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Abstract

We study a connections model where the strength of a link depends on the
amount invested in it and is determined by an increasing strictly concave func-
tion. The revenue from investments in links is the information that the nodes
receive through the network. First, the structures of e¢cient networks are char-
acterized, and conditions for optimal investments constrained to supporting a
given network are obtained. Second, assuming that links are the result of in-
vestments by the node-players involved, there is the question of stability. We
introduce and characterize a notion of marginal equilibrium weaker than that of
Nash equilibrium, and identify di¤erent marginally stable structures. E¢ciency
and stability are shown to be incompatible, but partial subsidizing is shown to
be able to bridge the gap.
JEL Classi�cation Numbers: A14, C72, D85
Key words: Networks, Connections model, Decreasing returns, E¢ciency,

Stability.
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1 Introduction

This paper seeks to contribute to the literature on economic models of strategic net-
work formation. In this line of work, an increasing �ow of research has been produced
by game-theorists and economists in general since Myerson (1977) and Aumann and
Myerson (1988).1 In the wake of these pioneering papers in the �eld, two seminal
in�uential models of network formation are Jackson and Wolinsky�s (1996) connec-
tions model and Bala and Goyal�s (2000) non-cooperative two-way �ow model. In
both models, networks are the result of creating links between pairs of individuals,
by bilateral agreements in the former and unilateral decisions in the second, enabling
information to �ow through the resulting network. In both models, the cost of a link
and its strength or quality (i.e. its decay factor) are exogenously given, giving rise
to two-parameter models. The simplicity of these basic models imposes some rigidity:
Necessarily bilateral formation and compulsory equal share of the �xed cost of each
link in Jackson and Wolinsky�s model; and unilateral formation requiring full-covering
of that �xed cost by its creator in Bala and Goyal�s model, and a �xed level of quality
for the resulting link in both. The point of this paper is to provide and develop a more
�exible model in both link-formation and link-performance.
We develop a model of network formation where links are the result of investments

and the quality or strength of a link, i.e. the �delity level of transmission through
it, is never perfect and depends on the amount invested in it. A decreasing returns
link-formation technology determines the quality of the resulting link as a function of
the investment and is the only exogenous ingredient in the model. Formally, a decreas-
ing returns link-formation technology is a di¤erentiable, increasing, strictly concave
function whose range is [0; 1), i.e. however much is invested in a link, transmission is
never perfect. The revenue from investment in links is, as in the seminal models, the
information that the nodes receive through the network that results.
The question of e¢ciency is addressed �rst. It is established that the only possible

non-empty e¢cient architectures for a decreasing returns link-formation technology
are the complete network and the all-encompassing star, whose precise structures are
also established. The family of decreasing returns link-formation technologies which
have one of these non-empty structures as e¢cient is also characterized. Conditions
for optimal investments constrained to supporting a given network are also obtained.
We then consider a decentralized context where links are formed according to a

decreasing returns technology available to all players, and each link is the result of
investments by the node-players that it connects, whose investments are assumed to
be perfect substitutes. In this game-theoretic scenario the question of stability in
the underlying network-formation game arises. We �rst examine a notion of marginal
equilibrium of a classical �avor which is natural in this marginalist model but new
in networks literature to the best of our knowledge. In a marginal equilibrium every

1Goyal (2007), Jackson (2008) and Vega-Redondo (2007) are excellent monographs on social and
economic networks. See also Bramoullé, Galeotti and Rogers, Eds. (2015).
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player is playing a locally best response. More precisely, an investment pro�le is a mar-
ginal equilibrium if the investment vector of every player in the links in which he/she is
involved is locally optimal, in the sense that su¢ciently small changes of these invest-
ments do not increase his/her payo¤. Necessary and su¢cient conditions for marginal
stability are established by imposing that the marginal bene�t of the investment of any
player in each of his/her links must be zero. The characterizing conditions that result
from this classical economic principle have a clear intuitive interpretation which permits
us to identify a variety of marginally stable architectures and their precise structures.
At the same time, given that marginal stability is weaker than Nash-stability, these
conditions are necessary for Nash equilibrium.
A comparison of the results on e¢ciency and stability yields the conclusion that

non-empty e¢cient structures are not stable, not even marginally, and vice versa.
Nevertheless, it is proven that subsidizing up to half the cost of each link bridges the
gap between e¢ciency and marginal stability.
The paper is organized as follows. Section 2 introduces basic notation and termi-

nology. Section 3 introduces the model. Section 4 addresses the question of e¢ciency,
�rst in general, characterizing e¢cient networks (4.1), and then the question of the
e¢cient support of a given �infrastructure� speci�ed by a set of feasible links (4.2).
Section 5 is devoted to stability: Marginal stability (5.1) and Nash stability (5.2). Sec-
tion 6 examines the incompatibility of e¢ciency and stability, and shows how a partial
subsidy can bridge the gap. Section 7 brie�y reviews some related literature. Finally,
Section 8 summarizes the results and suggests some possible extensions of the model.
All proofs are relegated to an Appendix.

2 Preliminaries

An undirected weighted network (shortened in what follows to a network) is a pair
(N; g) where N = f1; 2; :::; ng with n � 3 is a set of nodes and g is a set of links
speci�ed by a symmetric adjacency matrix g = (gij)i;j2N of real numbers gij 2 [0; 1),
with gii = 0 for all i. Alternatively, g can be speci�ed as a map g : N2 ! [0; 1), where
N2 denotes the set of all subsets of N with cardinality 2. When no ambiguity arises
we omit N and refer to g as a network. In what follows ij stands for fi; jg and gij
for g(fi; jg) for any fi; jg 2 N2.

2 When gij > 0 it is said that a link of weight gij
connects i and j. Nd(i; g) := fj 2 N : gij > 0g denotes the set of neighbors of node
i, and its cardinality is the degree of i. A path connecting nodes i and j is a sequence
of distinct nodes of which the �rst is i, the last is j, and every two consecutive nodes
are connected by a link. If i and j are two consecutive nodes in a path p, we write
ij 2 p or ij 2 p. Pij(g) denotes the set of paths in g connecting i and j. N(i; g)
denotes the set of nodes connected to i by a path. A network is connected if any two

2The convenience of the distinction between ij and ij, especially as subindexes, will be apparent
in Section 5. With this convention xij � xji, while xij 6= xji in general.
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nodes are connected by a path. A subnetwork of a network (N; g) is a network (N 0; g0)
s.t. N 0 � N and g0 � g. A component of a network (N; g) is a maximal connected
subnetwork. An isolated node (i.e. not connected to any other) is a trivial component.
A network has a cycle if there are two nodes connected by a link and also by a path of
length 2 or more (the length of a path is the number of links that it contains, i.e. the
number of nodes minus 1).
When the codomain of g is f0; 1g instead of [0; 1), i.e. gij only takes the values

0 or 1, we say that g is a graph and it can be speci�ed as a set of links S � N2.
In particular, the non-weighted underlying graph Sg of a weighted network g is Sg :=
fij 2 N2 : gij > 0g. When a given graph S � N2 constrains the construction of a
network which must have it as its underlying graph, we call S an infrastructure.
The empty network/graph is the one for which gij = 0 for all ij 2 N2. A complete

network/graph is one where gij > 0 for all ij 2 N2. A subcomplete network/graph has
only one non-trivial component which is a complete subnetwork, i.e. gij > 0 if and only
if ij 2 M2 for some M � N . A star network/graph is one with only one non-trivial
component with k nodes (3 � k � n) and k� 1 links in which one node (the center) is
connected by a link with each of the other k�1 nodes. A tree network/graph is one with
only one non-trivial component and no cycles. A circle network/graph has only one
non-trivial component with k nodes (3 � k � n) and k links, each of them connecting
one node with the next one and the last one with the �rst one for a given ordering of
the k nodes. A tree, a star or a circle network/graph is said to be all-encompassing if
k = n.

3 The model

As in the seminal connections models of Jackson and Wolinsky (1996) and Bala and
Goyal (2000), we consider a set of nodes or players, each of them endowed with an
information of value v > 0 to any other node that receives it intact. The main di¤erence
between our model, brie�y sketched in the introduction and to be formalized in detail
now, and the seminal models concerns link-formation. In Olaizola and Valenciano
(2020), a link-formation technology is a non-decreasing map � : R+ ! [0; 1) s.t. �(0) =
0: If c is the amount invested in a link to connect two nodes, �(c) is the level of
�delity of the transmission of information through the link. More precisely, �(c) is
the fraction of information �owing through the link that remains intact.3 Flow occurs
only through links invested in (�(0) = 0), but perfect �delity in transmission between
di¤erent nodes is never reached (0 � �(c) < 1). In this paper we assume a decreasing
returns link-formation technology.

3Nevertheless, other interpretations are possible. For instance, the �strength of a tie� (Granovetter,
1973), i.e. a measure of the quality/intensity/value of a relationship e.g. in personal relationships,
where the quality/strength of a link is a function of the investments of each of the two people involved.
A link can also be a means for the �ow of other goods, but we give preference here to the interpretation
in terms of information.
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De�nition 1 A decreasing returns link-formation technology (DR-technology for short)
is a di¤erentiable map � : R+ ! [0; 1) s.t. �(0) = 0, and satis�es the following condi-
tions:
(C.1) �0(c) > 0, for all c � 0, i.e. it is increasing.
(C.2) It is strictly concave.

Assuming smoothness of � makes it possible to use di¤erential calculus, which
allows for a relatively simple formal marginal analysis without getting involved in more
sophisticated technical issues. C.2 amounts to assuming technology to be decreasing
returns.
We consider the following model based on this basic ingredient. A set N =

f1; 2; :::; ng of nodes or players can be connected by links formed according to a given
decreasing returns link-formation technology �. Players can invest in links with other
nodes. An investment pro�le is speci�ed by a matrix c = (cij)i;j2N , where cij � 0
(with cii = 0) is the investment of player i in the link connecting players i and j, and
determines a link-investment vector c :

c! c = (cij)ij2N2, where cij := cij + cji;

which in turn, through the link-formation technology available, �, yields a weighted
network denoted by gc or by gc, where

gcij = g
c

ij = �(cij) = �(cij + cji):

Thus players� e¤orts are perfect substitutes. Let Pik(g
c) denote the set of paths in

gc connecting i and k. For a path p 2 Pik(g
c), let �(p) denote the product of the

�delity levels through each link in that path, i.e. if p = ii2i3:::imk, then �(p) =
�(cii2)�(ci2i3):::�(cimk). Thus, player i values information originating from k that arrives
via p by v�(p): As in Jackson and Wolinsky (1996) and Bala and Goyal (2000), we
assume that player i�s valuation of the information originating from k 6= i, denoted by
Iik(g

c); is that which is routed via the best possible route from k, that is

Iik(g
c) = max

p2Pik(gc)
v�(p) = v max

p2Pik(gc)
�(p) = v�(pik);

where pik is an optimal path connecting i and k, i.e. pik 2 argmaxp2Pik(gc) �(p) (if no
path connects i and k we set �(pik) = 0). Then i�s overall revenue from gc is

Ii(g
c) =

X

k2N(i;gc)

Iik(g
c):

Thus, i�s payo¤ is the value of the information received by i minus i�s investment:

��i (c) := Ii(g
c)� Ci(c) =

X

k2N(i;gc)

v�(pik)�
X

j2Nd(i;gc)

cij; (1)
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and the net value of the network resulting is the aggregate payo¤, i.e. the total value
of the information received by the nodes minus the total cost of the network:

v(gc) :=
X

i2N

��i (c) =
X

i2N

Ii(g
c)�

X

ij2N2

cij =
X

kl2N2

2v�(pkl)�
X

ij2N2

cij: (2)

In this setting two main issues arise. A game in strategic form, where a strategy
of a player i is a vector of investments (ci = (cij)j2N , with cii = 0) and the payo¤
function is given by (1), is implicitly de�ned. Thus the question of stability arises:
What structures are stable and under what conditions? The notion usually applied
in a context such as this is Nash equilibrium: An investment pro�le is Nash-stable if
no player has an incentive to change his/her investment vector. Nevertheless, we �rst
devote particular attention to a weaker notion of stability new in this context: Marginal
equilibrium. A second issue is the question of e¢ciency: What structures are e¢cient
in the sense of maximizing the net value given by (2) and under what conditions?
We address the question of e¢ciency �rst, and then look at stability. Thus we deal

with a model with two parameters, the number of nodes/players n and the value v of
the information at each node. A third �parameter� is the link-formation technology
represented by function �:4

4 E¢ciency

4.1 E¢cient networks

In the model just described, the net value of a network gc, given by (2), that results
from an investment pro�le c = (cij)i;j2N , depends entirely on c = (cij)ij2N2, where
cij := cij + cji. In other words, given that players� e¤orts are perfect substitutes,
the question of e¢ciency depends entirely on the investments in every link, but it is
immaterial who pays for them. Thus the answer to the question of e¢ciency is the
same, regardless of whether the investments are made by node-players in a decentralized
way or by a central planner. For this reason we give preference in this section to
expressing results in terms of investment vectors and c = (cij)ij2N2 and the resulting

network gc. In Olaizola and Valenciano (2020) it is proved that for any link-formation
technology �, i.e. any � non-decreasing and s.t. �(0) = 0, the only possibly e¢cient non-
empty networks are the all-encompassing star, the complete network and, under certain
conditions, also a whole range of intermediate particular nested split graph structures.5

4It can be assumed w.l.o.g. that v = 1, which slightly simpli�es the presentation. However, it
is preferable not to do so and to keep this otherwise hidden parameter explicit. If investments in
links are made by a planner, this value can be interpreted as a subjective evaluation by the planner
w.r.t. which the e¢ciency objective is speci�ed. Nevertheless, the reader may choose to ignore all
occurrences of v by assuming v = 1.

5A precise formulation of the conditions for this exception to occur is needed to prove the charac-
terizing result. This is given in the proof of Theorem 1.
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This conclusion thus also applies to DR-technologies. We �rst show the necessary
conditions for a star and a complete network to be e¢cient for a DR-technology, based
on the conditions obtained in Olaizola and Valenciano (2020), which will enable us to
re�ne these conclusions for DR-technologies.

Proposition 1 For a complete network gc to be e¢cient under a DR-technology �, the
following conditions are necessary:
(i) �0(0) > 1=2v.
(ii) For all ij 2 N2, cij = bcef; where

bcef = argmax
c>0

(2v�(c)� c); (3)

or, equivalently,
�0(bcef) = 1=2v: (4)

(iii) 2v�(bcef)2 � 2v�(bcef)� bcef:

Therefore, in an e¢cient complete network all links are of the same strength, bcef
s.t. (3) or, which is equivalent for a DR-technology, s.t. (4). Note that there is certain
to be a unique bcef > 0 s.t. (3) and (4) if and only if �0(0) > 1=2v.
In order to establish the structure of an e¢cient all-encompassing star, we �rst

prove the necessary symmetry of an optimal star, i.e. a star with the highest net value,
for any technology.

Lemma 1 For any link-formation technology for which some star yields a positive net
value, the optimal star is all-encompassing and all its links have the same strength.

Proposition 2 For an all-encompassing star gc to be e¢cient under a DR-technology �,
the following conditions are necessary:
(i) All links receive the same investment c�ef s.t.

c�ef 2 argmax
c>0

�
2v�(c) + (n� 2)v�(c)2 � c

�
; (5)

for which a necessary condition is

�0(c�ef ) =
1

2v(1 + (n� 2)�(c�ef ))
: (6)

(ii) Additionally, if maxc>0(2v�(c)� c) > 0,

2v�(c�ef )
2 � 2v�(c)� c (7)

for all c > 0.
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The following result shows that the existence of an optimal symmetric star is guar-
anteed unless the technology is �too bad� in a precise sense, but whatever the DR-
technology if n is big enough.

Proposition 3 For a DR-technology �, there is an optimal all-encompassing star un-
less �(c) � 'n(c) for all c � 0, where

'n(c) :=
�1 +

p
1 + (n� 2)c=v

n� 2
: (8)

For every DR-technology, there is an optimal all-encompassing star if n is big enough.

Therefore function 'n(c); de�ned by (8), sets a precise bound below which a tech-
nology is poor enough to make the formation of any star non-pro�table. Notice that,
as can easily be checked, 'n(0) = 0; '

0
n(c) > 0; 'n

00(c) < 0, and consequently function
'n meets all but one of the conditions for a DR-technology as per De�nition 1: for a
big enough c (for c > nv, in fact) 'n(c) > 1. In other words, constraint �(c) � 'n(c) is
actually active as far as 'n(c) < 1; i.e. for c 2 (0; nv) (note that 'n(nv) = 1 for all n).
Then we have a characterizing result.

Theorem 1 Under a DR-technology �: (i) The only non-empty possibly e¢cient net-
works are the complete network described in Proposition 1 and an all-encompassing
star (as described in Proposition 2). (ii) The empty network is e¢cient if and only if
�(c) � 'n(c) for all c, with 'n given by (8). Otherwise, either the complete network or
an all-encompassing star is e¢cient.

Namely, for any DR-technology worse than 'n, i.e. whose graph is below that of 'n,
and only for such DR-technologies, no all-encompassing star and no complete network
yields a positive net value. Figure 1 illustrates this, showing the graph of function
'n for v = 1 and di¤erent numbers of nodes: n = 5; 12; 22 and 42. The greater the
number of nodes, the lower the graph of this function is, i.e. the worse the technology
must be to make any star unpro�table. Two dashed lines represent the graphs of two
DR-technologies: �1(c) =

c
1+c

and �2(c) =
c

2+2c
. Obviously, technology �2 is worse

than �1. Thus, for instance, for n = 5 no symmetric star or complete network yields a
positive net value under �2, while under �1 there are sure to be both optimal complete
and star networks. For n = 22 there are sure to exist both optimal complete and star
networks under both technologies, �1 and �2.
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Figure 1: Graph of 'n for v = 1 and n = 5; 12; 22; 42, and technologies �1 and �2

4.2 E¢cient support of an infrastructure

Now consider the situation where a given infrastructure speci�ed by a set of feasible
links S � N2 is to be supported in the most e¢cient way. We say that an investment
pro�le c =(cij)i;j2N supports S if the underlying graph of g

c is S, i.e. if cij > 0 if and
only if ij 2 S.

De�nition 2 Given S � N2, an investment pro�le c
�=(c�ij)i;j2N supports S e¢ciently

if it supports S and v(gc
�

) � v(gc); for all c =(cij)i;j2N which support S:

That is, investments are constrained to be made in all links in S and only in them,
and the function to be maximized is

v(gc) = 2v
X

kl2N2

�(pkl)�
X

kl2S

ckl: (9)

The following result establishes necessary conditions for an investment vector to sup-
port an infrastructure S e¢ciently using the following notation: if pkl is an optimal
path connecting nodes k and l s.t. ij 2 pkl; de�ne:

�(pijkl) :=
�(pkl)

�(cij)
: (10)

In other words, pijkl can be seen as a path from k to l which results from replacing
link ij in path pkl by a �perfect� link with no decay. In particular, if fk; lg = fi; jg,

�(pijij) := 1:

Proposition 4 Let � be a DR-technology. For a link-investment vector c = (cij)ij2N2
that supports an infrastructure S � N2 to do so e¢ciently the following conditions are

8



necessary. For any two connected nodes in gc there must be a unique optimal path
connecting them, and for each ij 2 S,

�0(cij) =
1

2v
P

kl2N2 s:t: ij2pkl
�(pijkl)

: (11)

Two comments are worth making here. First, note that (11) has a clear interpre-
tation. The denominator of its right-hand side is the total amount of information that
crosses link ij (subject to a decay �(cij)), i.e. between all pairs of nodes whose optimal
connecting path contains link ij. The greater this amount the greater the denominator
is and the smaller the quotient, i.e. the smallest �0(cij) and consequently the greater
its strength �(cij): Second, as the investments in an e¢cient complete network and in
an e¢cient all-encompassing star both e¢ciently support the infrastructure of their
underlying graph, (4) and (6) are particular cases of (11).

5 Stability

Whether investments are made by a planner or in a decentralized way by node-players
is immaterial in addressing the question of e¢ciency, but now we consider the situation
where nodes are players who form links by investing in them and using an available
DR-technology. An investment pro�le c = (cij)i;j2N (an n � n matrix with zeros in
the main diagonal) where cij � 0 is the investment of player i in the link connecting
players i and j, actually represents a strategy pro�le, where its i-row, ci = (cij)j2N
with cii = 0, is the strategy of player i, whose payo¤ is given by

6

��i (c) = v
X

k2N(i;gc)

�(pik)�
X

j2Nd(i;gc)

cij: (12)

This situation raises the question of stability. We �rst consider a weak form of sta-
bility which is, as far as we know, new in network literature, but quite natural in the
context of this �marginalist� model. Moreover, in addition to its interest per se, its
characterization provides necessary conditions for stronger notions of stability.

5.1 Marginal stability

If c = (cij)i;j2N is an investment pro�le and c0i = (c0ij)j2N an investment vector of
player i, let (c�i; c

0
i) denote the investment pro�le that results from replacing row i in

c by c0i.

De�nition 3 An investment pro�le c = (cij)i;j2N is marginally stable (or a marginal
equilibrium) if for some " > 0 the following holds: for all i 2 N and all c0i = (c

0
ik)k2N

s.t. c0ik > 0 only if cik > 0 and jcik � c
0
ikj < " for all k; �

�
i (c) � �

�
i (c�i; c

0
i):

6In what follows whenever we refer to an investment vector ci = (cij)j2N the condition cii = 0 is
always assumed although omitted for the sake of brevity.
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In other words, an investment pro�le is marginally stable if the investments of every
node in its links are locally optimal, in the sense that su¢ciently small changes in its
investments in the links in which it is involved do not increase its payo¤.
It is worth emphasizing the interest of this weak notion of equilibrium per se. In

this model, Nash equilibrium poses computational and informational di¢culties. Apart
from the computational di¢culties of calculating best responses in a complex network,
it requires a huge amount of information. Moreover, if the network is the means of
transmission of information, how do players know about the revenue from links with
players with whom they are not directly or even indirectly connected? If players are
only aware of the marginal contribution of their investments in links in which they
are actually involved (a much weaker assumption about their information) a marginal
equilibrium means that no player receives signals inducing him/her to change his/her
investments and the situation will remain unchanged. Note that the clause �s.t. c0ik > 0
only if cik > 0� restricts responses to existing links. In other words, the creation of
new links is not a response w.r.t. which a marginal equilibrium must be immune. A
stronger variant of De�nition 3 closer to Nash equilibrium, but still weaker, is obtained
by eliminating this clause.

De�nition 4 An investment pro�le c = (cij)i;j2N is strongly marginally stable (or a
strong marginal equilibrium) if for some " > 0 the following holds: for all i 2 N and
all c0i = (c

0
ik)k2N s.t. jcik � c

0
ikj < " for all k; �

�
i (c) � �

�
i (c�i; c

0
i):

Although strictly speaking one should refer to stability of investment pro�les, we of-
ten express our results in terms of the resulting networks. Thus a �(strongly) marginally
stable network� should be read as a weighted network that results from a (strongly)
marginally stable investment pro�le. The following lemma shows that the two notions
are equivalent for connected networks.

Lemma 2 Let c = (cij)i;j2N be an investment pro�le. If gc is connected, then c is
strongly marginally stable if and only if it is a marginal equilibrium.

The following result establishes a necessary and su¢cient condition for the empty
network to be (strongly) marginally stable.

Proposition 5 Let � be a DR-technology. The empty network is marginally stable
whatever the technology, and is strongly marginally stable if and only if

�0(0) � 1=v:

It is convenient to introduce some notation in order to formulate and prove the
following characterization establishing necessary and su¢cient conditions for an in-
vestment pro�le to be marginally stable. Note that expression (12) of the payo¤ of a
player i, involves the choice of an optimal path pik for each k 2 N(i; g

c). We denote by

10



pi = fpik : k 2 N(i; g
c)g any particular choice of such optimal paths. We make use of

a special case of notation (10): �(pijik) := �(pik)=�(cij) whenever pik is an optimal path

that contains link ij. If Cgi;j is the set of nodes that are connected with i in g through
optimal paths that contain link ij, i.e.

Cgi;j := fk 2 N : 9pik s:t: ij 2 pikg;

then, choose for each k 2 Cgi;j an optimal path pik s.t. ij 2 pik and de�ne

Kg
i;j :=

X

k2Cgi;j

�(pijik):

Note that Kg
i;j does not depend on the choice of the pik�s such that ij 2 pik because

if pik and qik are two di¤erent optimal paths containing ij, then �(pik) = �(qik) and
consequently �(pijik) = �(q

ij
ik). We have then the following result making use of Kuhn-

Tucker�s conditions:

Theorem 2 Under a DR-technology �, for an investment pro�le c� = (c�ij)i;j2N to be
marginally stable the following conditions are necessary and su¢cient. For all i; j 2 N
(i 6= j) s.t. c�ij > 0;

(i) If c�ij > 0 any optimal path connecting i and k that contains link ij is the only path
connecting them and

�0(c�ij) =
1

vKgc
�

i;j

: (13)

(ii) If c�ij = 0;

�0(c�ij) �
1

vKgc
�

i;j

: (14)

Part (i) establishes that, in a marginal equilibrium, if i sees k through an optimal
path in which he/she invests it cannot be the case that i sees k also through another
optimal path. In other words, in a marginally stable pro�le, the optimal paths in which
a player invests form a unique tree rooted at that node.
As to (13), it is the result of requiring the marginal bene�t of the investment of any

player in each of the links that he/she invests in to be zero. The resulting condition
when c�ij > 0 is

�0(c�ij) =
1

vKgc
�

i;j

=
1

v
P

k2N(i;gc
�
) s:t: ij2pik

�(pijik)
:

This has a clear interpretation: If player i invests in a link with j, the denominator of
the fraction in formula (13) that yields �0(c�ij) is v times the sum of the �delity levels

through all subpaths up to j of optimal paths containing link ij through which player

i receives information. In other words, vKgc
�

i;j is the actual amount of information that

11



reaches j on its optimal way to i. Thus this sum is a measure of the importance of
link ij to player i: the greater this amount, the smaller �0(c�ij), i.e. the greater c

�
ij and

�(c�ij). Condition (ii) means a lack of incentives to invest in a link entirely supported

by the other player. Condition (14) ensures that not investing in link ij is optimal for
i because player j is investing in the link the amount that player i would be willing to
invest for all the information that he/she can receive through link ij or even more.7

Equation (13) and inequality (14), which are necessary conditions for an investment
pro�le c� to be marginally stable, involve only the resulting investment vector c�, not
directly the investment pro�le c�. Nevertheless parts (i) and (ii) actually involve
c, because which condition ((13) or (14)), applies for a link ij, depends on whether
c�ij > 0 or c

�
ij = 0. A direct consequence of these conditions is the following important

conclusion.

Corollary 1 Under a DR-technology �, if two players are connected by a link in the
network resulting from a marginally stable investment pro�le but do not receive the
same amount of information through that link, all the investment in that link is made
by the player who receives more information through it.

As for strong marginal equilibrium we have

Proposition 6 Under a DR-technology �, an investment pro�le c� = (c�ij)i;j2N is a
strong marginal equilibrium if and only if in addition to conditions (i) and (ii) of
Theorem 2, either �0(0) � 1

v+K
, where K is the information received by the node that

receives the greatest amount of information in gc
�

, or gc
�

is connected.

The rest of this section is devoted to show how Theorem 2 and Corollary 1 can
be applied to establish that certain graph architectures, as subcomplete, complete,
star, tree or circle graphs, are the result of investment pro�les marginally stable and
characterize such pro�les.

De�nition 5 Given a graph S � N2, an investment pro�le c =(cij)i;j2N sustains S in
marginal equilibrium if it supports S and c is a marginal equilibrium. When such c
does exist we say that graph S is sustainable in marginal equilibrium.

The following two propositions refer to subcomplete and star networks.

7Alternatively, Theorem 2 can be reformulated like this:
Theorem 2 (reformulated) Under a DR-technology �, an investment pro�le c� = (c�ij)i;j2N is mar-
ginally stable if and only if for all i; j 2 N (i 6= j) s.t. c�ij > 0;

�0(c�ij) �
1

vKgc
�

i;j

and c�ij(�
0(c�ij)�

1

vKgc
�

i;j

) = 0

and whenever c�ij > 0 any optimal path connecting i and k that contains link ij is the only optimal
path connecting them.

12



Proposition 7 Let � be a DR-technology and let c = (cij)i;j2N be an investment pro�le
such that gc is subcomplete, then c is marginally stable if and only if �0(0) > 1=v and
all links receive the same joint investment bceq > 0, such that

�0(bceq) = 1=v: (15)

If gc is complete these conditions are necessary and su¢cient also for c to be strongly
marginally stable.

Proposition 8 Let � be a DR-technology and let c = (cij)i;j2N be an investment pro�le
such that gc is a star connecting p nodes (3 � p � n), then c is marginally stable if
and only if gc is a periphery-sponsored star where all peripheral players invest the same
amount c�p;eq in the only link in which each of them is involved s.t.

�0(c�p;eq) =
1

v(1 + (p� 2)�(c�p;eq))
: (16)

If p = n (i.e. the star is all-encompassing), these conditions are necessary and su¢cient
also for gc to be strongly marginally stable.

In particular, Propositions 7 and 8 establish necessary and su¢cient conditions for
the only two non-empty architectures that can be e¢cient, i.e. the complete and the
all-encompassing star networks (case p = n), to be sustainable in marginal equilibrium.
In the case of the complete graph the existence of an investment pro�le satisfying these
conditions is guaranteed if the technology satis�es the condition �0(0) > 1=v. Before
addressing the question of existence of c�p;eq s.t. (16) for a star to be marginally stable
we establish a result relative to any tree based on a �xed point argument.

Proposition 9 Under a DR-technology � continuously di¤erentiable s.t. �0(0) > 1
v
,

any tree is sustainable in marginal equilibrium, and any all-encompassing tree graph is
sustainable in strong marginal equilibrium.

As mentioned in the proof, by Corollary 1, in the marginally stable pro�le c s.t.
gc is a tree, peripheral or terminal nodes must pay the full cost of their links, and the
cost of any link where the nodes that it connects do not receive the same amount of
information through it must be paid for fully by the node who receives more information
through it.

Proposition 10 Under a DR-technology � continuously di¤erentiable s.t. �0(0) > 1
v
,

any star graph of p nodes is sustainable in marginal equilibrium, and also when �0(0) �
1=v for a su¢ciently large p. By contrast, for a �xed p, there is no c�p;eq s.t. (16) if
�0(0) � 1

v(1+(p�2)�(1)
; where �(1) denotes limc!1 �(c).
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Thus even if condition �0(0) > 1
v
does not hold, a star graph continues to be sustain-

able in marginal equilibrium for a su¢ciently big p. Compared with this result for the
star, condition �0(0) > 1

v
seems rather strong relative to trees. In fact, this condition

enables the results of Proposition 9 (�rst part) and Proposition 10 to be proved for
any number of nodes8. The symmetry of the star enables the precise smaller bound
�0(0) � 1

v(1+(p�2)�(1)
to be calculated, while a similar re�nement of this bound for an

arbitrary tree would require speci�c study.
The following proposition shows that a circle graph also can be sustained in marginal

equilibrium.

Proposition 11 Under a DR-technology � continuously di¤erentiable s.t. �0(0) > 1
v
,

any circle graph of k nodes (3 � k � n) can be sustained in marginal equilibrium with
all links of the same strength, �(c); if k is odd, given by

�0(c) =
1

v(1 + �(c) + �(c)2 + :::+ �(c)
k�3
2 )
; (17)

and with links alternating two levels of strength, �(c) and �(c), if k is even, given by

�0(c) =
1

v(1 + �(c) + �(c)�(c) + �(c)2�(c) + :::+ �(c)
k�4
4 �(c)

k
4 )
; (18)

and

�0(c) =
1

v(1 + �(c) + �(c)�(c) + �(c)2�(c) + :::+ �(c)
k�4
4 �(c)

k�4
4 )
: (19)

If k = n (i.e. an all-encompassing circle graph) it can be sustained in strong marginal
equilibrium.

Remarks: (i) Note that even though the preceding results refer to graphs with
only one non-trivial component, be it complete or subcomplete, a tree, a circle or
a star graph, it follows immediately that any graph which has trees, circles, stars
and subcomplete graphs as non-trivial components also can be sustained in marginal
equilibrium if the conditions of Propositions 7-11 hold.9

(ii) A property of marginal equilibria worth noting is its resilience in response to
shocks such as deletion of nodes under certain conditions. For instance, a marginally
stable star network ceases to be so if a spoke node vanishes. Nevertheless, by diminish-
ing the investments of the remaining spoke nodes a new marginal equilibrium sustaining
the new star with one arm less can be obtained surely if �0(0) > 1

v
or, otherwise, if

the number of nodes is big enough. A similar situation occurs by the elimination of a

8Even in the extreme case n = 2, where this condition is also necessary.
9Moreover, as the reader may check, structures which underlie a marginal equilibrium other than

the ones shown here can be obtained by combining them. For instance, a circle in which each node is
connected with the same number of peripheral nodes, each of them supporting its link.
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node in a tree network. This yields a network with a number of components equal to
the degree of the node eliminated: namely, in general, some isolated nodes and some
tree networks of smaller diameters. In a circle network the elimination of a node yields
a line (particular case of a tree). In all these cases some of the resulting components
can possibly be sustained in marginal equilibrium by readjusting the investments of
the nodes. In the case of a marginally stable subcomplete network the elimination of
a node yields a new marginally stable subcomplete network with a node less.
(iii) The variety of graph architectures that have been shown to be sustainable in

marginal equilibrium can be misleading, conveying the impression that every graph
is sustainable. This is not so as the following example shows. Consider a star with
su¢cient number, p, of nodes and a technology � such that �(bceq), s.t. (15), and
�(c�p�1;eq), s.t. (16), verify

�(bceq) < �(c�p�1;eq)2:
Then, the graph that results from adding to a star graph of p nodes a link connecting
two spoke nodes is not sustainable in marginal equilibrium. The reason is clear: what-
ever the investments of those two spoke nodes in the link connects them, both nodes
would have an incentive to diminish their investment in that link.

5.2 Nash-stability

An investment pro�le is Nash-stable if no player is interested in changing his/her
investments unilaterally. Formally:

De�nition 6 An investment pro�le c = (cij)i;j2N is Nash-stable if for all i and c
0
i =

(c0ij)j2N
��i (c) � �

�
i (c�i; c

0
i):

Obviously the notion of marginal equilibrium (strong or not) is weaker than that
of Nash equilibrium. Consequently, the characterizing conditions for marginal stability
established in Theorem 2 are necessary conditions for Nash stability. Thus we have
the following results in part as a corollary of the results in the previous section.

Proposition 12 Let � be a DR-technology. The empty network is a Nash network if
and only if

�0(0) � 1=v:

As established in Section 4, the only non-empty possibly e¢cient networks are the
all-encompassing star and the complete network. This raises the question of Nash-
stability conditions for these architectures. We �rst examine the Nash-stability of a
complete network focusing on the symmetric one, i.e. a complete network where the
cost of each link is equally shared.
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Proposition 13 Let � be a DR-technology and let bcn be an investment pro�le such
that gbcn is complete, symmetric and marginally stable, i.e. cij = bceq and cij = bceq

2
, with

�0(bceq) = 1=v. Then bcn is Nash-stable, if and only if for all k = 2; :::; n� 1 :

v�(bceq)�
bceq
2
�
�(ck)v(1 + (k � 1)�(bceq))� (ck � bceq

2
)

k
; (20)

where bceq is s.t. (15) and ck is s.t.

�0(ck) =
1

v(1 + (k � 1)�(bceq))
: (21)

Note that the structure of a Nash complete network is unique (all its links are
bceq-links), but there may exist di¤erent investment pro�les that support it depending
on how the cost of each link is shared.10 The conditions for Nash equilibrium for a
non-symmetric investment pro�le c = (cij)i;j2N , s.t. cij = bceq for all i 6= j are much
more complicated.

Proposition 14 Let � be a DR-technology and let c�n be an investment pro�le such that
gc

�

n is an all-encompassing periphery-sponsored star which is marginally stable, i.e. the
investment in each of its links is c�eq = c

�
n;eq s.t. (16). Then if �

0(0) � 1=v, c�n is Nash-
stable, while if �0(0) > 1=v, c�n is Nash-stable if and only if for all k = 1; 2; :::; n� 2 :

v�(c�eq)
2 � (v�(bceq)� bceq) �

((n� k � 2)�(c�eq) + 1)v(�(c
�
eq)� �(ck))� (c

�
eq � ck)

k
; (22)

where bceq is s.t. (15) and ck is s.t.

�0(ck) =
1

v(1 + (n� k � 2)�(c�eq))
: (23)

The complexity of conditions (20) and (22) for Nash-stability, even for so simple
structures as that of the symmetric complete network and that of a symmetric all-
encompassing star, may seem somewhat disappointing compared with the simplicity of
the conditions for their marginal stability established in Propositions 7 and 8. This cor-
roborates the computational di¢culties that the notion of Nash equilibrium involves,
particularly in a richer model like this, and enhances the tractability of marginal equi-
librium.

10Only if v(�(bceq)� �(bceq)2) = bceq=2, in equilibrium every player would have to invest exactly bceq=2
in each of his/her links.
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6 E¢ciency vs. equilibrium

In view of the results on e¢ciency and on stability we have the following.

Proposition 15 Under a DR-technology, e¢ciency and Nash stability or even mar-
ginal stability are incompatible, unless �0(0) � 1

2v
, in which case the empty network

is both e¢cient and Nash-stable. Similarly, e¢cient support and stable support of an
infrastructure are incompatible.

The reason is clear: From the results in Sections 4 and 5 it follows that bceq < bcef
and c�eq < c

�
ef , and consequently a non-empty e¢cient network requires link-investments

which are not stable because they give players the opportunity of free riding by taking
advantage of externalities, even if responses are restricted to being pro�table only
marginally. The same occurs in the seminal discrete models of Jackson and Wolinsky
(1996) and Bala and Goyal (2000). The robustness of this incompatibility, now in a
much more �exible model, may seem somewhat surprising. Nevertheless, the reason
is clear. Similarity and di¤erence between (4) and (15), and between (6) and (16),
both stem from the same source. Conditions for optimality and marginal stability
are based on the same economic principle: Imposing zero marginal bene�t, but social
(i.e. aggregate) bene�t for e¢ciency, and individual bene�t for stability. From the
point of view of e¢ciency the strength of a link must maximize its contribution to the
aggregate payo¤, while from the point of view of either player involved in its support
it must maximize his/her payo¤. Hence the incompatibility.
Nevertheless, in a mixed environment, if a central planner o¤ers to pay for half the

investment to every player, or, more precisely, subsidizing each dollar invested by a
player with another dollar, e¢ciency can be sustained in marginal equilibrium. This
can be shown as follows. In this situation, if the actual investment of each player in
link ij is cij=2, (27) becomes

��i (c) =
X

j2Nd(i;gc)

0
@v�(cij + cji)

X

k2N(i;gc) s:t: ij2pik

�(pijik)�
cij
2

1
A ; (24)

which by an argument identical to that which that leads to (13) and (14), leads to the
necessary conditions for equilibrium:

�0(cij) =
1

2v
P

k2N(i;gc) s:t: ij2pik
�(pijik)

(whenever cij > 0).

�0(cij) �
1

2v
P

k2N(i;gc) s:t: ij2pik
�(pijik)

(whenever cij = 0 and cij > 0):

In particular, if gc is a complete network only the �rst one applies and becomes

�0(cij) =
1

2v
(for all ij 2 N2);
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while for an all-encompassing star whose center is player 1, it yields,

�0(c�i1) =
1

2v(1 + (n� 2)�(c�eq))
(for all i 6= 1):

That is, under this subsidy e¢ciency can be sustained in marginal equilibrium.
Notice that from the point of view of players the e¤ect of this subsidy is like re-

placing the actual technology � by a better technology �; s.t. �(c) = �(2c), also a
DR-technology. In fact, more generally, subsidies of the form �(c) = �((1 + �)c), i.e.
of � dollars per dollar invested, with � ranging from 0 to 1, bridge the gulf between
equilibrium and e¢ciency. Figure 2 shows the graphs of technology �(c) = c

2c+2
and

that of �(c) = �(2c) = c
2c+1

, superimposed over those of 'n for n = 5; 12; 22 and 42 (as
in Figure 1).
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Figure 2: Graph of 'n for v = 1 and n = 5; 12; 22; 42, and �(c) and �(2c)

7 Related literature

In this brief review we concentrate mainly on papers published after the seminal con-
nections models of Jackson and Wolinsky (1996) and Bala and Goyal (2000), where
agents derive utility from their direct and indirect connections, and focus on those
most closely related to the model studied in this paper.11 Apart from other di¤erences
between our model and those commented below, there is one that applies to all of
them: in our approach to stability the central concept is that of marginal equilibrium,
a weaker notion than Nash equilibrium.
Bloch and Dutta (2009) introduce endogenous link strength in a connections model

by replacing Jackson and Wolinsky�s discrete technology by an additively separable
convex function of players� investments in a link that determines its strength, i.e. they
assume non-decreasing returns. They also assume that players� investments are limited

11This means leaving aside a number of important papers, such as those in the wake of Ballester,
Calvó-Armengol and Zenou (2006).
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by a unit of resources. We instead assume technology to be a concave function of the
joint investments of the players (i.e. we assume decreasing returns), whose e¤orts are
assumed to be perfect substitutes, and have no budget constraint, hence the di¤erent
results. Bloch and Dutta prove that in their model the star is the only Nash-stable
architecture and the only e¢cient one. Deroian (2009) studies a similar model, but
with directed communication, i.e. where links are directed, and proves that, as in
Bloch and Dutta (2009), in equilibrium agents concentrate their investment on a single
link and the complete wheel is the only e¢cient architecture and the unique Nash-
stable architecture. Also in the wake of Bloch and Dutta (2009), So (2016) assumes
that technology is an additively separable function of players� investments, which are
limited by a budget. But unlike Bloch and Dutta, So assumes that the strength of a
link connecting i and j where i invests xji and j invests x

i
j is �(x

j
i ) + �(x

i
j), with �

increasing and strictly concave; while in our model the strength is a function of xji +x
i
j,

that is, players�s e¤orts (i.e. investments) are perfect substitutes. She obtains su¢cient
conditions for the symmetric complete network to dominate all star networks and for
the symmetric star and the complete network to be Nash-stable, but no characterization
is provided.
Other models with endogenous link strength less closely related to ours are the

following. In Cabrales, Calvo and Zenou (2011) players choose a level of socialization
e¤ort which is distributed across all possible bilateral interactions in proportion to the
partner�s socialization e¤ort. In Feri and Meléndez-Jiménez�s (2013) dynamic model
the choice of whom to link to and a coordination game determine the strength of the
links. In Harmsen-van Hout, Herings and Dellaert�s (2013) model individuals derive
social value from direct connections and informational value from direct and indirect
connections, but the more links an individual sustains the weaker they are. Boucher
(2015) considers a model where individuals with a limited budget derive utility from
self-investment and from direct connections, assuming the utility of a direct link to be
a convex function of the investments of the two players involved, whose distance also
enters as an argument in their utility. In Salonen (2015), Baumann (2019) and Gri¢th
(2019) individuals with limited resources derive utility from self-investment and from
direct connections, but assuming that the utility of a link is a strictly concave function
of the investments of the two players. Ding (2019) considers a constant elasticity
of substitution link-formation technology that nests unilateral and bilateral network
formation.

8 Concluding remarks

We have developed a marginalist decreasing returns connections model which is a
natural extension of the seminal discrete connections models of Jackson and Wolinsky
(1996) and Bala and Goyal (2000). The basic logic is the same, payo¤ = information �
investment, but it is based on a non-discrete, smooth decreasing returns link-formation
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technology, which is the only exogenous ingredient in the model.
The characterization of e¢cient networks for DR-technologies is solved by Theorem

1, which establishes that the only possible non-empty e¢cient structures are symmetric
all-encompassing stars and complete networks, and characterizes the family of DR-
technologies which admit one of these non-empty structures as e¢cient. This result
shows the somewhat surprising robustness of the result on e¢ciency in the seminal
discreet two-parameter connections model of Jackson and Wolinsky (1996).
As to stability, we introduce a notion of marginal equilibrium, natural in this mar-

ginalist model and new in the networks literature to the best of our knowledge, and
obtain necessary and su¢cient characterizing conditions for this weak notion of sta-
bility (Theorem 2). In a marginal equilibrium, the optimal paths or channels for
information which each player pays for form a well-de�ned tree, i.e. a multiplicity of
such optimal paths is incompatible with marginal stability. Moreover, this along with
the other characterizing conditions (Theorem 2 and Corollary 1) enables a variety of
graph architectures sustainable in marginal equilibria to be identi�ed, such as subcom-
plete graphs, stars, trees and circles, and determine the investment pro�les that sustain
them in marginal equilibrium (Propositions 7-11). A feature worth noting of marginal
equilibrium is its resilience in response to shocks, such as deletion of nodes. Although
no dynamic model has been provided, it is clear that nodes sensitive to the marginal
revenue of its links can readjust to a new marginal equilibrium after a node vanishes
by responding to such changes in many cases.
As to Nash-stability, no characterization has been obtained, only for a symmetric

complete network and all-encompassing stars. Nevertheless, given that marginal sta-
bility is necessary for it, Proposition 12 gives necessary and su¢cient conditions for
the empty network to be Nash-stable, Proposition 13 gives necessary and su¢cient
conditions for a complete network to be Nash-stable and Proposition 14 for an all-
encompassing star to be Nash-stable. In a decentralized context, the comparison from
Bala and Goyal (2000) on stability issues is pertinent here. In this respect, a salient
di¤erence with Bala and Goyal (2000) is that, under a DR-technology, a Nash-stable
(marginally stable) all-encompassing star is necessarily periphery-sponsored.12

Finally, the conditions for e¢ciency (Theorem 1) and stability, even if only marginal
(Theorem 2), lead to the conclusion that they are incompatible and make it transpar-
ent why. Conditions for e¢ciency and for marginal stability are based on the same
economic principle: imposing zero marginal bene�t, but social (i.e. aggregate) bene�t
for e¢ciency, and individual bene�t for stability. Nevertheless, it is shown that subsi-
dizing up to a dollar per dollar invested by each player would bridge the gap between
e¢ciency and marginal stability.
There are three lines of further research that might be of particular interest. First,

although Theorem 2 gives necessary and su¢cient conditions for marginal equilibrium,
no complete characterization of the architectures sustainable in marginal equilibrium

12In Bala and Goyal (2000) two-way �ow model with decay stars non-necessarily center-sponsored
can be strict Nash.
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has been provided. Second, exploring the impact of assuming heterogeneity, in tech-
nology and/or in individual values. Third, enriching the model by introducing some
dynamics. This seems especially desirable related to marginal stability. If nodes are
only sensitive to the marginal value of their investments in actual links how does a
network form? This calls for a random ingredient, be it in the prior formation of an
infrastructure or in that of the network itself, where stochastic stability can be studied
(see Feri (2007)).

Appendix

Proposition 1

Proof. (i) and (ii): For a complete network gc to be e¢cient every link must be used
only by the pair of nodes that it connects. Therefore, for all ij 2 N2, cij must maximize
2v�(cij)� cij and yield a positive value, i.e.

2v�(cij)� cij = max
c>0

(2v�(c)� c) > 0

must hold. As � is a strictly concave di¤erentiable function, this implies �0(0) > 1=2v
(otherwisemaxc>0(2v�(c)�c) = 0) and argmaxc>0(2v�(c)�c) is necessarily a singleton,
namely, the only c s.t. 2v�0(c)� 1 = 0, hence (4).
(iii) If 2v�(bcef )2 > 2v�(bcef ) � bcef , the net value of the network would increase by

deleting a link.

Lemma 1

Proof. Let � be any link-formation technology for which a star g of, say, m+ 1 nodes
and m � n � 1 links is optimal, and assume w.l.o.g. that node 1 is the center. Let i
and j be any two spoke nodes connected to the center by links of strengths �(ci) and
�(cj) (denoting ci := c1i). Its net value is

v(g) = 2v(�(ci) + �(cj))(1 +K) +K
0 + 2v�(ci)�(cj)� ci � cj;

where

K =
X

k 6=1;i;j

�(ck) and K
0 = 2vK + 2v

X

k;l 6=1;i;j(k 6=l)

�(ck)�(cl)�
X

k 6=1;i;j

ck:

Let g0 (g00) be the star that results from replacing the cj-link by a ci-link (the ci-link
by a cj-link). Then

v(g0) = 2v2�(ci)(1 +K) +K
0 + 2v�(ci)

2 � 2ci;

v(g00) = 2v2�(cj)(1 +K) +K
0 + 2v�(cj)

2 � 2cj:

Therefore, as g is optimal,

v(g)� v(g0) = 2v(�(cj)� �(ci))(1 + �(ci) +K)� cj + ci � 0;
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v(g)� v(g00) = 2v(�(ci)� �(cj))(1 + �(cj) +K)� ci + cj � 0;

which yield
2v(�(ci)� �(cj))(1 + �(ci) +K) � ci � cj

and
2v(�(ci)� �(cj))(1 + �(cj) +K) � ci � cj:

Assume w.l.o.g. ci � cj; then �(ci) � �(cj); and consequently

ci � cj � 2v(�(ci)� �(cj))(1 + �(ci) +K) � 2v(�(ci)� �(cj))(1 + �(cj) +K) � ci � cj;

which implies that all three expressions must have the same value, from which it follows
that

(�(ci)� �(cj))�(ci) = (�(ci)� �(cj))�(cj);

which implies �(ci) = �(cj). Therefore all links in g necessarily have the same strength.
Finally, if a star all of whose links have the same strength yields a positive net value

but is not all-encompassing, its net value would increase by connecting any other node
with a link of the same strength to the center.

Proposition 2

Proof. (i) By Lemma 1, all links in an e¢cient all-encompassing star must have the
same investment, c�, which must maximize its net value, i.e. such that (5). Condition
(6) stems from the �rst order condition for an extreme of

(n� 1)
�
2v�(c) + (n� 2)v�(c)2 � c

�
;

which is the net value of an all-encompassing star with n nodes and n � 1 links of
strength �(c).
(ii) Otherwise, if 2v�(c�ef )

2 < 2v�(c) � c for some c, connecting two spoke nodes
would increase the net value of the network.

Proposition 3

Proof. As �(c) < 1 for all c � 0, the net value of a symmetric all-encompassing star
of c-links, denoted by gc-star, is

v(gc-star) = (n� 1)(2v�(c) + (n� 2)v�(c)2 � c) < (n� 1)(nv � c);

and (n� 1)(nv� c) > 0 if and only if c < nv. In other words, an all-encompassing star
of c-links yields a positive net value only if c < nv. Therefore,

argmax v(gc-star) � [0; nv];

and such a maximum exists because v(gc-star) is continuous on c. Moreover, that
maximum is > 0 (i.e. an optimal symmetric star actually does exist) unless v(gc-star) �
0 for all c > 0, i.e. unless

2v�(c) + (n� 2)v�(c)2 � c � 0 (8c � 0);
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or, equivalently,

0
@�(c)�

�1 +
q
1 + (n�2)c

v

n� 2

1
A
0
@�(c)�

�1�
q
1 + (n�2)c

v

n� 2

1
A � 0 (8c � 0):

This in turn is equivalent to requiring �(c) to remain within the interval

�(c) 2

2
4�1�

q
1 + (n�2)c

v

n� 2
;
�1 +

q
1 + (n�2)c

v

n� 2

3
5 ;

but note that its lower extreme is < 0, while the other is > 0 and �(c) � 0. Therefore,
this condition is equivalent to

0 � �(c) �
�1 +

q
1 + (n�2)c

v

n� 2
(8c � 0):

Summing up, unless this condition holds there is always an optimal symmetric all-
encompassing star.
Finally, note that the limit of the upper bound for each c > 0 when n ! 1 is 0.

In other words, for n big enough �(c) is sure to be outside this interval for some c and
consequently there is sure to exist an optimal symmetric all-encompassing star.

Theorem 1

Proof. (i) Theorem 1 in Olaizola and Valenciano (2020) establishes that for any
technology (i.e. any non-decreasing map � : R+ ! [0; 1) s.t. �(0) = 0) the only non-
empty architectures of possibly e¢cient networks are the all-encompassing star and
the complete network unless a �supertie� occurs, i.e. unless

2v�(bcef )� bcef = 2v�(c�ef )� c�ef = 2v�(c�ef )2: (25)

However, this cannot occur under a DR-technology. Proposition 1 shows that the set
argmaxc>0(2v�(c) � c) is a singleton bcef > 0 s.t. (4) if and only if �0(0) > 1=2v. But
from (4) and (6), it follows that �0(c�ef ) < �

0(bcef ), which implies that bcef < c�ef : Thus
necessarily 2v�(bcef )� bcef > 2v�(c�ef )� c�ef ; because argmaxc>0(2v�(c)� c) = fbcefg (a
singleton), which excludes the possibility of (25).
(ii) By Proposition 3, if �(c) � 'n(c) for all c, no symmetric all-encompassing

star yields a positive net value. Note also that, as '0n(0) = 1=2v; the upper bound
�(c) � 'n(c) (for all c) imposes �

0(0) � 1=2v, and consequently (Proposition 1) no
complete network yields a positive net value. Therefore, for any technology whose graph
is below that of 'n, no symmetric all-encompassing star and nor complete network
yields positive net value. Therefore, only the empty network is e¢cient. By contrast,
if �(c) > 'n(c) for some c, an optimal symmetric all-encompassing star is sure to exist
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and yield a positive net value, and consequently there is sure to be an e¢cient star or
complete network.

Proposition 4

Proof. Let c = (cij)ij2N2 be a link-investment vector s.t. cij > 0 if and only if ij 2 S.
Assume that c = (cij)ij2N2 e¢ciently supports S and ij 2 S. Link ij is thus a necessary

part of at least one optimal path in gc, the one connecting i and j, because otherwise
c would not be e¢cient. The contribution of link ij, i.e. of investment cij, to the net

value v(gc) given by (9) for a choice of optimal paths (pkl)kl2N2 is

2v
X

kl2N2 s:t:
ij2pkl

�(pkl)� cij = 2v�(cij)
X

kl2N2 s:t:
ij2pkl

�(pijkl)� cij: (26)

Thus for investment cij to be optimal it must maximize

2v�(c)
X

kl2N2 s:t: ij2pkl

�(pijkl)� c;

for which it is necessary that

d

dc

����
c=cij

(2v�(c)
X

kl2N2 s:t:
ij2pkl

�(pijkl)� c) = 2v�
0(cij)

X

kl2N2 s:t:
ij2pkl

�(pijkl)� 1 = 0;

which yields (11). A non-null derivative w.r.t. c at cij means that by slightly increasing
(if it is > 0) or decreasing (if it is < 0) the investment in link ij the aggregate payo¤
through those paths would surely increase, which contradicts the e¢ciency of c.
Assume now that two nodes r and s are connected by two di¤erent optimal paths

in gc. Then there is at least one link, say ij, that is part of one of these paths but not
of the other. Then the right-hand side of (9) admits at least two di¤erent expressions:
One where the optimal path between any pair of nodes k; l is pkl, and another where
it is qkl, and such that for any pair k; l di¤erent from pair r; s, pkl = qkl, while for r
and s the optimal path is di¤erent, i.e. prs 6= qsr; and only the �rst one contains ij. In
that case,

1

2v
P

kl2N2 s:t: ij2pkl
�(pijkl)

6=
1

2v
P

kl2N2 s:t: ij2qkl
�(qijkl)

because X

kl2N2 s:t: ij2pkl

�(pijkl)�
X

kl2N2 s:t: ij2qkl

�(qijkl) = �(prs) > 0;

which leads to a contradiction because (11) yields two di¤erent values for �0(cij).

Lemma 2
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Proof. It is obvious that strong marginal stability implies marginal stability. Assume
that gc is connected and c is marginally stable. Let c0i = (c

0
ik)k2N , and let c

00
i be given

by

c00ij =

�
c0ij if cij 6= 0;

0 if cij = 0;

and c00 = (c�i; c
00
i ). For c

0
i su¢ciently close to ci, the underlying graphs of g

c and gc
00

are the same and s. t. ��i (c) � ��i (c�i; c
00
i ) because c is marginally stable. And for

all j s.t. cij = 0 and c
0
ij 6= 0, as i and j are indirectly connected in g

c and gc
00

, i and

j receive an amount of information from each other through a path in gc
00

. Thus, a
su¢ciently small investment c0ij in link ij (namely, as far as �(c

0
ij) is smaller than the

decay along that path) is sure to be unpro�table. Therefore, for c0i su¢ciently close to
ci,

��i (c) � �
�
i (c�i; c

00
i ) � �

�
i (c�i; c

0
i):

Proposition 5

Proof. The empty network has no actual links, so it satis�es trivially marginal stabil-
ity. Assume now that the empty network, i.e. cij = 0 for all i; j 2 N , is strongly mar-
ginally stable. Then for some " > 0, for all c s.t. 0 < c < ", it holds that v�(c)� c � 0:

Or, equivalently, �(c)
c
� 1=v for all c < ": Then taking limits, limc!0

�(c)
c
= �0(0) � 1=v:

Assume now that the empty network is not strongly marginally stable,i.e. for every
" > 0 there exists c < " s.t. v�(c)� c > 0: But then �0(0) > �(c)

c
> 1=v:

Theorem 2

Proof. (Necessity) Let � be a DR-technology and c� = (c�ij)i;j2N a marginally stable
investment pro�le.
(i) Assume c�ij > 0, then at least one of them, i or j, say i, invests in that link, i.e.

c�ij > 0. Then link ij is part of at least one optimal path in g
c
�

for i�s information, the
one connecting i and j, otherwise i would increase payo¤ by diminishing investment
in it. Fix one of the, in principle, possible di¤erent but equivalent expressions on the
right-hand side of (12). Then i�s payo¤ for this particular choice of optimal paths pi
is given by the right-hand side of (12), which can be rewritten like this:

��i (c
�;pi) =

X

j2Nd(i;gc
�
)

0
@v�(c�ij + c�ji)

X

pik2pi & ij2pik

�(pijik)� c
�
ij

1
A : (27)

From the point of view of player i, with the investments by the other players j 6= i
taken as given, the right-hand side of (27) depends on i�s admissible strategy ci, and
it is a di¤erentiable function of as many variables as i has neighbors, (cij)j2Nd(i;gc

�
).

Namely,

��i (c
�
�i; ci;pi) =

X

j2Nd(i;gc
�
)

0
@v�(cij + c�ji)

X

pik2pi & ij2pik

�(pijik)� cij

1
A : (28)
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Thus the terms in (28) where cij enters are

v�(cij + c
�
ji)Ki;j(pi)� cij;

with
Ki;j(pi) :=

X

pik2pi & ij2pik

�(pijik) � K
gc
�

i;j :

Therefore, for the strategy of player i, (c�ij)j2N , to be marginally stable given the in-

vestments made by the other players (which fully determine �(pijik) for all j 2 N
d(i; gc

�

)
and all k 2 N(i; gc

�

) s.t. ij 2 pik) the following must hold

@

@cij
��i (c

�
�i; (c

�
ij)j2N ;pi) = 0:

A non-null partial derivative w.r.t. cij of (27) at c
� means that slightly increasing

(if it is > 0) or decreasing (if it is < 0) investment by i in link ij would increase i�s
payo¤ (through the same available paths), which contradicts the marginal stability of
c
�. Therefore13

@

@cij
��i (c

�
�i; ci;pi) = v�

0(cij)Ki;j(pi)� 1 = 0;

must hold at c�ij, that is,

�0(c�ij) =
1

vKi;j(pi)
=

1

v
P

pik2pi & ij2pik
�(pijik)

: (29)

By construction, Ki;j(pi) � K
gc
�

i;j , but note that it must beKi;j(pi) = K
gc
�

i;j . Otherwise,
a di¤erent choice of optimal paths p0i = (p

0
ik)k2N(i;gc� ) would yield Ki;j(pi) 6= Ki;j(p

0
i)

and then (29) would lead to a contradiction. Therefore (13) must hold.
This means that any optimal path pik containing a link ij s.t. c

�
ij > 0 has a positive

impact on its cost, because �(pijik) is a summand in K
gc
�

i;j , the denominator in (13), so
that �0(c�ij) decreases and cij increases. Then, if an optimal path pik contains ij and

�(pik) = �(qik) for some other optimal path qik in g
c
�

, the optimality of pik would be
super�uous because its marginal revenue for i is v�(pik) = v�(qik) at a cost that can
be spared given that it is also received through qik, i.e. a small decrease in c

�
ij would

increase i�s payo¤, contradicting the marginal stability of c�. Thus, every optimal path
that contains link ij and connects node i with another node must be the only optimal

13Just note that by the chain rule

@

@cij
(�(cij + c

�
ji))

����
cij=c

�

ij

= �0(cij + c
�
ji) � 1

��
cij=c

�

ij

= �0(c�ij):
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path connecting them. In other words, the optimal paths connecting one node with
other nodes in which a node invests form a well-de�ned tree rooted at that node.
(ii) Assume now that c�ij > 0 and cij = 0; i.e. the link ij is entirely supported

by j. A similar argument to the one used to prove part (i) leads in this case to the
conclusion that

v�0(cij)Ki;j(pi)� 1 � 0

must hold at c�i , whatever the choice of optimal paths pi = (pik)k2N(i;gc� ). Otherwise

player i�s payo¤ increases by investing in link ij, which yields �0(c�ij) �
1

vKi;j(pi)
. And

choosing pi s.t. Ki;j(pi) is maximal, i.e. Ki;j(pi) = K
g�

i;j , we have �
0(c�ij) �

1

vK
g�

i;j

:

Thus conditions (i) and (ii) are necessary for c� to be marginally stable.
(Su¢ciency) Assume conditions (i) and (ii) hold for an investment pro�le c� =

(c�ij)i;j2N . Then i�s payo¤ for a particular choice of optimal paths pi is given by (27),
that is

��i (c
�;pi) =

X

j2Nd(i;gc
�
)

�
v�(c�ij + c

�
ji)Ki;j(pi)� c

�
ij

�
:

If ci = (cij)j2N is an alternative admissible strategy of player i s.t. cij 6= 0 only if
c�ij 6= 0, then i�s payo¤ through the same paths is given by (28), that is,

��i (c
�
�i; ci;pi) =

X

j2Nd(i;gc
�
)

�
v�(cij + c

�
ji)Ki;j(pi))� cij

�
;

which is a di¤erentiable concave function of (cij)j2Nd(i;gc
�
)
14. Moreover, the Kuhn-

Tucker conditions for a maximum of ��i (c
�
�i; ci;pi) constrained by cij � 0 are

8
>><
>>:

@
@cij
��i (c

�
�i; ci;pi) + �j = v�

0(cij)Ki;j(pi)� 1 + �j = 0; (K-T.1)

�jcij = 0; (K-T.2)
cij � 0; (K-T.3)
�j � 0; (K-T.4)

for all j 2 Nd(i; gc
�

): Now if c�ij > 0 and (13) holds, given that any optimal path
containing ij and connecting i with any node k is necessarily the only path connecting

them, it must be Ki;j(pi) = Kgc
�

i;j : Then whenever c
�
ij > 0 condition (K-T.3) holds,

condition (K-T.1) becomes v�0(cij)K
gc
�

i;j � 1 + �j = 0; which holds along with (K-T.2)

and (K-T.4) with �j = 0: Whereas if c�ij = 0 and �0(c�ij) <
1

vK
g�

i;j

; (K-T.2) and (K-

T.3) hold, while (K-T.1) and (K-T.4) hold with �j = �(v�
0(cij)K

gc
�

i;j � 1) > 0: Thus

Kuhn-Tucker conditions for a maximum of ��i (c
�
�i; ci;pi) constrained by cij � 0 hold

at c�i . Given that �
�
i (c

�
�i; ci;pi) is concave, these conditions are also su¢cient for

a maximum. In short, the necessary conditions guarantee that whatever the choice

14Sum of a positive linear combination of concave functions and a linear function.
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of optimal paths pi through which player i receives information, the investments of
each player in his/her actual links are optimal to receive it trough them. Therefore, a
su¢ciently small change of investments of any player is necessarily non-pro�table.

Corollary 1

Proof. Let c� be a marginally stable investment pro�le and assume c�ij > 0. Then if

both invest in link ij condition (13) must hold for i and j, and j and i, i.e. i and j can
interchange roles in (13), which yields two expressions for �0(c�ij):

1

v
P

k2N(i;gc
�
) s:t: ij2pik

�(pijik)
= �0(c�ij) =

1

v
P

k2N(j;gc
�
) s:t: ji2pjk

�(pjijk)
:

But this is possible only if the sums in both denominators are equal, in other words,
only if both players, i and j; receive the same amount of information through link
ij. Otherwise, the two conditions are incompatible and stability is possible only if
the player who receives more information through link ij, say i, covers the whole
investment, so that

1

v
P

k2N(i;gc
�
) s:t: ij2pik

�(pijik)
= �0(c�ij) <

1

v
P

k2N(j;gc
�
) s:t: ji2pjk

�(pjijk)
:

In this way both conditions (13) and (14) hold.

Proposition 6

Proof. Conditions (i) and (ii) of Theorem 2 are equivalent to marginal stability.
Assume now that c� is strongly marginally stable, but gc

�

is not connected and �0(0) >
1

v+K
, where K is the information received by the node, say i, that receives the maximal

amount of information. Then, if j is any node in a di¤erent component, any su¢ciently
small investment of j in a link with i is sure to increase j�s payo¤, contradicting c��s
strong marginal stability.
Reciprocally, if i and j are in di¤erent components and �0(0) � 1

v+K
, where K is

the information received by the node that receives the maximal amount of information,
then �(c)

c
< �0(0) � 1

v+K
for all c, i.e. (v + K)�(c) � c < 0, and also replacing K by

the information received by the node that receives the maximal amount of information
in the component of i or that of j. Consequently any investment in a link connecting
them is not pro�table for either of them. Whereas if gc

�

is connected, by Lemma 2 it
is also strongly marginally stable.
Proposition 7

Proof. Assume c = (cij)i;j2N is s.t. cij 6= 0 if and only if ij 2 M2 for some M � N .
Then, for all ij 2 M2, pij = ij, and by Theorem 2, (13) is necessary for marginal
stability, i.e. �0(cij) = 1=v for all i; j 2 M (i 6= j). That is, for all i; j 2 M (i 6= j)

cij + cij = bceq, s.t. �0(bceq) = 1=v; which is feasible only if �0(0) > 1=v. Moreover, such
a bceq is unique by strict concavity of �. But this is also su¢cient because then (14) is
also satis�ed however the cost bceq of each link is shared.

28



In particular, if M = N , then gc is connected and, by Lemma 2, also strongly
marginally stable.

Proposition 8

Proof. Assume that c is marginally stable and gc is a star of p � 1 links (3 � p �
n). Assume w.l.o.g. that node 1 is the central player, connected with 2; 3; :::; p, and
M = f1; 2; :::; pg. Obviously, in a star there is only one path connecting any two nodes.
By Corollary 1, the star must be periphery-sponsored, that is, for any spoke player i,
ci1 = ci1. The payo¤ of spoke player i is then

��i (c) = v�(ci1)(1 +
X

k2Mnf1;ig

�(ck1))� ci1:

We show �rst that in marginal equilibrium all spoke nodes invest the same amount
in the link that each of them supports and receive the same payo¤. Assume two
spoke nodes, say i and j, invest di¤erent amounts in their links, and assume that
��i (c) � �

�
j(c). Then

��i (c)� �
�
j(c) = (v�(ci1)� v�(cj1))(1 +

X

k2Mnf1;i;jg

�(ck1)) + (cj1 � ci1) � 0;

which implies

�(cj1)� �(ci1)

cj1 � ci1
=
�(ci1)� �(cj1)

ci1 � cj1
�

1

v(1 +
P

k2Mnf1;i;jg �(ck1))
: (30)

Assume ci1 > cj1: As � is di¤erentiable and strictly concave,

�(ci1)� �(cj1) < �
0(cj1)(ci1 � cj1)

must hold, i.e.

�0(cj1) >
�(ci1)� �(cj1)

ci1 � cj1
:

Which along with (30) yields

�0(cj1) >
1

v(1 +
P

k2Mnf1;i;jg �(ck1))
;

which is a contradiction, given that, by (13),

�0(cj1) =
1

v(1 + �(ci1) +
P

k2Mnf1;i;jg �(ck1))
:

Through the same steps, cj1 > ci1 leads to a similar contradiction for �
0(ci1). There-

fore marginal equilibrium implies that the star must be entirely symmetric: All spoke
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nodes invest the same amount c�p;eq; which must satisfy (13), which in this case becomes
precisely (16), and receive the same payo¤. And the by being periphery sponsored,
condition (14) is also satis�ed. Then such a periphery-sponsored star satis�es all con-
ditions in Theorem 2 necessary and su¢cient to be marginally stable. Moreover, if the
star is all-encompassing, by Lemma 2 it is also strong marginal equilibrium.

Proposition 9

Proof. Let c = (cij)i;j2N be an investment pro�le s.t. gc is a tree and let T � N2
be the underlying graph. By Theorem 2, for c to be marginally stable condition (13)
must hold. That is, for each ij 2 T s.t. cij > 0;

�0(cij) =
1

v
P

k2N(i;gc) s:t: ij2pik
�(pijik)

:

If this condition holds and all links for which the two nodes that it connects are paid for
by the node that receives more information through it, then condition (ii) of Theorem
2 is also satis�ed. The �rst part of condition (i) of Theorem 2 holds necessarily due
to the structure of a tree, where any two connected nodes are connected by only
one path. Therefore it is enough to prove that there exists an investment vector c
whose underlying graph is T and s.t. condition (13) holds. As � is continuously
di¤erentiable, strictly concave and increasing, �0 is continuous and decreasing, and
consequently invertible, moreover its inverse �0�1 is continuous. Let then

� : [�0�1(
1

v
); �0�1(

1

v(n� 1)
)]T �! [

1

v(n� 1)
;
1

v
]T

be the function that maps any investment vector c = (cij)ij2N2 whose underlying graph

is T and s.t. �0�1( 1
v
) � cij � �0�1( 1

v(n�1)
) (i.e. 1

v(n�1)
� �0(cij) � 1=v) for all ij 2 T ,

into a T -vector �(c) = (�ij(c))ij2T de�ned for each ij 2 T by

�ij(c) = min

(
1

v
P

k2N(i;gc) s:t: ij2pik
�(pijik)

;
1

v
P

k2N(j;gc) s:t: ij2pjk
�(pjijk)

)
:

Then � is continuous and �ij(c) 2 [
1

(n�1)v
; 1
v
] for all ij 2 T , because

1 <
X

k2N(i;gc) s:t: ij2pik

�(pijik) < n� 1:

Note that for each pair i; j 2 N connected by the tree there is only one path con-
necting them in gc, and consequently �(pijik) is a product �lm2pjk�(clm) of continuous
functions. Thus each �ij(c) is continuous and so is � consequently. Note that although
investments are not bounded, in a network with n nodes no link can support a �ow
of information greater than (n� 1)v. Consequently, in a marginal equilibrium no link
receives an investment c s.t. �0(c) < 1=(n�1)v. On the other hand, as no link transmits
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less than v, in marginal equilibrium no link receives an investment c s.t. �0(c) > 1=v.
Thus denote by D�1 the continuous function

D�1 : [
1

v(n� 1)
;
1

v
]T �! [�0�1(

1

v
); �0�1(

1

v(n� 1)
)]T

where D�1
kl ((xij)ij2T ) = �0�1(xkl). Then the composition D�1 � � is a continuous

function that maps compact convex set [�0�1( 1
v
); �0�1( 1

v(n�1)
)]T to itself, so there must

be a �xed-point c = (cij)i;j2N s.t. D
�1(�(c)) = c; that is, s.t.

�ij(c) = �
0(cij)

for all ij 2 T . Therefore, the investment pro�le where each link ij in the tree receives
an investment of cij and links for which the two nodes that it connects are paid for by
the node that receives more information through it is a marginally stable investment
whose underlying graph is T . By Lemma 2, if the tree is all-encompassing it will also
be strongly marginally stable.

Proposition 10

Proof. If �0(0) > 1=v, any star graph can be sustained in marginal equilibrium as a
corollary of Proposition 9. Now assume �0(0) � 1=v. Let p � 3 and de�ne '(c) :=

1
v(1+(p�2)�(c)

. We prove that for a p su¢ciently big there is sure to be c > 0 s.t.

'(c) = �0(c), i.e. condition (16) of Proposition 8 holds and consequently a periphery-
sponsored star of p nodes is marginally stable. Given '(c) > 1

v(1+(p�2)�(1)
for all c > 0,

and limc!1 �
0(c) = 0, it is su¢cient to prove that for n su¢ciently big '(1) � �0(1):

But it is easy to check that this is equivalent to

p� 2 �
1� 2v�0(1)

v�(1)�0(1)
;

which is sure to hold for p a big enough.
Finally, if inequality �0(0) � 1

v(1+(p�2)�(1))
holds for a �xed p, then the graphs of

'(c) and �0(c) do not intersect, because

'(c) =
1

v(1 + (p� 2)�(c))
>

1

v(1 + (p� 2)�(1))
� �0(0) > �0(c)

for all c. Note that there is no contradiction with the preceding result: whatever the
value of �0(0), for p big enough �0(0) > 1

v(1+(p�2)�(1))
.

Proposition 11

Proof. Let T � N2 be the graph of a circle of k nodes where nodes are numbered so
that only consecutive nodes and 1 and k are linked, i.e. T = f12; 23; 34; ::k � 1k; k1g.
There are two cases:
Case k is odd : Let c = (cij)i;j2N be an investment pro�le where all links in T

receive the same investment, i.e. cij = c if ij 2 T and cij = 0 otherwise. Then note
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that the optimal path connecting any two nodes is the shortest, and at least one of the
two nodes that each link connects invests in it, through which the information that it
receives is

v(�(c) + �(c)2 + �(c)3 + :::+ �(c)
k�1
2 ):

Thus condition (14) applies and becomes (17). If (17) holds, however players share the
cost of each link all conditions of Theorem 2 hold and c is marginally stable.

Case k is even: Let c = (cij)i;j2N be an investment pro�le where cij = c or c,

alternating c-links and c-links so that

cij =

8
<
:

c; if ij 2 T and minfi; jg is odd,
c; if ij 2 T and minfi; jg is even,
0 otherwise,

i.e. c12 = c; c23 = c; c34 = c, etc., with c < c. Note that if k=2 is even, the optimal path
is the shortest when there is only one, while when there are two of the same length the
information through the one containing the c-link that the player is involved in is

v(�(c) + �(c)�(c) + �(c)�(c)�(c) + �(c)2�(c)2 + :::+ �(c)
k
4 �(c)

k
4 );

while through the one containing the c-link that the player is involved in, is

v(�(c) + �(c)�(c) + �(c)�(c)�(c) + �(c)2�(c)2 + :::+ �(c)
k
4 �(c)

k
4 ):

A term to term comparison shows that the optimal path is the one containing the c-link
that the player is involved in. Thus condition (14) applies to �0(c) becoming (18).Then
the actual information a node receives through the path containing the c-link that that
node is involved in is

v(�(c) + �(c)�(c) + �(c)�(c)�(c) + �(c)2�(c)2 + :::+ �(c)
k�4
4 �(c)

k
4 ):

Thus condition (14) applies to �0(c) and becomes (19). Therefore if (18) and (19)
hold, c is marginally stable. A similar argument leads to the same conclusion if k=2 is
odd. Again a �xed-point argument proves that the existence of such c and such c is
guaranteed if �0(c) > 1=v. Finally, the result for k = n follows from Lemma 2.

Proposition 12

Proof. The necessity is a corollary of Proposition 5. As for su¢ciency, let � be a DR-
technology and g0 the empty network, i.e. cij = 0 for all i; j 2 N . In these conditions
a player has an incentive to invest c > 0 in a link with another (or any number of
them) only if v�(c) � c > 0. But, by the assumptions on technology �, if �0(0) � 1=v
and c > 0; then �(c) < c�0(0) � c=v; i.e. v�(c)� c � 0 for all c.

Proposition 13

Proof. Let bcn be an investment pro�le such that gbcn is complete, symmetric and
marginally stable, i.e. cij = bceq and cij = bceq

2
, with �0(bceq) = 1=v < �0(0) by Proposition
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7. The possible best responses of a node i consist of withdrawing support from k � 1;
links (with 2 � k � n� 1) and replacing one of the remaining bceq-links that connects
it with a node connected with them by bceq-links by a ck-link that optimizes the bene�t
of this indirect connection with these k � 1 nodes (see Figure 315), i.e. by a ck-link

s.t. (21) by investing ck �
bceq
2
in it.16 Then, if ak denotes the response described, bcn is

Nash-stable if and only if

��i (bcn)� ��i (ak) � 0; for all k = 3; :::; n;

i.e., if and only if

k(v�(bceq)� bceq=2)� �(ck)(v + (k � 1)�(bceq)v)� (ck + bceq=2) � 0;

which yields (20).

Figure 3: A possible best response to a complete network
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Proposition 14

Proof. Let c�n be an investment pro�le such that g
c
�

n is a marginally stable all-
encompassing star. By Proposition 8, gc

�

n must be a periphery sponsored star of
c�eq-links. The central node is obviously playing its best response. If �0(0) > 1=v
the possible best responses of a spoke node i consist of connecting k spoke nodes (with
1 � k � n � 2) by bceq-links and replacing the link c�eq-link that connects it with the
center by a link that optimizes the bene�t of connecting with the center of the star
formed by the remaining n � k � 2 c�eq-links (see Figure 4), i.e. by a ck-link s.t. (23).
Then, if bk denotes the response described, we have

��i (c
�
n) = v(1 + (n� 2)�(c

�
eq))�(c

�
eq)� c

�
eq;

��i (b
k) = v(1 + (n� k � 2)�(c�eq))�(ck)� ck + k(v�(bceq)� bceq):

15Note that only the links in which node i is involved and the paths through which it receives
information after the response are represented. The same applies to Figure 4.
16Although there are other possible best responses by making a similar change for several sets of

links, all are covered by this case for the di¤erent values of k.
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Then c�n is Nash-stable if and only if for all k = 1; 2; :::; n� 2 :

��i (c
�
n)� �

�
i (b

k) � 0;

i.e.

((n� k � 2)�(c�eq) + 1)v(�(c
�
eq)� �(ck))� (c

�
eq � ck) + k(v�(c

�
eq)

2 � (v�(bceq)� bceq)) � 0;

which yields (22).

Note that if �0(0) � 1=v; the only best response of a spoke node is to keep the
investment unchanged.

Figure 4: A possible best response to the star
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Proposition 15

Proof. In view of Theorem 1, the empty network is e¢cient if and only if �(c) � 'n(c)
for all c, with 'n given by (8), and by Propositions 5 and 12 the empty network is
strongly marginally stable and Nash-stable if and only if �0(0) � 1=v: But if �(c) �
'n(c) for all c, then �

0(0) � 1=2v < 1=v. Thus whenever the empty network is e¢cient
it is also strongly marginally and Nash-stable, but not reciprocally: whenever 1=2v <
�0(0) � 1=v, the empty network is stable in both senses but not e¢cient.
In any other case, Propositions 1 and 2 establish necessary conditions for e¢ciency

under a DR-technology for the only non-empty structures that are proven in Theorem
1 to be possibly e¢cient for any DR-technology: all-encompassing stars and complete
networks. Propositions 7 and 8 provide necessary and su¢cient conditions for these
structures to be marginally stable. Comparing (4) and (15), with (6) and (16), makes
it clear that e¢cient all-encompassing stars and e¢cient complete networks are not
Nash-stable, or even marginally stable. This incompatibility extends to the case of an
investment supporting an infrastructure e¢ciently and in marginal equilibrium accord-
ing to De�nitions 2 and 6. This follows immediately from a comparison between (11)
and (13).
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