi

θ,φ,πm̄ [µi] 1.0 0.5 0.0

ξ∗ 15 10 5

Nsim 10000 10000 10000

KD 0.026 0.051 0.074

FMM 0.014 0.010 0.007

NPML 0.021 0.019 0.013

Relative regrets for Tweedie corrections for all
of the three supposed MCMC-based designs are
provided. The regret is standardized by the av-
erage posterior predictive variance of µi, with
ϑ0 = 0.5.

All results in Table 5 find confirmation in Figure 2. More precisely, lower posterior predictive variances

of µi are associated to less MSE and then better accuracy forecasts (associated with less relative regrets).

Moreover, the (designed) joint density distribution of πm̄ – depicting posterior draw samples of the empirical

distribution of µ̂i (Statement (4.6.1)) – asymptotically converges to a Normal and then the FMM-based

Tweedie Correction – in Theorem (4.6) – approaches linear distribution function. Furthermore, in the

second and third designs, the empirical realizations of µ̂i are greater and lie in the distribution highlighting

lower MSEs and less sampling variance in the estimated posterior means.



Figure 2: The panels show the MSE associated to all of the three supposed MCMC-based designs. The solid
lines display the posterior draw samples of the empirical distribution of µ̂i according to the (designed) joint
density distribution πm̄ in Statement (4.6.1), and the FMM-based Tweedie Correction in Theorem (4.6).

7 Concluding remarks

This study aims to construct and develop a methodology to improve the recent literature on DPD models

when dealing with (i) individual–specific forecasts, (ii) Bayesian analyses with parametric priors on hetero-

geneous parameters, (iii) ratio-optimality and posterior consistency in dynamic panel setups, (iv) empirical

Bayes estimator and alternative Tweedie corrections, and (v) the curse of dimensionality when estimating

time-varying data. The contributions of this paper are fourfold. First, I develop a hierarchical structural

Bayesian approach to deal with potential features in real-world data such as non-linearity, incidental pa-

rameters, endogeneity issues, and misspecified dynamics. Second, I use a MPROB procedure to obtain a

final subset containing top best candidate predictors better fitting the data dealing with high dimensional

panel setups. Third, MCMC algorithms and implementations are addressed to set potential determinants

performing future policy strategies to prevent the emergence of epidemics on the global economy. Fourth,

all available lags of the top best candidate predictors are included as external instruments, and unobserved

individual heterogeneities are treated as random variables and then possibly correlated with the outcomes.

An empirical application on a pool of advanced and emerging economies is assessed describing the func-

tioning and the performance of the methodology. The estimation sample refers to the period 1990 − 2020,

covering a sufficiently large sample to address potential causal links and interdependencies between out-

comes and a set of time-varying factors, including heterogeneous individual-specific and time-fixed effects.

A simulated experiment – compared to related works – is also addressed to highlight the performance of



the estimating procedure through Monte Carlo simulations.

Future works would implement the methodology proposed in this study accounting for dynamic panel

data with cross-sectional heterogeneity and time-varying heteroskedasticity. The latter is useful to disen-

tangle the uncertainty generated from either unknown cross-sectional heterogeneity (µi) or independent

shocks (uit), i.e. a deconvolution problem. In that context, the semiparametric Bayesian approach can be

implemented to perform density forecasts. Methodologically, for correlated random coefficients, the algo-

rithm proposed in (29) can be extended to a nonparametric conditional density estimation problem using

stick-breaking process mixture priors.
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